freebsd-nq/module/zfs/zap_micro.c
2009-07-02 15:44:48 -07:00

1144 lines
27 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2009 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#include <sys/spa.h>
#include <sys/dmu.h>
#include <sys/zfs_context.h>
#include <sys/zap.h>
#include <sys/refcount.h>
#include <sys/zap_impl.h>
#include <sys/zap_leaf.h>
#include <sys/avl.h>
#ifdef _KERNEL
#include <sys/sunddi.h>
#endif
static int mzap_upgrade(zap_t **zapp, dmu_tx_t *tx);
static uint64_t
zap_hash(zap_t *zap, const char *normname)
{
const uint8_t *cp;
uint8_t c;
uint64_t crc = zap->zap_salt;
/* NB: name must already be normalized, if necessary */
ASSERT(crc != 0);
ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
for (cp = (const uint8_t *)normname; (c = *cp) != '\0'; cp++) {
crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ c) & 0xFF];
}
/*
* Only use 28 bits, since we need 4 bits in the cookie for the
* collision differentiator. We MUST use the high bits, since
* those are the ones that we first pay attention to when
* chosing the bucket.
*/
crc &= ~((1ULL << (64 - ZAP_HASHBITS)) - 1);
return (crc);
}
static int
zap_normalize(zap_t *zap, const char *name, char *namenorm)
{
size_t inlen, outlen;
int err;
inlen = strlen(name) + 1;
outlen = ZAP_MAXNAMELEN;
err = 0;
(void) u8_textprep_str((char *)name, &inlen, namenorm, &outlen,
zap->zap_normflags | U8_TEXTPREP_IGNORE_NULL |
U8_TEXTPREP_IGNORE_INVALID, U8_UNICODE_LATEST, &err);
return (err);
}
boolean_t
zap_match(zap_name_t *zn, const char *matchname)
{
if (zn->zn_matchtype == MT_FIRST) {
char norm[ZAP_MAXNAMELEN];
if (zap_normalize(zn->zn_zap, matchname, norm) != 0)
return (B_FALSE);
return (strcmp(zn->zn_name_norm, norm) == 0);
} else {
/* MT_BEST or MT_EXACT */
return (strcmp(zn->zn_name_orij, matchname) == 0);
}
}
void
zap_name_free(zap_name_t *zn)
{
kmem_free(zn, sizeof (zap_name_t));
}
/* XXX combine this with zap_lockdir()? */
zap_name_t *
zap_name_alloc(zap_t *zap, const char *name, matchtype_t mt)
{
zap_name_t *zn = kmem_alloc(sizeof (zap_name_t), KM_SLEEP);
zn->zn_zap = zap;
zn->zn_name_orij = name;
zn->zn_matchtype = mt;
if (zap->zap_normflags) {
if (zap_normalize(zap, name, zn->zn_normbuf) != 0) {
zap_name_free(zn);
return (NULL);
}
zn->zn_name_norm = zn->zn_normbuf;
} else {
if (mt != MT_EXACT) {
zap_name_free(zn);
return (NULL);
}
zn->zn_name_norm = zn->zn_name_orij;
}
zn->zn_hash = zap_hash(zap, zn->zn_name_norm);
return (zn);
}
static void
mzap_byteswap(mzap_phys_t *buf, size_t size)
{
int i, max;
buf->mz_block_type = BSWAP_64(buf->mz_block_type);
buf->mz_salt = BSWAP_64(buf->mz_salt);
buf->mz_normflags = BSWAP_64(buf->mz_normflags);
max = (size / MZAP_ENT_LEN) - 1;
for (i = 0; i < max; i++) {
buf->mz_chunk[i].mze_value =
BSWAP_64(buf->mz_chunk[i].mze_value);
buf->mz_chunk[i].mze_cd =
BSWAP_32(buf->mz_chunk[i].mze_cd);
}
}
void
zap_byteswap(void *buf, size_t size)
{
uint64_t block_type;
block_type = *(uint64_t *)buf;
if (block_type == ZBT_MICRO || block_type == BSWAP_64(ZBT_MICRO)) {
/* ASSERT(magic == ZAP_LEAF_MAGIC); */
mzap_byteswap(buf, size);
