2481 lines
63 KiB
C
2481 lines
63 KiB
C
/* Optimize jump instructions, for GNU compiler.
|
||
Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997
|
||
1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
|
||
|
||
This file is part of GCC.
|
||
|
||
GCC is free software; you can redistribute it and/or modify it under
|
||
the terms of the GNU General Public License as published by the Free
|
||
Software Foundation; either version 2, or (at your option) any later
|
||
version.
|
||
|
||
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
||
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||
for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GCC; see the file COPYING. If not, write to the Free
|
||
Software Foundation, 59 Temple Place - Suite 330, Boston, MA
|
||
02111-1307, USA. */
|
||
|
||
/* This is the pathetic reminder of old fame of the jump-optimization pass
|
||
of the compiler. Now it contains basically set of utility function to
|
||
operate with jumps.
|
||
|
||
Each CODE_LABEL has a count of the times it is used
|
||
stored in the LABEL_NUSES internal field, and each JUMP_INSN
|
||
has one label that it refers to stored in the
|
||
JUMP_LABEL internal field. With this we can detect labels that
|
||
become unused because of the deletion of all the jumps that
|
||
formerly used them. The JUMP_LABEL info is sometimes looked
|
||
at by later passes.
|
||
|
||
The subroutines delete_insn, redirect_jump, and invert_jump are used
|
||
from other passes as well. */
|
||
|
||
#include "config.h"
|
||
#include "system.h"
|
||
#include "rtl.h"
|
||
#include "tm_p.h"
|
||
#include "flags.h"
|
||
#include "hard-reg-set.h"
|
||
#include "regs.h"
|
||
#include "insn-config.h"
|
||
#include "insn-attr.h"
|
||
#include "recog.h"
|
||
#include "function.h"
|
||
#include "expr.h"
|
||
#include "real.h"
|
||
#include "except.h"
|
||
#include "toplev.h"
|
||
#include "reload.h"
|
||
#include "predict.h"
|
||
|
||
/* Optimize jump y; x: ... y: jumpif... x?
|
||
Don't know if it is worth bothering with. */
|
||
/* Optimize two cases of conditional jump to conditional jump?
|
||
This can never delete any instruction or make anything dead,
|
||
or even change what is live at any point.
|
||
So perhaps let combiner do it. */
|
||
|
||
static rtx next_nonnote_insn_in_loop PARAMS ((rtx));
|
||
static int init_label_info PARAMS ((rtx));
|
||
static void mark_all_labels PARAMS ((rtx));
|
||
static int duplicate_loop_exit_test PARAMS ((rtx));
|
||
static void delete_computation PARAMS ((rtx));
|
||
static void redirect_exp_1 PARAMS ((rtx *, rtx, rtx, rtx));
|
||
static int redirect_exp PARAMS ((rtx, rtx, rtx));
|
||
static void invert_exp_1 PARAMS ((rtx));
|
||
static int invert_exp PARAMS ((rtx));
|
||
static int returnjump_p_1 PARAMS ((rtx *, void *));
|
||
static void delete_prior_computation PARAMS ((rtx, rtx));
|
||
|
||
/* Alternate entry into the jump optimizer. This entry point only rebuilds
|
||
the JUMP_LABEL field in jumping insns and REG_LABEL notes in non-jumping
|
||
instructions. */
|
||
void
|
||
rebuild_jump_labels (f)
|
||
rtx f;
|
||
{
|
||
rtx insn;
|
||
int max_uid = 0;
|
||
|
||
max_uid = init_label_info (f) + 1;
|
||
|
||
mark_all_labels (f);
|
||
|
||
/* Keep track of labels used from static data; we don't track them
|
||
closely enough to delete them here, so make sure their reference
|
||
count doesn't drop to zero. */
|
||
|
||
for (insn = forced_labels; insn; insn = XEXP (insn, 1))
|
||
if (GET_CODE (XEXP (insn, 0)) == CODE_LABEL)
|
||
LABEL_NUSES (XEXP (insn, 0))++;
|
||
}
|
||
|
||
/* Some old code expects exactly one BARRIER as the NEXT_INSN of a
|
||
non-fallthru insn. This is not generally true, as multiple barriers
|
||
may have crept in, or the BARRIER may be separated from the last
|
||
real insn by one or more NOTEs.
|
||
|
||
This simple pass moves barriers and removes duplicates so that the
|
||
old code is happy.
|
||
*/
|
||
void
|
||
cleanup_barriers ()
|
||
{
|
||
rtx insn, next, prev;
|
||
for (insn = get_insns (); insn; insn = next)
|
||
{
|
||
next = NEXT_INSN (insn);
|
||
if (GET_CODE (insn) == BARRIER)
|
||
{
|
||
prev = prev_nonnote_insn (insn);
|
||
if (GET_CODE (prev) == BARRIER)
|
||
delete_barrier (insn);
|
||
else if (prev != PREV_INSN (insn))
|
||
reorder_insns (insn, insn, prev);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Return the next insn after INSN that is not a NOTE and is in the loop,
|
||
i.e. when there is no such INSN before NOTE_INSN_LOOP_END return NULL_RTX.
|
||
This routine does not look inside SEQUENCEs. */
|
||
|
||
static rtx
|
||
next_nonnote_insn_in_loop (insn)
|
||
rtx insn;
|
||
{
|
||
while (insn)
|
||
{
|
||
insn = NEXT_INSN (insn);
|
||
if (insn == 0 || GET_CODE (insn) != NOTE)
|
||
break;
|
||
if (GET_CODE (insn) == NOTE
|
||
&& NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
|
||
return NULL_RTX;
|
||
}
|
||
|
||
return insn;
|
||
}
|
||
|
||
void
|
||
copy_loop_headers (f)
|
||
rtx f;
|
||
{
|
||
rtx insn, next;
|
||
/* Now iterate optimizing jumps until nothing changes over one pass. */
|
||
for (insn = f; insn; insn = next)
|
||
{
|
||
rtx temp, temp1;
|
||
|
||
next = NEXT_INSN (insn);
|
||
|
||
/* See if this is a NOTE_INSN_LOOP_BEG followed by an unconditional
|
||
jump. Try to optimize by duplicating the loop exit test if so.
|
||
This is only safe immediately after regscan, because it uses
|
||
the values of regno_first_uid and regno_last_uid. */
|
||
if (GET_CODE (insn) == NOTE
|
||
&& NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG
|
||
&& (temp1 = next_nonnote_insn_in_loop (insn)) != 0
|
||
&& any_uncondjump_p (temp1) && onlyjump_p (temp1))
|
||
{
|
||
temp = PREV_INSN (insn);
|
||
if (duplicate_loop_exit_test (insn))
|
||
{
|
||
next = NEXT_INSN (temp);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
void
|
||
purge_line_number_notes (f)
|
||
rtx f;
|
||
{
|
||
rtx last_note = 0;
|
||
rtx insn;
|
||
/* Delete extraneous line number notes.
|
||
Note that two consecutive notes for different lines are not really
|
||
extraneous. There should be some indication where that line belonged,
|
||
even if it became empty. */
|
||
|
||
for (insn = f; insn; insn = NEXT_INSN (insn))
|
||
if (GET_CODE (insn) == NOTE)
|
||
{
|
||
if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_BEG)
|
||
/* Any previous line note was for the prologue; gdb wants a new
|
||
note after the prologue even if it is for the same line. */
|
||
last_note = NULL_RTX;
|
||
else if (NOTE_LINE_NUMBER (insn) >= 0)
|
||
{
|
||
/* Delete this note if it is identical to previous note. */
|
||
if (last_note
|
||
&& NOTE_SOURCE_FILE (insn) == NOTE_SOURCE_FILE (last_note)
|
||
&& NOTE_LINE_NUMBER (insn) == NOTE_LINE_NUMBER (last_note))
|
||
{
|
||
delete_related_insns (insn);
|
||
continue;
|
||
}
|
||
|
||
last_note = insn;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Initialize LABEL_NUSES and JUMP_LABEL fields. Delete any REG_LABEL
|
||
notes whose labels don't occur in the insn any more. Returns the
|
||
largest INSN_UID found. */
|
||
static int
|
||
init_label_info (f)
|
||
rtx f;
|
||
{
|
||
int largest_uid = 0;
|
||
rtx insn;
|
||
|
||
for (insn = f; insn; insn = NEXT_INSN (insn))
|
||
{
|
||
if (GET_CODE (insn) == CODE_LABEL)
|
||
LABEL_NUSES (insn) = (LABEL_PRESERVE_P (insn) != 0);
|
||
else if (GET_CODE (insn) == JUMP_INSN)
|
||
JUMP_LABEL (insn) = 0;
|
||
else if (GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN)
|
||
{
|
||
rtx note, next;
|
||
|
||
for (note = REG_NOTES (insn); note; note = next)
|
||
{
|
||
next = XEXP (note, 1);
|
||
if (REG_NOTE_KIND (note) == REG_LABEL
|
||
&& ! reg_mentioned_p (XEXP (note, 0), PATTERN (insn)))
|
||
remove_note (insn, note);
|
||
}
|
||
}
|
||
if (INSN_UID (insn) > largest_uid)
|
||
largest_uid = INSN_UID (insn);
|
||
}
|
||
|
||
return largest_uid;
|
||
}
|
||
|
||
/* Mark the label each jump jumps to.
|
||
Combine consecutive labels, and count uses of labels. */
|
||
|
||
static void
|
||
mark_all_labels (f)
|
||
rtx f;
|
||
{
|
||
rtx insn;
|
||
|
||
for (insn = f; insn; insn = NEXT_INSN (insn))
|
||
if (INSN_P (insn))
|
||
{
|
||
if (GET_CODE (insn) == CALL_INSN
|
||
&& GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
|
||
{
|
||
mark_all_labels (XEXP (PATTERN (insn), 0));
|
||
mark_all_labels (XEXP (PATTERN (insn), 1));
|
||
mark_all_labels (XEXP (PATTERN (insn), 2));
|
||
|
||
/* Canonicalize the tail recursion label attached to the
|
||
CALL_PLACEHOLDER insn. */
|
||
if (XEXP (PATTERN (insn), 3))
|
||
{
|
||
rtx label_ref = gen_rtx_LABEL_REF (VOIDmode,
|
||
XEXP (PATTERN (insn), 3));
|
||
mark_jump_label (label_ref, insn, 0);
|
||
XEXP (PATTERN (insn), 3) = XEXP (label_ref, 0);
|
||
}
|
||
|
||
continue;
|
||
}
|
||
|
||
mark_jump_label (PATTERN (insn), insn, 0);
|
||
if (! INSN_DELETED_P (insn) && GET_CODE (insn) == JUMP_INSN)
|
||
{
|
||
/* When we know the LABEL_REF contained in a REG used in
|
||
an indirect jump, we'll have a REG_LABEL note so that
|
||
flow can tell where it's going. */
|
||
if (JUMP_LABEL (insn) == 0)
|
||
{
|
||
rtx label_note = find_reg_note (insn, REG_LABEL, NULL_RTX);
|
||
if (label_note)
|
||
{
|
||
/* But a LABEL_REF around the REG_LABEL note, so
|
||
that we can canonicalize it. */
|
||
rtx label_ref = gen_rtx_LABEL_REF (VOIDmode,
|
||
XEXP (label_note, 0));
|
||
|
||
mark_jump_label (label_ref, insn, 0);
|
||
XEXP (label_note, 0) = XEXP (label_ref, 0);
|
||
JUMP_LABEL (insn) = XEXP (label_note, 0);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* LOOP_START is a NOTE_INSN_LOOP_BEG note that is followed by an unconditional
|
||
jump. Assume that this unconditional jump is to the exit test code. If
|
||
the code is sufficiently simple, make a copy of it before INSN,
|
||
followed by a jump to the exit of the loop. Then delete the unconditional
|
||
jump after INSN.
