freebsd-nq/gnu/lib/libgmp/mpz_pprime_p.c
Mark Murray ae82e96f8c GNU MP (Multiprecision) library. This is needed by secure RPC (being
done by Bill Paul) and various other BSD programs.
Obtained from:FSF
1995-11-12 14:40:41 +00:00

109 lines
2.7 KiB
C

/* mpz_probab_prime_p --
An implementation of the probabilistic primality test found in Knuth's
Seminumerical Algorithms book. If the function mpz_probab_prime_p()
returns 0 then n is not prime. If it returns 1, then n is 'probably'
prime. The probability of a false positive is (1/4)**reps, where
reps is the number of internal passes of the probabilistic algorithm.
Knuth indicates that 25 passes are reasonable.
Copyright (C) 1991 Free Software Foundation, Inc.
Contributed by John Amanatides.
This file is part of the GNU MP Library.
The GNU MP Library is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
The GNU MP Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with the GNU MP Library; see the file COPYING. If not, write to
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
#include "gmp.h"
#include "gmp-impl.h"
static int
possibly_prime (n, n_minus_1, x, y, q, k)
MP_INT *n, *n_minus_1, *x, *y, *q;
int k;
{
int i;
/* find random x s.t. 1 < x < n */
do
{
mpz_random (x, mpz_size (n));
mpz_mmod (x, x, n);
}
while (mpz_cmp_ui (x, 1) <= 0);
mpz_powm (y, x, q, n);
if (mpz_cmp_ui (y, 1) == 0 || mpz_cmp (y, n_minus_1) == 0)
return 1;
for (i = 1; i < k; i++)
{
mpz_powm_ui (y, y, 2, n);
if (mpz_cmp (y, n_minus_1) == 0)
return 1;
if (mpz_cmp_ui (y, 1) == 0)
return 0;
}
return 0;
}
int
mpz_probab_prime_p (m, reps)
const MP_INT *m;
int reps;
{
MP_INT n, n_minus_1, x, y, q;
int i, k, is_prime;
mpz_init (&n);
/* Take the absolute value of M, to handle positive and negative primes. */
mpz_abs (&n, m);
if (mpz_cmp_ui (&n, 3) <= 0)
{
if (mpz_cmp_ui (&n, 1) <= 0)
return 0; /* smallest prime is 2 */
else
return 1;
}
if ((mpz_get_ui (&n) & 1) == 0)
return 0; /* even */
mpz_init (&n_minus_1);
mpz_sub_ui (&n_minus_1, &n, 1);
mpz_init (&x);
mpz_init (&y);
/* find q and k, s.t. n = 1 + 2**k * q */
mpz_init_set (&q, &n_minus_1);
k = 0;
while ((mpz_get_ui (&q) & 1) == 0)
{
k++;
mpz_div_2exp (&q, &q, 1);
}
is_prime = 1;
for (i = 0; i < reps && is_prime; i++)
is_prime &= possibly_prime (&n, &n_minus_1, &x, &y, &q, k);
mpz_clear (&n_minus_1);
mpz_clear (&n);
mpz_clear (&x);
mpz_clear (&y);
mpz_clear (&q);
return is_prime;
}