} else {
fzap_byteswap(buf, size);
}
}
static int
mze_compare(const void *arg1, const void *arg2)
{
const mzap_ent_t *mze1 = arg1;
const mzap_ent_t *mze2 = arg2;
if (mze1->mze_hash > mze2->mze_hash)
return (+1);
if (mze1->mze_hash < mze2->mze_hash)
return (-1);
if (mze1->mze_phys.mze_cd > mze2->mze_phys.mze_cd)
return (+1);
if (mze1->mze_phys.mze_cd < mze2->mze_phys.mze_cd)
return (-1);
return (0);
}
static void
mze_insert(zap_t *zap, int chunkid, uint64_t hash, mzap_ent_phys_t *mzep)
{
mzap_ent_t *mze;
ASSERT(zap->zap_ismicro);
ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
ASSERT(mzep->mze_cd < ZAP_MAXCD);
mze = kmem_alloc(sizeof (mzap_ent_t), KM_SLEEP);
mze->mze_chunkid = chunkid;
mze->mze_hash = hash;
mze->mze_phys = *mzep;
avl_add(&zap->zap_m.zap_avl, mze);
}
static mzap_ent_t *
mze_find(zap_name_t *zn)
{
mzap_ent_t mze_tofind;
mzap_ent_t *mze;
avl_index_t idx;
avl_tree_t *avl = &zn->zn_zap->zap_m.zap_avl;
ASSERT(zn->zn_zap->zap_ismicro);
ASSERT(RW_LOCK_HELD(&zn->zn_zap->zap_rwlock));
if (strlen(zn->zn_name_norm) >= sizeof (mze_tofind.mze_phys.mze_name))
return (NULL);
mze_tofind.mze_hash = zn->zn_hash;
mze_tofind.mze_phys.mze_cd = 0;
again:
mze = avl_find(avl, &mze_tofind, &idx);
if (mze == NULL)
mze = avl_nearest(avl, idx, AVL_AFTER);
for (; mze && mze->mze_hash == zn->zn_hash; mze = AVL_NEXT(avl, mze)) {
if (zap_match(zn, mze->mze_phys.mze_name))
return (mze);
}
if (zn->zn_matchtype == MT_BEST) {
zn->zn_matchtype = MT_FIRST;
goto again;
}
return (NULL);
}
static uint32_t
mze_find_unused_cd(zap_t *zap, uint64_t hash)
{
mzap_ent_t mze_tofind;
mzap_ent_t *mze;
avl_index_t idx;
avl_tree_t *avl = &zap->zap_m.zap_avl;
uint32_t cd;
ASSERT(zap->zap_ismicro);
ASSERT(RW_LOCK_HELD(&zap->zap_rwlock));
mze_tofind.mze_hash = hash;
mze_tofind.mze_phys.mze_cd = 0;
cd = 0;
for (mze = avl_find(avl, &mze_tofind, &idx);
mze && mze->mze_hash == hash; mze = AVL_NEXT(avl, mze)) {
if (mze->mze_phys.mze_cd != cd)
break;
cd++;
}
return (cd);
}
static void
mze_remove(zap_t *zap, mzap_ent_t *mze)
{
ASSERT(zap->zap_ismicro);
ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
avl_remove(&zap->zap_m.zap_avl, mze);
kmem_free(mze, sizeof (mzap_ent_t));
}
static void
mze_destroy(zap_t *zap)
{
mzap_ent_t *mze;
void *avlcookie = NULL;
while (mze = avl_destroy_nodes(&zap->zap_m.zap_avl, &avlcookie))
kmem_free(mze, sizeof (mzap_ent_t));
avl_destroy(&zap->zap_m.zap_avl);
}
static zap_t *
mzap_open(objset_t *os, uint64_t obj, dmu_buf_t *db)
{
zap_t *winner;
zap_t *zap;
int i;
ASSERT3U(MZAP_ENT_LEN, ==, sizeof (mzap_ent_phys_t));
zap = kmem_zalloc(sizeof (zap_t), KM_SLEEP);
rw_init(&zap->zap_rwlock, 0, 0, 0);
rw_enter(&zap->zap_rwlock, RW_WRITER);
zap->zap_objset = os;
zap->zap_object = obj;
zap->zap_dbuf = db;
if (*(uint64_t *)db->db_data != ZBT_MICRO) {
mutex_init(&zap->zap_f.zap_num_entries_mtx, 0, 0, 0);
zap->zap_f.zap_block_shift = highbit(db->db_size) - 1;
} else {
zap->zap_ismicro = TRUE;
}
/*
* Make sure that zap_ismicro is set before we let others see
* it, because zap_lockdir() checks zap_ismicro without the lock
* held.
