freebsd-nq/sys/powerpc/aim/machdep.c
Roger Pau Monné c98a2727cc ddb: allow specifying the exact address of the symtab and strtab
When the FreeBSD kernel is loaded from Xen the symtab and strtab are
not loaded the same way as the native boot loader. This patch adds
three new global variables to ddb that can be used to specify the
exact position and size of those tables, so they can be directly used
as parameters to db_add_symbol_table. A new helper is introduced, so callers
that used to set ksym_start and ksym_end can use this helper to set the new
variables.

It also adds support for loading them from the Xen PVH port, that was
previously missing those tables.

Sponsored by: Citrix Systems R&D
Reviewed by:	kib

ddb/db_main.c:
 - Add three new global variables: ksymtab, kstrtab, ksymtab_size that
   can be used to specify the position and size of the symtab and
   strtab.
 - Use those new variables in db_init in order to call db_add_symbol_table.
 - Move the logic in db_init to db_fetch_symtab in order to set ksymtab,
   kstrtab, ksymtab_size from ksym_start and ksym_end.

ddb/ddb.h:
 - Add prototype for db_fetch_ksymtab.
 - Declate the extern variables ksymtab, kstrtab and ksymtab_size.

x86/xen/pv.c:
 - Add support for finding the symtab and strtab when booted as a Xen
   PVH guest. Since Xen loads the symtab and strtab as NetBSD expects
   to find them we have to adapt and use the same method.

amd64/amd64/machdep.c:
arm/arm/machdep.c:
i386/i386/machdep.c:
mips/mips/machdep.c:
pc98/pc98/machdep.c:
powerpc/aim/machdep.c:
powerpc/booke/machdep.c:
sparc64/sparc64/machdep.c:
 - Use the newly introduced db_fetch_ksymtab in order to set ksymtab,
   kstrtab and ksymtab_size.
2014-09-25 08:28:10 +00:00

954 lines
23 KiB
C

/*-
* Copyright (C) 1995, 1996 Wolfgang Solfrank.
* Copyright (C) 1995, 1996 TooLs GmbH.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by TooLs GmbH.
* 4. The name of TooLs GmbH may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*-
* Copyright (C) 2001 Benno Rice
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY Benno Rice ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
* $NetBSD: machdep.c,v 1.74.2.1 2000/11/01 16:13:48 tv Exp $
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_compat.h"
#include "opt_ddb.h"
#include "opt_kstack_pages.h"
#include "opt_platform.h"
#include <sys/param.h>
#include <sys/proc.h>
#include <sys/systm.h>
#include <sys/bio.h>
#include <sys/buf.h>
#include <sys/bus.h>
#include <sys/cons.h>
#include <sys/cpu.h>
#include <sys/eventhandler.h>
#include <sys/exec.h>
#include <sys/imgact.h>
#include <sys/kdb.h>
#include <sys/kernel.h>
#include <sys/ktr.h>
#include <sys/linker.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/msgbuf.h>
#include <sys/mutex.h>
#include <sys/ptrace.h>
#include <sys/reboot.h>
#include <sys/rwlock.h>
#include <sys/signalvar.h>
#include <sys/syscallsubr.h>
#include <sys/sysctl.h>
#include <sys/sysent.h>
#include <sys/sysproto.h>
#include <sys/ucontext.h>
#include <sys/uio.h>
#include <sys/vmmeter.h>
#include <sys/vnode.h>
#include <net/netisr.h>
#include <vm/vm.h>
#include <vm/vm_extern.h>
#include <vm/vm_kern.h>
#include <vm/vm_page.h>
#include <vm/vm_map.h>
#include <vm/vm_object.h>
#include <vm/vm_pager.h>
#include <machine/altivec.h>
#ifndef __powerpc64__
#include <machine/bat.h>
#endif
#include <machine/cpu.h>
#include <machine/elf.h>
#include <machine/fpu.h>
#include <machine/hid.h>
#include <machine/kdb.h>