|
||
|
||
Return 1 if we made the change, else 0.
|
||
|
||
This is only safe immediately after a regscan pass because it uses the
|
||
values of regno_first_uid and regno_last_uid. */
|
||
|
||
static int
|
||
duplicate_loop_exit_test (loop_start)
|
||
rtx loop_start;
|
||
{
|
||
rtx insn, set, reg, p, link;
|
||
rtx copy = 0, first_copy = 0;
|
||
int num_insns = 0;
|
||
rtx exitcode
|
||
= NEXT_INSN (JUMP_LABEL (next_nonnote_insn_in_loop (loop_start)));
|
||
rtx lastexit;
|
||
int max_reg = max_reg_num ();
|
||
rtx *reg_map = 0;
|
||
rtx loop_pre_header_label;
|
||
|
||
/* Scan the exit code. We do not perform this optimization if any insn:
|
||
|
||
is a CALL_INSN
|
||
is a CODE_LABEL
|
||
has a REG_RETVAL or REG_LIBCALL note (hard to adjust)
|
||
is a NOTE_INSN_LOOP_BEG because this means we have a nested loop
|
||
is a NOTE_INSN_BLOCK_{BEG,END} because duplicating these notes
|
||
is not valid.
|
||
|
||
We also do not do this if we find an insn with ASM_OPERANDS. While
|
||
this restriction should not be necessary, copying an insn with
|
||
ASM_OPERANDS can confuse asm_noperands in some cases.
|
||
|
||
Also, don't do this if the exit code is more than 20 insns. */
|
||
|
||
for (insn = exitcode;
|
||
insn
|
||
&& ! (GET_CODE (insn) == NOTE
|
||
&& NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END);
|
||
insn = NEXT_INSN (insn))
|
||
{
|
||
switch (GET_CODE (insn))
|
||
{
|
||
case CODE_LABEL:
|
||
case CALL_INSN:
|
||
return 0;
|
||
case NOTE:
|
||
/* We could be in front of the wrong NOTE_INSN_LOOP_END if there is
|
||
a jump immediately after the loop start that branches outside
|
||
the loop but within an outer loop, near the exit test.
|
||
If we copied this exit test and created a phony
|
||
NOTE_INSN_LOOP_VTOP, this could make instructions immediately
|
||
before the exit test look like these could be safely moved
|
||
out of the loop even if they actually may be never executed.
|
||
This can be avoided by checking here for NOTE_INSN_LOOP_CONT. */
|
||
|
||
if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG
|
||
|| NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_CONT)
|
||
return 0;
|
||
|
||
if (optimize < 2
|
||
&& (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG
|
||
|| NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END))
|
||
/* If we were to duplicate this code, we would not move
|
||
the BLOCK notes, and so debugging the moved code would
|
||
be difficult. Thus, we only move the code with -O2 or
|
||
higher. */
|
||
return 0;
|
||
|
||
break;
|
||
case JUMP_INSN:
|
||
case INSN:
|
||
/* The code below would grossly mishandle REG_WAS_0 notes,
|
||
so get rid of them here. */
|
||
while ((p = find_reg_note (insn, REG_WAS_0, NULL_RTX)) != 0)
|
||
remove_note (insn, p);
|
||
if (++num_insns > 20
|
||
|| find_reg_note (insn, REG_RETVAL, NULL_RTX)
|
||
|| find_reg_note (insn, REG_LIBCALL, NULL_RTX))
|
||
return 0;
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* Unless INSN is zero, we can do the optimization. */
|
||
if (insn == 0)
|
||
return 0;
|
||
|
||
lastexit = insn;
|
||
|
||
/* See if any insn sets a register only used in the loop exit code and
|
||
not a user variable. If so, replace it with a new register. */
|
||
for (insn = exitcode; insn != lastexit; insn = NEXT_INSN (insn))
|
||
if (GET_CODE (insn) == INSN
|
||
&& (set = single_set (insn)) != 0
|
||
&& ((reg = SET_DEST (set), GET_CODE (reg) == REG)
|
||
|| (GET_CODE (reg) == SUBREG
|
||
&& (reg = SUBREG_REG (reg), GET_CODE (reg) == REG)))
|
||
&& REGNO (reg) >= FIRST_PSEUDO_REGISTER
|
||
&& REGNO_FIRST_UID (REGNO (reg)) == INSN_UID (insn))
|
||
{
|
||
for (p = NEXT_INSN (insn); p != lastexit; p = NEXT_INSN (p))
|
||
if (REGNO_LAST_UID (REGNO (reg)) == INSN_UID (p))
|
||
break;
|
||
|
||
if (p != lastexit)
|
||
{
|
||
/* We can do the replacement. Allocate reg_map if this is the
|
||
first replacement we found. */
|
||
if (reg_map == 0)
|
||
reg_map = (rtx *) xcalloc (max_reg, sizeof (rtx));
|
||
|
||
REG_LOOP_TEST_P (reg) = 1;
|
||
|
||
reg_map[REGNO (reg)] = gen_reg_rtx (GET_MODE (reg));
|
||
}
|
||
}
|
||
loop_pre_header_label = gen_label_rtx ();
|
||
|
||
/* Now copy each insn. */
|
||
for (insn = exitcode; insn != lastexit; insn = NEXT_INSN (insn))
|
||
{
|
||
switch (GET_CODE (insn))
|
||
{
|
||
case BARRIER:
|
||
copy = emit_barrier_before (loop_start);
|
||
break;
|
||
case NOTE:
|
||
/* Only copy line-number notes. */
|
||
if (NOTE_LINE_NUMBER (insn) >= 0)
|
||
{
|
||
copy = emit_note_before (NOTE_LINE_NUMBER (insn), loop_start);
|
||
NOTE_SOURCE_FILE (copy) = NOTE_SOURCE_FILE (insn);
|
||
}
|
||
break;
|
||
|
||
case INSN:
|
||
copy = emit_insn_before (copy_insn (PATTERN (insn)), loop_start);
|
||
if (reg_map)
|
||
replace_regs (PATTERN (copy), reg_map, max_reg, 1);
|
||
|
||
mark_jump_label (PATTERN (copy), copy, 0);
|
||
|
||
/* Copy all REG_NOTES except REG_LABEL since mark_jump_label will
|
||
make them. */
|
||
for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
|
||
if (REG_NOTE_KIND (link) != REG_LABEL)
|
||
{
|
||
if (GET_CODE (link) == EXPR_LIST)
|
||
REG_NOTES (copy)
|
||
= copy_insn_1 (gen_rtx_EXPR_LIST (REG_NOTE_KIND (link),
|
||
XEXP (link, 0),
|
||
REG_NOTES (copy)));
|
||
else
|
||
REG_NOTES (copy)
|
||
= copy_insn_1 (gen_rtx_INSN_LIST (REG_NOTE_KIND (link),
|
||
XEXP (link, 0),
|
||
REG_NOTES (copy)));
|
||
}
|
||
|
||
if (reg_map && REG_NOTES (copy))
|
||
replace_regs (REG_NOTES (copy), reg_map, max_reg, 1);
|
||
break;
|
||
|
||
case JUMP_INSN:
|
||
copy = emit_jump_insn_before (copy_insn (PATTERN (insn)),
|
||
loop_start);
|
||
if (reg_map)
|
||
replace_regs (PATTERN (copy), reg_map, max_reg, 1);
|
||
mark_jump_label (PATTERN (copy), copy, 0);
|
||
if (REG_NOTES (insn))
|
||
{
|
||
REG_NOTES (copy) = copy_insn_1 (REG_NOTES (insn));
|
||
if (reg_map)
|
||
replace_regs (REG_NOTES (copy), reg_map, max_reg, 1);
|
||
}
|
||
|
||
/* Predict conditional jump that do make loop looping as taken.
|
||
Other jumps are probably exit conditions, so predict
|
||
them as untaken. */
|
||
if (any_condjump_p (copy))
|
||
{
|
||
rtx label = JUMP_LABEL (copy);
|
||
if (label)
|
||
{
|
||
/* The jump_insn after loop_start should be followed
|
||
by barrier and loopback label. */
|
||
if (prev_nonnote_insn (label)
|
||
&& (prev_nonnote_insn (prev_nonnote_insn (label))
|
||
== next_nonnote_insn (loop_start)))
|
||
{
|
||
predict_insn_def (copy, PRED_LOOP_HEADER, TAKEN);
|
||
/* To keep pre-header, we need to redirect all loop
|
||
entrances before the LOOP_BEG note. */
|
||
redirect_jump (copy, loop_pre_header_label, 0);
|
||
}
|
||
else
|
||
predict_insn_def (copy, PRED_LOOP_HEADER, NOT_TAKEN);
|
||
}
|
||
}
|
||
break;
|
||
|
||
default:
|
||
abort ();
|
||
}
|
||
|
||
/* Record the first insn we copied. We need it so that we can
|
||
scan the copied insns for new pseudo registers. */
|
||
if (! first_copy)
|
||
first_copy = copy;
|
||
}
|
||
|
||
/* Now clean up by emitting a jump to the end label and deleting the jump
|
||
at the start of the loop. */
|
||
if (! copy || GET_CODE (copy) != BARRIER)
|
||
{
|
||
copy = emit_jump_insn_before (gen_jump (get_label_after (insn)),
|
||
loop_start);
|
||
|
||
/* Record the first insn we copied. We need it so that we can
|
||
scan the copied insns for new pseudo registers. This may not
|
||
be strictly necessary since we should have copied at least one
|
||
insn above. But I am going to be safe. */
|
||
if (! first_copy)
|
||
first_copy = copy;
|
||
|
||
mark_jump_label (PATTERN (copy), copy, 0);
|
||
emit_barrier_before (loop_start);
|
||
}
|
||
|
||
emit_label_before (loop_pre_header_label, loop_start);
|
||
|
||
/* Now scan from the first insn we copied to the last insn we copied
|
||
(copy) for new pseudo registers. Do this after the code to jump to
|
||
the end label since that might create a new pseudo too. */
|
||
reg_scan_update (first_copy, copy, max_reg);
|
||
|
||
/* Mark the exit code as the virtual top of the converted loop. */
|
||
emit_note_before (NOTE_INSN_LOOP_VTOP, exitcode);
|
||
|
||
delete_related_insns (next_nonnote_insn (loop_start));
|
||
|
||
/* Clean up. */
|
||
if (reg_map)
|
||
free (reg_map);
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Move all block-beg, block-end, loop-beg, loop-cont, loop-vtop, loop-end,
|
||
notes between START and END out before START. START and END may be such
|
||
notes. Returns the values of the new starting and ending insns, which
|
||
may be different if the original ones were such notes.