*/
winner = dmu_buf_set_user(db, zap, &zap->zap_m.zap_phys, zap_evict);
if (winner != NULL) {
rw_exit(&zap->zap_rwlock);
rw_destroy(&zap->zap_rwlock);
if (!zap->zap_ismicro)
mutex_destroy(&zap->zap_f.zap_num_entries_mtx);
kmem_free(zap, sizeof (zap_t));
return (winner);
}
if (zap->zap_ismicro) {
zap->zap_salt = zap->zap_m.zap_phys->mz_salt;
zap->zap_normflags = zap->zap_m.zap_phys->mz_normflags;
zap->zap_m.zap_num_chunks = db->db_size / MZAP_ENT_LEN - 1;
avl_create(&zap->zap_m.zap_avl, mze_compare,
sizeof (mzap_ent_t), offsetof(mzap_ent_t, mze_node));
for (i = 0; i < zap->zap_m.zap_num_chunks; i++) {
mzap_ent_phys_t *mze =
&zap->zap_m.zap_phys->mz_chunk[i];
if (mze->mze_name[0]) {
zap_name_t *zn;
zap->zap_m.zap_num_entries++;
zn = zap_name_alloc(zap, mze->mze_name,
MT_EXACT);
mze_insert(zap, i, zn->zn_hash, mze);
zap_name_free(zn);
}
}
} else {
zap->zap_salt = zap->zap_f.zap_phys->zap_salt;
zap->zap_normflags = zap->zap_f.zap_phys->zap_normflags;
ASSERT3U(sizeof (struct zap_leaf_header), ==,
2*ZAP_LEAF_CHUNKSIZE);
/*
* The embedded pointer table should not overlap the
* other members.
*/
ASSERT3P(&ZAP_EMBEDDED_PTRTBL_ENT(zap, 0), >,
&zap->zap_f.zap_phys->zap_salt);
/*
* The embedded pointer table should end at the end of
* the block
*/
ASSERT3U((uintptr_t)&ZAP_EMBEDDED_PTRTBL_ENT(zap,
1<<ZAP_EMBEDDED_PTRTBL_SHIFT(zap)) -
(uintptr_t)zap->zap_f.zap_phys, ==,
zap->zap_dbuf->db_size);
}
rw_exit(&zap->zap_rwlock);
return (zap);
}
int
zap_lockdir(objset_t *os, uint64_t obj, dmu_tx_t *tx,
krw_t lti, boolean_t fatreader, boolean_t adding, zap_t **zapp)
{
zap_t *zap;
dmu_buf_t *db;
krw_t lt;
int err;
*zapp = NULL;
err = dmu_buf_hold(os, obj, 0, NULL, &db);
if (err)
return (err);
#ifdef ZFS_DEBUG
{
dmu_object_info_t doi;
dmu_object_info_from_db(db, &doi);
ASSERT(dmu_ot[doi.doi_type].ot_byteswap == zap_byteswap);
}
#endif
zap = dmu_buf_get_user(db);
if (zap == NULL)
zap = mzap_open(os, obj, db);
/*
* We're checking zap_ismicro without the lock held, in order to
* tell what type of lock we want. Once we have some sort of
* lock, see if it really is the right type. In practice this
* can only be different if it was upgraded from micro to fat,
* and micro wanted WRITER but fat only needs READER.
