freebsd-nq/lib/libthr/thread/thr_mutex.c
David Xu e220a13ab9 MFp4:
Further decreases unexpected context switches by defering mutex wakeup
until internal sleep queue lock is released.
2012-08-11 23:17:02 +00:00

798 lines
20 KiB
C

/*
* Copyright (c) 1995 John Birrell <jb@cimlogic.com.au>.
* Copyright (c) 2006 David Xu <davidxu@freebsd.org>.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by John Birrell.
* 4. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY JOHN BIRRELL AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
#include "namespace.h"
#include <stdlib.h>
#include <errno.h>
#include <string.h>
#include <sys/param.h>
#include <sys/queue.h>
#include <pthread.h>
#include <pthread_np.h>
#include "un-namespace.h"
#include "thr_private.h"
#if defined(_PTHREADS_INVARIANTS)
#define MUTEX_INIT_LINK(m) do { \
(m)->m_qe.tqe_prev = NULL; \
(m)->m_qe.tqe_next = NULL; \
} while (0)
#define MUTEX_ASSERT_IS_OWNED(m) do { \
if (__predict_false((m)->m_qe.tqe_prev == NULL))\
PANIC("mutex is not on list"); \
} while (0)
#define MUTEX_ASSERT_NOT_OWNED(m) do { \
if (__predict_false((m)->m_qe.tqe_prev != NULL || \
(m)->m_qe.tqe_next != NULL)) \
PANIC("mutex is on list"); \
} while (0)
#else
#define MUTEX_INIT_LINK(m)
#define MUTEX_ASSERT_IS_OWNED(m)
#define MUTEX_ASSERT_NOT_OWNED(m)
#endif
/*
* For adaptive mutexes, how many times to spin doing trylock2
* before entering the kernel to block
*/
#define MUTEX_ADAPTIVE_SPINS 2000
/*
* Prototypes
*/
int __pthread_mutex_init(pthread_mutex_t *mutex,
const pthread_mutexattr_t *mutex_attr);
int __pthread_mutex_trylock(pthread_mutex_t *mutex);
int __pthread_mutex_lock(pthread_mutex_t *mutex);
int __pthread_mutex_timedlock(pthread_mutex_t *mutex,
const struct timespec *abstime);
int _pthread_mutex_init_calloc_cb(pthread_mutex_t *mutex,
void *(calloc_cb)(size_t, size_t));
int _pthread_mutex_getspinloops_np(pthread_mutex_t *mutex, int *count);
int _pthread_mutex_setspinloops_np(pthread_mutex_t *mutex, int count);
int __pthread_mutex_setspinloops_np(pthread_mutex_t *mutex, int count);
int _pthread_mutex_setyieldloops_np(pthread_mutex_t *mutex, int count);
int _pthread_mutex_getyieldloops_np(pthread_mutex_t *mutex, int *count);
int __pthread_mutex_setyieldloops_np(pthread_mutex_t *mutex, int count);
static int mutex_self_trylock(pthread_mutex_t);
static int mutex_self_lock(pthread_mutex_t,
const struct timespec *abstime);
static int mutex_unlock_common(struct pthread_mutex *, int, int *);
static int mutex_lock_sleep(struct pthread *, pthread_mutex_t,
const struct timespec *);
__weak_reference(__pthread_mutex_init, pthread_mutex_init);
__strong_reference(__pthread_mutex_init, _pthread_mutex_init);
__weak_reference(__pthread_mutex_lock, pthread_mutex_lock);
__strong_reference(__pthread_mutex_lock, _pthread_mutex_lock);
__weak_reference(__pthread_mutex_timedlock, pthread_mutex_timedlock);
__strong_reference(__pthread_mutex_timedlock, _pthread_mutex_timedlock);
__weak_reference(__pthread_mutex_trylock, pthread_mutex_trylock);
__strong_reference(__pthread_mutex_trylock, _pthread_mutex_trylock);
/* Single underscore versions provided for libc internal usage: */
/* No difference between libc and application usage of these: */