|
||
Return true if there were only such notes and no real instructions. */
|
||
|
||
bool
|
||
squeeze_notes (startp, endp)
|
||
rtx* startp;
|
||
rtx* endp;
|
||
{
|
||
rtx start = *startp;
|
||
rtx end = *endp;
|
||
|
||
rtx insn;
|
||
rtx next;
|
||
rtx last = NULL;
|
||
rtx past_end = NEXT_INSN (end);
|
||
|
||
for (insn = start; insn != past_end; insn = next)
|
||
{
|
||
next = NEXT_INSN (insn);
|
||
if (GET_CODE (insn) == NOTE
|
||
&& (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END
|
||
|| NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG
|
||
|| NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG
|
||
|| NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END
|
||
|| NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_CONT
|
||
|| NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_VTOP))
|
||
{
|
||
if (insn == start)
|
||
start = next;
|
||
else
|
||
{
|
||
rtx prev = PREV_INSN (insn);
|
||
PREV_INSN (insn) = PREV_INSN (start);
|
||
NEXT_INSN (insn) = start;
|
||
NEXT_INSN (PREV_INSN (insn)) = insn;
|
||
PREV_INSN (NEXT_INSN (insn)) = insn;
|
||
NEXT_INSN (prev) = next;
|
||
PREV_INSN (next) = prev;
|
||
}
|
||
}
|
||
else
|
||
last = insn;
|
||
}
|
||
|
||
/* There were no real instructions. */
|
||
if (start == past_end)
|
||
return true;
|
||
|
||
end = last;
|
||
|
||
*startp = start;
|
||
*endp = end;
|
||
return false;
|
||
}
|
||
|
||
/* Return the label before INSN, or put a new label there. */
|
||
|
||
rtx
|
||
get_label_before (insn)
|
||
rtx insn;
|
||
{
|
||
rtx label;
|
||
|
||
/* Find an existing label at this point
|
||
or make a new one if there is none. */
|
||
label = prev_nonnote_insn (insn);
|
||
|
||
if (label == 0 || GET_CODE (label) != CODE_LABEL)
|
||
{
|
||
rtx prev = PREV_INSN (insn);
|
||
|
||
label = gen_label_rtx ();
|
||
emit_label_after (label, prev);
|
||
LABEL_NUSES (label) = 0;
|
||
}
|
||
return label;
|
||
}
|
||
|
||
/* Return the label after INSN, or put a new label there. */
|
||
|
||
rtx
|
||
get_label_after (insn)
|
||
rtx insn;
|
||
{
|
||
rtx label;
|
||
|
||
/* Find an existing label at this point
|
||
or make a new one if there is none. */
|
||
label = next_nonnote_insn (insn);
|
||
|
||
if (label == 0 || GET_CODE (label) != CODE_LABEL)
|
||
{
|
||
label = gen_label_rtx ();
|
||
emit_label_after (label, insn);
|
||
LABEL_NUSES (label) = 0;
|
||
}
|
||
return label;
|
||
}
|
||
|
||
/* Given a comparison (CODE ARG0 ARG1), inside an insn, INSN, return a code
|
||
of reversed comparison if it is possible to do so. Otherwise return UNKNOWN.
|
||
UNKNOWN may be returned in case we are having CC_MODE compare and we don't
|
||
know whether it's source is floating point or integer comparison. Machine
|
||
description should define REVERSIBLE_CC_MODE and REVERSE_CONDITION macros
|
||
to help this function avoid overhead in these cases. */
|
||
enum rtx_code
|
||
reversed_comparison_code_parts (code, arg0, arg1, insn)
|
||
rtx insn, arg0, arg1;
|
||
enum rtx_code code;
|
||
{
|
||
enum machine_mode mode;
|
||
|
||
/* If this is not actually a comparison, we can't reverse it. */
|
||
if (GET_RTX_CLASS (code) != '<')
|
||
return UNKNOWN;
|
||
|
||
mode = GET_MODE (arg0);
|
||
if (mode == VOIDmode)
|
||
mode = GET_MODE (arg1);
|
||
|
||
/* First see if machine description supply us way to reverse the comparison.
|
||
Give it priority over everything else to allow machine description to do
|
||
tricks. */
|
||
#ifdef REVERSIBLE_CC_MODE
|
||
if (GET_MODE_CLASS (mode) == MODE_CC
|
||
&& REVERSIBLE_CC_MODE (mode))
|
||
{
|
||
#ifdef REVERSE_CONDITION
|
||
return REVERSE_CONDITION (code, mode);
|
||
#endif
|
||
return reverse_condition (code);
|
||
}
|
||
#endif
|
||
|
||
/* Try a few special cases based on the comparison code. */
|
||
switch (code)
|
||
{
|
||
case GEU:
|
||
case GTU:
|
||
case LEU:
|
||
case LTU:
|
||
case NE:
|
||
case EQ:
|
||
/* It is always safe to reverse EQ and NE, even for the floating
|
||
point. Similary the unsigned comparisons are never used for
|
||
floating point so we can reverse them in the default way. */
|
||
return reverse_condition (code);
|
||
case ORDERED:
|
||
case UNORDERED:
|
||
case LTGT:
|
||
case UNEQ:
|
||
/* In case we already see unordered comparison, we can be sure to
|
||
be dealing with floating point so we don't need any more tests. */
|
||
return reverse_condition_maybe_unordered (code);
|
||
case UNLT:
|
||
case UNLE:
|
||
case UNGT:
|
||
case UNGE:
|
||
/* We don't have safe way to reverse these yet. */
|
||
return UNKNOWN;
|
||
default:
|
||
break;
|
||
}
|
||
|
||
/* In case we give up IEEE compatibility, all comparisons are reversible. */
|
||
if (TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
|
||
|| flag_unsafe_math_optimizations)
|
||
return reverse_condition (code);
|
||
|
||
if (GET_MODE_CLASS (mode) == MODE_CC
|
||
#ifdef HAVE_cc0
|
||
|| arg0 == cc0_rtx
|
||
#endif
|
||
)
|
||
{
|
||
rtx prev;
|
||
/* Try to search for the comparison to determine the real mode.
|
||
This code is expensive, but with sane machine description it
|
||
will be never used, since REVERSIBLE_CC_MODE will return true
|
||
in all cases. */
|
||
if (! insn)
|
||
return UNKNOWN;
|
||
|
||
for (prev = prev_nonnote_insn (insn);
|
||
prev != 0 && GET_CODE (prev) != CODE_LABEL;
|
||
prev = prev_nonnote_insn (prev))
|
||
{
|
||
rtx set = set_of (arg0, prev);
|
||
if (set && GET_CODE (set) == SET
|
||
&& rtx_equal_p (SET_DEST (set), arg0))
|
||
{
|
||
rtx src = SET_SRC (set);
|
||
|
||
if (GET_CODE (src) == COMPARE)
|
||
{
|
||
rtx comparison = src;
|
||
arg0 = XEXP (src, 0);
|
||
mode = GET_MODE (arg0);
|
||
if (mode == VOIDmode)
|
||
mode = GET_MODE (XEXP (comparison, 1));
|
||
break;
|
||
}
|
||
/* We can get past reg-reg moves. This may be useful for model
|
||
of i387 comparisons that first move flag registers around. */
|
||
if (REG_P (src))
|
||
{
|
||
arg0 = src;
|
||
continue;
|
||
}
|
||
}
|
||
/* If register is clobbered in some ununderstandable way,
|
||
give up. */
|
||
if (set)
|
||
return UNKNOWN;
|
||
}
|
||
}
|
||
|
||
/* An integer condition. */
|
||
if (GET_CODE (arg0) == CONST_INT
|
||
|| (GET_MODE (arg0) != VOIDmode
|
||
&& GET_MODE_CLASS (mode) != MODE_CC
|
||
&& ! FLOAT_MODE_P (mode)))
|
||
return reverse_condition (code);
|
||
|
||
return UNKNOWN;
|
||
}
|
||
|
||
/* An wrapper around the previous function to take COMPARISON as rtx
|
||
expression. This simplifies many callers. */
|
||
enum rtx_code
|
||
reversed_comparison_code (comparison, insn)
|
||
rtx comparison, insn;
|
||
{
|
||
if (GET_RTX_CLASS (GET_CODE (comparison)) != '<')
|
||
return UNKNOWN;
|
||
return reversed_comparison_code_parts (GET_CODE (comparison),
|
||
XEXP (comparison, 0),
|
||
XEXP (comparison, 1), insn);
|
||
}
|
||
|
||
/* Given an rtx-code for a comparison, return the code for the negated
|
||
comparison. If no such code exists, return UNKNOWN.
|
||
|
||
WATCH OUT! reverse_condition is not safe to use on a jump that might
|
||
be acting on the results of an IEEE floating point comparison, because
|
||
of the special treatment of non-signaling nans in comparisons.
|
||
Use reversed_comparison_code instead. */
|
||
|
||
enum rtx_code
|
||
reverse_condition (code)
|
||
enum rtx_code code;
|
||
{
|
||
switch (code)
|
||
{
|
||
case EQ:
|
||
return NE;
|
||
case NE:
|
||
return EQ;
|
||
case GT:
|
||
return LE;
|
||
case GE:
|
||
return LT;
|
||
case LT:
|
||
return GE;
|
||
case LE:
|
||
return GT;
|
||
case GTU:
|
||
return LEU;
|
||
case GEU:
|
||
return LTU;
|
||
case LTU:
|
||
return GEU;
|
||
case LEU:
|
||
return GTU;
|
||
case UNORDERED:
|
||
return ORDERED;
|
||
case ORDERED:
|
||
return UNORDERED;
|
||
|
||
case UNLT:
|
||
case UNLE:
|
||
case UNGT:
|
||
case UNGE:
|
||
case UNEQ:
|
||
case LTGT:
|
||
return UNKNOWN;
|
||
|
||
default:
|
||
abort ();
|
||
}
|
||
}
|
||
|
||
/* Similar, but we're allowed to generate unordered comparisons, which
|
||
makes it safe for IEEE floating-point. Of course, we have to recognize
|
||
that the target will support them too... */
|
||
|
||
enum rtx_code
|
||
reverse_condition_maybe_unordered (code)
|
||
enum rtx_code code;
|
||
{
|
||
/* Non-IEEE formats don't have unordered conditions. */
|
||
if (TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT)
|
||
return reverse_condition (code);
|
||
|
||
switch (code)
|
||
{
|
||
case EQ:
|
||
return NE;
|
||
case NE:
|
||
return EQ;
|
||
case GT:
|
||
return UNLE;
|
||
case GE:
|
||
return UNLT;
|
||
case LT:
|
||
return UNGE;
|
||
case LE:
|
||
return UNGT;
|
||
case LTGT:
|
||
return UNEQ;
|
||
case UNORDERED:
|
||
return ORDERED;
|
||
case ORDERED:
|
||
return UNORDERED;
|
||
case UNLT:
|
||
return GE;
|
||
case UNLE:
|
||
return GT;
|
||
case UNGT:
|
||
return LE;
|
||
case UNGE:
|
||
return LT;
|
||
case UNEQ:
|
||
return LTGT;
|
||
|
||
default:
|
||
abort ();
|
||
}
|
||
}
|
||
|
||
/* Similar, but return the code when two operands of a comparison are swapped.