*/
lt = (!zap->zap_ismicro && fatreader) ? RW_READER : lti;
rw_enter(&zap->zap_rwlock, lt);
if (lt != ((!zap->zap_ismicro && fatreader) ? RW_READER : lti)) {
/* it was upgraded, now we only need reader */
ASSERT(lt == RW_WRITER);
ASSERT(RW_READER ==
(!zap->zap_ismicro && fatreader) ? RW_READER : lti);
rw_downgrade(&zap->zap_rwlock);
lt = RW_READER;
}
zap->zap_objset = os;
if (lt == RW_WRITER)
dmu_buf_will_dirty(db, tx);
ASSERT3P(zap->zap_dbuf, ==, db);
ASSERT(!zap->zap_ismicro ||
zap->zap_m.zap_num_entries <= zap->zap_m.zap_num_chunks);
if (zap->zap_ismicro && tx && adding &&
zap->zap_m.zap_num_entries == zap->zap_m.zap_num_chunks) {
uint64_t newsz = db->db_size + SPA_MINBLOCKSIZE;
if (newsz > MZAP_MAX_BLKSZ) {
dprintf("upgrading obj %llu: num_entries=%u\n",
obj, zap->zap_m.zap_num_entries);
*zapp = zap;
return (mzap_upgrade(zapp, tx));
}
err = dmu_object_set_blocksize(os, obj, newsz, 0, tx);
ASSERT3U(err, ==, 0);
zap->zap_m.zap_num_chunks =
db->db_size / MZAP_ENT_LEN - 1;
}
*zapp = zap;
return (0);
}
void
zap_unlockdir(zap_t *zap)
{
rw_exit(&zap->zap_rwlock);
dmu_buf_rele(zap->zap_dbuf, NULL);
}
static int
mzap_upgrade(zap_t **zapp, dmu_tx_t *tx)
{
mzap_phys_t *mzp;
int i, sz, nchunks, err;
zap_t *zap = *zapp;
ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
sz = zap->zap_dbuf->db_size;
mzp = kmem_alloc(sz, KM_SLEEP);
bcopy(zap->zap_dbuf->db_data, mzp, sz);
nchunks = zap->zap_m.zap_num_chunks;
err = dmu_object_set_blocksize(zap->zap_objset, zap->zap_object,
1ULL << fzap_default_block_shift, 0, tx);
if (err) {
kmem_free(mzp, sz);
return (err);
}
dprintf("upgrading obj=%llu with %u chunks\n",
zap->zap_object, nchunks);
/* XXX destroy the avl later, so we can use the stored hash value */
mze_destroy(zap);
fzap_upgrade(zap, tx);
for (i = 0; i < nchunks; i++) {
int err;
mzap_ent_phys_t *mze = &mzp->mz_chunk[i];
zap_name_t *zn;
if (mze->mze_name[0] == 0)
continue;
dprintf("adding %s=%llu\n",
mze->mze_name, mze->mze_value);
zn = zap_name_alloc(zap, mze->mze_name, MT_EXACT);
err = fzap_add_cd(zn, 8, 1, &mze->mze_value, mze->mze_cd, tx);
zap = zn->zn_zap; /* fzap_add_cd() may change zap */
zap_name_free(zn);
if (err)
break;
}
kmem_free(mzp, sz);
*zapp = zap;
return (err);
}
static void
mzap_create_impl(objset_t *os, uint64_t obj, int normflags, dmu_tx_t *tx)
{
dmu_buf_t *db;
mzap_phys_t *zp;
VERIFY(0 == dmu_buf_hold(os, obj, 0, FTAG, &db));
#ifdef ZFS_DEBUG
{
dmu_object_info_t doi;
dmu_object_info_from_db(db, &doi);
ASSERT(dmu_ot[doi.doi_type].ot_byteswap == zap_byteswap);
}
#endif
dmu_buf_will_dirty(db, tx);
zp = db->db_data;
zp->mz_block_type = ZBT_MICRO;
zp->mz_salt = ((uintptr_t)db ^ (uintptr_t)tx ^ (obj << 1)) | 1ULL;
zp->mz_normflags = normflags;
dmu_buf_rele(db, FTAG);
}
int
zap_create_claim(objset_t *os, uint64_t obj, dmu_object_type_t ot,
dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
{
return (zap_create_claim_norm(os, obj,
0, ot, bonustype, bonuslen, tx));
}
int
zap_create_claim_norm(objset_t *os, uint64_t obj, int normflags,
dmu_object_type_t ot,
dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
{
int err;
err = dmu_object_claim(os, obj, ot, 0, bonustype, bonuslen, tx);
if (err != 0)
return (err);
mzap_create_impl(os, obj, normflags, tx);
return (0);
}
uint64_t
zap_create(objset_t *os, dmu_object_type_t ot,
dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
{
return (zap_create_norm(os, 0, ot, bonustype, bonuslen, tx));
}
uint64_t
zap_create_norm(objset_t *os, int normflags, dmu_object_type_t ot,
dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
{
uint64_t obj = dmu_object_alloc(os, ot, 0, bonustype, bonuslen, tx);
mzap_create_impl(os, obj, normflags, tx);
return (obj);
}
int
zap_destroy(objset_t *os, uint64_t zapobj, dmu_tx_t *tx)
{
/*
* dmu_object_free will free the object number and free the
* data. Freeing the data will cause our pageout function to be
* called, which will destroy our data (zap_leaf_t's and zap_t).
