0b27d7104f
for this, since it is easy to run into with large systems with lots of shared mmap space. Obtained from: yahoo
2349 lines
51 KiB
C
2349 lines
51 KiB
C
/*
|
|
* Copyright (c) 1991 Regents of the University of California.
|
|
* All rights reserved.
|
|
* Copyright (c) 1994 John S. Dyson
|
|
* All rights reserved.
|
|
* Copyright (c) 1994 David Greenman
|
|
* All rights reserved.
|
|
* Copyright (c) 1998,2000 Doug Rabson
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to Berkeley by
|
|
* the Systems Programming Group of the University of Utah Computer
|
|
* Science Department and William Jolitz of UUNET Technologies Inc.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the University of
|
|
* California, Berkeley and its contributors.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* from: @(#)pmap.c 7.7 (Berkeley) 5/12/91
|
|
* from: i386 Id: pmap.c,v 1.193 1998/04/19 15:22:48 bde Exp
|
|
* with some ideas from NetBSD's alpha pmap
|
|
* $FreeBSD$
|
|
*/
|
|
|
|
/*
|
|
* Manages physical address maps.
|
|
*
|
|
* In addition to hardware address maps, this
|
|
* module is called upon to provide software-use-only
|
|
* maps which may or may not be stored in the same
|
|
* form as hardware maps. These pseudo-maps are
|
|
* used to store intermediate results from copy
|
|
* operations to and from address spaces.
|
|
*
|
|
* Since the information managed by this module is
|
|
* also stored by the logical address mapping module,
|
|
* this module may throw away valid virtual-to-physical
|
|
* mappings at almost any time. However, invalidations
|
|
* of virtual-to-physical mappings must be done as
|
|
* requested.
|
|
*
|
|
* In order to cope with hardware architectures which
|
|
* make virtual-to-physical map invalidates expensive,
|
|
* this module may delay invalidate or reduced protection
|
|
* operations until such time as they are actually
|
|
* necessary. This module is given full information as
|
|
* to which processors are currently using which maps,
|
|
* and to when physical maps must be made correct.
|
|
*/
|
|
|
|
/*
|
|
* Following the Linux model, region IDs are allocated in groups of
|
|
* eight so that a single region ID can be used for as many RRs as we
|
|
* want by encoding the RR number into the low bits of the ID.
|
|
*
|
|
* We reserve region ID 0 for the kernel and allocate the remaining
|
|
* IDs for user pmaps.
|
|
*
|
|
* Region 0..4
|
|
* User virtually mapped
|
|
*
|
|
* Region 5
|
|
* Kernel virtually mapped
|
|
*
|
|
* Region 6
|
|
* Kernel physically mapped uncacheable
|
|
*
|
|
* Region 7
|
|
* Kernel physically mapped cacheable
|
|
*/
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/mman.h>
|
|
#include <sys/msgbuf.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/sx.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/vmmeter.h>
|
|
|
|
#include <vm/vm.h>
|
|
#include <vm/vm_param.h>
|
|
#include <vm/vm_kern.h>
|
|
#include <vm/vm_page.h>
|
|
#include <vm/vm_map.h>
|
|
#include <vm/vm_object.h>
|
|
#include <vm/vm_extern.h>
|
|
#include <vm/vm_pageout.h>
|
|
#include <vm/vm_pager.h>
|
|
#include <vm/vm_zone.h>
|
|
|
|
#include <sys/user.h>
|
|
|
|
#include <machine/md_var.h>
|
|
|
|
MALLOC_DEFINE(M_PMAP, "PMAP", "PMAP Structures");
|
|
|
|
#ifndef PMAP_SHPGPERPROC
|
|
#define PMAP_SHPGPERPROC 200
|
|
#endif
|
|
|
|
#if defined(DIAGNOSTIC)
|
|
#define PMAP_DIAGNOSTIC
|
|
#endif
|
|
|
|
#define MINPV 2048
|
|
|
|
#if 0
|
|
#define PMAP_DIAGNOSTIC
|
|
#define PMAP_DEBUG
|
|
#endif
|
|
|
|
#if !defined(PMAP_DIAGNOSTIC)
|
|
#define PMAP_INLINE __inline
|
|
#else
|
|
#define PMAP_INLINE
|
|
#endif
|
|
|
|
#if 0
|
|
|
|
static void
|
|
pmap_break(void)
|
|
{
|
|
}
|
|
|
|
/* #define PMAP_DEBUG_VA(va) if ((va) == 0x120058000) pmap_break(); else */
|
|
|
|
#endif
|
|
|
|
#ifndef PMAP_DEBUG_VA
|
|
#define PMAP_DEBUG_VA(va) do {} while(0)
|
|
#endif
|
|
|
|
/*
|
|
* Get PDEs and PTEs for user/kernel address space
|
|
*/
|
|
#define pmap_pte_w(pte) ((pte)->pte_ig & PTE_IG_WIRED)
|
|
#define pmap_pte_managed(pte) ((pte)->pte_ig & PTE_IG_MANAGED)
|
|
#define pmap_pte_v(pte) ((pte)->pte_p)
|
|
#define pmap_pte_pa(pte) (((pte)->pte_ppn) << 12)
|
|
#define pmap_pte_prot(pte) (((pte)->pte_ar << 2) | (pte)->pte_pl)
|
|
|
|
#define pmap_pte_set_w(pte, v) ((v)?((pte)->pte_ig |= PTE_IG_WIRED) \
|
|
:((pte)->pte_ig &= ~PTE_IG_WIRED))
|
|
#define pmap_pte_set_prot(pte, v) do { \
|
|
(pte)->pte_ar = v >> 2; \
|
|
(pte)->pte_pl = v & 3; \
|
|
} while (0)
|
|
|
|
/*
|
|
* Given a map and a machine independent protection code,
|
|
* convert to an ia64 protection code.
|
|
*/
|
|
#define pte_prot(m, p) (protection_codes[m == pmap_kernel() ? 0 : 1][p])
|
|
int protection_codes[2][8];
|
|
|
|
/*
|
|
* Return non-zero if this pmap is currently active
|
|
*/
|
|
#define pmap_isactive(pmap) (pmap->pm_active)
|
|
|
|
/*
|
|
* Statically allocated kernel pmap
|
|
*/
|
|
static struct pmap kernel_pmap_store;
|
|
pmap_t kernel_pmap;
|
|
|
|
vm_offset_t avail_start; /* PA of first available physical page */
|
|
vm_offset_t avail_end; /* PA of last available physical page */
|
|
vm_offset_t virtual_avail; /* VA of first avail page (after kernel bss) */
|
|
vm_offset_t virtual_end; /* VA of last avail page (end of kernel AS) */
|
|
static boolean_t pmap_initialized = FALSE; /* Has pmap_init completed? */
|
|
|
|
|
|
vm_offset_t kernel_vm_end;
|
|
|
|
/*
|
|
* Values for ptc.e. XXX values for SKI.
|
|
*/
|
|
static u_int64_t pmap_pte_e_base = 0x100000000;
|
|
static u_int64_t pmap_pte_e_count1 = 3;
|
|
static u_int64_t pmap_pte_e_count2 = 2;
|
|
static u_int64_t pmap_pte_e_stride1 = 0x2000;
|
|
static u_int64_t pmap_pte_e_stride2 = 0x100000000;
|
|
|
|
/*
|
|
* Data for the RID allocator
|
|
*/
|
|
static int pmap_nextrid;
|
|
static int pmap_ridbits = 18;
|
|
|
|
/*
|
|
* Data for the pv entry allocation mechanism
|
|
*/
|
|
static vm_zone_t pvzone;
|
|
static struct vm_zone pvzone_store;
|
|
static struct vm_object pvzone_obj;
|
|
static int pv_entry_count=0, pv_entry_max=0, pv_entry_high_water=0;
|
|
static int pmap_pagedaemon_waken = 0;
|
|
static struct pv_entry *pvinit;
|
|
|
|
static PMAP_INLINE void free_pv_entry __P((pv_entry_t pv));
|
|
static pv_entry_t get_pv_entry __P((void));
|
|
static void ia64_protection_init __P((void));
|
|
|
|
static void pmap_remove_all __P((vm_page_t m));
|
|
static void pmap_enter_quick __P((pmap_t pmap, vm_offset_t va, vm_page_t m));
|
|
|
|
vm_offset_t
|
|
pmap_steal_memory(vm_size_t size)
|
|
{
|
|
vm_size_t bank_size;
|
|
vm_offset_t pa, va;
|
|
|
|
size = round_page(size);
|
|
|
|
bank_size = phys_avail[1] - phys_avail[0];
|
|
while (size > bank_size) {
|
|
int i;
|
|
for (i = 0; phys_avail[i+2]; i+= 2) {
|
|
phys_avail[i] = phys_avail[i+2];
|
|
phys_avail[i+1] = phys_avail[i+3];
|
|
}
|
|
phys_avail[i] = 0;
|
|
phys_avail[i+1] = 0;
|
|
if (!phys_avail[0])
|
|
panic("pmap_steal_memory: out of memory");
|
|
bank_size = phys_avail[1] - phys_avail[0];
|
|
}
|
|
|
|
pa = phys_avail[0];
|
|
phys_avail[0] += size;
|
|
|
|
va = IA64_PHYS_TO_RR7(pa);
|
|
bzero((caddr_t) va, size);
|
|
return va;
|
|
}
|
|
|
|
/*
|
|
* Bootstrap the system enough to run with virtual memory.
|
|
*/
|
|
void
|
|
pmap_bootstrap()
|
|
{
|
|
int i;
|
|
|
|
/*
|
|
* Setup RIDs. We use the bits above pmap_ridbits for a
|
|
* generation counter, saving generation zero for
|
|
* 'invalid'. RIDs 0..7 are reserved for the kernel.
|
|
*/
|
|
pmap_nextrid = (1 << pmap_ridbits) + 8;
|
|
|
|
avail_start = phys_avail[0];
|
|
for (i = 0; phys_avail[i+2]; i+= 2) ;
|
|
avail_end = phys_avail[i+1];
|
|
|
|
virtual_avail = IA64_RR_BASE(5);
|
|
virtual_end = IA64_RR_BASE(6)-1;
|
|
|
|
/*
|
|
* Initialize protection array.