__weak_reference(_pthread_mutex_destroy, pthread_mutex_destroy);
__weak_reference(_pthread_mutex_unlock, pthread_mutex_unlock);
__weak_reference(_pthread_mutex_getprioceiling, pthread_mutex_getprioceiling);
__weak_reference(_pthread_mutex_setprioceiling, pthread_mutex_setprioceiling);
__weak_reference(__pthread_mutex_setspinloops_np, pthread_mutex_setspinloops_np);
__strong_reference(__pthread_mutex_setspinloops_np, _pthread_mutex_setspinloops_np);
__weak_reference(_pthread_mutex_getspinloops_np, pthread_mutex_getspinloops_np);
__weak_reference(__pthread_mutex_setyieldloops_np, pthread_mutex_setyieldloops_np);
__strong_reference(__pthread_mutex_setyieldloops_np, _pthread_mutex_setyieldloops_np);
__weak_reference(_pthread_mutex_getyieldloops_np, pthread_mutex_getyieldloops_np);
__weak_reference(_pthread_mutex_isowned_np, pthread_mutex_isowned_np);
static int
mutex_init(pthread_mutex_t *mutex,
const struct pthread_mutex_attr *mutex_attr,
void *(calloc_cb)(size_t, size_t))
{
const struct pthread_mutex_attr *attr;
struct pthread_mutex *pmutex;
if (mutex_attr == NULL) {
attr = &_pthread_mutexattr_default;
} else {
attr = mutex_attr;
if (attr->m_type < PTHREAD_MUTEX_ERRORCHECK ||
attr->m_type >= PTHREAD_MUTEX_TYPE_MAX)
return (EINVAL);
if (attr->m_protocol < PTHREAD_PRIO_NONE ||
attr->m_protocol > PTHREAD_PRIO_PROTECT)
return (EINVAL);
}
if ((pmutex = (pthread_mutex_t)
calloc_cb(1, sizeof(struct pthread_mutex))) == NULL)
return (ENOMEM);
pmutex->m_flags = attr->m_type;
pmutex->m_owner = NULL;
pmutex->m_count = 0;
pmutex->m_spinloops = 0;
pmutex->m_yieldloops = 0;
MUTEX_INIT_LINK(pmutex);
switch(attr->m_protocol) {
case PTHREAD_PRIO_NONE:
pmutex->m_lock.m_owner = UMUTEX_UNOWNED;
pmutex->m_lock.m_flags = 0;
break;
case PTHREAD_PRIO_INHERIT:
pmutex->m_lock.m_owner = UMUTEX_UNOWNED;
pmutex->m_lock.m_flags = UMUTEX_PRIO_INHERIT;
break;
case PTHREAD_PRIO_PROTECT:
pmutex->m_lock.m_owner = UMUTEX_CONTESTED;
pmutex->m_lock.m_flags = UMUTEX_PRIO_PROTECT;
pmutex->m_lock.m_ceilings[0] = attr->m_ceiling;
break;
}
if (PMUTEX_TYPE(pmutex->m_flags) == PTHREAD_MUTEX_ADAPTIVE_NP) {
pmutex->m_spinloops =
_thr_spinloops ? _thr_spinloops: MUTEX_ADAPTIVE_SPINS;
pmutex->m_yieldloops = _thr_yieldloops;
}
*mutex = pmutex;
return (0);
}
static int
init_static(struct pthread *thread, pthread_mutex_t *mutex)
{
int ret;
THR_LOCK_ACQUIRE(thread, &_mutex_static_lock);
if (*mutex == THR_MUTEX_INITIALIZER)
ret = mutex_init(mutex, &_pthread_mutexattr_default, calloc);
else if (*mutex == THR_ADAPTIVE_MUTEX_INITIALIZER)
ret = mutex_init(mutex, &_pthread_mutexattr_adaptive_default, calloc);
else
ret = 0;
THR_LOCK_RELEASE(thread, &_mutex_static_lock);
return (ret);
}
static void
set_inherited_priority(struct pthread *curthread, struct pthread_mutex *m)
{
struct pthread_mutex *m2;
m2 = TAILQ_LAST(&curthread->pp_mutexq, mutex_queue);
if (m2 != NULL)
m->m_lock.m_ceilings[1] = m2->m_lock.m_ceilings[0];
else
m->m_lock.m_ceilings[1] = -1;
}
int
__pthread_mutex_init(pthread_mutex_t *mutex,
const pthread_mutexattr_t *mutex_attr)
{
return mutex_init(mutex, mutex_attr ? *mutex_attr : NULL, calloc);
}
/* This function is used internally by malloc. */
int
_pthread_mutex_init_calloc_cb(pthread_mutex_t *mutex,
void *(calloc_cb)(size_t, size_t))
{
static const struct pthread_mutex_attr attr = {
.m_type = PTHREAD_MUTEX_NORMAL,
.m_protocol = PTHREAD_PRIO_NONE,
.m_ceiling = 0
};
int ret;
ret = mutex_init(mutex, &attr, calloc_cb);
if (ret == 0)
(*mutex)->m_flags |= PMUTEX_FLAG_PRIVATE;
return (ret);
}
void
_mutex_fork(struct pthread *curthread)
{
struct pthread_mutex *m;
/*
* Fix mutex ownership for child process.