#include <machine/md_var.h>
#include <machine/metadata.h>
#include <machine/mmuvar.h>
#include <machine/pcb.h>
#include <machine/reg.h>
#include <machine/sigframe.h>
#include <machine/spr.h>
#include <machine/trap.h>
#include <machine/vmparam.h>
#include <machine/ofw_machdep.h>
#include <ddb/ddb.h>
#include <dev/ofw/openfirm.h>
int cold = 1;
#ifdef __powerpc64__
extern int n_slbs;
int cacheline_size = 128;
#else
int cacheline_size = 32;
#endif
int hw_direct_map = 1;
extern void *ap_pcpu;
struct pcpu __pcpu[MAXCPU];
static struct trapframe frame0;
char machine[] = "powerpc";
SYSCTL_STRING(_hw, HW_MACHINE, machine, CTLFLAG_RD, machine, 0, "");
static void cpu_startup(void *);
SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
SYSCTL_INT(_machdep, CPU_CACHELINE, cacheline_size,
CTLFLAG_RD, &cacheline_size, 0, "");
uintptr_t powerpc_init(vm_offset_t, vm_offset_t, vm_offset_t, void *);
long Maxmem = 0;
long realmem = 0;
#ifndef __powerpc64__
struct bat battable[16];
#endif
struct kva_md_info kmi;
static void
cpu_startup(void *dummy)
{
/*
* Initialise the decrementer-based clock.
*/
decr_init();
/*
* Good {morning,afternoon,evening,night}.
*/
cpu_setup(PCPU_GET(cpuid));
#ifdef PERFMON
perfmon_init();
#endif
printf("real memory = %ld (%ld MB)\n", ptoa(physmem),
ptoa(physmem) / 1048576);
realmem = physmem;
if (bootverbose)
printf("available KVA = %zd (%zd MB)\n",
virtual_end - virtual_avail,
(virtual_end - virtual_avail) / 1048576);
/*
* Display any holes after the first chunk of extended memory.
*/
if (bootverbose) {
int indx;
printf("Physical memory chunk(s):\n");
for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
vm_offset_t size1 =
phys_avail[indx + 1] - phys_avail[indx];
#ifdef __powerpc64__
printf("0x%016lx - 0x%016lx, %ld bytes (%ld pages)\n",
#else
printf("0x%08x - 0x%08x, %d bytes (%ld pages)\n",
#endif
phys_avail[indx], phys_avail[indx + 1] - 1, size1,
size1 / PAGE_SIZE);
}
}
vm_ksubmap_init(&kmi);
printf("avail memory = %ld (%ld MB)\n", ptoa(vm_cnt.v_free_count),
ptoa(vm_cnt.v_free_count) / 1048576);
/*
* Set up buffers, so they can be used to read disk labels.
*/
bufinit();
vm_pager_bufferinit();
}
extern char kernel_text[], _end[];
#ifndef __powerpc64__
/* Bits for running on 64-bit systems in 32-bit mode. */
extern void *testppc64, *testppc64size;
extern void *restorebridge, *restorebridgesize;
extern void *rfid_patch, *rfi_patch1, *rfi_patch2;
extern void *trapcode64;
#endif
extern void *rstcode, *rstsize;
extern void *trapcode, *trapsize;
extern void *slbtrap, *slbtrapsize;
extern void *alitrap, *alisize;
extern void *dsitrap, *dsisize;
extern void *decrint, *decrsize;
extern void *extint, *extsize;
extern void *dblow, *dbsize;
extern void *imisstrap, *imisssize;
extern void *dlmisstrap, *dlmisssize;
extern void *dsmisstrap, *dsmisssize;
char save_trap_init[0x2f00]; /* EXC_LAST */
uintptr_t
powerpc_init(vm_offset_t startkernel, vm_offset_t endkernel,
vm_offset_t basekernel, void *mdp)
{
struct pcpu *pc;
void *generictrap;
size_t trap_offset;
void *kmdp;
char *env;
register_t msr, scratch;
#ifdef WII
register_t vers;
#endif
uint8_t *cache_check;
int cacheline_warn;
#ifndef __powerpc64__
int ppc64;
#endif
#ifdef DDB
vm_offset_t ksym_start;
vm_offset_t ksym_end;
#endif
kmdp = NULL;
trap_offset = 0;
cacheline_warn = 0;
/* Save trap vectors. */
ofw_save_trap_vec(save_trap_init);
#ifdef WII
/*
* The Wii loader doesn't pass us any environment so, mdp
* points to garbage at this point. The Wii CPU is a 750CL.