|
|
*/
|
|
ia64_protection_init();
|
|
|
|
/*
|
|
* The kernel's pmap is statically allocated so we don't have to use
|
|
* pmap_create, which is unlikely to work correctly at this part of
|
|
* the boot sequence (XXX and which no longer exists).
|
|
*/
|
|
kernel_pmap = &kernel_pmap_store;
|
|
kernel_pmap->pm_rid = 0;
|
|
kernel_pmap->pm_count = 1;
|
|
kernel_pmap->pm_active = 1;
|
|
TAILQ_INIT(&kernel_pmap->pm_pvlist);
|
|
|
|
/*
|
|
* Region 5 is mapped via the vhpt.
|
|
*/
|
|
ia64_set_rr(IA64_RR_BASE(5),
|
|
(5 << 8) | (PAGE_SHIFT << 2) | 1);
|
|
|
|
/*
|
|
* Region 6 is direct mapped UC and region 7 is direct mapped
|
|
* WC. The details of this is controlled by the Alt {I,D}TLB
|
|
* handlers. Here we just make sure that they have the largest
|
|
* possible page size to minimise TLB usage.
|
|
*/
|
|
ia64_set_rr(IA64_RR_BASE(6), (6 << 8) | (28 << 2));
|
|
ia64_set_rr(IA64_RR_BASE(7), (7 << 8) | (28 << 2));
|
|
|
|
/*
|
|
* Set up proc0's PCB.
|
|
*/
|
|
#if 0
|
|
proc0.p_addr->u_pcb.pcb_hw.apcb_asn = 0;
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Initialize the pmap module.
|
|
* Called by vm_init, to initialize any structures that the pmap
|
|
* system needs to map virtual memory.
|
|
* pmap_init has been enhanced to support in a fairly consistant
|
|
* way, discontiguous physical memory.
|
|
*/
|
|
void
|
|
pmap_init(phys_start, phys_end)
|
|
vm_offset_t phys_start, phys_end;
|
|
{
|
|
int i;
|
|
int initial_pvs;
|
|
|
|
/*
|
|
* Allocate memory for random pmap data structures. Includes the
|
|
* pv_head_table.
|
|
*/
|
|
|
|
for(i = 0; i < vm_page_array_size; i++) {
|
|
vm_page_t m;
|
|
|
|
m = &vm_page_array[i];
|
|
TAILQ_INIT(&m->md.pv_list);
|
|
m->md.pv_list_count = 0;
|
|
}
|
|
|
|
/*
|
|
* init the pv free list
|
|
*/
|
|
initial_pvs = vm_page_array_size;
|
|
if (initial_pvs < MINPV)
|
|
initial_pvs = MINPV;
|
|
pvzone = &pvzone_store;
|
|
pvinit = (struct pv_entry *) kmem_alloc(kernel_map,
|
|
initial_pvs * sizeof (struct pv_entry));
|
|
zbootinit(pvzone, "PV ENTRY", sizeof (struct pv_entry), pvinit,
|
|
vm_page_array_size);
|
|
|
|
/*
|
|
* Now it is safe to enable pv_table recording.
|
|
*/
|
|
pmap_initialized = TRUE;
|
|
}
|
|
|
|
/*
|
|
* Initialize the address space (zone) for the pv_entries. Set a
|
|
* high water mark so that the system can recover from excessive
|
|
* numbers of pv entries.
|
|
*/
|
|
void
|
|
pmap_init2()
|
|
{
|
|
int shpgperproc = PMAP_SHPGPERPROC;
|
|
|
|
TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
|
|
pv_entry_max = shpgperproc * maxproc + vm_page_array_size;
|
|
pv_entry_high_water = 9 * (pv_entry_max / 10);
|
|
zinitna(pvzone, &pvzone_obj, NULL, 0, pv_entry_max, ZONE_INTERRUPT, 1);
|
|
}
|
|
|
|
|
|
/***************************************************
|
|
* Manipulate TLBs for a pmap
|
|
***************************************************/
|
|
|
|
static void
|
|
pmap_invalidate_rid(pmap_t pmap)
|
|
{
|
|
KASSERT(pmap != kernel_pmap,
|
|
("changing kernel_pmap's RID"));
|
|
KASSERT(pmap == PCPU_GET(current_pmap),
|
|
("invalidating RID of non-current pmap"));
|
|
pmap_remove_pages(pmap, IA64_RR_BASE(0), IA64_RR_BASE(5));
|
|
pmap->pm_rid = 0;
|
|
}
|
|
|
|
static void
|
|
pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
|
|
{
|
|
KASSERT((pmap == kernel_pmap || pmap == PCPU_GET(current_pmap)),
|
|
("invalidating TLB for non-current pmap"));
|
|
ia64_ptc_l(va, PAGE_SHIFT << 2);
|
|
}
|
|
|
|
static void
|
|
pmap_invalidate_all(pmap_t pmap)
|
|
{
|
|
u_int64_t addr;
|
|
int i, j;
|
|
critical_t psr;
|
|
|
|
KASSERT((pmap == kernel_pmap || pmap == PCPU_GET(current_pmap)),
|
|
("invalidating TLB for non-current pmap"));
|
|
|
|
psr = critical_enter();
|
|
addr = pmap_pte_e_base;
|
|
for (i = 0; i < pmap_pte_e_count1; i++) {
|
|
for (j = 0; j < pmap_pte_e_count2; j++) {
|
|
ia64_ptc_e(addr);
|
|
addr += pmap_pte_e_stride2;
|
|
}
|
|
addr += pmap_pte_e_stride1;
|
|
}
|
|
critical_exit(psr);
|
|
}
|
|
|
|
static void
|
|
pmap_get_rid(pmap_t pmap)
|
|
{
|
|
if ((pmap_nextrid & ((1 << pmap_ridbits) - 1)) == 0) {
|
|
/*
|
|
* Start a new ASN generation.
|
|
*
|
|
* Invalidate all per-process mappings and I-cache
|
|
*/
|
|
pmap_nextrid += 8;
|
|
|
|
/*
|
|
* Since we are about to start re-using ASNs, we must
|
|
* clear out the TLB.
|
|
* with the ASN.
|
|
*/
|
|
#if 0
|
|
IA64_TBIAP();
|
|
ia64_pal_imb(); /* XXX overkill? */
|
|
#endif
|
|
}
|
|
pmap->pm_rid = pmap_nextrid;
|
|
pmap_nextrid += 8;
|
|
}
|
|
|
|
/***************************************************
|
|
* Low level helper routines.....
|
|
***************************************************/
|
|
|
|
/*
|
|
* Install a pte into the VHPT
|
|
*/
|
|
static PMAP_INLINE void
|
|
pmap_install_pte(struct ia64_lpte *vhpte, struct ia64_lpte *pte)
|
|
{
|
|
u_int64_t *vhp, *p;
|
|
|
|
/* invalidate the pte */
|
|
atomic_set_64(&vhpte->pte_tag, 1L << 63);
|
|
ia64_mf(); /* make sure everyone sees */
|
|
|
|
vhp = (u_int64_t *) vhpte;
|
|
p = (u_int64_t *) pte;
|
|
|
|
vhp[0] = p[0];
|
|
vhp[1] = p[1];
|
|
vhp[2] = p[2]; /* sets ti to one */
|
|
|
|
ia64_mf();
|
|
}
|
|
|
|
/*
|
|
* Compare essential parts of pte.
|
|
*/
|
|
static PMAP_INLINE int
|
|
pmap_equal_pte(struct ia64_lpte *pte1, struct ia64_lpte *pte2)
|
|
{
|
|
return *(u_int64_t *) pte1 == *(u_int64_t *) pte2;
|
|
}
|
|
|
|
/*
|
|
* this routine defines the region(s) of memory that should
|
|
* not be tested for the modified bit.
|
|
*/
|
|
static PMAP_INLINE int
|
|
pmap_track_modified(vm_offset_t va)
|
|
{
|
|
if ((va < clean_sva) || (va >= clean_eva))
|
|
return 1;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Create the UPAGES for a new process.
|
|
* This routine directly affects the fork perf for a process.
|
|
*/
|
|
void
|
|
pmap_new_proc(struct proc *p)
|
|
{
|
|
struct user *up;
|
|
|
|
/*
|
|
* Use contigmalloc for user area so that we can use a region
|
|
* 7 address for it which makes it impossible to accidentally
|
|
* lose when recording a trapframe.
|
|
*/
|
|
up = contigmalloc(UPAGES * PAGE_SIZE, M_PMAP,
|
|
M_WAITOK,
|
|
0ul,
|
|
256*1024*1024 - 1,
|
|
PAGE_SIZE,
|
|
256*1024*1024);
|
|
|
|
p->p_md.md_uservirt = up;
|
|
p->p_addr = (struct user *)
|
|
IA64_PHYS_TO_RR7(ia64_tpa((u_int64_t) up));
|
|
}
|
|
|
|
/*
|
|
* Dispose the UPAGES for a process that has exited.
|
|
* This routine directly impacts the exit perf of a process.
|
|
*/
|
|
void
|
|
pmap_dispose_proc(p)
|
|
struct proc *p;
|
|
{
|
|
contigfree(p->p_md.md_uservirt, UPAGES * PAGE_SIZE, M_PMAP);
|
|
p->p_md.md_uservirt = 0;
|
|
p->p_addr = 0;
|
|
}
|
|
|
|
/*
|
|
* Allow the UPAGES for a process to be prejudicially paged out.
|
|
*/
|
|
void
|
|
pmap_swapout_proc(p)
|
|
struct proc *p;
|
|
{
|
|
#if 0
|
|
int i;
|
|
vm_object_t upobj;
|
|
vm_page_t m;
|
|
|
|
/*
|
|
* Make sure we aren't fpcurproc.
|
|
*/
|
|
ia64_fpstate_save(p, 1);
|
|
|
|
upobj = p->p_upages_obj;
|
|
/*
|
|
* let the upages be paged
|
|
*/
|
|
for(i=0;i<UPAGES;i++) {
|
|
if ((m = vm_page_lookup(upobj, i)) == NULL)
|
|
panic("pmap_swapout_proc: upage already missing???");
|
|
vm_page_dirty(m);
|
|
vm_page_unwire(m, 0);
|
|
pmap_kremove((vm_offset_t)p->p_addr + PAGE_SIZE * i);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Bring the UPAGES for a specified process back in.
