freebsd-nq/lib/libmemstat/memstat_malloc.c
Mateusz Guzik bdcc222644 malloc: move malloc_type_internal into malloc_type
According to code comments the original motivation was to allow for
malloc_type_internal changes without ABI breakage. This can be trivially
accomplished by providing spare fields and versioning the struct, as
implemented in the patch below.

The upshots are one less memory indirection on each alloc and disappearance
of mt_zone.

Reviewed by:	markj
Differential Revision:	https://reviews.freebsd.org/D27104
2020-11-06 21:33:59 +00:00

547 lines
14 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 2005 Robert N. M. Watson
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
#include <sys/cdefs.h>
#include <sys/param.h>
#include <sys/malloc.h>
#include <sys/sysctl.h>
#include <err.h>
#include <errno.h>
#include <kvm.h>
#include <nlist.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "memstat.h"
#include "memstat_internal.h"
static int memstat_malloc_zone_count;
static int memstat_malloc_zone_sizes[32];
static int memstat_malloc_zone_init(void);
static int memstat_malloc_zone_init_kvm(kvm_t *kvm);
static struct nlist namelist[] = {
#define X_KMEMSTATISTICS 0
{ .n_name = "_kmemstatistics" },
#define X_KMEMZONES 1
{ .n_name = "_kmemzones" },
#define X_NUMZONES 2
{ .n_name = "_numzones" },
#define X_VM_MALLOC_ZONE_COUNT 3
{ .n_name = "_vm_malloc_zone_count" },
#define X_MP_MAXCPUS 4
{ .n_name = "_mp_maxcpus" },
{ .n_name = "" },
};
/*
* Extract malloc(9) statistics from the running kernel, and store all memory
* type information in the passed list. For each type, check the list for an
* existing entry with the right name/allocator -- if present, update that
* entry. Otherwise, add a new entry. On error, the entire list will be
* cleared, as entries will be in an inconsistent state.
*
* To reduce the level of work for a list that starts empty, we keep around a
* hint as to whether it was empty when we began, so we can avoid searching
* the list for entries to update. Updates are O(n^2) due to searching for
* each entry before adding it.
*/
int
memstat_sysctl_malloc(struct memory_type_list *list, int flags)
{
struct malloc_type_stream_header *mtshp;
struct malloc_type_header *mthp;
struct malloc_type_stats *mtsp;
struct memory_type *mtp;
int count, hint_dontsearch, i, j, maxcpus;
char *buffer, *p;
size_t size;
hint_dontsearch = LIST_EMPTY(&list->mtl_list);
/*
* Query the number of CPUs, number of malloc types so that we can
* guess an initial buffer size. We loop until we succeed or really
* fail. Note that the value of maxcpus we query using sysctl is not
* the version we use when processing the real data -- that is read
* from the header.
*/
retry:
size = sizeof(maxcpus);
if (sysctlbyname("kern.smp.maxcpus", &maxcpus, &size, NULL, 0) < 0) {
if (errno == EACCES || errno == EPERM)
list->mtl_error = MEMSTAT_ERROR_PERMISSION;
else
list->mtl_error = MEMSTAT_ERROR_DATAERROR;
return (-1);
}
if (size != sizeof(maxcpus)) {
list->mtl_error = MEMSTAT_ERROR_DATAERROR;
return (-1);
}
size = sizeof(count);
if (sysctlbyname("kern.malloc_count", &count, &size, NULL, 0) < 0) {
if (errno == EACCES || errno == EPERM)
list->mtl_error = MEMSTAT_ERROR_PERMISSION;
else
list->mtl_error = MEMSTAT_ERROR_VERSION;
return (-1);
}
if (size != sizeof(count)) {
list->mtl_error = MEMSTAT_ERROR_DATAERROR;
return (-1);
}
if (memstat_malloc_zone_init() == -1) {
list->mtl_error = MEMSTAT_ERROR_VERSION;
return (-1);
}
size = sizeof(*mthp) + count * (sizeof(*mthp) + sizeof(*mtsp) *
maxcpus);
buffer = malloc(size);
if (buffer == NULL) {
list->mtl_error = MEMSTAT_ERROR_NOMEMORY;
return (-1);
}
if (sysctlbyname("kern.malloc_stats", buffer, &size, NULL, 0) < 0) {
/*
* XXXRW: ENOMEM is an ambiguous return, we should bound the
* number of loops, perhaps.