*/
vers = mfpvr();
if ((vers & 0xfffff0e0) == (MPC750 << 16 | MPC750CL))
mdp = NULL;
#endif
/*
* Parse metadata if present and fetch parameters. Must be done
* before console is inited so cninit gets the right value of
* boothowto.
*/
if (mdp != NULL) {
preload_metadata = mdp;
kmdp = preload_search_by_type("elf kernel");
if (kmdp != NULL) {
boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int);
kern_envp = MD_FETCH(kmdp, MODINFOMD_ENVP, char *);
endkernel = ulmax(endkernel, MD_FETCH(kmdp,
MODINFOMD_KERNEND, vm_offset_t));
#ifdef DDB
ksym_start = MD_FETCH(kmdp, MODINFOMD_SSYM, uintptr_t);
ksym_end = MD_FETCH(kmdp, MODINFOMD_ESYM, uintptr_t);
db_fetch_ksymtab(ksym_start, ksym_end);
#endif
}
}
/*
* Init params/tunables that can be overridden by the loader
*/
init_param1();
/*
* Start initializing proc0 and thread0.
*/
proc_linkup0(&proc0, &thread0);
thread0.td_frame = &frame0;
/*
* Set up per-cpu data.
*/
pc = __pcpu;
pcpu_init(pc, 0, sizeof(struct pcpu));
pc->pc_curthread = &thread0;
#ifdef __powerpc64__
__asm __volatile("mr 13,%0" :: "r"(pc->pc_curthread));
#else
__asm __volatile("mr 2,%0" :: "r"(pc->pc_curthread));
#endif
pc->pc_cpuid = 0;
__asm __volatile("mtsprg 0, %0" :: "r"(pc));
/*
* Init mutexes, which we use heavily in PMAP
*/
mutex_init();
/*
* Install the OF client interface
*/
OF_bootstrap();
/*
* Initialize the console before printing anything.
*/
cninit();
/*
* Complain if there is no metadata.
*/
if (mdp == NULL || kmdp == NULL) {
printf("powerpc_init: no loader metadata.\n");
}
/*
* Init KDB
*/
kdb_init();
/* Various very early CPU fix ups */
switch (mfpvr() >> 16) {
/*
* PowerPC 970 CPUs have a misfeature requested by Apple that
* makes them pretend they have a 32-byte cacheline. Turn this
* off before we measure the cacheline size.
*/
case IBM970:
case IBM970FX:
case IBM970MP:
case IBM970GX:
scratch = mfspr(SPR_HID5);
scratch &= ~HID5_970_DCBZ_SIZE_HI;
mtspr(SPR_HID5, scratch);
break;
#ifdef __powerpc64__
case IBMPOWER7:
/* XXX: get from ibm,slb-size in device tree */
n_slbs = 32;
break;
#endif
}
/*
* Initialize the interrupt tables and figure out our cache line
* size and whether or not we need the 64-bit bridge code.
*/
/*
* Disable translation in case the vector area hasn't been
* mapped (G5). Note that no OFW calls can be made until
* translation is re-enabled.
*/
msr = mfmsr();
mtmsr((msr & ~(PSL_IR | PSL_DR)) | PSL_RI);
/*
* Measure the cacheline size using dcbz
*
* Use EXC_PGM as a playground. We are about to overwrite it
* anyway, we know it exists, and we know it is cache-aligned.