|
||
This IS safe for IEEE floating-point. */
|
||
|
||
enum rtx_code
|
||
swap_condition (code)
|
||
enum rtx_code code;
|
||
{
|
||
switch (code)
|
||
{
|
||
case EQ:
|
||
case NE:
|
||
case UNORDERED:
|
||
case ORDERED:
|
||
case UNEQ:
|
||
case LTGT:
|
||
return code;
|
||
|
||
case GT:
|
||
return LT;
|
||
case GE:
|
||
return LE;
|
||
case LT:
|
||
return GT;
|
||
case LE:
|
||
return GE;
|
||
case GTU:
|
||
return LTU;
|
||
case GEU:
|
||
return LEU;
|
||
case LTU:
|
||
return GTU;
|
||
case LEU:
|
||
return GEU;
|
||
case UNLT:
|
||
return UNGT;
|
||
case UNLE:
|
||
return UNGE;
|
||
case UNGT:
|
||
return UNLT;
|
||
case UNGE:
|
||
return UNLE;
|
||
|
||
default:
|
||
abort ();
|
||
}
|
||
}
|
||
|
||
/* Given a comparison CODE, return the corresponding unsigned comparison.
|
||
If CODE is an equality comparison or already an unsigned comparison,
|
||
CODE is returned. */
|
||
|
||
enum rtx_code
|
||
unsigned_condition (code)
|
||
enum rtx_code code;
|
||
{
|
||
switch (code)
|
||
{
|
||
case EQ:
|
||
case NE:
|
||
case GTU:
|
||
case GEU:
|
||
case LTU:
|
||
case LEU:
|
||
return code;
|
||
|
||
case GT:
|
||
return GTU;
|
||
case GE:
|
||
return GEU;
|
||
case LT:
|
||
return LTU;
|
||
case LE:
|
||
return LEU;
|
||
|
||
default:
|
||
abort ();
|
||
}
|
||
}
|
||
|
||
/* Similarly, return the signed version of a comparison. */
|
||
|
||
enum rtx_code
|
||
signed_condition (code)
|
||
enum rtx_code code;
|
||
{
|
||
switch (code)
|
||
{
|
||
case EQ:
|
||
case NE:
|
||
case GT:
|
||
case GE:
|
||
case LT:
|
||
case LE:
|
||
return code;
|
||
|
||
case GTU:
|
||
return GT;
|
||
case GEU:
|
||
return GE;
|
||
case LTU:
|
||
return LT;
|
||
case LEU:
|
||
return LE;
|
||
|
||
default:
|
||
abort ();
|
||
}
|
||
}
|
||
|
||
/* Return non-zero if CODE1 is more strict than CODE2, i.e., if the
|
||
truth of CODE1 implies the truth of CODE2. */
|
||
|
||
int
|
||
comparison_dominates_p (code1, code2)
|
||
enum rtx_code code1, code2;
|
||
{
|
||
/* UNKNOWN comparison codes can happen as a result of trying to revert
|
||
comparison codes.
|
||
They can't match anything, so we have to reject them here. */
|
||
if (code1 == UNKNOWN || code2 == UNKNOWN)
|
||
return 0;
|
||
|
||
if (code1 == code2)
|
||
return 1;
|
||
|
||
switch (code1)
|
||
{
|
||
case UNEQ:
|
||
if (code2 == UNLE || code2 == UNGE)
|
||
return 1;
|
||
break;
|
||
|
||
case EQ:
|
||
if (code2 == LE || code2 == LEU || code2 == GE || code2 == GEU
|
||
|| code2 == ORDERED)
|
||
return 1;
|
||
break;
|
||
|
||
case UNLT:
|
||
if (code2 == UNLE || code2 == NE)
|
||
return 1;
|
||
break;
|
||
|
||
case LT:
|
||
if (code2 == LE || code2 == NE || code2 == ORDERED || code2 == LTGT)
|
||
return 1;
|
||
break;
|
||
|
||
case UNGT:
|
||
if (code2 == UNGE || code2 == NE)
|
||
return 1;
|
||
break;
|
||
|
||
case GT:
|
||
if (code2 == GE || code2 == NE || code2 == ORDERED || code2 == LTGT)
|
||
return 1;
|
||
break;
|
||
|
||
case GE:
|
||
case LE:
|
||
if (code2 == ORDERED)
|
||
return 1;
|
||
break;
|
||
|
||
case LTGT:
|
||
if (code2 == NE || code2 == ORDERED)
|
||
return 1;
|
||
break;
|
||
|
||
case LTU:
|
||
if (code2 == LEU || code2 == NE)
|
||
return 1;
|
||
break;
|
||
|
||
case GTU:
|
||
if (code2 == GEU || code2 == NE)
|
||
return 1;
|
||
break;
|
||
|
||
case UNORDERED:
|
||
if (code2 == NE || code2 == UNEQ || code2 == UNLE || code2 == UNLT
|
||
|| code2 == UNGE || code2 == UNGT)
|
||
return 1;
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Return 1 if INSN is an unconditional jump and nothing else. */
|
||
|
||
int
|
||
simplejump_p (insn)
|
||
rtx insn;
|
||
{
|
||
return (GET_CODE (insn) == JUMP_INSN
|
||
&& GET_CODE (PATTERN (insn)) == SET
|
||
&& GET_CODE (SET_DEST (PATTERN (insn))) == PC
|
||
&& GET_CODE (SET_SRC (PATTERN (insn))) == LABEL_REF);
|
||
}
|
||
/* Return 1 if INSN is an tablejump. */
|
||
|
||
int
|
||
tablejump_p (insn)
|
||
rtx insn;
|
||
{
|
||
rtx table;
|
||
return (GET_CODE (insn) == JUMP_INSN
|
||
&& JUMP_LABEL (insn)
|
||
&& NEXT_INSN (JUMP_LABEL (insn))
|
||
&& (table = next_active_insn (JUMP_LABEL (insn)))
|
||
&& GET_CODE (table) == JUMP_INSN
|
||
&& (GET_CODE (PATTERN (table)) == ADDR_VEC
|
||
|| GET_CODE (PATTERN (table)) == ADDR_DIFF_VEC));
|
||
}
|
||
|
||
/* Return nonzero if INSN is a (possibly) conditional jump
|
||
and nothing more.
|
||
|
||
Use this function is deprecated, since we need to support combined
|
||
branch and compare insns. Use any_condjump_p instead whenever possible. */
|
||
|
||
int
|
||
condjump_p (insn)
|
||
rtx insn;
|
||
{
|
||
rtx x = PATTERN (insn);
|
||
|
||
if (GET_CODE (x) != SET
|
||
|| GET_CODE (SET_DEST (x)) != PC)
|
||
return 0;
|
||
|
||
x = SET_SRC (x);
|
||
if (GET_CODE (x) == LABEL_REF)
|
||
return 1;
|
||
else
|
||
return (GET_CODE (x) == IF_THEN_ELSE
|
||
&& ((GET_CODE (XEXP (x, 2)) == PC
|
||
&& (GET_CODE (XEXP (x, 1)) == LABEL_REF
|
||
|| GET_CODE (XEXP (x, 1)) == RETURN))
|
||
|| (GET_CODE (XEXP (x, 1)) == PC
|
||
&& (GET_CODE (XEXP (x, 2)) == LABEL_REF
|
||
|| GET_CODE (XEXP (x, 2)) == RETURN))));
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Return nonzero if INSN is a (possibly) conditional jump inside a
|
||
PARALLEL.
|
||
|
||
Use this function is deprecated, since we need to support combined
|
||
branch and compare insns. Use any_condjump_p instead whenever possible. */
|
||
|
||
int
|
||
condjump_in_parallel_p (insn)
|
||
rtx insn;
|
||
{
|
||
rtx x = PATTERN (insn);
|
||
|
||
if (GET_CODE (x) != PARALLEL)
|
||
return 0;
|
||
else
|
||
x = XVECEXP (x, 0, 0);
|
||
|
||
if (GET_CODE (x) != SET)
|
||
return 0;
|
||
if (GET_CODE (SET_DEST (x)) != PC)
|
||
return 0;
|
||
if (GET_CODE (SET_SRC (x)) == LABEL_REF)
|
||
return 1;
|
||
if (GET_CODE (SET_SRC (x)) != IF_THEN_ELSE)
|
||
return 0;
|
||
if (XEXP (SET_SRC (x), 2) == pc_rtx
|
||
&& (GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF
|
||
|| GET_CODE (XEXP (SET_SRC (x), 1)) == RETURN))
|
||
return 1;
|
||
if (XEXP (SET_SRC (x), 1) == pc_rtx
|
||
&& (GET_CODE (XEXP (SET_SRC (x), 2)) == LABEL_REF
|
||
|| GET_CODE (XEXP (SET_SRC (x), 2)) == RETURN))
|
||
return 1;
|
||
return 0;
|
||
}
|
||
|
||
/* Return set of PC, otherwise NULL. */
|
||
|
||
rtx
|
||
pc_set (insn)
|
||
rtx insn;
|
||
{
|
||
rtx pat;
|
||
if (GET_CODE (insn) != JUMP_INSN)
|
||
return NULL_RTX;
|
||
pat = PATTERN (insn);
|
||
|
||
/* The set is allowed to appear either as the insn pattern or
|
||
the first set in a PARALLEL. */
|
||
if (GET_CODE (pat) == PARALLEL)
|
||
pat = XVECEXP (pat, 0, 0);
|
||
if (GET_CODE (pat) == SET && GET_CODE (SET_DEST (pat)) == PC)
|
||
return pat;
|
||
|
||
return NULL_RTX;
|
||
}
|
||
|
||
/* Return true when insn is an unconditional direct jump,
|
||
possibly bundled inside a PARALLEL. */
|
||
|
||
int
|
||
any_uncondjump_p (insn)
|
||
rtx insn;
|
||
{
|
||
rtx x = pc_set (insn);
|
||
if (!x)
|
||
return 0;
|
||
if (GET_CODE (SET_SRC (x)) != LABEL_REF)
|
||
return 0;
|
||
return 1;
|
||
}
|
||
|
||
/* Return true when insn is a conditional jump. This function works for
|
||
instructions containing PC sets in PARALLELs. The instruction may have
|
||
various other effects so before removing the jump you must verify
|
||
onlyjump_p.