* note that process shared mutex should not
* be inherited because owner is forking thread
* which is in parent process, they should be
* removed from the owned mutex list, current,
* process shared mutex is not supported, so I
* am not worried.
*/
TAILQ_FOREACH(m, &curthread->mutexq, m_qe)
m->m_lock.m_owner = TID(curthread);
TAILQ_FOREACH(m, &curthread->pp_mutexq, m_qe)
m->m_lock.m_owner = TID(curthread) | UMUTEX_CONTESTED;
}
int
_pthread_mutex_destroy(pthread_mutex_t *mutex)
{
pthread_mutex_t m;
int ret;
m = *mutex;
if (m < THR_MUTEX_DESTROYED) {
ret = 0;
} else if (m == THR_MUTEX_DESTROYED) {
ret = EINVAL;
} else {
if (m->m_owner != NULL) {
ret = EBUSY;
} else {
*mutex = THR_MUTEX_DESTROYED;
MUTEX_ASSERT_NOT_OWNED(m);
free(m);
ret = 0;
}
}
return (ret);
}
#define ENQUEUE_MUTEX(curthread, m) \
do { \
(m)->m_owner = curthread; \
/* Add to the list of owned mutexes: */ \
MUTEX_ASSERT_NOT_OWNED((m)); \
if (((m)->m_lock.m_flags & UMUTEX_PRIO_PROTECT) == 0) \
TAILQ_INSERT_TAIL(&curthread->mutexq, (m), m_qe);\
else \
TAILQ_INSERT_TAIL(&curthread->pp_mutexq, (m), m_qe);\
} while (0)
#define DEQUEUE_MUTEX(curthread, m) \
(m)->m_owner = NULL; \
MUTEX_ASSERT_IS_OWNED(m); \
if (__predict_true(((m)->m_lock.m_flags & UMUTEX_PRIO_PROTECT) == 0)) \
TAILQ_REMOVE(&curthread->mutexq, (m), m_qe); \
else { \
TAILQ_REMOVE(&curthread->pp_mutexq, (m), m_qe); \
set_inherited_priority(curthread, m); \
} \
MUTEX_INIT_LINK(m);
#define CHECK_AND_INIT_MUTEX \
if (__predict_false((m = *mutex) <= THR_MUTEX_DESTROYED)) { \
if (m == THR_MUTEX_DESTROYED) \
return (EINVAL); \
int ret; \
ret = init_static(_get_curthread(), mutex); \
if (ret) \
return (ret); \
m = *mutex; \
}
static int
mutex_trylock_common(pthread_mutex_t *mutex)
{
struct pthread *curthread = _get_curthread();
struct pthread_mutex *m = *mutex;
uint32_t id;
int ret;
id = TID(curthread);
if (m->m_flags & PMUTEX_FLAG_PRIVATE)
THR_CRITICAL_ENTER(curthread);
ret = _thr_umutex_trylock(&m->m_lock, id);
if (__predict_true(ret == 0)) {
ENQUEUE_MUTEX(curthread, m);
} else if (m->m_owner == curthread) {
ret = mutex_self_trylock(m);
} /* else {} */
if (ret && (m->m_flags & PMUTEX_FLAG_PRIVATE))
THR_CRITICAL_LEAVE(curthread);
return (ret);
}
int
__pthread_mutex_trylock(pthread_mutex_t *mutex)
{
struct pthread_mutex *m;
CHECK_AND_INIT_MUTEX
return (mutex_trylock_common(mutex));
}
static int
mutex_lock_sleep(struct pthread *curthread, struct pthread_mutex *m,
const struct timespec *abstime)
{
uint32_t id, owner;
int count;
int ret;