*/
return (dmu_object_free(os, zapobj, tx));
}
_NOTE(ARGSUSED(0))
void
zap_evict(dmu_buf_t *db, void *vzap)
{
zap_t *zap = vzap;
rw_destroy(&zap->zap_rwlock);
if (zap->zap_ismicro)
mze_destroy(zap);
else
mutex_destroy(&zap->zap_f.zap_num_entries_mtx);
kmem_free(zap, sizeof (zap_t));
}
int
zap_count(objset_t *os, uint64_t zapobj, uint64_t *count)
{
zap_t *zap;
int err;
err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
if (err)
return (err);
if (!zap->zap_ismicro) {
err = fzap_count(zap, count);
} else {
*count = zap->zap_m.zap_num_entries;
}
zap_unlockdir(zap);
return (err);
}
/*
* zn may be NULL; if not specified, it will be computed if needed.
* See also the comment above zap_entry_normalization_conflict().
*/
static boolean_t
mzap_normalization_conflict(zap_t *zap, zap_name_t *zn, mzap_ent_t *mze)
{
mzap_ent_t *other;
int direction = AVL_BEFORE;
boolean_t allocdzn = B_FALSE;
if (zap->zap_normflags == 0)
return (B_FALSE);
again:
for (other = avl_walk(&zap->zap_m.zap_avl, mze, direction);
other && other->mze_hash == mze->mze_hash;
other = avl_walk(&zap->zap_m.zap_avl, other, direction)) {
if (zn == NULL) {
zn = zap_name_alloc(zap, mze->mze_phys.mze_name,
MT_FIRST);
allocdzn = B_TRUE;
}
if (zap_match(zn, other->mze_phys.mze_name)) {
if (allocdzn)
zap_name_free(zn);
return (B_TRUE);
}
}
if (direction == AVL_BEFORE) {
direction = AVL_AFTER;
goto again;
}
if (allocdzn)
zap_name_free(zn);
return (B_FALSE);
}
/*
* Routines for manipulating attributes.
*/
int
zap_lookup(objset_t *os, uint64_t zapobj, const char *name,
uint64_t integer_size, uint64_t num_integers, void *buf)
{
return (zap_lookup_norm(os, zapobj, name, integer_size,
num_integers, buf, MT_EXACT, NULL, 0, NULL));
}
int
zap_lookup_norm(objset_t *os, uint64_t zapobj, const char *name,
uint64_t integer_size, uint64_t num_integers, void *buf,
matchtype_t mt, char *realname, int rn_len,
boolean_t *ncp)
{
zap_t *zap;
int err;
mzap_ent_t *mze;
zap_name_t *zn;
err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
if (err)
return (err);
zn = zap_name_alloc(zap, name, mt);
if (zn == NULL) {
zap_unlockdir(zap);
return (ENOTSUP);
}
if (!zap->zap_ismicro) {
err = fzap_lookup(zn, integer_size, num_integers, buf,
realname, rn_len, ncp);
} else {
mze = mze_find(zn);
if (mze == NULL) {
err = ENOENT;
} else {
if (num_integers < 1) {
err = EOVERFLOW;
} else if (integer_size != 8) {
err = EINVAL;
} else {
*(uint64_t *)buf = mze->mze_phys.mze_value;
(void) strlcpy(realname,
mze->mze_phys.mze_name, rn_len);
if (ncp) {
*ncp = mzap_normalization_conflict(zap,
zn, mze);
}
}
}
}
zap_name_free(zn);
zap_unlockdir(zap);
return (err);
}
int
zap_length(objset_t *os, uint64_t zapobj, const char *name,
uint64_t *integer_size, uint64_t *num_integers)
{
zap_t *zap;
int err;
mzap_ent_t *mze;
zap_name_t *zn;
err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
if (err)
return (err);
zn = zap_name_alloc(zap, name, MT_EXACT);
if (zn == NULL) {
zap_unlockdir(zap);
return (ENOTSUP);
}
if (!zap->zap_ismicro) {
err = fzap_length(zn, integer_size, num_integers);
} else {
mze = mze_find(zn);
if (mze == NULL) {
err = ENOENT;
} else {
if (integer_size)
*integer_size = 8;
if (num_integers)
*num_integers = 1;