*/
cache_check = (void *)EXC_PGM;
for (cacheline_size = 0; cacheline_size < 0x100; cacheline_size++)
cache_check[cacheline_size] = 0xff;
__asm __volatile("dcbz 0,%0":: "r" (cache_check) : "memory");
/* Find the first byte dcbz did not zero to get the cache line size */
for (cacheline_size = 0; cacheline_size < 0x100 &&
cache_check[cacheline_size] == 0; cacheline_size++);
/* Work around psim bug */
if (cacheline_size == 0) {
cacheline_warn = 1;
cacheline_size = 32;
}
/* Make sure the kernel icache is valid before we go too much further */
__syncicache((caddr_t)startkernel, endkernel - startkernel);
#ifndef __powerpc64__
/*
* Figure out whether we need to use the 64 bit PMAP. This works by
* executing an instruction that is only legal on 64-bit PPC (mtmsrd),
* and setting ppc64 = 0 if that causes a trap.
*/
ppc64 = 1;
bcopy(&testppc64, (void *)EXC_PGM, (size_t)&testppc64size);
__syncicache((void *)EXC_PGM, (size_t)&testppc64size);
__asm __volatile("\
mfmsr %0; \
mtsprg2 %1; \
\
mtmsrd %0; \
mfsprg2 %1;"
: "=r"(scratch), "=r"(ppc64));
if (ppc64)
cpu_features |= PPC_FEATURE_64;
/*
* Now copy restorebridge into all the handlers, if necessary,
* and set up the trap tables.
*/
if (cpu_features & PPC_FEATURE_64) {
/* Patch the two instances of rfi -> rfid */
bcopy(&rfid_patch,&rfi_patch1,4);
#ifdef KDB
/* rfi_patch2 is at the end of dbleave */
bcopy(&rfid_patch,&rfi_patch2,4);
#endif
/*
* Copy a code snippet to restore 32-bit bridge mode
* to the top of every non-generic trap handler
*/
trap_offset += (size_t)&restorebridgesize;
bcopy(&restorebridge, (void *)EXC_RST, trap_offset);
bcopy(&restorebridge, (void *)EXC_DSI, trap_offset);
bcopy(&restorebridge, (void *)EXC_ALI, trap_offset);
bcopy(&restorebridge, (void *)EXC_PGM, trap_offset);
bcopy(&restorebridge, (void *)EXC_MCHK, trap_offset);
bcopy(&restorebridge, (void *)EXC_TRC, trap_offset);
bcopy(&restorebridge, (void *)EXC_BPT, trap_offset);
/*
* Set the common trap entry point to the one that
* knows to restore 32-bit operation on execution.
*/
generictrap = &trapcode64;
} else {
generictrap = &trapcode;
}
#else /* powerpc64 */
cpu_features |= PPC_FEATURE_64;
generictrap = &trapcode;
#endif
bcopy(&rstcode, (void *)(EXC_RST + trap_offset), (size_t)&rstsize);
#ifdef KDB
bcopy(&dblow, (void *)(EXC_MCHK + trap_offset), (size_t)&dbsize);
bcopy(&dblow, (void *)(EXC_PGM + trap_offset), (size_t)&dbsize);
bcopy(&dblow, (void *)(EXC_TRC + trap_offset), (size_t)&dbsize);
bcopy(&dblow, (void *)(EXC_BPT + trap_offset), (size_t)&dbsize);
#else
bcopy(generictrap, (void *)EXC_MCHK, (size_t)&trapsize);
bcopy(generictrap, (void *)EXC_PGM, (size_t)&trapsize);
bcopy(generictrap, (void *)EXC_TRC, (size_t)&trapsize);
bcopy(generictrap, (void *)EXC_BPT, (size_t)&trapsize);
#endif
bcopy(&alitrap, (void *)(EXC_ALI + trap_offset), (size_t)&alisize);
bcopy(&dsitrap, (void *)(EXC_DSI + trap_offset), (size_t)&dsisize);
bcopy(generictrap, (void *)EXC_ISI, (size_t)&trapsize);
#ifdef __powerpc64__