*/
if (errno == ENOMEM) {
free(buffer);
goto retry;
}
if (errno == EACCES || errno == EPERM)
list->mtl_error = MEMSTAT_ERROR_PERMISSION;
else
list->mtl_error = MEMSTAT_ERROR_VERSION;
free(buffer);
return (-1);
}
if (size == 0) {
free(buffer);
return (0);
}
if (size < sizeof(*mtshp)) {
list->mtl_error = MEMSTAT_ERROR_VERSION;
free(buffer);
return (-1);
}
p = buffer;
mtshp = (struct malloc_type_stream_header *)p;
p += sizeof(*mtshp);
if (mtshp->mtsh_version != MALLOC_TYPE_STREAM_VERSION) {
list->mtl_error = MEMSTAT_ERROR_VERSION;
free(buffer);
return (-1);
}
/*
* For the remainder of this function, we are quite trusting about
* the layout of structures and sizes, since we've determined we have
* a matching version and acceptable CPU count.
*/
maxcpus = mtshp->mtsh_maxcpus;
count = mtshp->mtsh_count;
for (i = 0; i < count; i++) {
mthp = (struct malloc_type_header *)p;
p += sizeof(*mthp);
if (hint_dontsearch == 0) {
mtp = memstat_mtl_find(list, ALLOCATOR_MALLOC,
mthp->mth_name);
} else
mtp = NULL;
if (mtp == NULL)
mtp = _memstat_mt_allocate(list, ALLOCATOR_MALLOC,
mthp->mth_name, maxcpus);
if (mtp == NULL) {
_memstat_mtl_empty(list);
free(buffer);
list->mtl_error = MEMSTAT_ERROR_NOMEMORY;
return (-1);
}
/*
* Reset the statistics on a current node.
*/
_memstat_mt_reset_stats(mtp, maxcpus);
for (j = 0; j < maxcpus; j++) {
mtsp = (struct malloc_type_stats *)p;
p += sizeof(*mtsp);
/*
* Sumarize raw statistics across CPUs into coalesced
* statistics.
*/
mtp->mt_memalloced += mtsp->mts_memalloced;
mtp->mt_memfreed += mtsp->mts_memfreed;
mtp->mt_numallocs += mtsp->mts_numallocs;
mtp->mt_numfrees += mtsp->mts_numfrees;
mtp->mt_sizemask |= mtsp->mts_size;
/*
* Copies of per-CPU statistics.
*/
mtp->mt_percpu_alloc[j].mtp_memalloced =
mtsp->mts_memalloced;
mtp->mt_percpu_alloc[j].mtp_memfreed =
mtsp->mts_memfreed;
mtp->mt_percpu_alloc[j].mtp_numallocs =
mtsp->mts_numallocs;
mtp->mt_percpu_alloc[j].mtp_numfrees =
mtsp->mts_numfrees;
mtp->mt_percpu_alloc[j].mtp_sizemask =
mtsp->mts_size;
}
/*
* Derived cross-CPU statistics.