}
}
zap_name_free(zn);
zap_unlockdir(zap);
return (err);
}
static void
mzap_addent(zap_name_t *zn, uint64_t value)
{
int i;
zap_t *zap = zn->zn_zap;
int start = zap->zap_m.zap_alloc_next;
uint32_t cd;
dprintf("obj=%llu %s=%llu\n", zap->zap_object,
zn->zn_name_orij, value);
ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
#ifdef ZFS_DEBUG
for (i = 0; i < zap->zap_m.zap_num_chunks; i++) {
mzap_ent_phys_t *mze = &zap->zap_m.zap_phys->mz_chunk[i];
ASSERT(strcmp(zn->zn_name_orij, mze->mze_name) != 0);
}
#endif
cd = mze_find_unused_cd(zap, zn->zn_hash);
/* given the limited size of the microzap, this can't happen */
ASSERT(cd != ZAP_MAXCD);
again:
for (i = start; i < zap->zap_m.zap_num_chunks; i++) {
mzap_ent_phys_t *mze = &zap->zap_m.zap_phys->mz_chunk[i];
if (mze->mze_name[0] == 0) {
mze->mze_value = value;
mze->mze_cd = cd;
(void) strcpy(mze->mze_name, zn->zn_name_orij);
zap->zap_m.zap_num_entries++;
zap->zap_m.zap_alloc_next = i+1;
if (zap->zap_m.zap_alloc_next ==
zap->zap_m.zap_num_chunks)
zap->zap_m.zap_alloc_next = 0;
mze_insert(zap, i, zn->zn_hash, mze);
return;
}
}
if (start != 0) {
start = 0;
goto again;
}
ASSERT(!"out of entries!");
}
int
zap_add(objset_t *os, uint64_t zapobj, const char *name,
int integer_size, uint64_t num_integers,
const void *val, dmu_tx_t *tx)
{
zap_t *zap;
int err;
mzap_ent_t *mze;
const uint64_t *intval = val;
zap_name_t *zn;
err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, &zap);
if (err)
return (err);
zn = zap_name_alloc(zap, name, MT_EXACT);
if (zn == NULL) {
zap_unlockdir(zap);
return (ENOTSUP);
}
if (!zap->zap_ismicro) {
err = fzap_add(zn, integer_size, num_integers, val, tx);
zap = zn->zn_zap; /* fzap_add() may change zap */
} else if (integer_size != 8 || num_integers != 1 ||
strlen(name) >= MZAP_NAME_LEN) {
dprintf("upgrading obj %llu: intsz=%u numint=%llu name=%s\n",
zapobj, integer_size, num_integers, name);
err = mzap_upgrade(&zn->zn_zap, tx);
if (err == 0)
err = fzap_add(zn, integer_size, num_integers, val, tx);
zap = zn->zn_zap; /* fzap_add() may change zap */
} else {
mze = mze_find(zn);
if (mze != NULL) {
err = EEXIST;
} else {
mzap_addent(zn, *intval);
}
}
ASSERT(zap == zn->zn_zap);
zap_name_free(zn);
if (zap != NULL) /* may be NULL if fzap_add() failed */
zap_unlockdir(zap);
return (err);
}
int
zap_update(objset_t *os, uint64_t zapobj, const char *name,
int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx)
{
zap_t *zap;
mzap_ent_t *mze;
const uint64_t *intval = val;
zap_name_t *zn;
int err;
err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, &zap);
if (err)
return (err);
zn = zap_name_alloc(zap, name, MT_EXACT);
if (zn == NULL) {
zap_unlockdir(zap);
return (ENOTSUP);
}
if (!zap->zap_ismicro) {
err = fzap_update(zn, integer_size, num_integers, val, tx);
zap = zn->zn_zap; /* fzap_update() may change zap */
} else if (integer_size != 8 || num_integers != 1 ||
strlen(name) >= MZAP_NAME_LEN) {
dprintf("upgrading obj %llu: intsz=%u numint=%llu name=%s\n",
zapobj, integer_size, num_integers, name);
err = mzap_upgrade(&zn->zn_zap, tx);
if (err == 0)
err = fzap_update(zn, integer_size, num_integers,
val, tx);
zap = zn->zn_zap; /* fzap_update() may change zap */
} else {