if (m->m_owner == curthread)
return mutex_self_lock(m, abstime);
id = TID(curthread);
/*
* For adaptive mutexes, spin for a bit in the expectation
* that if the application requests this mutex type then
* the lock is likely to be released quickly and it is
* faster than entering the kernel
*/
if (__predict_false(
(m->m_lock.m_flags &
(UMUTEX_PRIO_PROTECT | UMUTEX_PRIO_INHERIT)) != 0))
goto sleep_in_kernel;
if (!_thr_is_smp)
goto yield_loop;
count = m->m_spinloops;
while (count--) {
owner = m->m_lock.m_owner;
if ((owner & ~UMUTEX_CONTESTED) == 0) {
if (atomic_cmpset_acq_32(&m->m_lock.m_owner, owner, id|owner)) {
ret = 0;
goto done;
}
}
CPU_SPINWAIT;
}
yield_loop:
count = m->m_yieldloops;
while (count--) {
_sched_yield();
owner = m->m_lock.m_owner;
if ((owner & ~UMUTEX_CONTESTED) == 0) {
if (atomic_cmpset_acq_32(&m->m_lock.m_owner, owner, id|owner)) {
ret = 0;
goto done;
}
}
}
sleep_in_kernel:
if (abstime == NULL) {
ret = __thr_umutex_lock(&m->m_lock, id);
} else if (__predict_false(
abstime->tv_nsec < 0 ||
abstime->tv_nsec >= 1000000000)) {
ret = EINVAL;
} else {
ret = __thr_umutex_timedlock(&m->m_lock, id, abstime);
}
done:
if (ret == 0)
ENQUEUE_MUTEX(curthread, m);
return (ret);
}
static inline int
mutex_lock_common(struct pthread_mutex *m,
const struct timespec *abstime, int cvattach)
{
struct pthread *curthread = _get_curthread();
int ret;
if (!cvattach && m->m_flags & PMUTEX_FLAG_PRIVATE)
THR_CRITICAL_ENTER(curthread);
if (_thr_umutex_trylock2(&m->m_lock, TID(curthread)) == 0) {
ENQUEUE_MUTEX(curthread, m);
ret = 0;
} else {
ret = mutex_lock_sleep(curthread, m, abstime);
}
if (ret && (m->m_flags & PMUTEX_FLAG_PRIVATE) && !cvattach)
THR_CRITICAL_LEAVE(curthread);
return (ret);
}
int
__pthread_mutex_lock(pthread_mutex_t *mutex)
{
struct pthread_mutex *m;
_thr_check_init();
CHECK_AND_INIT_MUTEX
return (mutex_lock_common(m, NULL, 0));
}
int
__pthread_mutex_timedlock(pthread_mutex_t *mutex, const struct timespec *abstime)
{
struct pthread_mutex *m;
_thr_check_init();
CHECK_AND_INIT_MUTEX
return (mutex_lock_common(m, abstime, 0));
}
int
_pthread_mutex_unlock(pthread_mutex_t *mutex)
{
struct pthread_mutex *mp;
mp = *mutex;
return (mutex_unlock_common(mp, 0, NULL));
}
int
_mutex_cv_lock(struct pthread_mutex *m, int count)
{
int error;
error = mutex_lock_common(m, NULL, 1);
if (error == 0)
m->m_count = count;
return (error);
}
int
_mutex_cv_unlock(struct pthread_mutex *m, int *count, int *defer)
{
/*
* Clear the count in case this is a recursive mutex.