|
|
*/
|
|
void
|
|
pmap_swapin_proc(p)
|
|
struct proc *p;
|
|
{
|
|
#if 0
|
|
int i,rv;
|
|
vm_object_t upobj;
|
|
vm_page_t m;
|
|
|
|
upobj = p->p_upages_obj;
|
|
for(i=0;i<UPAGES;i++) {
|
|
|
|
m = vm_page_grab(upobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
|
|
|
|
pmap_kenter(((vm_offset_t) p->p_addr) + i * PAGE_SIZE,
|
|
VM_PAGE_TO_PHYS(m));
|
|
|
|
if (m->valid != VM_PAGE_BITS_ALL) {
|
|
rv = vm_pager_get_pages(upobj, &m, 1, 0);
|
|
if (rv != VM_PAGER_OK)
|
|
panic("pmap_swapin_proc: cannot get upages for proc: %d\n", p->p_pid);
|
|
m = vm_page_lookup(upobj, i);
|
|
m->valid = VM_PAGE_BITS_ALL;
|
|
}
|
|
|
|
vm_page_wire(m);
|
|
vm_page_wakeup(m);
|
|
vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/***************************************************
|
|
* Page table page management routines.....
|
|
***************************************************/
|
|
|
|
void
|
|
pmap_pinit0(pmap)
|
|
struct pmap *pmap;
|
|
{
|
|
/*
|
|
* kernel_pmap is the same as any other pmap.
|
|
*/
|
|
pmap_pinit(pmap);
|
|
pmap->pm_flags = 0;
|
|
pmap->pm_rid = 0;
|
|
pmap->pm_count = 1;
|
|
pmap->pm_ptphint = NULL;
|
|
pmap->pm_active = 0;
|
|
TAILQ_INIT(&pmap->pm_pvlist);
|
|
bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
|
|
}
|
|
|
|
/*
|
|
* Initialize a preallocated and zeroed pmap structure,
|
|
* such as one in a vmspace structure.
|
|
*/
|
|
void
|
|
pmap_pinit(pmap)
|
|
register struct pmap *pmap;
|
|
{
|
|
pmap->pm_flags = 0;
|
|
pmap->pm_rid = 0;
|
|
pmap->pm_count = 1;
|
|
pmap->pm_ptphint = NULL;
|
|
pmap->pm_active = 0;
|
|
TAILQ_INIT(&pmap->pm_pvlist);
|
|
bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
|
|
}
|
|
|
|
/*
|
|
* Wire in kernel global address entries. To avoid a race condition
|
|
* between pmap initialization and pmap_growkernel, this procedure
|
|
* should be called after the vmspace is attached to the process
|
|
* but before this pmap is activated.
|
|
*/
|
|
void
|
|
pmap_pinit2(pmap)
|
|
struct pmap *pmap;
|
|
{
|
|
}
|
|
|
|
/***************************************************
|
|
* Pmap allocation/deallocation routines.
|
|
***************************************************/
|
|
|
|
/*
|
|
* Release any resources held by the given physical map.
|
|
* Called when a pmap initialized by pmap_pinit is being released.
|
|
* Should only be called if the map contains no valid mappings.
|
|
*/
|
|
void
|
|
pmap_release(pmap_t pmap)
|
|
{
|
|
#if defined(DIAGNOSTIC)
|
|
if (object->ref_count != 1)
|
|
panic("pmap_release: pteobj reference count != 1");
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* grow the number of kernel page table entries, if needed
|
|
*/
|
|
void
|
|
pmap_growkernel(vm_offset_t addr)
|
|
{
|
|
}
|
|
|
|
/*
|
|
* Retire the given physical map from service.
|
|
* Should only be called if the map contains
|
|
* no valid mappings.
|
|
*/
|
|
void
|
|
pmap_destroy(pmap_t pmap)
|
|
{
|
|
int count;
|
|
|
|
if (pmap == NULL)
|
|
return;
|
|
|
|
count = --pmap->pm_count;
|
|
if (count == 0) {
|
|
pmap_release(pmap);
|
|
panic("destroying a pmap is not yet implemented");
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Add a reference to the specified pmap.
|
|
*/
|
|
void
|
|
pmap_reference(pmap_t pmap)
|
|
{
|
|
if (pmap != NULL) {
|
|
pmap->pm_count++;
|
|
}
|
|
}
|
|
|
|
/***************************************************
|
|
* page management routines.
|
|
***************************************************/
|
|
|
|
/*
|
|
* free the pv_entry back to the free list
|
|
*/
|
|
static PMAP_INLINE void
|
|
free_pv_entry(pv_entry_t pv)
|
|
{
|
|
pv_entry_count--;
|
|
zfree(pvzone, pv);
|
|
}
|
|
|
|
/*
|
|
* get a new pv_entry, allocating a block from the system
|
|
* when needed.
|
|
* the memory allocation is performed bypassing the malloc code
|
|
* because of the possibility of allocations at interrupt time.
|
|
*/
|
|
static pv_entry_t
|
|
get_pv_entry(void)
|
|
{
|
|
/*
|
|
* We can get called a few times really early before
|
|
* pmap_init() has finished allocating the pvzone (mostly as a
|
|
* result of the call to kmem_alloc() in pmap_init(). We allow
|
|
* a small number of entries to be allocated statically to
|
|
* cover this.
|
|
*/
|
|
if (!pvinit) {
|
|
#define PV_BOOTSTRAP_NEEDED 512
|
|
static struct pv_entry pvbootentries[PV_BOOTSTRAP_NEEDED];
|
|
static int pvbootnext = 0;
|
|
|
|
if (pvbootnext == PV_BOOTSTRAP_NEEDED)
|
|
panic("get_pv_entry: called too many times"
|
|
" before pmap_init is finished");
|
|
return &pvbootentries[pvbootnext++];
|
|
}
|
|
|
|
pv_entry_count++;
|
|
if (pv_entry_high_water &&
|
|
(pv_entry_count > pv_entry_high_water) &&
|
|
(pmap_pagedaemon_waken == 0)) {
|
|
pmap_pagedaemon_waken = 1;
|
|
wakeup (&vm_pages_needed);
|
|
}
|
|
return (pv_entry_t) IA64_PHYS_TO_RR7(vtophys(zalloc(pvzone)));
|
|
}
|
|
|
|
/*
|
|
* Add a pv_entry to the VHPT.
|
|
*/
|
|
static void
|
|
pmap_enter_vhpt(pv_entry_t pv)
|
|
{
|
|
struct ia64_lpte *vhpte;
|
|
|
|
vhpte = (struct ia64_lpte *) ia64_thash(pv->pv_va);
|
|
|
|
pv->pv_pte.pte_chain = vhpte->pte_chain;
|
|
vhpte->pte_chain = ia64_tpa((vm_offset_t) pv);
|
|
|
|
if (!vhpte->pte_p && pv->pv_pte.pte_p)
|
|
pmap_install_pte(vhpte, &pv->pv_pte);
|
|
else
|
|
ia64_mf();
|
|
}
|
|
|
|
/*
|
|
* Update VHPT after pv->pv_pte has changed.
|
|
*/
|
|
static void
|
|
pmap_update_vhpt(pv_entry_t pv)
|
|
{
|
|
struct ia64_lpte *vhpte;
|
|
|
|
vhpte = (struct ia64_lpte *) ia64_thash(pv->pv_va);
|
|
|
|
if ((!vhpte->pte_p || vhpte->pte_tag == pv->pv_pte.pte_tag)
|
|
&& pv->pv_pte.pte_p)
|
|
pmap_install_pte(vhpte, &pv->pv_pte);
|
|
}
|
|
|
|
/*
|
|
* Remove a pv_entry from the VHPT. Return true if it worked.
|
|
*/
|
|
static int
|
|
pmap_remove_vhpt(pv_entry_t pv)
|
|
{
|
|
struct ia64_lpte *pte;
|
|
struct ia64_lpte *lpte;
|
|
struct ia64_lpte *vhpte;
|
|
u_int64_t tag;
|
|
|
|
vhpte = (struct ia64_lpte *) ia64_thash(pv->pv_va);
|
|
|
|
/*
|
|
* If the VHPTE is invalid, there can't be a collision chain.
|
|
*/
|
|
if (!vhpte->pte_p) {
|
|
KASSERT(!vhpte->pte_chain, ("bad vhpte"));
|
|
return 0;
|
|
}
|
|
|
|
lpte = vhpte;
|
|
pte = (struct ia64_lpte *) IA64_PHYS_TO_RR7(vhpte->pte_chain);
|
|
tag = ia64_ttag(pv->pv_va);
|
|
|
|
while (pte->pte_tag != tag) {
|
|
lpte = pte;
|
|
if (pte->pte_chain)
|
|
pte = (struct ia64_lpte *) IA64_PHYS_TO_RR7(pte->pte_chain);
|
|
else
|
|
return 0; /* error here? */
|
|
}
|
|
|
|
/*
|
|
* Snip this pv_entry out of the collision chain.
|
|
*/
|
|
lpte->pte_chain = pte->pte_chain;
|
|
|
|
/*
|
|
* If the VHPTE matches as well, change it to map the first
|
|
* element from the chain if there is one.
|
|
*/
|
|
if (vhpte->pte_tag == tag) {
|
|
if (vhpte->pte_chain) {
|
|
pte = (struct ia64_lpte *)
|
|
IA64_PHYS_TO_RR7(vhpte->pte_chain);
|
|
pmap_install_pte(vhpte, pte);
|
|
} else {
|
|
vhpte->pte_p = 0;
|
|
ia64_mf();
|
|
}
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Make a pv_entry_t which maps the given virtual address. The pte
|
|
* will be initialised with pte_p = 0. The function pmap_set_pv()
|
|
* should be called to change the value of the pte.
|
|
* Must be called at splvm().