bcopy(&slbtrap, (void *)EXC_DSE, (size_t)&slbtrapsize);
bcopy(&slbtrap, (void *)EXC_ISE, (size_t)&slbtrapsize);
#endif
bcopy(generictrap, (void *)EXC_EXI, (size_t)&trapsize);
bcopy(generictrap, (void *)EXC_FPU, (size_t)&trapsize);
bcopy(generictrap, (void *)EXC_DECR, (size_t)&trapsize);
bcopy(generictrap, (void *)EXC_SC, (size_t)&trapsize);
bcopy(generictrap, (void *)EXC_FPA, (size_t)&trapsize);
bcopy(generictrap, (void *)EXC_VEC, (size_t)&trapsize);
bcopy(generictrap, (void *)EXC_PERF, (size_t)&trapsize);
bcopy(generictrap, (void *)EXC_VECAST_G4, (size_t)&trapsize);
bcopy(generictrap, (void *)EXC_VECAST_G5, (size_t)&trapsize);
#ifndef __powerpc64__
/* G2-specific TLB miss helper handlers */
bcopy(&imisstrap, (void *)EXC_IMISS, (size_t)&imisssize);
bcopy(&dlmisstrap, (void *)EXC_DLMISS, (size_t)&dlmisssize);
bcopy(&dsmisstrap, (void *)EXC_DSMISS, (size_t)&dsmisssize);
#endif
__syncicache(EXC_RSVD, EXC_LAST - EXC_RSVD);
/*
* Restore MSR
*/
mtmsr(msr);
/* Warn if cachline size was not determined */
if (cacheline_warn == 1) {
printf("WARNING: cacheline size undetermined, setting to 32\n");
}
/*
* Choose a platform module so we can get the physical memory map.
*/
platform_probe_and_attach();
/*
* Initialise virtual memory. Use BUS_PROBE_GENERIC priority
* in case the platform module had a better idea of what we
* should do.
*/
if (cpu_features & PPC_FEATURE_64)
pmap_mmu_install(MMU_TYPE_G5, BUS_PROBE_GENERIC);
else
pmap_mmu_install(MMU_TYPE_OEA, BUS_PROBE_GENERIC);
pmap_bootstrap(startkernel, endkernel);
mtmsr(PSL_KERNSET & ~PSL_EE);
/*
* Initialize params/tunables that are derived from memsize
*/
init_param2(physmem);
/*
* Grab booted kernel's name
*/
env = getenv("kernelname");
if (env != NULL) {
strlcpy(kernelname, env, sizeof(kernelname));
freeenv(env);
}
/*
* Finish setting up thread0.
*/
thread0.td_pcb = (struct pcb *)
((thread0.td_kstack + thread0.td_kstack_pages * PAGE_SIZE -
sizeof(struct pcb)) & ~15UL);
bzero((void *)thread0.td_pcb, sizeof(struct pcb));
pc->pc_curpcb = thread0.td_pcb;
/* Initialise the message buffer. */
msgbufinit(msgbufp, msgbufsize);
#ifdef KDB
if (boothowto & RB_KDB)
kdb_enter(KDB_WHY_BOOTFLAGS,
"Boot flags requested debugger");
#endif
return (((uintptr_t)thread0.td_pcb -
(sizeof(struct callframe) - 3*sizeof(register_t))) & ~15UL);
}
void
bzero(void *buf, size_t len)
{
caddr_t p;
p = buf;
while (((vm_offset_t) p & (sizeof(u_long) - 1)) && len) {
*p++ = 0;
len--;
}
while (len >= sizeof(u_long) * 8) {
*(u_long*) p = 0;
*((u_long*) p + 1) = 0;
*((u_long*) p + 2) = 0;
*((u_long*) p + 3) = 0;
len -= sizeof(u_long) * 8;
*((u_long*) p + 4) = 0;
*((u_long*) p + 5) = 0;
*((u_long*) p + 6) = 0;
*((u_long*) p + 7) = 0;
p += sizeof(u_long) * 8;
}
while (len >= sizeof(u_long)) {
*(u_long*) p = 0;
len -= sizeof(u_long);
p += sizeof(u_long);
}
while (len) {
*p++ = 0;
len--;
}
}
void
cpu_boot(int howto)
{
}
/*
* Flush the D-cache for non-DMA I/O so that the I-cache can
* be made coherent later.