*/
*count = m->m_count;
m->m_count = 0;
(void)mutex_unlock_common(m, 1, defer);
return (0);
}
int
_mutex_cv_attach(struct pthread_mutex *m, int count)
{
struct pthread *curthread = _get_curthread();
ENQUEUE_MUTEX(curthread, m);
m->m_count = count;
return (0);
}
int
_mutex_cv_detach(struct pthread_mutex *mp, int *recurse)
{
struct pthread *curthread = _get_curthread();
int defered;
int error;
if ((error = _mutex_owned(curthread, mp)) != 0)
return (error);
/*
* Clear the count in case this is a recursive mutex.
*/
*recurse = mp->m_count;
mp->m_count = 0;
DEQUEUE_MUTEX(curthread, mp);
/* Will this happen in real-world ? */
if ((mp->m_flags & PMUTEX_FLAG_DEFERED) != 0) {
defered = 1;
mp->m_flags &= ~PMUTEX_FLAG_DEFERED;
} else
defered = 0;
if (defered) {
_thr_wake_all(curthread->defer_waiters,
curthread->nwaiter_defer);
curthread->nwaiter_defer = 0;
}
return (0);
}
static int
mutex_self_trylock(struct pthread_mutex *m)
{
int ret;
switch (PMUTEX_TYPE(m->m_flags)) {
case PTHREAD_MUTEX_ERRORCHECK:
case PTHREAD_MUTEX_NORMAL:
case PTHREAD_MUTEX_ADAPTIVE_NP:
ret = EBUSY;
break;
case PTHREAD_MUTEX_RECURSIVE:
/* Increment the lock count: */
if (m->m_count + 1 > 0) {
m->m_count++;
ret = 0;
} else
ret = EAGAIN;
break;
default:
/* Trap invalid mutex types; */
ret = EINVAL;
}
return (ret);
}
static int
mutex_self_lock(struct pthread_mutex *m, const struct timespec *abstime)
{
struct timespec ts1, ts2;
int ret;
switch (PMUTEX_TYPE(m->m_flags)) {
case PTHREAD_MUTEX_ERRORCHECK:
case PTHREAD_MUTEX_ADAPTIVE_NP:
if (abstime) {
if (abstime->tv_sec < 0 || abstime->tv_nsec < 0 ||
abstime->tv_nsec >= 1000000000) {
ret = EINVAL;
} else {
clock_gettime(CLOCK_REALTIME, &ts1);
TIMESPEC_SUB(&ts2, abstime, &ts1);
__sys_nanosleep(&ts2, NULL);
ret = ETIMEDOUT;
}
} else {
/*
* POSIX specifies that mutexes should return
* EDEADLK if a recursive lock is detected.
*/
ret = EDEADLK;
}
break;
case PTHREAD_MUTEX_NORMAL:
/*
* What SS2 define as a 'normal' mutex. Intentionally
* deadlock on attempts to get a lock you already own.
*/
ret = 0;
if (abstime) {
if (abstime->tv_sec < 0 || abstime->tv_nsec < 0 ||
abstime->tv_nsec >= 1000000000) {
ret = EINVAL;
} else {
clock_gettime(CLOCK_REALTIME, &ts1);
TIMESPEC_SUB(&ts2, abstime, &ts1);
__sys_nanosleep(&ts2, NULL);
ret = ETIMEDOUT;
}
} else {
ts1.tv_sec = 30;
ts1.tv_nsec = 0;
for (;;)
__sys_nanosleep(&ts1, NULL);
}
break;
case PTHREAD_MUTEX_RECURSIVE:
/* Increment the lock count: */
if (m->m_count + 1 > 0) {
m->m_count++;
ret = 0;
} else
ret = EAGAIN;
break;
default:
/* Trap invalid mutex types; */
ret = EINVAL;
}
return (ret);
}
static int
mutex_unlock_common(struct pthread_mutex *m, int cv, int *mtx_defer)
{
struct pthread *curthread = _get_curthread();
uint32_t id;
int defered;
if (__predict_false(m <= THR_MUTEX_DESTROYED)) {
if (m == THR_MUTEX_DESTROYED)
return (EINVAL);
return (EPERM);
}
/*
* Check if the running thread is not the owner of the mutex.