|
|
*/
|
|
static pv_entry_t
|
|
pmap_make_pv(pmap_t pmap, vm_offset_t va)
|
|
{
|
|
pv_entry_t pv;
|
|
|
|
pv = get_pv_entry();
|
|
bzero(pv, sizeof(*pv));
|
|
pv->pv_va = va;
|
|
pv->pv_pmap = pmap;
|
|
|
|
pv->pv_pte.pte_p = 0; /* invalid for now */
|
|
pv->pv_pte.pte_ma = PTE_MA_WB; /* cacheable, write-back */
|
|
pv->pv_pte.pte_a = 0;
|
|
pv->pv_pte.pte_d = 0;
|
|
pv->pv_pte.pte_pl = 0; /* privilege level 0 */
|
|
pv->pv_pte.pte_ar = 3; /* read/write/execute */
|
|
pv->pv_pte.pte_ppn = 0; /* physical address */
|
|
pv->pv_pte.pte_ed = 0;
|
|
pv->pv_pte.pte_ig = 0;
|
|
|
|
pv->pv_pte.pte_ps = PAGE_SHIFT; /* page size */
|
|
pv->pv_pte.pte_key = 0; /* protection key */
|
|
|
|
pv->pv_pte.pte_tag = ia64_ttag(va);
|
|
|
|
pmap_enter_vhpt(pv);
|
|
|
|
TAILQ_INSERT_TAIL(&pmap->pm_pvlist, pv, pv_plist);
|
|
pmap->pm_stats.resident_count++;
|
|
|
|
return pv;
|
|
}
|
|
|
|
/*
|
|
* Initialise a pv_entry_t with a given physical address and
|
|
* protection code. If the passed vm_page_t is non-zero, the entry is
|
|
* added to its list of mappings.
|
|
* Must be called at splvm().
|
|
*/
|
|
static void
|
|
pmap_set_pv(pmap_t pmap, pv_entry_t pv, vm_offset_t pa,
|
|
int prot, vm_page_t m)
|
|
{
|
|
if (pv->pv_pte.pte_p && pv->pv_pte.pte_ig & PTE_IG_MANAGED) {
|
|
vm_offset_t opa = pv->pv_pte.pte_ppn << 12;
|
|
vm_page_t om = PHYS_TO_VM_PAGE(opa);
|
|
|
|
TAILQ_REMOVE(&om->md.pv_list, pv, pv_list);
|
|
om->md.pv_list_count--;
|
|
|
|
if (TAILQ_FIRST(&om->md.pv_list) == NULL)
|
|
vm_page_flag_clear(om, PG_MAPPED | PG_WRITEABLE);
|
|
}
|
|
|
|
pv->pv_pte.pte_p = 1; /* set to valid */
|
|
|
|
/*
|
|
* Only track access/modify for managed pages.
|
|
*/
|
|
if (m) {
|
|
pv->pv_pte.pte_a = 0;
|
|
pv->pv_pte.pte_d = 0;
|
|
} else {
|
|
pv->pv_pte.pte_a = 1;
|
|
pv->pv_pte.pte_d = 1;
|
|
}
|
|
|
|
pv->pv_pte.pte_pl = prot & 3; /* privilege level */
|
|
pv->pv_pte.pte_ar = prot >> 2; /* access rights */
|
|
pv->pv_pte.pte_ppn = pa >> 12; /* physical address */
|
|
|
|
if (m) {
|
|
pv->pv_pte.pte_ig |= PTE_IG_MANAGED;
|
|
TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
|
|
m->md.pv_list_count++;
|
|
}
|
|
|
|
/*
|
|
* Update the VHPT entry if it needs to change.
|
|
*/
|
|
pmap_update_vhpt(pv);
|
|
}
|
|
|
|
/*
|
|
* Remove a mapping represented by a particular pv_entry_t. If the
|
|
* passed vm_page_t is non-zero, then the entry is removed from it.
|
|
* Must be called at splvm().
|
|
*/
|
|
static int
|
|
pmap_remove_pv(pmap_t pmap, pv_entry_t pv, vm_page_t m)
|
|
{
|
|
int rtval;
|
|
|
|
/*
|
|
* First remove from the VHPT.
|
|
*/
|
|
rtval = pmap_remove_vhpt(pv);
|
|
if (!rtval)
|
|
return rtval;
|
|
|
|
if ((pv->pv_pte.pte_ig & PTE_IG_MANAGED) && m) {
|
|
TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
|
|
m->md.pv_list_count--;
|
|
|
|
if (TAILQ_FIRST(&m->md.pv_list) == NULL)
|
|
vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
|
|
}
|
|
|
|
TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
|
|
pmap->pm_stats.resident_count--;
|
|
|
|
free_pv_entry(pv);
|
|
|
|
return (rtval);
|
|
}
|
|
|
|
/*
|
|
* Find a pv given a pmap and virtual address.
|
|
*/
|
|
static pv_entry_t
|
|
pmap_find_pv(pmap_t pmap, vm_offset_t va)
|
|
{
|
|
struct ia64_lpte *pte;
|
|
u_int64_t tag;
|
|
|
|
pte = (struct ia64_lpte *) ia64_thash(va);
|
|
if (!pte->pte_chain)
|
|
return 0;
|
|
|
|
tag = ia64_ttag(va);
|
|
pte = (struct ia64_lpte *) IA64_PHYS_TO_RR7(pte->pte_chain);
|
|
|
|
while (pte->pte_tag != tag) {
|
|
if (pte->pte_chain)
|
|
pte = (struct ia64_lpte *) IA64_PHYS_TO_RR7(pte->pte_chain);
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
return (pv_entry_t) pte; /* XXX wrong va */
|
|
}
|
|
|
|
/*
|
|
* Routine: pmap_extract
|
|
* Function:
|
|
* Extract the physical page address associated
|
|
* with the given map/virtual_address pair.
|
|
*/
|
|
vm_offset_t
|
|
pmap_extract(pmap, va)
|
|
register pmap_t pmap;
|
|
vm_offset_t va;
|
|
{
|
|
pv_entry_t pv = pmap_find_pv(pmap, va);
|
|
if (pv)
|
|
return pmap_pte_pa(&pv->pv_pte);
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
/***************************************************
|
|
* Low level mapping routines.....
|
|
***************************************************/
|
|
|
|
/*
|
|
* Add a list of wired pages to the kva
|
|
* this routine is only used for temporary
|
|
* kernel mappings that do not need to have
|
|
* page modification or references recorded.
|
|
* Note that old mappings are simply written
|
|
* over. The page *must* be wired.
|
|
*/
|
|
void
|
|
pmap_qenter(vm_offset_t va, vm_page_t *m, int count)
|
|
{
|
|
int i, inval;
|
|
pv_entry_t pv;
|
|
|
|
for (i = 0; i < count; i++) {
|
|
vm_offset_t tva = va + i * PAGE_SIZE;
|
|
pv = pmap_find_pv(kernel_pmap, tva);
|
|
inval = 0;
|
|
if (!pv)
|
|
pv = pmap_make_pv(kernel_pmap, tva);
|
|
else
|
|
inval = 1;
|
|
|
|
PMAP_DEBUG_VA(va);
|
|
pmap_set_pv(kernel_pmap, pv,
|
|
VM_PAGE_TO_PHYS(m[i]),
|
|
(PTE_AR_RWX<<2) | PTE_PL_KERN, 0);
|
|
if (inval)
|
|
pmap_invalidate_page(kernel_pmap, tva);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* this routine jerks page mappings from the
|
|
* kernel -- it is meant only for temporary mappings.
|
|
*/
|
|
void
|
|
pmap_qremove(va, count)
|
|
vm_offset_t va;
|
|
int count;
|
|
{
|
|
int i;
|
|
pv_entry_t pv;
|
|
|
|
for (i = 0; i < count; i++) {
|
|
pv = pmap_find_pv(kernel_pmap, va);
|
|
PMAP_DEBUG_VA(va);
|
|
if (pv) {
|
|
pmap_remove_pv(kernel_pmap, pv, 0);
|
|
pmap_invalidate_page(kernel_pmap, va);
|
|
}
|
|
va += PAGE_SIZE;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Add a wired page to the kva.
|
|
*/
|
|
void
|
|
pmap_kenter(vm_offset_t va, vm_offset_t pa)
|
|
{
|
|
pv_entry_t pv;
|
|
|
|
pv = pmap_find_pv(kernel_pmap, va);
|
|
if (!pv)
|
|
pv = pmap_make_pv(kernel_pmap, va);
|
|
pmap_set_pv(kernel_pmap, pv,
|
|
pa, (PTE_AR_RWX<<2) | PTE_PL_KERN, 0);
|
|
pmap_invalidate_page(kernel_pmap, va);
|
|
}
|
|
|
|
/*
|
|
* Remove a page from the kva
|
|
*/
|
|
void
|
|
pmap_kremove(vm_offset_t va)
|
|
{
|
|
pv_entry_t pv;
|
|
|
|
pv = pmap_find_pv(kernel_pmap, va);
|
|
if (pv) {
|
|
pmap_remove_pv(kernel_pmap, pv, 0);
|
|
pmap_invalidate_page(kernel_pmap, va);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Used to map a range of physical addresses into kernel
|
|
* virtual address space.
|
|
*
|
|
* The value passed in '*virt' is a suggested virtual address for
|
|
* the mapping. Architectures which can support a direct-mapped
|
|
* physical to virtual region can return the appropriate address
|
|
* within that region, leaving '*virt' unchanged. Other
|
|
* architectures should map the pages starting at '*virt' and
|
|
* update '*virt' with the first usable address after the mapped
|
|
* region.
|
|
*/
|
|
vm_offset_t
|
|
pmap_map(vm_offset_t *virt, vm_offset_t start, vm_offset_t end, int prot)
|
|
{
|
|
return IA64_PHYS_TO_RR7(start);
|
|
}
|
|
|
|
/*
|
|
* This routine is very drastic, but can save the system
|
|
* in a pinch.