*/
mtp->mt_bytes = mtp->mt_memalloced - mtp->mt_memfreed;
mtp->mt_count = mtp->mt_numallocs - mtp->mt_numfrees;
}
free(buffer);
return (0);
}
static int
kread(kvm_t *kvm, void *kvm_pointer, void *address, size_t size,
size_t offset)
{
ssize_t ret;
ret = kvm_read(kvm, (unsigned long)kvm_pointer + offset, address,
size);
if (ret < 0)
return (MEMSTAT_ERROR_KVM);
if ((size_t)ret != size)
return (MEMSTAT_ERROR_KVM_SHORTREAD);
return (0);
}
static int
kread_string(kvm_t *kvm, const void *kvm_pointer, char *buffer, int buflen)
{
ssize_t ret;
int i;
for (i = 0; i < buflen; i++) {
ret = kvm_read(kvm, __DECONST(unsigned long, kvm_pointer) +
i, &(buffer[i]), sizeof(char));
if (ret < 0)
return (MEMSTAT_ERROR_KVM);
if ((size_t)ret != sizeof(char))
return (MEMSTAT_ERROR_KVM_SHORTREAD);
if (buffer[i] == '\0')
return (0);
}
/* Truncate. */
buffer[i-1] = '\0';
return (0);
}
static int
kread_symbol(kvm_t *kvm, int index, void *address, size_t size,
size_t offset)
{
ssize_t ret;
ret = kvm_read(kvm, namelist[index].n_value + offset, address, size);
if (ret < 0)
return (MEMSTAT_ERROR_KVM);
if ((size_t)ret != size)
return (MEMSTAT_ERROR_KVM_SHORTREAD);
return (0);
}
static int
kread_zpcpu(kvm_t *kvm, u_long base, void *buf, size_t size, int cpu)
{
ssize_t ret;
ret = kvm_read_zpcpu(kvm, base, buf, size, cpu);
if (ret < 0)
return (MEMSTAT_ERROR_KVM);
if ((size_t)ret != size)
return (MEMSTAT_ERROR_KVM_SHORTREAD);
return (0);
}
int
memstat_kvm_malloc(struct memory_type_list *list, void *kvm_handle)
{
struct memory_type *mtp;
void *kmemstatistics;
int hint_dontsearch, j, mp_maxcpus, mp_ncpus, ret;
char name[MEMTYPE_MAXNAME];
struct malloc_type_stats mts;
struct malloc_type_internal *mtip;
struct malloc_type type, *typep;
kvm_t *kvm;
kvm = (kvm_t *)kvm_handle;
hint_dontsearch = LIST_EMPTY(&list->mtl_list);
if (kvm_nlist(kvm, namelist) != 0) {
list->mtl_error = MEMSTAT_ERROR_KVM;
return (-1);
}
if (namelist[X_KMEMSTATISTICS].n_type == 0 ||
namelist[X_KMEMSTATISTICS].n_value == 0) {
list->mtl_error = MEMSTAT_ERROR_KVM_NOSYMBOL;
return (-1);
}
ret = kread_symbol(kvm, X_MP_MAXCPUS, &mp_maxcpus,
sizeof(mp_maxcpus), 0);
if (ret != 0) {
list->mtl_error = ret;
return (-1);
}
ret = kread_symbol(kvm, X_KMEMSTATISTICS, &kmemstatistics,
sizeof(kmemstatistics), 0);
if (ret != 0) {
list->mtl_error = ret;
return (-1);
}
ret = memstat_malloc_zone_init_kvm(kvm);
if (ret != 0) {
list->mtl_error = ret;
return (-1);
}
mp_ncpus = kvm_getncpus(kvm);
for (typep = kmemstatistics; typep != NULL; typep = type.ks_next) {
ret = kread(kvm, typep, &type, sizeof(type), 0);
if (ret != 0) {
_memstat_mtl_empty(list);
list->mtl_error = ret;
return (-1);
}
ret = kread_string(kvm, (void *)type.ks_shortdesc, name,
MEMTYPE_MAXNAME);
if (ret != 0) {
_memstat_mtl_empty(list);
list->mtl_error = ret;
return (-1);
}
if (type.ks_version != M_VERSION) {
warnx("type %s with unsupported version %lu; skipped",
name, type.ks_version);
continue;
}
/*
* Since our compile-time value for MAXCPU may differ from the
* kernel's, we populate our own array.
*/
mtip = &type.ks_mti;
if (hint_dontsearch == 0) {
mtp = memstat_mtl_find(list, ALLOCATOR_MALLOC, name);
} else
mtp = NULL;
if (mtp == NULL)
mtp = _memstat_mt_allocate(list, ALLOCATOR_MALLOC,
name, mp_maxcpus);
if (mtp == NULL) {
_memstat_mtl_empty(list);
list->mtl_error = MEMSTAT_ERROR_NOMEMORY;
return (-1);
}
/*
* This logic is replicated from kern_malloc.c, and should
* be kept in sync.