|
||
|
||
Note that unlike condjump_p it returns false for unconditional jumps. */
|
||
|
||
int
|
||
any_condjump_p (insn)
|
||
rtx insn;
|
||
{
|
||
rtx x = pc_set (insn);
|
||
enum rtx_code a, b;
|
||
|
||
if (!x)
|
||
return 0;
|
||
if (GET_CODE (SET_SRC (x)) != IF_THEN_ELSE)
|
||
return 0;
|
||
|
||
a = GET_CODE (XEXP (SET_SRC (x), 1));
|
||
b = GET_CODE (XEXP (SET_SRC (x), 2));
|
||
|
||
return ((b == PC && (a == LABEL_REF || a == RETURN))
|
||
|| (a == PC && (b == LABEL_REF || b == RETURN)));
|
||
}
|
||
|
||
/* Return the label of a conditional jump. */
|
||
|
||
rtx
|
||
condjump_label (insn)
|
||
rtx insn;
|
||
{
|
||
rtx x = pc_set (insn);
|
||
|
||
if (!x)
|
||
return NULL_RTX;
|
||
x = SET_SRC (x);
|
||
if (GET_CODE (x) == LABEL_REF)
|
||
return x;
|
||
if (GET_CODE (x) != IF_THEN_ELSE)
|
||
return NULL_RTX;
|
||
if (XEXP (x, 2) == pc_rtx && GET_CODE (XEXP (x, 1)) == LABEL_REF)
|
||
return XEXP (x, 1);
|
||
if (XEXP (x, 1) == pc_rtx && GET_CODE (XEXP (x, 2)) == LABEL_REF)
|
||
return XEXP (x, 2);
|
||
return NULL_RTX;
|
||
}
|
||
|
||
/* Return true if INSN is a (possibly conditional) return insn. */
|
||
|
||
static int
|
||
returnjump_p_1 (loc, data)
|
||
rtx *loc;
|
||
void *data ATTRIBUTE_UNUSED;
|
||
{
|
||
rtx x = *loc;
|
||
|
||
return x && (GET_CODE (x) == RETURN
|
||
|| (GET_CODE (x) == SET && SET_IS_RETURN_P (x)));
|
||
}
|
||
|
||
int
|
||
returnjump_p (insn)
|
||
rtx insn;
|
||
{
|
||
if (GET_CODE (insn) != JUMP_INSN)
|
||
return 0;
|
||
return for_each_rtx (&PATTERN (insn), returnjump_p_1, NULL);
|
||
}
|
||
|
||
/* Return true if INSN is a jump that only transfers control and
|
||
nothing more. */
|
||
|
||
int
|
||
onlyjump_p (insn)
|
||
rtx insn;
|
||
{
|
||
rtx set;
|
||
|
||
if (GET_CODE (insn) != JUMP_INSN)
|
||
return 0;
|
||
|
||
set = single_set (insn);
|
||
if (set == NULL)
|
||
return 0;
|
||
if (GET_CODE (SET_DEST (set)) != PC)
|
||
return 0;
|
||
if (side_effects_p (SET_SRC (set)))
|
||
return 0;
|
||
|
||
return 1;
|
||
}
|
||
|
||
#ifdef HAVE_cc0
|
||
|
||
/* Return non-zero if X is an RTX that only sets the condition codes
|
||
and has no side effects. */
|
||
|
||
int
|
||
only_sets_cc0_p (x)
|
||
rtx x;
|
||
{
|
||
|
||
if (! x)
|
||
return 0;
|
||
|
||
if (INSN_P (x))
|
||
x = PATTERN (x);
|
||
|
||
return sets_cc0_p (x) == 1 && ! side_effects_p (x);
|
||
}
|
||
|
||
/* Return 1 if X is an RTX that does nothing but set the condition codes
|
||
and CLOBBER or USE registers.
|
||
Return -1 if X does explicitly set the condition codes,
|
||
but also does other things. */
|
||
|
||
int
|
||
sets_cc0_p (x)
|
||
rtx x;
|
||
{
|
||
|
||
if (! x)
|
||
return 0;
|
||
|
||
if (INSN_P (x))
|
||
x = PATTERN (x);
|
||
|
||
if (GET_CODE (x) == SET && SET_DEST (x) == cc0_rtx)
|
||
return 1;
|
||
if (GET_CODE (x) == PARALLEL)
|
||
{
|
||
int i;
|
||
int sets_cc0 = 0;
|
||
int other_things = 0;
|
||
for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
|
||
{
|
||
if (GET_CODE (XVECEXP (x, 0, i)) == SET
|
||
&& SET_DEST (XVECEXP (x, 0, i)) == cc0_rtx)
|
||
sets_cc0 = 1;
|
||
else if (GET_CODE (XVECEXP (x, 0, i)) == SET)
|
||
other_things = 1;
|
||
}
|
||
return ! sets_cc0 ? 0 : other_things ? -1 : 1;
|
||
}
|
||
return 0;
|
||
}
|
||
#endif
|
||
|
||
/* Follow any unconditional jump at LABEL;
|
||
return the ultimate label reached by any such chain of jumps.
|
||
If LABEL is not followed by a jump, return LABEL.
|
||
If the chain loops or we can't find end, return LABEL,
|
||
since that tells caller to avoid changing the insn.
|
||
|
||
If RELOAD_COMPLETED is 0, we do not chain across a NOTE_INSN_LOOP_BEG or
|
||
a USE or CLOBBER. */
|
||
|
||
rtx
|
||
follow_jumps (label)
|
||
rtx label;
|
||
{
|
||
rtx insn;
|
||
rtx next;
|
||
rtx value = label;
|
||
int depth;
|
||
|
||
for (depth = 0;
|
||
(depth < 10
|
||
&& (insn = next_active_insn (value)) != 0
|
||
&& GET_CODE (insn) == JUMP_INSN
|
||
&& ((JUMP_LABEL (insn) != 0 && any_uncondjump_p (insn)
|
||
&& onlyjump_p (insn))
|
||
|| GET_CODE (PATTERN (insn)) == RETURN)
|
||
&& (next = NEXT_INSN (insn))
|
||
&& GET_CODE (next) == BARRIER);
|
||
depth++)
|
||
{
|
||
/* Don't chain through the insn that jumps into a loop
|
||
from outside the loop,
|
||
since that would create multiple loop entry jumps
|
||
and prevent loop optimization. */
|
||
rtx tem;
|
||
if (!reload_completed)
|
||
for (tem = value; tem != insn; tem = NEXT_INSN (tem))
|
||
if (GET_CODE (tem) == NOTE
|
||
&& (NOTE_LINE_NUMBER (tem) == NOTE_INSN_LOOP_BEG
|
||
/* ??? Optional. Disables some optimizations, but makes
|
||
gcov output more accurate with -O. */
|
||
|| (flag_test_coverage && NOTE_LINE_NUMBER (tem) > 0)))
|
||
return value;
|
||
|
||
/* If we have found a cycle, make the insn jump to itself. */
|
||
if (JUMP_LABEL (insn) == label)
|
||
return label;
|
||
|
||
tem = next_active_insn (JUMP_LABEL (insn));
|
||
if (tem && (GET_CODE (PATTERN (tem)) == ADDR_VEC
|
||
|| GET_CODE (PATTERN (tem)) == ADDR_DIFF_VEC))
|
||
break;
|
||
|
||
value = JUMP_LABEL (insn);
|
||
}
|
||
if (depth == 10)
|
||
return label;
|
||
return value;
|
||
}
|
||
|
||
|
||
/* Find all CODE_LABELs referred to in X, and increment their use counts.
|
||
If INSN is a JUMP_INSN and there is at least one CODE_LABEL referenced
|
||
in INSN, then store one of them in JUMP_LABEL (INSN).
|
||
If INSN is an INSN or a CALL_INSN and there is at least one CODE_LABEL
|
||
referenced in INSN, add a REG_LABEL note containing that label to INSN.
|
||
Also, when there are consecutive labels, canonicalize on the last of them.
|
||
|
||
Note that two labels separated by a loop-beginning note
|
||
must be kept distinct if we have not yet done loop-optimization,
|
||
because the gap between them is where loop-optimize
|
||
will want to move invariant code to. CROSS_JUMP tells us
|
||
that loop-optimization is done with. */
|
||
|
||
void
|
||
mark_jump_label (x, insn, in_mem)
|
||
rtx x;
|
||
rtx insn;
|
||
int in_mem;
|
||
{
|
||
RTX_CODE code = GET_CODE (x);
|
||
int i;
|
||
const char *fmt;
|
||
|
||
switch (code)
|
||
{
|
||
case PC:
|
||
case CC0:
|
||
case REG:
|
||
case SUBREG:
|
||
case CONST_INT:
|
||
case CONST_DOUBLE:
|
||
case CLOBBER:
|
||
case CALL:
|
||
return;
|
||
|
||
case MEM:
|
||
in_mem = 1;
|
||
break;
|
||
|
||
case SYMBOL_REF:
|
||
if (!in_mem)
|
||
return;
|
||
|
||
/* If this is a constant-pool reference, see if it is a label. */
|
||
if (CONSTANT_POOL_ADDRESS_P (x))
|
||
mark_jump_label (get_pool_constant (x), insn, in_mem);
|
||
break;
|
||
|
||
case LABEL_REF:
|
||
{
|
||
rtx label = XEXP (x, 0);
|
||
|
||
/* Ignore remaining references to unreachable labels that
|
||
have been deleted. */
|
||
if (GET_CODE (label) == NOTE
|
||
&& NOTE_LINE_NUMBER (label) == NOTE_INSN_DELETED_LABEL)
|
||
break;
|
||
|
||
if (GET_CODE (label) != CODE_LABEL)
|
||
abort ();
|
||
|
||
/* Ignore references to labels of containing functions. */
|
||
if (LABEL_REF_NONLOCAL_P (x))
|
||
break;
|
||
|
||
XEXP (x, 0) = label;
|
||
if (! insn || ! INSN_DELETED_P (insn))
|
||
++LABEL_NUSES (label);
|
||
|
||
if (insn)
|
||
{
|
||
if (GET_CODE (insn) == JUMP_INSN)
|
||
JUMP_LABEL (insn) = label;
|
||
else
|
||
{
|
||
/* Add a REG_LABEL note for LABEL unless there already
|
||
is one. All uses of a label, except for labels
|
||
that are the targets of jumps, must have a
|
||
REG_LABEL note. */
|
||
if (! find_reg_note (insn, REG_LABEL, label))
|
||
REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL, label,
|
||
REG_NOTES (insn));
|
||
}
|
||
}
|
||
return;
|
||
}
|
||
|
||
/* Do walk the labels in a vector, but not the first operand of an
|
||
ADDR_DIFF_VEC. Don't set the JUMP_LABEL of a vector. */
|
||
case ADDR_VEC:
|
||
case ADDR_DIFF_VEC:
|
||
if (! INSN_DELETED_P (insn))
|
||
{
|
||
int eltnum = code == ADDR_DIFF_VEC ? 1 : 0;
|
||
|
||
for (i = 0; i < XVECLEN (x, eltnum); i++)
|
||
mark_jump_label (XVECEXP (x, eltnum, i), NULL_RTX, in_mem);
|
||
}
|
||
return;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
fmt = GET_RTX_FORMAT (code);
|
||
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
||
{
|
||
if (fmt[i] == 'e')
|
||
mark_jump_label (XEXP (x, i), insn, in_mem);
|
||
else if (fmt[i] == 'E')
|
||
{
|
||
int j;
|
||
for (j = 0; j < XVECLEN (x, i); j++)
|
||
mark_jump_label (XVECEXP (x, i, j), insn, in_mem);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* If all INSN does is set the pc, delete it,
|
||
and delete the insn that set the condition codes for it
|
||
if that's what the previous thing was. */
|
||
|
||
void
|
||
delete_jump (insn)
|
||
rtx insn;
|
||
{
|
||
rtx set = single_set (insn);
|
||
|
||
if (set && GET_CODE (SET_DEST (set)) == PC)
|
||
delete_computation (insn);
|
||
}
|
||
|
||
/* Verify INSN is a BARRIER and delete it. */
|
||
|
||
void
|
||
delete_barrier (insn)
|
||