|
|
*/
|
|
void
|
|
pmap_collect()
|
|
{
|
|
int i;
|
|
vm_page_t m;
|
|
static int warningdone=0;
|
|
|
|
if (pmap_pagedaemon_waken == 0)
|
|
return;
|
|
|
|
if (warningdone < 5) {
|
|
printf("pmap_collect: collecting pv entries -- suggest increasing PMAP_SHPGPERPROC\n");
|
|
warningdone++;
|
|
}
|
|
|
|
for(i = 0; i < vm_page_array_size; i++) {
|
|
m = &vm_page_array[i];
|
|
if (m->wire_count || m->hold_count || m->busy ||
|
|
(m->flags & PG_BUSY))
|
|
continue;
|
|
pmap_remove_all(m);
|
|
}
|
|
pmap_pagedaemon_waken = 0;
|
|
}
|
|
|
|
/*
|
|
* Remove a single page from a process address space
|
|
*/
|
|
static void
|
|
pmap_remove_page(pmap_t pmap, vm_offset_t va)
|
|
{
|
|
pv_entry_t pv;
|
|
vm_page_t m;
|
|
int rtval;
|
|
int s;
|
|
|
|
s = splvm();
|
|
|
|
pv = pmap_find_pv(pmap, va);
|
|
|
|
rtval = 0;
|
|
if (pv) {
|
|
m = PHYS_TO_VM_PAGE(pmap_pte_pa(&pv->pv_pte));
|
|
rtval = pmap_remove_pv(pmap, pv, m);
|
|
pmap_invalidate_page(pmap, va);
|
|
}
|
|
|
|
splx(s);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Remove the given range of addresses from the specified map.
|
|
*
|
|
* It is assumed that the start and end are properly
|
|
* rounded to the page size.
|
|
*/
|
|
void
|
|
pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
|
|
{
|
|
vm_offset_t va, nva;
|
|
|
|
if (pmap == NULL)
|
|
return;
|
|
|
|
if (pmap->pm_stats.resident_count == 0)
|
|
return;
|
|
|
|
/*
|
|
* special handling of removing one page. a very
|
|
* common operation and easy to short circuit some
|
|
* code.
|
|
*/
|
|
if (sva + PAGE_SIZE == eva) {
|
|
pmap_remove_page(pmap, sva);
|
|
return;
|
|
}
|
|
|
|
if (atop(eva - sva) < pmap->pm_stats.resident_count) {
|
|
for (va = sva; va < eva; va = nva) {
|
|
pmap_remove_page(pmap, va);
|
|
nva = va + PAGE_SIZE;
|
|
}
|
|
} else {
|
|
pv_entry_t pv, pvnext;
|
|
int s;
|
|
|
|
s = splvm();
|
|
for (pv = TAILQ_FIRST(&pmap->pm_pvlist);
|
|
pv;
|
|
pv = pvnext) {
|
|
pvnext = TAILQ_NEXT(pv, pv_plist);
|
|
if (pv->pv_va >= sva && pv->pv_va < eva) {
|
|
vm_page_t m = PHYS_TO_VM_PAGE(pmap_pte_pa(&pv->pv_pte));
|
|
va = pv->pv_va;
|
|
pmap_remove_pv(pmap, pv, m);
|
|
pmap_invalidate_page(pmap, va);
|
|
}
|
|
}
|
|
splx(s);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Routine: pmap_remove_all
|
|
* Function:
|
|
* Removes this physical page from
|
|
* all physical maps in which it resides.
|
|
* Reflects back modify bits to the pager.
|
|
*
|
|
* Notes:
|
|
* Original versions of this routine were very
|
|
* inefficient because they iteratively called
|
|
* pmap_remove (slow...)
|
|
*/
|
|
|
|
static void
|
|
pmap_remove_all(vm_page_t m)
|
|
{
|
|
register pv_entry_t pv;
|
|
int nmodify;
|
|
int s;
|
|
|
|
nmodify = 0;
|
|
#if defined(PMAP_DIAGNOSTIC)
|
|
/*
|
|
* XXX this makes pmap_page_protect(NONE) illegal for non-managed
|
|
* pages!
|
|
*/
|
|
if (!pmap_initialized || (m->flags & PG_FICTITIOUS)) {
|
|
panic("pmap_page_protect: illegal for unmanaged page, va: 0x%lx", VM_PAGE_TO_PHYS(m));
|
|
}
|
|
#endif
|
|
|
|
s = splvm();
|
|
|
|
while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
|
|
vm_page_t m = PHYS_TO_VM_PAGE(pmap_pte_pa(&pv->pv_pte));
|
|
vm_offset_t va = pv->pv_va;
|
|
pmap_remove_pv(pv->pv_pmap, pv, m);
|
|
pmap_invalidate_page(pv->pv_pmap, va);
|
|
}
|
|
|
|
vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
|
|
|
|
splx(s);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Set the physical protection on the
|
|
* specified range of this map as requested.
|
|
*/
|
|
void
|
|
pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
|
|
{
|
|
pmap_t oldpmap;
|
|
pv_entry_t pv;
|
|
int newprot;
|
|
|
|
if (pmap == NULL)
|
|
return;
|
|
|
|
oldpmap = pmap_install(pmap);
|
|
|
|
if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
|
|
pmap_remove(pmap, sva, eva);
|
|
pmap_install(oldpmap);
|
|
return;
|
|
}
|
|
|
|
if (prot & VM_PROT_WRITE) {
|
|
pmap_install(oldpmap);
|
|
return;
|
|
}
|
|
|
|
newprot = pte_prot(pmap, prot);
|
|
|
|
if ((sva & PAGE_MASK) || (eva & PAGE_MASK))
|
|
panic("pmap_protect: unaligned addresses");
|
|
|
|
while (sva < eva) {
|
|
/*
|
|
* If page is invalid, skip this page
|
|
*/
|
|
pv = pmap_find_pv(pmap, sva);
|
|
if (!pv) {
|
|
sva += PAGE_SIZE;
|
|
continue;
|
|
}
|
|
|
|
if (pmap_pte_prot(&pv->pv_pte) != newprot) {
|
|
pmap_pte_set_prot(&pv->pv_pte, newprot);
|
|
pmap_update_vhpt(pv);
|
|
pmap_invalidate_page(pmap, sva);
|
|
}
|
|
|
|
sva += PAGE_SIZE;
|
|
}
|
|
pmap_install(oldpmap);
|
|
}
|
|
|
|
/*
|
|
* Insert the given physical page (p) at
|
|
* the specified virtual address (v) in the
|
|
* target physical map with the protection requested.
|
|
*
|
|
* If specified, the page will be wired down, meaning
|
|
* that the related pte can not be reclaimed.
|
|
*
|
|
* NB: This is the only routine which MAY NOT lazy-evaluate
|
|
* or lose information. That is, this routine must actually
|
|
* insert this page into the given map NOW.
|
|
*/
|
|
void
|
|
pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
|
|
boolean_t wired)
|
|
{
|
|
pmap_t oldpmap;
|
|
vm_offset_t pa;
|
|
pv_entry_t pv;
|
|
vm_offset_t opa;
|
|
struct ia64_lpte origpte;
|
|
int managed;
|
|
|
|
if (pmap == NULL)
|
|
return;
|
|
|
|
oldpmap = pmap_install(pmap);
|
|
|
|
va &= ~PAGE_MASK;
|
|
#ifdef PMAP_DIAGNOSTIC
|
|
if (va > VM_MAX_KERNEL_ADDRESS)
|
|
panic("pmap_enter: toobig");
|
|
#endif
|
|
|
|
pv = pmap_find_pv(pmap, va);
|
|
if (!pv)
|
|
pv = pmap_make_pv(pmap, va);
|
|
|
|
origpte = pv->pv_pte;
|
|
if (origpte.pte_p)
|
|
opa = pmap_pte_pa(&origpte);
|
|
else
|
|
opa = 0;
|
|
|
|
pa = VM_PAGE_TO_PHYS(m) & ~PAGE_MASK;
|
|
managed = 0;
|
|
|
|
/*
|
|
* Mapping has not changed, must be protection or wiring change.
|
|
*/
|
|
if (origpte.pte_p && (opa == pa)) {
|
|
/*
|
|
* Wiring change, just update stats. We don't worry about
|
|
* wiring PT pages as they remain resident as long as there
|
|
* are valid mappings in them. Hence, if a user page is wired,
|
|
* the PT page will be also.
|
|
*/
|
|
if (wired && ((origpte.pte_ig & PTE_IG_WIRED) == 0))
|
|
pmap->pm_stats.wired_count++;
|
|
else if (!wired && (origpte.pte_ig & PTE_IG_WIRED))
|
|
pmap->pm_stats.wired_count--;
|
|
|
|
managed = origpte.pte_ig & PTE_IG_MANAGED;
|
|
goto validate;
|
|
} else {
|
|
/*
|
|
* Mapping has changed, invalidate old range and fall
|
|
* through to handle validating new mapping.
|
|
*/
|
|
}
|
|
|
|
/*
|
|
* Increment counters
|
|
*/
|
|
if (wired)
|
|
pmap->pm_stats.wired_count++;
|
|
|
|
validate:
|
|
/*
|
|
* Now validate mapping with desired protection/wiring.
|
|
* This enters the pv_entry_t on the page's list if necessary.
|
|
*/
|
|
pmap_set_pv(pmap, pv, pa, pte_prot(pmap, prot), m);
|
|
|
|
if (wired)
|
|
pv->pv_pte.pte_ig |= PTE_IG_WIRED;
|
|
|
|
/*
|
|
* if the mapping or permission bits are different, we need
|
|
* to invalidate the page.
|
|
*/
|
|
if (!pmap_equal_pte(&origpte, &pv->pv_pte)) {
|
|
PMAP_DEBUG_VA(va);
|
|
pmap_invalidate_page(pmap, va);
|
|
}
|
|
|
|
pmap_install(oldpmap);
|
|
}
|
|
|
|
/*
|
|
* this code makes some *MAJOR* assumptions:
|
|
* 1. Current pmap & pmap exists.
|
|
* 2. Not wired.
|
|
* 3. Read access.
|
|
* 4. No page table pages.
|
|
* 5. Tlbflush is deferred to calling procedure.
|
|
* 6. Page IS managed.
|
|
* but is *MUCH* faster than pmap_enter...