mze = mze_find(zn);
if (mze != NULL) {
mze->mze_phys.mze_value = *intval;
zap->zap_m.zap_phys->mz_chunk
[mze->mze_chunkid].mze_value = *intval;
} else {
mzap_addent(zn, *intval);
}
}
ASSERT(zap == zn->zn_zap);
zap_name_free(zn);
if (zap != NULL) /* may be NULL if fzap_upgrade() failed */
zap_unlockdir(zap);
return (err);
}
int
zap_remove(objset_t *os, uint64_t zapobj, const char *name, dmu_tx_t *tx)
{
return (zap_remove_norm(os, zapobj, name, MT_EXACT, tx));
}
int
zap_remove_norm(objset_t *os, uint64_t zapobj, const char *name,
matchtype_t mt, dmu_tx_t *tx)
{
zap_t *zap;
int err;
mzap_ent_t *mze;
zap_name_t *zn;
err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, FALSE, &zap);
if (err)
return (err);
zn = zap_name_alloc(zap, name, mt);
if (zn == NULL) {
zap_unlockdir(zap);
return (ENOTSUP);
}
if (!zap->zap_ismicro) {
err = fzap_remove(zn, tx);
} else {
mze = mze_find(zn);
if (mze == NULL) {
err = ENOENT;
} else {
zap->zap_m.zap_num_entries--;
bzero(&zap->zap_m.zap_phys->mz_chunk[mze->mze_chunkid],
sizeof (mzap_ent_phys_t));
mze_remove(zap, mze);
}
}
zap_name_free(zn);
zap_unlockdir(zap);
return (err);
}
/*
* Routines for iterating over the attributes.
*/
/*
* We want to keep the high 32 bits of the cursor zero if we can, so
* that 32-bit programs can access this. So use a small hash value so
* we can fit 4 bits of cd into the 32-bit cursor.
*
* [ 4 zero bits | 32-bit collision differentiator | 28-bit hash value ]
*/
void
zap_cursor_init_serialized(zap_cursor_t *zc, objset_t *os, uint64_t zapobj,
uint64_t serialized)
{
zc->zc_objset = os;
zc->zc_zap = NULL;
zc->zc_leaf = NULL;
zc->zc_zapobj = zapobj;
if (serialized == -1ULL) {
zc->zc_hash = -1ULL;
zc->zc_cd = 0;
} else {
zc->zc_hash = serialized << (64-ZAP_HASHBITS);
zc->zc_cd = serialized >> ZAP_HASHBITS;
if (zc->zc_cd >= ZAP_MAXCD) /* corrupt serialized */
zc->zc_cd = 0;
}
}
void
zap_cursor_init(zap_cursor_t *zc, objset_t *os, uint64_t zapobj)
{
zap_cursor_init_serialized(zc, os, zapobj, 0);
}
void
zap_cursor_fini(zap_cursor_t *zc)
{
if (zc->zc_zap) {
rw_enter(&zc->zc_zap->zap_rwlock, RW_READER);
zap_unlockdir(zc->zc_zap);
zc->zc_zap = NULL;
}
if (zc->zc_leaf) {
rw_enter(&zc->zc_leaf->l_rwlock, RW_READER);
zap_put_leaf(zc->zc_leaf);
zc->zc_leaf = NULL;
}
zc->zc_objset = NULL;
}
uint64_t
zap_cursor_serialize(zap_cursor_t *zc)
{
if (zc->zc_hash == -1ULL)
return (-1ULL);
ASSERT((zc->zc_hash & (ZAP_MAXCD-1)) == 0);
ASSERT(zc->zc_cd < ZAP_MAXCD);
return ((zc->zc_hash >> (64-ZAP_HASHBITS)) |
((uint64_t)zc->zc_cd << ZAP_HASHBITS));
}
int
zap_cursor_retrieve(zap_cursor_t *zc, zap_attribute_t *za)
{
int err;
avl_index_t idx;
mzap_ent_t mze_tofind;
mzap_ent_t *mze;
if (zc->zc_hash == -1ULL)
return (ENOENT);
if (zc->zc_zap == NULL) {
err = zap_lockdir(zc->zc_objset, zc->zc_zapobj, NULL,
RW_READER, TRUE, FALSE, &zc->zc_zap);
if (err)
return (err);
} else {
rw_enter(&zc->zc_zap->zap_rwlock, RW_READER);
}
if (!zc->zc_zap->zap_ismicro) {
err = fzap_cursor_retrieve(zc->zc_zap, zc, za);
} else {
err = ENOENT;
mze_tofind.mze_hash = zc->zc_hash;
mze_tofind.mze_phys.mze_cd = zc->zc_cd;
mze = avl_find(&zc->zc_zap->zap_m.zap_avl, &mze_tofind, &idx);
if (mze == NULL) {