rtx insn;
|
||
{
|
||
if (GET_CODE (insn) != BARRIER)
|
||
abort ();
|
||
|
||
delete_insn (insn);
|
||
}
|
||
|
||
/* Recursively delete prior insns that compute the value (used only by INSN
|
||
which the caller is deleting) stored in the register mentioned by NOTE
|
||
which is a REG_DEAD note associated with INSN. */
|
||
|
||
static void
|
||
delete_prior_computation (note, insn)
|
||
rtx note;
|
||
rtx insn;
|
||
{
|
||
rtx our_prev;
|
||
rtx reg = XEXP (note, 0);
|
||
|
||
for (our_prev = prev_nonnote_insn (insn);
|
||
our_prev && (GET_CODE (our_prev) == INSN
|
||
|| GET_CODE (our_prev) == CALL_INSN);
|
||
our_prev = prev_nonnote_insn (our_prev))
|
||
{
|
||
rtx pat = PATTERN (our_prev);
|
||
|
||
/* If we reach a CALL which is not calling a const function
|
||
or the callee pops the arguments, then give up. */
|
||
if (GET_CODE (our_prev) == CALL_INSN
|
||
&& (! CONST_OR_PURE_CALL_P (our_prev)
|
||
|| GET_CODE (pat) != SET || GET_CODE (SET_SRC (pat)) != CALL))
|
||
break;
|
||
|
||
/* If we reach a SEQUENCE, it is too complex to try to
|
||
do anything with it, so give up. */
|
||
if (GET_CODE (pat) == SEQUENCE)
|
||
break;
|
||
|
||
if (GET_CODE (pat) == USE
|
||
&& GET_CODE (XEXP (pat, 0)) == INSN)
|
||
/* reorg creates USEs that look like this. We leave them
|
||
alone because reorg needs them for its own purposes. */
|
||
break;
|
||
|
||
if (reg_set_p (reg, pat))
|
||
{
|
||
if (side_effects_p (pat) && GET_CODE (our_prev) != CALL_INSN)
|
||
break;
|
||
|
||
if (GET_CODE (pat) == PARALLEL)
|
||
{
|
||
/* If we find a SET of something else, we can't
|
||
delete the insn. */
|
||
|
||
int i;
|
||
|
||
for (i = 0; i < XVECLEN (pat, 0); i++)
|
||
{
|
||
rtx part = XVECEXP (pat, 0, i);
|
||
|
||
if (GET_CODE (part) == SET
|
||
&& SET_DEST (part) != reg)
|
||
break;
|
||
}
|
||
|
||
if (i == XVECLEN (pat, 0))
|
||
delete_computation (our_prev);
|
||
}
|
||
else if (GET_CODE (pat) == SET
|
||
&& GET_CODE (SET_DEST (pat)) == REG)
|
||
{
|
||
int dest_regno = REGNO (SET_DEST (pat));
|
||
int dest_endregno
|
||
= (dest_regno
|
||
+ (dest_regno < FIRST_PSEUDO_REGISTER
|
||
? HARD_REGNO_NREGS (dest_regno,
|
||
GET_MODE (SET_DEST (pat))) : 1));
|
||
int regno = REGNO (reg);
|
||
int endregno
|
||
= (regno
|
||
+ (regno < FIRST_PSEUDO_REGISTER
|
||
? HARD_REGNO_NREGS (regno, GET_MODE (reg)) : 1));
|
||
|
||
if (dest_regno >= regno
|
||
&& dest_endregno <= endregno)
|
||
delete_computation (our_prev);
|
||
|
||
/* We may have a multi-word hard register and some, but not
|
||
all, of the words of the register are needed in subsequent
|
||
insns. Write REG_UNUSED notes for those parts that were not
|
||
needed. */
|
||
else if (dest_regno <= regno
|
||
&& dest_endregno >= endregno)
|
||
{
|
||
int i;
|
||
|
||
REG_NOTES (our_prev)
|
||
= gen_rtx_EXPR_LIST (REG_UNUSED, reg,
|
||
REG_NOTES (our_prev));
|
||
|
||
for (i = dest_regno; i < dest_endregno; i++)
|
||
if (! find_regno_note (our_prev, REG_UNUSED, i))
|
||
break;
|
||
|
||
if (i == dest_endregno)
|
||
delete_computation (our_prev);
|
||
}
|
||
}
|
||
|
||
break;
|
||
}
|
||
|
||
/* If PAT references the register that dies here, it is an
|
||
additional use. Hence any prior SET isn't dead. However, this
|
||
insn becomes the new place for the REG_DEAD note. */
|
||
if (reg_overlap_mentioned_p (reg, pat))
|
||
{
|
||
XEXP (note, 1) = REG_NOTES (our_prev);
|
||
REG_NOTES (our_prev) = note;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Delete INSN and recursively delete insns that compute values used only
|
||
by INSN. This uses the REG_DEAD notes computed during flow analysis.
|
||
If we are running before flow.c, we need do nothing since flow.c will
|
||
delete dead code. We also can't know if the registers being used are
|
||
dead or not at this point.
|
||
|
||
Otherwise, look at all our REG_DEAD notes. If a previous insn does
|
||
nothing other than set a register that dies in this insn, we can delete
|
||
that insn as well.
|
||
|
||
On machines with CC0, if CC0 is used in this insn, we may be able to
|
||
delete the insn that set it. */
|
||
|
||
static void
|
||
delete_computation (insn)
|
||
rtx insn;
|
||
{
|
||
rtx note, next;
|
||
|
||
#ifdef HAVE_cc0
|
||
if (reg_referenced_p (cc0_rtx, PATTERN (insn)))
|
||
{
|
||
rtx prev = prev_nonnote_insn (insn);
|
||
/* We assume that at this stage
|
||
CC's are always set explicitly
|
||
and always immediately before the jump that
|
||
will use them. So if the previous insn
|
||
exists to set the CC's, delete it
|
||
(unless it performs auto-increments, etc.). */
|
||
if (prev && GET_CODE (prev) == INSN
|
||
&& sets_cc0_p (PATTERN (prev)))
|
||
{
|
||
if (sets_cc0_p (PATTERN (prev)) > 0
|
||
&& ! side_effects_p (PATTERN (prev)))
|
||
delete_computation (prev);
|
||
else
|
||
/* Otherwise, show that cc0 won't be used. */
|
||
REG_NOTES (prev) = gen_rtx_EXPR_LIST (REG_UNUSED,
|
||
cc0_rtx, REG_NOTES (prev));
|
||
}
|
||
}
|
||
#endif
|
||
|
||
for (note = REG_NOTES (insn); note; note = next)
|
||
{
|
||
next = XEXP (note, 1);
|
||
|
||
if (REG_NOTE_KIND (note) != REG_DEAD
|
||
/* Verify that the REG_NOTE is legitimate. */
|
||
|| GET_CODE (XEXP (note, 0)) != REG)
|
||
continue;
|
||
|
||
delete_prior_computation (note, insn);
|
||
}
|
||
|
||
delete_related_insns (insn);
|
||
}
|
||
|
||
/* Delete insn INSN from the chain of insns and update label ref counts
|
||
and delete insns now unreachable.
|
||
|
||
Returns the first insn after INSN that was not deleted.
|
||
|
||
Usage of this instruction is deprecated. Use delete_insn instead and
|
||
subsequent cfg_cleanup pass to delete unreachable code if needed. */
|
||
|
||
rtx
|
||
delete_related_insns (insn)
|
||
rtx insn;
|
||
{
|
||
int was_code_label = (GET_CODE (insn) == CODE_LABEL);
|
||
rtx note;
|
||
rtx next = NEXT_INSN (insn), prev = PREV_INSN (insn);
|
||
|
||
while (next && INSN_DELETED_P (next))
|
||
next = NEXT_INSN (next);
|
||
|
||
/* This insn is already deleted => return first following nondeleted. */
|
||
if (INSN_DELETED_P (insn))
|
||
return next;
|
||
|
||
delete_insn (insn);
|
||
|
||
/* If instruction is followed by a barrier,
|
||
delete the barrier too. */
|
||
|
||
if (next != 0 && GET_CODE (next) == BARRIER)
|
||
delete_insn (next);
|
||
|
||
/* If deleting a jump, decrement the count of the label,
|
||
and delete the label if it is now unused. */
|
||
|
||
if (GET_CODE (insn) == JUMP_INSN && JUMP_LABEL (insn))
|
||
{
|
||
rtx lab = JUMP_LABEL (insn), lab_next;
|
||
|
||
if (LABEL_NUSES (lab) == 0)
|
||
{
|
||
/* This can delete NEXT or PREV,
|
||
either directly if NEXT is JUMP_LABEL (INSN),
|
||
or indirectly through more levels of jumps. */
|
||
delete_related_insns (lab);
|
||
|
||
/* I feel a little doubtful about this loop,
|
||
but I see no clean and sure alternative way
|
||
to find the first insn after INSN that is not now deleted.
|
||
I hope this works. */
|
||
while (next && INSN_DELETED_P (next))
|
||
next = NEXT_INSN (next);
|
||
return next;
|
||
}
|
||
else if ((lab_next = next_nonnote_insn (lab)) != NULL
|
||
&& GET_CODE (lab_next) == JUMP_INSN
|
||
&& (GET_CODE (PATTERN (lab_next)) == ADDR_VEC
|
||
|| GET_CODE (PATTERN (lab_next)) == ADDR_DIFF_VEC))
|
||
{
|
||
/* If we're deleting the tablejump, delete the dispatch table.
|
||
We may not be able to kill the label immediately preceding
|
||
just yet, as it might be referenced in code leading up to
|
||
the tablejump. */
|
||
delete_related_insns (lab_next);
|
||
}
|
||
}
|
||
|
||
/* Likewise if we're deleting a dispatch table. */
|
||
|
||
if (GET_CODE (insn) == JUMP_INSN
|
||
&& (GET_CODE (PATTERN (insn)) == ADDR_VEC
|
||
|| GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC))
|
||
{
|
||
rtx pat = PATTERN (insn);
|
||
int i, diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
|
||
int len = XVECLEN (pat, diff_vec_p);
|
||
|
||
for (i = 0; i < len; i++)
|
||
if (LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0)) == 0)
|
||
delete_related_insns (XEXP (XVECEXP (pat, diff_vec_p, i), 0));
|
||
while (next && INSN_DELETED_P (next))
|
||
next = NEXT_INSN (next);
|
||
return next;
|
||
}
|
||
|
||
/* Likewise for an ordinary INSN / CALL_INSN with a REG_LABEL note. */
|
||
if (GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN)
|
||
for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
|
||
if (REG_NOTE_KIND (note) == REG_LABEL
|
||
/* This could also be a NOTE_INSN_DELETED_LABEL note. */
|
||
&& GET_CODE (XEXP (note, 0)) == CODE_LABEL)
|
||
if (LABEL_NUSES (XEXP (note, 0)) == 0)
|
||
delete_related_insns (XEXP (note, 0));
|
||
|
||
while (prev && (INSN_DELETED_P (prev) || GET_CODE (prev) == NOTE))
|
||
prev = PREV_INSN (prev);
|
||
|
||
/* If INSN was a label and a dispatch table follows it,
|
||
delete the dispatch table. The tablejump must have gone already.