*/
_memstat_mt_reset_stats(mtp, mp_maxcpus);
for (j = 0; j < mp_ncpus; j++) {
ret = kread_zpcpu(kvm, (u_long)mtip->mti_stats, &mts,
sizeof(mts), j);
if (ret != 0) {
_memstat_mtl_empty(list);
list->mtl_error = ret;
return (-1);
}
mtp->mt_memalloced += mts.mts_memalloced;
mtp->mt_memfreed += mts.mts_memfreed;
mtp->mt_numallocs += mts.mts_numallocs;
mtp->mt_numfrees += mts.mts_numfrees;
mtp->mt_sizemask |= mts.mts_size;
mtp->mt_percpu_alloc[j].mtp_memalloced =
mts.mts_memalloced;
mtp->mt_percpu_alloc[j].mtp_memfreed =
mts.mts_memfreed;
mtp->mt_percpu_alloc[j].mtp_numallocs =
mts.mts_numallocs;
mtp->mt_percpu_alloc[j].mtp_numfrees =
mts.mts_numfrees;
mtp->mt_percpu_alloc[j].mtp_sizemask =
mts.mts_size;
}
for (; j < mp_maxcpus; j++) {
bzero(&mtp->mt_percpu_alloc[j],
sizeof(mtp->mt_percpu_alloc[0]));
}
mtp->mt_bytes = mtp->mt_memalloced - mtp->mt_memfreed;
mtp->mt_count = mtp->mt_numallocs - mtp->mt_numfrees;
}
return (0);
}
static int
memstat_malloc_zone_init(void)
{
size_t size;
size = sizeof(memstat_malloc_zone_count);
if (sysctlbyname("vm.malloc.zone_count", &memstat_malloc_zone_count,
&size, NULL, 0) < 0) {
return (-1);
}
if (memstat_malloc_zone_count > (int)nitems(memstat_malloc_zone_sizes)) {
return (-1);
}
size = sizeof(memstat_malloc_zone_sizes);
if (sysctlbyname("vm.malloc.zone_sizes", &memstat_malloc_zone_sizes,
&size, NULL, 0) < 0) {
return (-1);
}
return (0);
}
/*
* Copied from kern_malloc.c
*
* kz_zone is an array sized at compilation time, the size is exported in
* "numzones". Below we need to iterate kz_size.
*/
struct memstat_kmemzone {
int kz_size;
const char *kz_name;
void *kz_zone[1];
};
static int
memstat_malloc_zone_init_kvm(kvm_t *kvm)
{
struct memstat_kmemzone *kmemzones, *kz;
int numzones, objsize, allocsize, ret;
int i;
ret = kread_symbol(kvm, X_VM_MALLOC_ZONE_COUNT,
&memstat_malloc_zone_count, sizeof(memstat_malloc_zone_count), 0);
if (ret != 0) {
return (ret);
}
ret = kread_symbol(kvm, X_NUMZONES, &numzones, sizeof(numzones), 0);
if (ret != 0) {
return (ret);
}
objsize = __offsetof(struct memstat_kmemzone, kz_zone) +
sizeof(void *) * numzones;
allocsize = objsize * memstat_malloc_zone_count;
kmemzones = malloc(allocsize);
if (kmemzones == NULL) {
return (MEMSTAT_ERROR_NOMEMORY);
}
ret = kread_symbol(kvm, X_KMEMZONES, kmemzones, allocsize, 0);
if (ret != 0) {
free(kmemzones);
return (ret);
}
kz = kmemzones;
for (i = 0; i < (int)nitems(memstat_malloc_zone_sizes); i++) {
memstat_malloc_zone_sizes[i] = kz->kz_size;
kz = (struct memstat_kmemzone *)((char *)kz + objsize);
}
free(kmemzones);
return (0);
}
size_t
memstat_malloc_zone_get_count(void)
{
return (memstat_malloc_zone_count);
}
size_t
memstat_malloc_zone_get_size(size_t n)
{
if (n >= nitems(memstat_malloc_zone_sizes)) {
return (-1);
}
return (memstat_malloc_zone_sizes[n]);
}
int
memstat_malloc_zone_used(const struct memory_type *mtp, size_t n)
{
if (memstat_get_sizemask(mtp) & (1 << n))
return (1);
return (0);
}