mze = avl_nearest(&zc->zc_zap->zap_m.zap_avl,
idx, AVL_AFTER);
}
if (mze) {
ASSERT(0 == bcmp(&mze->mze_phys,
&zc->zc_zap->zap_m.zap_phys->mz_chunk
[mze->mze_chunkid], sizeof (mze->mze_phys)));
za->za_normalization_conflict =
mzap_normalization_conflict(zc->zc_zap, NULL, mze);
za->za_integer_length = 8;
za->za_num_integers = 1;
za->za_first_integer = mze->mze_phys.mze_value;
(void) strcpy(za->za_name, mze->mze_phys.mze_name);
zc->zc_hash = mze->mze_hash;
zc->zc_cd = mze->mze_phys.mze_cd;
err = 0;
} else {
zc->zc_hash = -1ULL;
}
}
rw_exit(&zc->zc_zap->zap_rwlock);
return (err);
}
void
zap_cursor_advance(zap_cursor_t *zc)
{
if (zc->zc_hash == -1ULL)
return;
zc->zc_cd++;
if (zc->zc_cd >= ZAP_MAXCD) {
zc->zc_cd = 0;
zc->zc_hash += 1ULL<<(64-ZAP_HASHBITS);
if (zc->zc_hash == 0) /* EOF */
zc->zc_hash = -1ULL;
}
}
int
zap_get_stats(objset_t *os, uint64_t zapobj, zap_stats_t *zs)
{
int err;
zap_t *zap;
err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
if (err)
return (err);
bzero(zs, sizeof (zap_stats_t));
if (zap->zap_ismicro) {
zs->zs_blocksize = zap->zap_dbuf->db_size;
zs->zs_num_entries = zap->zap_m.zap_num_entries;
zs->zs_num_blocks = 1;
} else {
fzap_get_stats(zap, zs);
}
zap_unlockdir(zap);
return (0);
}
int
zap_count_write(objset_t *os, uint64_t zapobj, const char *name, int add,
uint64_t *towrite, uint64_t *tooverwrite, uint64_t dn_datablkshift)
{
zap_t *zap;
int err = 0;
/*
* Since, we don't have a name, we cannot figure out which blocks will
* be affected in this operation. So, account for the worst case :
* - 3 blocks overwritten: target leaf, ptrtbl block, header block
* - 4 new blocks written if adding:
* - 2 blocks for possibly split leaves,
* - 2 grown ptrtbl blocks
*
* This also accomodates the case where an add operation to a fairly
* large microzap results in a promotion to fatzap.
*/
if (name == NULL) {
*towrite += (3 + (add ? 4 : 0)) * SPA_MAXBLOCKSIZE;
return (err);
}
/*
* We lock the zap with adding == FALSE. Because, if we pass
* the actual value of add, it could trigger a mzap_upgrade().
* At present we are just evaluating the possibility of this operation
* and hence we donot want to trigger an upgrade.
*/
err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
if (err)
return (err);
if (!zap->zap_ismicro) {
zap_name_t *zn = zap_name_alloc(zap, name, MT_EXACT);
if (zn) {
err = fzap_count_write(zn, add, towrite,
tooverwrite);
zap_name_free(zn);
} else {
/*
* We treat this case as similar to (name == NULL)
*/
*towrite += (3 + (add ? 4 : 0)) * SPA_MAXBLOCKSIZE;
}
} else {
if (!add) {
if (dmu_buf_freeable(zap->zap_dbuf))
*tooverwrite += SPA_MAXBLOCKSIZE;
else
*towrite += SPA_MAXBLOCKSIZE;
} else {
/*
* We are here if we are adding and (name != NULL).
* It is hard to find out if this add will promote this
* microzap to fatzap. Hence, we assume the worst case
* and account for the blocks assuming this microzap
* would be promoted to a fatzap.
*
* 1 block overwritten : header block
* 4 new blocks written : 2 new split leaf, 2 grown
* ptrtbl blocks
*/
if (dmu_buf_freeable(zap->zap_dbuf))
*tooverwrite += 1 << dn_datablkshift;
else
*towrite += 1 << dn_datablkshift;
*towrite += 4 << dn_datablkshift;
}
}
zap_unlockdir(zap);
return (err);
}