|
||
It isn't useful to fall through into a table. */
|
||
|
||
if (was_code_label
|
||
&& NEXT_INSN (insn) != 0
|
||
&& GET_CODE (NEXT_INSN (insn)) == JUMP_INSN
|
||
&& (GET_CODE (PATTERN (NEXT_INSN (insn))) == ADDR_VEC
|
||
|| GET_CODE (PATTERN (NEXT_INSN (insn))) == ADDR_DIFF_VEC))
|
||
next = delete_related_insns (NEXT_INSN (insn));
|
||
|
||
/* If INSN was a label, delete insns following it if now unreachable. */
|
||
|
||
if (was_code_label && prev && GET_CODE (prev) == BARRIER)
|
||
{
|
||
RTX_CODE code;
|
||
while (next != 0
|
||
&& (GET_RTX_CLASS (code = GET_CODE (next)) == 'i'
|
||
|| code == NOTE || code == BARRIER
|
||
|| (code == CODE_LABEL && INSN_DELETED_P (next))))
|
||
{
|
||
if (code == NOTE
|
||
&& NOTE_LINE_NUMBER (next) != NOTE_INSN_FUNCTION_END)
|
||
next = NEXT_INSN (next);
|
||
/* Keep going past other deleted labels to delete what follows. */
|
||
else if (code == CODE_LABEL && INSN_DELETED_P (next))
|
||
next = NEXT_INSN (next);
|
||
else
|
||
/* Note: if this deletes a jump, it can cause more
|
||
deletion of unreachable code, after a different label.
|
||
As long as the value from this recursive call is correct,
|
||
this invocation functions correctly. */
|
||
next = delete_related_insns (next);
|
||
}
|
||
}
|
||
|
||
return next;
|
||
}
|
||
|
||
/* Advance from INSN till reaching something not deleted
|
||
then return that. May return INSN itself. */
|
||
|
||
rtx
|
||
next_nondeleted_insn (insn)
|
||
rtx insn;
|
||
{
|
||
while (INSN_DELETED_P (insn))
|
||
insn = NEXT_INSN (insn);
|
||
return insn;
|
||
}
|
||
|
||
/* Delete a range of insns from FROM to TO, inclusive.
|
||
This is for the sake of peephole optimization, so assume
|
||
that whatever these insns do will still be done by a new
|
||
peephole insn that will replace them. */
|
||
|
||
void
|
||
delete_for_peephole (from, to)
|
||
rtx from, to;
|
||
{
|
||
rtx insn = from;
|
||
|
||
while (1)
|
||
{
|
||
rtx next = NEXT_INSN (insn);
|
||
rtx prev = PREV_INSN (insn);
|
||
|
||
if (GET_CODE (insn) != NOTE)
|
||
{
|
||
INSN_DELETED_P (insn) = 1;
|
||
|
||
/* Patch this insn out of the chain. */
|
||
/* We don't do this all at once, because we
|
||
must preserve all NOTEs. */
|
||
if (prev)
|
||
NEXT_INSN (prev) = next;
|
||
|
||
if (next)
|
||
PREV_INSN (next) = prev;
|
||
}
|
||
|
||
if (insn == to)
|
||
break;
|
||
insn = next;
|
||
}
|
||
|
||
/* Note that if TO is an unconditional jump
|
||
we *do not* delete the BARRIER that follows,
|
||
since the peephole that replaces this sequence
|
||
is also an unconditional jump in that case. */
|
||
}
|
||
|
||
/* We have determined that INSN is never reached, and are about to
|
||
delete it. Print a warning if the user asked for one.
|
||
|
||
To try to make this warning more useful, this should only be called
|
||
once per basic block not reached, and it only warns when the basic
|
||
block contains more than one line from the current function, and
|
||
contains at least one operation. CSE and inlining can duplicate insns,
|
||
so it's possible to get spurious warnings from this. */
|
||
|
||
void
|
||
never_reached_warning (avoided_insn, finish)
|
||
rtx avoided_insn, finish;
|
||
{
|
||
rtx insn;
|
||
rtx a_line_note = NULL;
|
||
int two_avoided_lines = 0, contains_insn = 0, reached_end = 0;
|
||
|
||
if (! warn_notreached)
|
||
return;
|
||
|
||
/* Scan forwards, looking at LINE_NUMBER notes, until
|
||
we hit a LABEL or we run out of insns. */
|
||
|
||
for (insn = avoided_insn; insn != NULL; insn = NEXT_INSN (insn))
|
||
{
|
||
if (finish == NULL && GET_CODE (insn) == CODE_LABEL)
|
||
break;
|
||
|
||
if (GET_CODE (insn) == NOTE /* A line number note? */
|
||
&& NOTE_LINE_NUMBER (insn) >= 0)
|
||
{
|
||
if (a_line_note == NULL)
|
||
a_line_note = insn;
|
||
else
|
||
two_avoided_lines |= (NOTE_LINE_NUMBER (a_line_note)
|
||
!= NOTE_LINE_NUMBER (insn));
|
||
}
|
||
else if (INSN_P (insn))
|
||
{
|
||
if (reached_end)
|
||
break;
|
||
contains_insn = 1;
|
||
}
|
||
|
||
if (insn == finish)
|
||
reached_end = 1;
|
||
}
|
||
if (two_avoided_lines && contains_insn)
|
||
warning_with_file_and_line (NOTE_SOURCE_FILE (a_line_note),
|
||
NOTE_LINE_NUMBER (a_line_note),
|
||
"will never be executed");
|
||
}
|
||
|
||
/* Throughout LOC, redirect OLABEL to NLABEL. Treat null OLABEL or
|
||
NLABEL as a return. Accrue modifications into the change group. */
|
||
|
||
static void
|
||
redirect_exp_1 (loc, olabel, nlabel, insn)
|
||
rtx *loc;
|
||
rtx olabel, nlabel;
|
||
rtx insn;
|
||
{
|
||
rtx x = *loc;
|
||
RTX_CODE code = GET_CODE (x);
|
||
int i;
|
||
const char *fmt;
|
||
|
||
if (code == LABEL_REF)
|
||
{
|
||
if (XEXP (x, 0) == olabel)
|
||
{
|
||
rtx n;
|
||
if (nlabel)
|
||
n = gen_rtx_LABEL_REF (VOIDmode, nlabel);
|
||
else
|
||
n = gen_rtx_RETURN (VOIDmode);
|
||
|
||
validate_change (insn, loc, n, 1);
|
||
return;
|
||
}
|
||
}
|
||
else if (code == RETURN && olabel == 0)
|
||
{
|
||
x = gen_rtx_LABEL_REF (VOIDmode, nlabel);
|
||
if (loc == &PATTERN (insn))
|
||
x = gen_rtx_SET (VOIDmode, pc_rtx, x);
|
||
validate_change (insn, loc, x, 1);
|
||
return;
|
||
}
|
||
|
||
if (code == SET && nlabel == 0 && SET_DEST (x) == pc_rtx
|
||
&& GET_CODE (SET_SRC (x)) == LABEL_REF
|
||
&& XEXP (SET_SRC (x), 0) == olabel)
|
||
{
|
||
validate_change (insn, loc, gen_rtx_RETURN (VOIDmode), 1);
|
||
return;
|
||
}
|
||
|
||
fmt = GET_RTX_FORMAT (code);
|
||
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
||
{
|
||
if (fmt[i] == 'e')
|
||
redirect_exp_1 (&XEXP (x, i), olabel, nlabel, insn);
|
||
else if (fmt[i] == 'E')
|
||
{
|
||
int j;
|
||
for (j = 0; j < XVECLEN (x, i); j++)
|
||
redirect_exp_1 (&XVECEXP (x, i, j), olabel, nlabel, insn);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Similar, but apply the change group and report success or failure. */
|
||
|
||
static int
|
||
redirect_exp (olabel, nlabel, insn)
|
||
rtx olabel, nlabel;
|
||
rtx insn;
|
||
{
|
||
rtx *loc;
|
||
|
||
if (GET_CODE (PATTERN (insn)) == PARALLEL)
|
||
loc = &XVECEXP (PATTERN (insn), 0, 0);
|
||
else
|
||
loc = &PATTERN (insn);
|
||
|
||
redirect_exp_1 (loc, olabel, nlabel, insn);
|
||
if (num_validated_changes () == 0)
|
||
return 0;
|
||
|
||
return apply_change_group ();
|
||
}
|
||
|
||
/* Make JUMP go to NLABEL instead of where it jumps now. Accrue
|
||
the modifications into the change group. Return false if we did
|
||
not see how to do that. */
|
||
|
||
int
|
||
redirect_jump_1 (jump, nlabel)
|
||
rtx jump, nlabel;
|
||
{
|
||
int ochanges = num_validated_changes ();
|
||
rtx *loc;
|
||
|
||
if (GET_CODE (PATTERN (jump)) == PARALLEL)
|
||
loc = &XVECEXP (PATTERN (jump), 0, 0);
|
||
else
|
||
loc = &PATTERN (jump);
|
||
|
||
redirect_exp_1 (loc, JUMP_LABEL (jump), nlabel, jump);
|
||
return num_validated_changes () > ochanges;
|
||
}
|
||
|
||
/* Make JUMP go to NLABEL instead of where it jumps now. If the old
|
||
jump target label is unused as a result, it and the code following
|
||
it may be deleted.
|
||
|
||
If NLABEL is zero, we are to turn the jump into a (possibly conditional)
|
||
RETURN insn.
|
||
|
||
The return value will be 1 if the change was made, 0 if it wasn't
|
||
(this can only occur for NLABEL == 0). */
|
||
|
||
int
|
||
redirect_jump (jump, nlabel, delete_unused)
|
||
rtx jump, nlabel;
|
||
int delete_unused;
|
||
{
|
||
rtx olabel = JUMP_LABEL (jump);
|
||
|
||
if (nlabel == olabel)
|
||
return 1;
|
||
|
||
if (! redirect_exp (olabel, nlabel, jump))
|
||
return 0;
|
||
|
||
JUMP_LABEL (jump) = nlabel;
|
||
if (nlabel)
|
||
++LABEL_NUSES (nlabel);
|
||
|
||
/* If we're eliding the jump over exception cleanups at the end of a
|
||
function, move the function end note so that -Wreturn-type works. */
|
||
if (olabel && nlabel
|
||
&& NEXT_INSN (olabel)
|
||
&& GET_CODE (NEXT_INSN (olabel)) == NOTE
|
||
&& NOTE_LINE_NUMBER (NEXT_INSN (olabel)) == NOTE_INSN_FUNCTION_END)
|
||
emit_note_after (NOTE_INSN_FUNCTION_END, nlabel);
|
||
|
||
if (olabel && --LABEL_NUSES (olabel) == 0 && delete_unused
|
||
/* Undefined labels will remain outside the insn stream. */
|
||
&& INSN_UID (olabel))
|
||
delete_related_insns (olabel);
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Invert the jump condition of rtx X contained in jump insn, INSN.