|
|
*/
|
|
|
|
static void
|
|
pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m)
|
|
{
|
|
pv_entry_t pv;
|
|
int s;
|
|
|
|
s = splvm();
|
|
|
|
pv = pmap_find_pv(pmap, va);
|
|
if (!pv)
|
|
pv = pmap_make_pv(pmap, va);
|
|
|
|
/*
|
|
* Enter on the PV list if part of our managed memory. Note that we
|
|
* raise IPL while manipulating pv_table since pmap_enter can be
|
|
* called at interrupt time.
|
|
*/
|
|
PMAP_DEBUG_VA(va);
|
|
pmap_set_pv(pmap, pv, VM_PAGE_TO_PHYS(m),
|
|
(PTE_AR_R << 2) | PTE_PL_USER, m);
|
|
|
|
splx(s);
|
|
}
|
|
|
|
/*
|
|
* Make temporary mapping for a physical address. This is called
|
|
* during dump.
|
|
*/
|
|
void *
|
|
pmap_kenter_temporary(vm_offset_t pa, int i)
|
|
{
|
|
return (void *) IA64_PHYS_TO_RR7(pa - (i * PAGE_SIZE));
|
|
}
|
|
|
|
#define MAX_INIT_PT (96)
|
|
/*
|
|
* pmap_object_init_pt preloads the ptes for a given object
|
|
* into the specified pmap. This eliminates the blast of soft
|
|
* faults on process startup and immediately after an mmap.
|
|
*/
|
|
void
|
|
pmap_object_init_pt(pmap_t pmap, vm_offset_t addr,
|
|
vm_object_t object, vm_pindex_t pindex,
|
|
vm_size_t size, int limit)
|
|
{
|
|
pmap_t oldpmap;
|
|
vm_offset_t tmpidx;
|
|
int psize;
|
|
vm_page_t p;
|
|
int objpgs;
|
|
|
|
if (pmap == NULL || object == NULL)
|
|
return;
|
|
|
|
oldpmap = pmap_install(pmap);
|
|
|
|
psize = ia64_btop(size);
|
|
|
|
if ((object->type != OBJT_VNODE) ||
|
|
(limit && (psize > MAX_INIT_PT) &&
|
|
(object->resident_page_count > MAX_INIT_PT))) {
|
|
pmap_install(oldpmap);
|
|
return;
|
|
}
|
|
|
|
if (psize + pindex > object->size)
|
|
psize = object->size - pindex;
|
|
|
|
/*
|
|
* if we are processing a major portion of the object, then scan the
|
|
* entire thing.
|
|
*/
|
|
if (psize > (object->resident_page_count >> 2)) {
|
|
objpgs = psize;
|
|
|
|
for (p = TAILQ_FIRST(&object->memq);
|
|
((objpgs > 0) && (p != NULL));
|
|
p = TAILQ_NEXT(p, listq)) {
|
|
|
|
tmpidx = p->pindex;
|
|
if (tmpidx < pindex) {
|
|
continue;
|
|
}
|
|
tmpidx -= pindex;
|
|
if (tmpidx >= psize) {
|
|
continue;
|
|
}
|
|
if (((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
|
|
(p->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
|
|
if ((p->queue - p->pc) == PQ_CACHE)
|
|
vm_page_deactivate(p);
|
|
vm_page_busy(p);
|
|
pmap_enter_quick(pmap,
|
|
addr + ia64_ptob(tmpidx), p);
|
|
vm_page_flag_set(p, PG_MAPPED);
|
|
vm_page_wakeup(p);
|
|
}
|
|
objpgs -= 1;
|
|
}
|
|
} else {
|
|
/*
|
|
* else lookup the pages one-by-one.
|
|
*/
|
|
for (tmpidx = 0; tmpidx < psize; tmpidx += 1) {
|
|
p = vm_page_lookup(object, tmpidx + pindex);
|
|
if (p &&
|
|
((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
|
|
(p->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
|
|
if ((p->queue - p->pc) == PQ_CACHE)
|
|
vm_page_deactivate(p);
|
|
vm_page_busy(p);
|
|
pmap_enter_quick(pmap,
|
|
addr + ia64_ptob(tmpidx), p);
|
|
vm_page_flag_set(p, PG_MAPPED);
|
|
vm_page_wakeup(p);
|
|
}
|
|
}
|
|
}
|
|
pmap_install(oldpmap);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* pmap_prefault provides a quick way of clustering
|
|
* pagefaults into a processes address space. It is a "cousin"
|
|
* of pmap_object_init_pt, except it runs at page fault time instead
|
|
* of mmap time.
|
|
*/
|
|
#define PFBAK 4
|
|
#define PFFOR 4
|
|
#define PAGEORDER_SIZE (PFBAK+PFFOR)
|
|
|
|
static int pmap_prefault_pageorder[] = {
|
|
-PAGE_SIZE, PAGE_SIZE,
|
|
-2 * PAGE_SIZE, 2 * PAGE_SIZE,
|
|
-3 * PAGE_SIZE, 3 * PAGE_SIZE
|
|
-4 * PAGE_SIZE, 4 * PAGE_SIZE
|
|
};
|
|
|
|
void
|
|
pmap_prefault(pmap, addra, entry)
|
|
pmap_t pmap;
|
|
vm_offset_t addra;
|
|
vm_map_entry_t entry;
|
|
{
|
|
int i;
|
|
vm_offset_t starta;
|
|
vm_offset_t addr;
|
|
vm_pindex_t pindex;
|
|
vm_page_t m, mpte;
|
|
vm_object_t object;
|
|
|
|
if (!curproc || (pmap != vmspace_pmap(curproc->p_vmspace)))
|
|
return;
|
|
|
|
object = entry->object.vm_object;
|
|
|
|
starta = addra - PFBAK * PAGE_SIZE;
|
|
if (starta < entry->start) {
|
|
starta = entry->start;
|
|
} else if (starta > addra) {
|
|
starta = 0;
|
|
}
|
|
|
|
mpte = NULL;
|
|
for (i = 0; i < PAGEORDER_SIZE; i++) {
|
|
vm_object_t lobject;
|
|
pv_entry_t pv;
|
|
|
|
addr = addra + pmap_prefault_pageorder[i];
|
|
if (addr > addra + (PFFOR * PAGE_SIZE))
|
|
addr = 0;
|
|
|
|
if (addr < starta || addr >= entry->end)
|
|
continue;
|
|
|
|
pv = pmap_find_pv(pmap, addr);
|
|
if (pv)
|
|
continue;
|
|
|
|
pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
|
|
lobject = object;
|
|
for (m = vm_page_lookup(lobject, pindex);
|
|
(!m && (lobject->type == OBJT_DEFAULT) && (lobject->backing_object));
|
|
lobject = lobject->backing_object) {
|
|
if (lobject->backing_object_offset & PAGE_MASK)
|
|
break;
|
|
pindex += (lobject->backing_object_offset >> PAGE_SHIFT);
|
|
m = vm_page_lookup(lobject->backing_object, pindex);
|
|
}
|
|
|
|
/*
|
|
* give-up when a page is not in memory
|
|
*/
|
|
if (m == NULL)
|
|
break;
|
|
|
|
if (((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
|
|
(m->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
|
|
|
|
if ((m->queue - m->pc) == PQ_CACHE) {
|
|
vm_page_deactivate(m);
|
|
}
|
|
vm_page_busy(m);
|
|
pmap_enter_quick(pmap, addr, m);
|
|
vm_page_flag_set(m, PG_MAPPED);
|
|
vm_page_wakeup(m);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Routine: pmap_change_wiring
|
|
* Function: Change the wiring attribute for a map/virtual-address
|
|
* pair.
|
|
* In/out conditions:
|
|
* The mapping must already exist in the pmap.
|
|
*/
|
|
void
|
|
pmap_change_wiring(pmap, va, wired)
|
|
register pmap_t pmap;
|
|
vm_offset_t va;
|
|
boolean_t wired;
|
|
{
|
|
pmap_t oldpmap;
|
|
pv_entry_t pv;
|
|
|
|
if (pmap == NULL)
|
|
return;
|
|
|
|
oldpmap = pmap_install(pmap);
|
|
|
|
pv = pmap_find_pv(pmap, va);
|
|
|
|
if (wired && !pmap_pte_w(&pv->pv_pte))
|
|
pmap->pm_stats.wired_count++;
|
|
else if (!wired && pmap_pte_w(&pv->pv_pte))
|
|
pmap->pm_stats.wired_count--;
|
|
|
|
/*
|
|
* Wiring is not a hardware characteristic so there is no need to
|
|
* invalidate TLB.
|
|
*/
|
|
pmap_pte_set_w(&pv->pv_pte, wired);
|
|
|
|
pmap_install(oldpmap);
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
* Copy the range specified by src_addr/len
|
|
* from the source map to the range dst_addr/len
|
|
* in the destination map.
|
|
*
|
|
* This routine is only advisory and need not do anything.
|
|
*/
|
|
|
|
void
|
|
pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
|
|
vm_offset_t src_addr)
|
|
{
|
|
}
|
|
|
|
/*
|
|
* Routine: pmap_kernel
|
|
* Function:
|
|
* Returns the physical map handle for the kernel.
|
|
*/
|
|
pmap_t
|
|
pmap_kernel()
|
|
{
|
|
return (kernel_pmap);
|
|
}
|
|
|
|
/*
|
|
* pmap_zero_page zeros the specified hardware page by
|
|
* mapping it into virtual memory and using bzero to clear
|
|
* its contents.
|
|
*/
|
|
|
|
void
|
|
pmap_zero_page(vm_offset_t pa)
|
|
{
|
|
vm_offset_t va = IA64_PHYS_TO_RR7(pa);
|
|
bzero((caddr_t) va, PAGE_SIZE);
|
|
}
|
|
|
|
|
|
/*
|
|
* pmap_zero_page_area zeros the specified hardware page by
|
|
* mapping it into virtual memory and using bzero to clear
|
|
* its contents.
|
|
*
|
|
* off and size must reside within a single page.
|
|
*/
|
|
|
|
void
|
|
pmap_zero_page_area(vm_offset_t pa, int off, int size)
|
|
{
|
|
vm_offset_t va = IA64_PHYS_TO_RR7(pa);
|
|
bzero((char *)(caddr_t)va + off, size);
|
|
}
|
|
|
|
/*
|
|
* pmap_copy_page copies the specified (machine independent)
|
|
* page by mapping the page into virtual memory and using
|
|
* bcopy to copy the page, one machine dependent page at a
|
|
* time.