*/
void
cpu_flush_dcache(void *ptr, size_t len)
{
/* TBD */
}
/*
* Shutdown the CPU as much as possible.
*/
void
cpu_halt(void)
{
OF_exit();
}
int
ptrace_set_pc(struct thread *td, unsigned long addr)
{
struct trapframe *tf;
tf = td->td_frame;
tf->srr0 = (register_t)addr;
return (0);
}
int
ptrace_single_step(struct thread *td)
{
struct trapframe *tf;
tf = td->td_frame;
tf->srr1 |= PSL_SE;
return (0);
}
int
ptrace_clear_single_step(struct thread *td)
{
struct trapframe *tf;
tf = td->td_frame;
tf->srr1 &= ~PSL_SE;
return (0);
}
void
kdb_cpu_clear_singlestep(void)
{
kdb_frame->srr1 &= ~PSL_SE;
}
void
kdb_cpu_set_singlestep(void)
{
kdb_frame->srr1 |= PSL_SE;
}
/*
* Initialise a struct pcpu.
*/
void
cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t sz)
{
#ifdef __powerpc64__
/* Copy the SLB contents from the current CPU */
memcpy(pcpu->pc_slb, PCPU_GET(slb), sizeof(pcpu->pc_slb));
#endif
}
void
spinlock_enter(void)
{
struct thread *td;
register_t msr;
td = curthread;
if (td->td_md.md_spinlock_count == 0) {
msr = intr_disable();
td->td_md.md_spinlock_count = 1;
td->td_md.md_saved_msr = msr;
} else
td->td_md.md_spinlock_count++;
critical_enter();
}
void
spinlock_exit(void)
{
struct thread *td;
register_t msr;
td = curthread;
critical_exit();
msr = td->td_md.md_saved_msr;
td->td_md.md_spinlock_count--;
if (td->td_md.md_spinlock_count == 0)
intr_restore(msr);
}
int db_trap_glue(struct trapframe *); /* Called from trap_subr.S */
int
db_trap_glue(struct trapframe *frame)
{
if (!(frame->srr1 & PSL_PR)
&& (frame->exc == EXC_TRC || frame->exc == EXC_RUNMODETRC
|| (frame->exc == EXC_PGM
&& (frame->srr1 & 0x20000))
|| frame->exc == EXC_BPT
|| frame->exc == EXC_DSI)) {
int type = frame->exc;
if (type == EXC_PGM && (frame->srr1 & 0x20000)) {
type = T_BREAKPOINT;
}
return (kdb_trap(type, 0, frame));
}
return (0);
}
#ifndef __powerpc64__
uint64_t
va_to_vsid(pmap_t pm, vm_offset_t va)
{
return ((pm->pm_sr[(uintptr_t)va >> ADDR_SR_SHFT]) & SR_VSID_MASK);
}
#endif
vm_offset_t
pmap_early_io_map(vm_paddr_t pa, vm_size_t size)
{
return (pa);
}
/* From p3-53 of the MPC7450 RISC Microprocessor Family Reference Manual */
void
flush_disable_caches(void)
{
register_t msr;
register_t msscr0;
register_t cache_reg;
volatile uint32_t *memp;
uint32_t temp;
int i;
int x;
msr = mfmsr();
powerpc_sync();
mtmsr(msr & ~(PSL_EE | PSL_DR));
msscr0 = mfspr(SPR_MSSCR0);
msscr0 &= ~MSSCR0_L2PFE;
mtspr(SPR_MSSCR0, msscr0);
powerpc_sync();
isync();
__asm__ __volatile__("dssall; sync");
powerpc_sync();
isync();
__asm__ __volatile__("dcbf 0,%0" :: "r"(0));
__asm__ __volatile__("dcbf 0,%0" :: "r"(0));
__asm__ __volatile__("dcbf 0,%0" :: "r"(0));
/* Lock the L1 Data cache. */
mtspr(SPR_LDSTCR, mfspr(SPR_LDSTCR) | 0xFF);
powerpc_sync();
isync();
mtspr(SPR_LDSTCR, 0);
/*
* Perform this in two stages: Flush the cache starting in RAM, then do it
* from ROM.