|
||
Accrue the modifications into the change group. */
|
||
|
||
static void
|
||
invert_exp_1 (insn)
|
||
rtx insn;
|
||
{
|
||
RTX_CODE code;
|
||
rtx x = pc_set (insn);
|
||
|
||
if (!x)
|
||
abort ();
|
||
x = SET_SRC (x);
|
||
|
||
code = GET_CODE (x);
|
||
|
||
if (code == IF_THEN_ELSE)
|
||
{
|
||
rtx comp = XEXP (x, 0);
|
||
rtx tem;
|
||
enum rtx_code reversed_code;
|
||
|
||
/* We can do this in two ways: The preferable way, which can only
|
||
be done if this is not an integer comparison, is to reverse
|
||
the comparison code. Otherwise, swap the THEN-part and ELSE-part
|
||
of the IF_THEN_ELSE. If we can't do either, fail. */
|
||
|
||
reversed_code = reversed_comparison_code (comp, insn);
|
||
|
||
if (reversed_code != UNKNOWN)
|
||
{
|
||
validate_change (insn, &XEXP (x, 0),
|
||
gen_rtx_fmt_ee (reversed_code,
|
||
GET_MODE (comp), XEXP (comp, 0),
|
||
XEXP (comp, 1)),
|
||
1);
|
||
return;
|
||
}
|
||
|
||
tem = XEXP (x, 1);
|
||
validate_change (insn, &XEXP (x, 1), XEXP (x, 2), 1);
|
||
validate_change (insn, &XEXP (x, 2), tem, 1);
|
||
}
|
||
else
|
||
abort ();
|
||
}
|
||
|
||
/* Invert the jump condition of conditional jump insn, INSN.
|
||
|
||
Return 1 if we can do so, 0 if we cannot find a way to do so that
|
||
matches a pattern. */
|
||
|
||
static int
|
||
invert_exp (insn)
|
||
rtx insn;
|
||
{
|
||
invert_exp_1 (insn);
|
||
if (num_validated_changes () == 0)
|
||
return 0;
|
||
|
||
return apply_change_group ();
|
||
}
|
||
|
||
/* Invert the condition of the jump JUMP, and make it jump to label
|
||
NLABEL instead of where it jumps now. Accrue changes into the
|
||
change group. Return false if we didn't see how to perform the
|
||
inversion and redirection. */
|
||
|
||
int
|
||
invert_jump_1 (jump, nlabel)
|
||
rtx jump, nlabel;
|
||
{
|
||
int ochanges;
|
||
|
||
ochanges = num_validated_changes ();
|
||
invert_exp_1 (jump);
|
||
if (num_validated_changes () == ochanges)
|
||
return 0;
|
||
|
||
return redirect_jump_1 (jump, nlabel);
|
||
}
|
||
|
||
/* Invert the condition of the jump JUMP, and make it jump to label
|
||
NLABEL instead of where it jumps now. Return true if successful. */
|
||
|
||
int
|
||
invert_jump (jump, nlabel, delete_unused)
|
||
rtx jump, nlabel;
|
||
int delete_unused;
|
||
{
|
||
/* We have to either invert the condition and change the label or
|
||
do neither. Either operation could fail. We first try to invert
|
||
the jump. If that succeeds, we try changing the label. If that fails,
|
||
we invert the jump back to what it was. */
|
||
|
||
if (! invert_exp (jump))
|
||
return 0;
|
||
|
||
if (redirect_jump (jump, nlabel, delete_unused))
|
||
{
|
||
invert_br_probabilities (jump);
|
||
|
||
return 1;
|
||
}
|
||
|
||
if (! invert_exp (jump))
|
||
/* This should just be putting it back the way it was. */
|
||
abort ();
|
||
|
||
return 0;
|
||
}
|
||
|
||
|
||
/* Like rtx_equal_p except that it considers two REGs as equal
|
||
if they renumber to the same value and considers two commutative
|
||
operations to be the same if the order of the operands has been
|
||
reversed.
|
||
|
||
??? Addition is not commutative on the PA due to the weird implicit
|
||
space register selection rules for memory addresses. Therefore, we
|
||
don't consider a + b == b + a.
|
||
|
||
We could/should make this test a little tighter. Possibly only
|
||
disabling it on the PA via some backend macro or only disabling this
|
||
case when the PLUS is inside a MEM. */
|
||
|
||
int
|
||
rtx_renumbered_equal_p (x, y)
|
||
rtx x, y;
|
||
{
|
||
int i;
|
||
RTX_CODE code = GET_CODE (x);
|
||
const char *fmt;
|
||
|
||
if (x == y)
|
||
return 1;
|
||
|
||
if ((code == REG || (code == SUBREG && GET_CODE (SUBREG_REG (x)) == REG))
|
||
&& (GET_CODE (y) == REG || (GET_CODE (y) == SUBREG
|
||
&& GET_CODE (SUBREG_REG (y)) == REG)))
|
||
{
|
||
int reg_x = -1, reg_y = -1;
|
||
int byte_x = 0, byte_y = 0;
|
||
|
||
if (GET_MODE (x) != GET_MODE (y))
|
||
return 0;
|
||
|
||
/* If we haven't done any renumbering, don't
|
||
make any assumptions. */
|
||
if (reg_renumber == 0)
|
||
return rtx_equal_p (x, y);
|
||
|
||
if (code == SUBREG)
|
||
{
|
||
reg_x = REGNO (SUBREG_REG (x));
|
||
byte_x = SUBREG_BYTE (x);
|
||
|
||
if (reg_renumber[reg_x] >= 0)
|
||
{
|
||
reg_x = subreg_regno_offset (reg_renumber[reg_x],
|
||
GET_MODE (SUBREG_REG (x)),
|
||
byte_x,
|
||
GET_MODE (x));
|
||
byte_x = 0;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
reg_x = REGNO (x);
|
||
if (reg_renumber[reg_x] >= 0)
|
||
reg_x = reg_renumber[reg_x];
|
||
}
|
||
|
||
if (GET_CODE (y) == SUBREG)
|
||
{
|
||
reg_y = REGNO (SUBREG_REG (y));
|
||
byte_y = SUBREG_BYTE (y);
|
||
|
||
if (reg_renumber[reg_y] >= 0)
|
||
{
|
||
reg_y = subreg_regno_offset (reg_renumber[reg_y],
|
||
GET_MODE (SUBREG_REG (y)),
|
||
byte_y,
|
||
GET_MODE (y));
|
||
byte_y = 0;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
reg_y = REGNO (y);
|
||
if (reg_renumber[reg_y] >= 0)
|
||
reg_y = reg_renumber[reg_y];
|
||
}
|
||
|
||
return reg_x >= 0 && reg_x == reg_y && byte_x == byte_y;
|
||
}
|
||
|
||
/* Now we have disposed of all the cases
|
||
in which different rtx codes can match. */
|
||
if (code != GET_CODE (y))
|
||
return 0;
|
||
|
||
switch (code)
|
||
{
|
||
case PC:
|
||
case CC0:
|
||
case ADDR_VEC:
|
||
case ADDR_DIFF_VEC:
|
||
return 0;
|
||
|
||
case CONST_INT:
|
||
return INTVAL (x) == INTVAL (y);
|
||
|
||
case LABEL_REF:
|
||
/* We can't assume nonlocal labels have their following insns yet. */
|
||
if (LABEL_REF_NONLOCAL_P (x) || LABEL_REF_NONLOCAL_P (y))
|
||
return XEXP (x, 0) == XEXP (y, 0);
|
||
|
||
/* Two label-refs are equivalent if they point at labels
|
||
in the same position in the instruction stream. */
|
||
return (next_real_insn (XEXP (x, 0))
|
||
== next_real_insn (XEXP (y, 0)));
|
||
|
||
case SYMBOL_REF:
|
||
return XSTR (x, 0) == XSTR (y, 0);
|
||
|
||
case CODE_LABEL:
|
||
/* If we didn't match EQ equality above, they aren't the same. */
|
||
return 0;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
/* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
|
||
|
||
if (GET_MODE (x) != GET_MODE (y))
|
||
return 0;
|
||
|
||
/* For commutative operations, the RTX match if the operand match in any
|
||
order. Also handle the simple binary and unary cases without a loop.
|
||
|
||
??? Don't consider PLUS a commutative operator; see comments above. */
|
||
if ((code == EQ || code == NE || GET_RTX_CLASS (code) == 'c')
|
||
&& code != PLUS)
|
||
return ((rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0))
|
||
&& rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 1)))
|
||
|| (rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 1))
|
||
&& rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 0))));
|
||
else if (GET_RTX_CLASS (code) == '<' || GET_RTX_CLASS (code) == '2')
|
||
return (rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0))
|
||
&& rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 1)));
|
||
else if (GET_RTX_CLASS (code) == '1')
|
||
return rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0));
|
||
|
||
/* Compare the elements. If any pair of corresponding elements
|
||
fail to match, return 0 for the whole things. */
|
||
|
||
fmt = GET_RTX_FORMAT (code);
|
||
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
||
{
|
||
int j;
|
||
switch (fmt[i])
|
||
{
|
||
case 'w':
|
||
if (XWINT (x, i) != XWINT (y, i))
|
||
return 0;
|
||
break;
|
||
|
||
case 'i':
|
||
if (XINT (x, i) != XINT (y, i))
|
||
return 0;
|
||
break;
|
||
|
||
case 't':
|
||
if (XTREE (x, i) != XTREE (y, i))
|
||
return 0;
|
||
break;
|
||
|
||
case 's':
|
||
if (strcmp (XSTR (x, i), XSTR (y, i)))
|
||
return 0;
|
||
break;
|
||
|
||
case 'e':
|
||
if (! rtx_renumbered_equal_p (XEXP (x, i), XEXP (y, i)))
|
||
return 0;
|
||
break;
|
||
|
||
case 'u':
|
||
if (XEXP (x, i) != XEXP (y, i))
|
||
return 0;
|
||
/* fall through. */
|
||
case '0':
|
||
break;
|
||
|
||
case 'E':
|
||
if (XVECLEN (x, i) != XVECLEN (y, i))
|
||
return 0;
|
||
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
|
||
if (!rtx_renumbered_equal_p (XVECEXP (x, i, j), XVECEXP (y, i, j)))
|
||
return 0;
|
||
break;
|
||
|
||
default:
|
||
abort ();
|
||
}
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
/* If X is a hard register or equivalent to one or a subregister of one,
|
||
return the hard register number. If X is a pseudo register that was not
|
||
assigned a hard register, return the pseudo register number. Otherwise,
|
||
return -1. Any rtx is valid for X. */
|
||
|
||
int
|
||
true_regnum (x)
|
||
rtx x;
|
||
{
|
||
if (GET_CODE (x) == REG)
|
||
{
|
||
if (REGNO (x) >= FIRST_PSEUDO_REGISTER && reg_renumber[REGNO (x)] >= 0)
|
||
return reg_renumber[REGNO (x)];
|
||
return REGNO (x);
|
||
}
|
||
if (GET_CODE (x) == SUBREG)
|
||
{
|
||
int base = true_regnum (SUBREG_REG (x));
|
||
if (base >= 0 && base < FIRST_PSEUDO_REGISTER)
|
||
return base + subreg_regno_offset (REGNO (SUBREG_REG (x)),
|
||
GET_MODE (SUBREG_REG (x)),
|
||
SUBREG_BYTE (x), GET_MODE (x));
|
||
}
|
||
return -1;
|
||
}
|
||
|
||
/* Return regno of the register REG and handle subregs too. */
|
||
unsigned int
|
||
reg_or_subregno (reg)
|
||
rtx reg;
|
||
{
|
||
if (REG_P (reg))
|
||
return REGNO (reg);
|
||
if (GET_CODE (reg) == SUBREG)
|
||
return REGNO (SUBREG_REG (reg));
|
||
abort ();
|
||
}
|