|
|
*/
|
|
void
|
|
pmap_copy_page(vm_offset_t src, vm_offset_t dst)
|
|
{
|
|
src = IA64_PHYS_TO_RR7(src);
|
|
dst = IA64_PHYS_TO_RR7(dst);
|
|
bcopy((caddr_t) src, (caddr_t) dst, PAGE_SIZE);
|
|
}
|
|
|
|
|
|
/*
|
|
* Routine: pmap_pageable
|
|
* Function:
|
|
* Make the specified pages (by pmap, offset)
|
|
* pageable (or not) as requested.
|
|
*
|
|
* A page which is not pageable may not take
|
|
* a fault; therefore, its page table entry
|
|
* must remain valid for the duration.
|
|
*
|
|
* This routine is merely advisory; pmap_enter
|
|
* will specify that these pages are to be wired
|
|
* down (or not) as appropriate.
|
|
*/
|
|
void
|
|
pmap_pageable(pmap, sva, eva, pageable)
|
|
pmap_t pmap;
|
|
vm_offset_t sva, eva;
|
|
boolean_t pageable;
|
|
{
|
|
}
|
|
|
|
/*
|
|
* this routine returns true if a physical page resides
|
|
* in the given pmap.
|
|
*/
|
|
boolean_t
|
|
pmap_page_exists(pmap, m)
|
|
pmap_t pmap;
|
|
vm_page_t m;
|
|
{
|
|
register pv_entry_t pv;
|
|
int s;
|
|
|
|
if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
|
|
return FALSE;
|
|
|
|
s = splvm();
|
|
|
|
/*
|
|
* Not found, check current mappings returning immediately if found.
|
|
*/
|
|
for (pv = TAILQ_FIRST(&m->md.pv_list);
|
|
pv;
|
|
pv = TAILQ_NEXT(pv, pv_list)) {
|
|
if (pv->pv_pmap == pmap) {
|
|
splx(s);
|
|
return TRUE;
|
|
}
|
|
}
|
|
splx(s);
|
|
return (FALSE);
|
|
}
|
|
|
|
#define PMAP_REMOVE_PAGES_CURPROC_ONLY
|
|
/*
|
|
* Remove all pages from specified address space
|
|
* this aids process exit speeds. Also, this code
|
|
* is special cased for current process only, but
|
|
* can have the more generic (and slightly slower)
|
|
* mode enabled. This is much faster than pmap_remove
|
|
* in the case of running down an entire address space.
|
|
*/
|
|
void
|
|
pmap_remove_pages(pmap, sva, eva)
|
|
pmap_t pmap;
|
|
vm_offset_t sva, eva;
|
|
{
|
|
pv_entry_t pv, npv;
|
|
int s;
|
|
|
|
#ifdef PMAP_REMOVE_PAGES_CURPROC_ONLY
|
|
if (!curproc || (pmap != vmspace_pmap(curproc->p_vmspace))) {
|
|
printf("warning: pmap_remove_pages called with non-current pmap\n");
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
s = splvm();
|
|
for (pv = TAILQ_FIRST(&pmap->pm_pvlist);
|
|
pv;
|
|
pv = npv) {
|
|
vm_page_t m;
|
|
|
|
npv = TAILQ_NEXT(pv, pv_plist);
|
|
|
|
if (pv->pv_va >= eva || pv->pv_va < sva) {
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* We cannot remove wired pages from a process' mapping at this time
|
|
*/
|
|
if (pv->pv_pte.pte_ig & PTE_IG_WIRED) {
|
|
continue;
|
|
}
|
|
|
|
PMAP_DEBUG_VA(pv->pv_va);
|
|
|
|
m = PHYS_TO_VM_PAGE(pmap_pte_pa(&pv->pv_pte));
|
|
pmap_remove_pv(pmap, pv, m);
|
|
}
|
|
splx(s);
|
|
|
|
pmap_invalidate_all(pmap);
|
|
}
|
|
|
|
/*
|
|
* pmap_page_protect:
|
|
*
|
|
* Lower the permission for all mappings to a given page.
|
|
*/
|
|
void
|
|
pmap_page_protect(vm_page_t m, vm_prot_t prot)
|
|
{
|
|
pv_entry_t pv;
|
|
|
|
if ((prot & VM_PROT_WRITE) != 0)
|
|
return;
|
|
if (prot & (VM_PROT_READ | VM_PROT_EXECUTE)) {
|
|
for (pv = TAILQ_FIRST(&m->md.pv_list);
|
|
pv;
|
|
pv = TAILQ_NEXT(pv, pv_list)) {
|
|
int newprot = pte_prot(pv->pv_pmap, prot);
|
|
pmap_t oldpmap = pmap_install(pv->pv_pmap);
|
|
pmap_pte_set_prot(&pv->pv_pte, newprot);
|
|
pmap_update_vhpt(pv);
|
|
pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
|
|
pmap_install(oldpmap);
|
|
}
|
|
} else {
|
|
pmap_remove_all(m);
|
|
}
|
|
}
|
|
|
|
vm_offset_t
|
|
pmap_phys_address(ppn)
|
|
int ppn;
|
|
{
|
|
return (ia64_ptob(ppn));
|
|
}
|
|
|
|
/*
|
|
* pmap_ts_referenced:
|
|
*
|
|
* Return the count of reference bits for a page, clearing all of them.
|
|
*
|
|
*/
|
|
int
|
|
pmap_ts_referenced(vm_page_t m)
|
|
{
|
|
pv_entry_t pv;
|
|
int count = 0;
|
|
|
|
if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
|
|
return 0;
|
|
|
|
for (pv = TAILQ_FIRST(&m->md.pv_list);
|
|
pv;
|
|
pv = TAILQ_NEXT(pv, pv_list)) {
|
|
if (pv->pv_pte.pte_a) {
|
|
pmap_t oldpmap = pmap_install(pv->pv_pmap);
|
|
count++;
|
|
pv->pv_pte.pte_a = 0;
|
|
pmap_update_vhpt(pv);
|
|
pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
|
|
pmap_install(oldpmap);
|
|
}
|
|
}
|
|
|
|
return count;
|
|
}
|
|
|
|
#if 0
|
|
/*
|
|
* pmap_is_referenced:
|
|
*
|
|
* Return whether or not the specified physical page was referenced
|
|
* in any physical maps.
|
|
*/
|
|
static boolean_t
|
|
pmap_is_referenced(vm_page_t m)
|
|
{
|
|
pv_entry_t pv;
|
|
|
|
if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
|
|
return FALSE;
|
|
|
|
for (pv = TAILQ_FIRST(&m->md.pv_list);
|
|
pv;
|
|
pv = TAILQ_NEXT(pv, pv_list)) {
|
|
if (pv->pv_pte.pte_a) {
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* pmap_is_modified:
|
|
*
|
|
* Return whether or not the specified physical page was modified
|
|
* in any physical maps.
|
|
*/
|
|
boolean_t
|
|
pmap_is_modified(vm_page_t m)
|
|
{
|
|
pv_entry_t pv;
|
|
|
|
if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
|
|
return FALSE;
|
|
|
|
for (pv = TAILQ_FIRST(&m->md.pv_list);
|
|
pv;
|
|
pv = TAILQ_NEXT(pv, pv_list)) {
|
|
if (pv->pv_pte.pte_d) {
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Clear the modify bits on the specified physical page.
|
|
*/
|
|
void
|
|
pmap_clear_modify(vm_page_t m)
|
|
{
|
|
pv_entry_t pv;
|
|
|
|
if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
|
|
return;
|
|
|
|
for (pv = TAILQ_FIRST(&m->md.pv_list);
|
|
pv;
|
|
pv = TAILQ_NEXT(pv, pv_list)) {
|
|
if (pv->pv_pte.pte_d) {
|
|
pmap_t oldpmap = pmap_install(pv->pv_pmap);
|
|
pv->pv_pte.pte_d = 0;
|
|
pmap_update_vhpt(pv);
|
|
pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
|
|
pmap_install(oldpmap);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* pmap_clear_reference:
|
|
*
|
|
* Clear the reference bit on the specified physical page.
|
|
*/
|
|
void
|
|
pmap_clear_reference(vm_page_t m)
|
|
{
|
|
pv_entry_t pv;
|
|
|
|
if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
|
|
return;
|
|
|
|
for (pv = TAILQ_FIRST(&m->md.pv_list);
|
|
pv;
|
|
pv = TAILQ_NEXT(pv, pv_list)) {
|
|
if (pv->pv_pte.pte_a) {
|
|
pmap_t oldpmap = pmap_install(pv->pv_pmap);
|
|
pv->pv_pte.pte_a = 0;
|
|
pmap_update_vhpt(pv);
|
|
pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
|
|
pmap_install(oldpmap);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Miscellaneous support routines follow
|
|
*/
|
|
|
|
static void
|
|
ia64_protection_init()
|
|
{
|
|
int prot, *kp, *up;
|
|
|
|
kp = protection_codes[0];
|
|
up = protection_codes[1];
|
|
|
|
for (prot = 0; prot < 8; prot++) {
|
|
switch (prot) {
|
|
case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_NONE:
|
|
*kp++ = (PTE_AR_R << 2) | PTE_PL_KERN;
|
|
*up++ = (PTE_AR_R << 2) | PTE_PL_KERN;
|
|
break;
|
|
|
|
case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_EXECUTE:
|
|
*kp++ = (PTE_AR_X_RX << 2) | PTE_PL_KERN;
|
|
*up++ = (PTE_AR_X_RX << 2) | PTE_PL_USER;
|
|
break;
|
|
|
|
case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_NONE:
|
|
*kp++ = (PTE_AR_RW << 2) | PTE_PL_KERN;
|
|
*up++ = (PTE_AR_RW << 2) | PTE_PL_USER;
|
|
break;
|
|
|
|
case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_EXECUTE:
|
|
*kp++ = (PTE_AR_RWX << 2) | PTE_PL_KERN;
|
|
*up++ = (PTE_AR_RWX << 2) | PTE_PL_USER;
|
|
break;
|
|
|
|
case VM_PROT_READ | VM_PROT_NONE | VM_PROT_NONE:
|
|
*kp++ = (PTE_AR_R << 2) | PTE_PL_KERN;
|
|
*up++ = (PTE_AR_R << 2) | PTE_PL_USER;
|
|
break;
|
|
|
|
case VM_PROT_READ | VM_PROT_NONE | VM_PROT_EXECUTE:
|
|
*kp++ = (PTE_AR_RX << 2) | PTE_PL_KERN;
|
|
*up++ = (PTE_AR_RX << 2) | PTE_PL_USER;
|
|
break;
|
|
|
|
case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_NONE:
|
|
*kp++ = (PTE_AR_RW << 2) | PTE_PL_KERN;
|
|
*up++ = (PTE_AR_RW << 2) | PTE_PL_USER;
|
|
break;
|
|
|
|
case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE:
|
|
*kp++ = (PTE_AR_RWX << 2) | PTE_PL_KERN;
|
|
*up++ = (PTE_AR_RWX << 2) | PTE_PL_USER;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Map a set of physical memory pages into the kernel virtual
|
|
* address space. Return a pointer to where it is mapped. This
|
|
* routine is intended to be used for mapping device memory,
|
|
* NOT real memory.