*/
if (__predict_false(m->m_owner != curthread))
return (EPERM);
id = TID(curthread);
if (__predict_false(
PMUTEX_TYPE(m->m_flags) == PTHREAD_MUTEX_RECURSIVE &&
m->m_count > 0)) {
m->m_count--;
} else {
if ((m->m_flags & PMUTEX_FLAG_DEFERED) != 0) {
defered = 1;
m->m_flags &= ~PMUTEX_FLAG_DEFERED;
} else
defered = 0;
DEQUEUE_MUTEX(curthread, m);
_thr_umutex_unlock2(&m->m_lock, id, mtx_defer);
if (mtx_defer == NULL && defered) {
_thr_wake_all(curthread->defer_waiters,
curthread->nwaiter_defer);
curthread->nwaiter_defer = 0;
}
}
if (!cv && m->m_flags & PMUTEX_FLAG_PRIVATE)
THR_CRITICAL_LEAVE(curthread);
return (0);
}
int
_pthread_mutex_getprioceiling(pthread_mutex_t *mutex,
int *prioceiling)
{
struct pthread_mutex *m;
int ret;
m = *mutex;
if ((m <= THR_MUTEX_DESTROYED) ||
(m->m_lock.m_flags & UMUTEX_PRIO_PROTECT) == 0)
ret = EINVAL;
else {
*prioceiling = m->m_lock.m_ceilings[0];
ret = 0;
}
return (ret);
}
int
_pthread_mutex_setprioceiling(pthread_mutex_t *mutex,
int ceiling, int *old_ceiling)
{
struct pthread *curthread = _get_curthread();
struct pthread_mutex *m, *m1, *m2;
int ret;
m = *mutex;
if ((m <= THR_MUTEX_DESTROYED) ||
(m->m_lock.m_flags & UMUTEX_PRIO_PROTECT) == 0)
return (EINVAL);
ret = __thr_umutex_set_ceiling(&m->m_lock, ceiling, old_ceiling);
if (ret != 0)
return (ret);
if (m->m_owner == curthread) {
MUTEX_ASSERT_IS_OWNED(m);
m1 = TAILQ_PREV(m, mutex_queue, m_qe);
m2 = TAILQ_NEXT(m, m_qe);
if ((m1 != NULL && m1->m_lock.m_ceilings[0] > (u_int)ceiling) ||
(m2 != NULL && m2->m_lock.m_ceilings[0] < (u_int)ceiling)) {
TAILQ_REMOVE(&curthread->pp_mutexq, m, m_qe);
TAILQ_FOREACH(m2, &curthread->pp_mutexq, m_qe) {
if (m2->m_lock.m_ceilings[0] > (u_int)ceiling) {
TAILQ_INSERT_BEFORE(m2, m, m_qe);
return (0);
}
}
TAILQ_INSERT_TAIL(&curthread->pp_mutexq, m, m_qe);
}
}
return (0);
}
int
_pthread_mutex_getspinloops_np(pthread_mutex_t *mutex, int *count)
{
struct pthread_mutex *m;
CHECK_AND_INIT_MUTEX
*count = m->m_spinloops;
return (0);
}
int
__pthread_mutex_setspinloops_np(pthread_mutex_t *mutex, int count)
{
struct pthread_mutex *m;
CHECK_AND_INIT_MUTEX
m->m_spinloops = count;
return (0);
}
int
_pthread_mutex_getyieldloops_np(pthread_mutex_t *mutex, int *count)
{
struct pthread_mutex *m;
CHECK_AND_INIT_MUTEX
*count = m->m_yieldloops;
return (0);
}
int
__pthread_mutex_setyieldloops_np(pthread_mutex_t *mutex, int count)
{
struct pthread_mutex *m;
CHECK_AND_INIT_MUTEX
m->m_yieldloops = count;
return (0);
}
int
_pthread_mutex_isowned_np(pthread_mutex_t *mutex)
{
struct pthread_mutex *m;
m = *mutex;
if (m <= THR_MUTEX_DESTROYED)
return (0);
return (m->m_owner == _get_curthread());
}
int
_mutex_owned(struct pthread *curthread, const struct pthread_mutex *mp)
{
if (__predict_false(mp <= THR_MUTEX_DESTROYED)) {
if (mp == THR_MUTEX_DESTROYED)
return (EINVAL);
return (EPERM);
}
if (mp->m_owner != curthread)
return (EPERM);
return (0);
}