|
|
*/
|
|
void *
|
|
pmap_mapdev(pa, size)
|
|
vm_offset_t pa;
|
|
vm_size_t size;
|
|
{
|
|
return (void*) IA64_PHYS_TO_RR6(pa);
|
|
}
|
|
|
|
/*
|
|
* perform the pmap work for mincore
|
|
*/
|
|
int
|
|
pmap_mincore(pmap, addr)
|
|
pmap_t pmap;
|
|
vm_offset_t addr;
|
|
{
|
|
pv_entry_t pv;
|
|
struct ia64_lpte *pte;
|
|
int val = 0;
|
|
|
|
pv = pmap_find_pv(pmap, addr);
|
|
if (pv == 0) {
|
|
return 0;
|
|
}
|
|
pte = &pv->pv_pte;
|
|
|
|
if (pmap_pte_v(pte)) {
|
|
vm_page_t m;
|
|
vm_offset_t pa;
|
|
|
|
val = MINCORE_INCORE;
|
|
if ((pte->pte_ig & PTE_IG_MANAGED) == 0)
|
|
return val;
|
|
|
|
pa = pmap_pte_pa(pte);
|
|
|
|
m = PHYS_TO_VM_PAGE(pa);
|
|
|
|
/*
|
|
* Modified by us
|
|
*/
|
|
if (pte->pte_d)
|
|
val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
|
|
/*
|
|
* Modified by someone
|
|
*/
|
|
else if (pmap_is_modified(m))
|
|
val |= MINCORE_MODIFIED_OTHER;
|
|
/*
|
|
* Referenced by us
|
|
*/
|
|
if (pte->pte_a)
|
|
val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
|
|
|
|
/*
|
|
* Referenced by someone
|
|
*/
|
|
else if (pmap_ts_referenced(m)) {
|
|
val |= MINCORE_REFERENCED_OTHER;
|
|
vm_page_flag_set(m, PG_REFERENCED);
|
|
}
|
|
}
|
|
return val;
|
|
}
|
|
|
|
void
|
|
pmap_activate(struct proc *p)
|
|
{
|
|
pmap_install(vmspace_pmap(p->p_vmspace));
|
|
}
|
|
|
|
pmap_t
|
|
pmap_install(pmap_t pmap)
|
|
{
|
|
pmap_t oldpmap;
|
|
int rid;
|
|
|
|
oldpmap = PCPU_GET(current_pmap);
|
|
|
|
if (pmap == oldpmap || pmap == kernel_pmap)
|
|
return pmap;
|
|
|
|
PCPU_SET(current_pmap, pmap);
|
|
if (!pmap) {
|
|
/*
|
|
* RIDs 0..4 have no mappings to make sure we generate
|
|
* page faults on accesses.
|
|
*/
|
|
ia64_set_rr(IA64_RR_BASE(0), (0 << 8)|(PAGE_SHIFT << 2)|1);
|
|
ia64_set_rr(IA64_RR_BASE(1), (1 << 8)|(PAGE_SHIFT << 2)|1);
|
|
ia64_set_rr(IA64_RR_BASE(2), (2 << 8)|(PAGE_SHIFT << 2)|1);
|
|
ia64_set_rr(IA64_RR_BASE(3), (3 << 8)|(PAGE_SHIFT << 2)|1);
|
|
ia64_set_rr(IA64_RR_BASE(4), (4 << 8)|(PAGE_SHIFT << 2)|1);
|
|
return oldpmap;
|
|
}
|
|
|
|
pmap->pm_active = 1; /* XXX use bitmap for SMP */
|
|
|
|
reinstall:
|
|
rid = pmap->pm_rid & ((1 << pmap_ridbits) - 1);
|
|
ia64_set_rr(IA64_RR_BASE(0), ((rid + 0) << 8)|(PAGE_SHIFT << 2)|1);
|
|
ia64_set_rr(IA64_RR_BASE(1), ((rid + 1) << 8)|(PAGE_SHIFT << 2)|1);
|
|
ia64_set_rr(IA64_RR_BASE(2), ((rid + 2) << 8)|(PAGE_SHIFT << 2)|1);
|
|
ia64_set_rr(IA64_RR_BASE(3), ((rid + 3) << 8)|(PAGE_SHIFT << 2)|1);
|
|
ia64_set_rr(IA64_RR_BASE(4), ((rid + 4) << 8)|(PAGE_SHIFT << 2)|1);
|
|
|
|
/*
|
|
* If we need a new RID, get it now. Note that we need to
|
|
* remove our old mappings (if any) from the VHTP, so we will
|
|
* run on the old RID for a moment while we invalidate the old
|
|
* one. XXX maybe we should just clear out the VHTP when the
|
|
* RID generation rolls over.
|
|
*/
|
|
if ((pmap->pm_rid>>pmap_ridbits) != (pmap_nextrid>>pmap_ridbits)) {
|
|
if (pmap->pm_rid)
|
|
pmap_invalidate_rid(pmap);
|
|
pmap_get_rid(pmap);
|
|
goto reinstall;
|
|
}
|
|
|
|
return oldpmap;
|
|
}
|
|
|
|
vm_offset_t
|
|
pmap_addr_hint(vm_object_t obj, vm_offset_t addr, vm_size_t size)
|
|
{
|
|
|
|
return addr;
|
|
}
|
|
|
|
#if 0
|
|
#if defined(PMAP_DEBUG)
|
|
pmap_pid_dump(int pid)
|
|
{
|
|
pmap_t pmap;
|
|
struct proc *p;
|
|
int npte = 0;
|
|
int index;
|
|
|
|
sx_slock(&allproc_lock);
|
|
LIST_FOREACH(p, &allproc, p_list) {
|
|
if (p->p_pid != pid)
|
|
continue;
|
|
|
|
if (p->p_vmspace) {
|
|
int i,j;
|
|
index = 0;
|
|
pmap = vmspace_pmap(p->p_vmspace);
|
|
for(i=0;i<1024;i++) {
|
|
pd_entry_t *pde;
|
|
pt_entry_t *pte;
|
|
unsigned base = i << PDRSHIFT;
|
|
|
|
pde = &pmap->pm_pdir[i];
|
|
if (pde && pmap_pde_v(pde)) {
|
|
for(j=0;j<1024;j++) {
|
|
unsigned va = base + (j << PAGE_SHIFT);
|
|
if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
|
|
if (index) {
|
|
index = 0;
|
|
printf("\n");
|
|
}
|
|
sx_sunlock(&allproc_lock);
|
|
return npte;
|
|
}
|
|
pte = pmap_pte_quick( pmap, va);
|
|
if (pte && pmap_pte_v(pte)) {
|
|
vm_offset_t pa;
|
|
vm_page_t m;
|
|
pa = *(int *)pte;
|
|
m = PHYS_TO_VM_PAGE(pa);
|
|
printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
|
|
va, pa, m->hold_count, m->wire_count, m->flags);
|
|
npte++;
|
|
index++;
|
|
if (index >= 2) {
|
|
index = 0;
|
|
printf("\n");
|
|
} else {
|
|
printf(" ");
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
sx_sunlock(&allproc_lock);
|
|
return npte;
|
|
}
|
|
#endif
|
|
|
|
#if defined(DEBUG)
|
|
|
|
static void pads __P((pmap_t pm));
|
|
static void pmap_pvdump __P((vm_page_t m));
|
|
|
|
/* print address space of pmap*/
|
|
static void
|
|
pads(pm)
|
|
pmap_t pm;
|
|
{
|
|
int i, j;
|
|
vm_offset_t va;
|
|
pt_entry_t *ptep;
|
|
|
|
if (pm == kernel_pmap)
|
|
return;
|
|
for (i = 0; i < 1024; i++)
|
|
if (pm->pm_pdir[i])
|
|
for (j = 0; j < 1024; j++) {
|
|
va = (i << PDRSHIFT) + (j << PAGE_SHIFT);
|
|
if (pm == kernel_pmap && va < KERNBASE)
|
|
continue;
|
|
if (pm != kernel_pmap && va > UPT_MAX_ADDRESS)
|
|
continue;
|
|
ptep = pmap_pte_quick(pm, va);
|
|
if (pmap_pte_v(ptep))
|
|
printf("%x:%x ", va, *(int *) ptep);
|
|
};
|
|
|
|
}
|
|
|
|
static void
|
|
pmap_pvdump(pa)
|
|
vm_offset_t pa;
|
|
{
|
|
pv_entry_t pv;
|
|
|
|
printf("pa %x", pa);
|
|
m = PHYS_TO_VM_PAGE(pa);
|
|
for (pv = TAILQ_FIRST(&m->md.pv_list);
|
|
pv;
|
|
pv = TAILQ_NEXT(pv, pv_list)) {
|
|
printf(" -> pmap %x, va %x",
|
|
pv->pv_pmap, pv->pv_va);
|
|
pads(pv->pv_pmap);
|
|
}
|
|
printf(" ");
|
|
}
|
|
#endif
|
|
#endif
|