*/
memp = (volatile uint32_t *)0x00000000;
for (i = 0; i < 128 * 1024; i++) {
temp = *memp;
__asm__ __volatile__("dcbf 0,%0" :: "r"(memp));
memp += 32/sizeof(*memp);
}
memp = (volatile uint32_t *)0xfff00000;
x = 0xfe;
for (; x != 0xff;) {
mtspr(SPR_LDSTCR, x);
for (i = 0; i < 128; i++) {
temp = *memp;
__asm__ __volatile__("dcbf 0,%0" :: "r"(memp));
memp += 32/sizeof(*memp);
}
x = ((x << 1) | 1) & 0xff;
}
mtspr(SPR_LDSTCR, 0);
cache_reg = mfspr(SPR_L2CR);
if (cache_reg & L2CR_L2E) {
cache_reg &= ~(L2CR_L2IO_7450 | L2CR_L2DO_7450);
mtspr(SPR_L2CR, cache_reg);
powerpc_sync();
mtspr(SPR_L2CR, cache_reg | L2CR_L2HWF);
while (mfspr(SPR_L2CR) & L2CR_L2HWF)
; /* Busy wait for cache to flush */
powerpc_sync();
cache_reg &= ~L2CR_L2E;
mtspr(SPR_L2CR, cache_reg);
powerpc_sync();
mtspr(SPR_L2CR, cache_reg | L2CR_L2I);
powerpc_sync();
while (mfspr(SPR_L2CR) & L2CR_L2I)
; /* Busy wait for L2 cache invalidate */
powerpc_sync();
}
cache_reg = mfspr(SPR_L3CR);
if (cache_reg & L3CR_L3E) {
cache_reg &= ~(L3CR_L3IO | L3CR_L3DO);
mtspr(SPR_L3CR, cache_reg);
powerpc_sync();
mtspr(SPR_L3CR, cache_reg | L3CR_L3HWF);
while (mfspr(SPR_L3CR) & L3CR_L3HWF)
; /* Busy wait for cache to flush */
powerpc_sync();
cache_reg &= ~L3CR_L3E;
mtspr(SPR_L3CR, cache_reg);
powerpc_sync();
mtspr(SPR_L3CR, cache_reg | L3CR_L3I);
powerpc_sync();
while (mfspr(SPR_L3CR) & L3CR_L3I)
; /* Busy wait for L3 cache invalidate */
powerpc_sync();
}
mtspr(SPR_HID0, mfspr(SPR_HID0) & ~HID0_DCE);
powerpc_sync();
isync();
mtmsr(msr);
}
void
cpu_sleep()
{
static u_quad_t timebase = 0;
static register_t sprgs[4];
static register_t srrs[2];
jmp_buf resetjb;
struct thread *fputd;
struct thread *vectd;
register_t hid0;
register_t msr;
register_t saved_msr;
ap_pcpu = pcpup;
PCPU_SET(restore, &resetjb);
saved_msr = mfmsr();
fputd = PCPU_GET(fputhread);
vectd = PCPU_GET(vecthread);
if (fputd != NULL)
save_fpu(fputd);
if (vectd != NULL)
save_vec(vectd);
if (setjmp(resetjb) == 0) {
sprgs[0] = mfspr(SPR_SPRG0);
sprgs[1] = mfspr(SPR_SPRG1);
sprgs[2] = mfspr(SPR_SPRG2);
sprgs[3] = mfspr(SPR_SPRG3);
srrs[0] = mfspr(SPR_SRR0);
srrs[1] = mfspr(SPR_SRR1);
timebase = mftb();
powerpc_sync();
flush_disable_caches();
hid0 = mfspr(SPR_HID0);
hid0 = (hid0 & ~(HID0_DOZE | HID0_NAP)) | HID0_SLEEP;
powerpc_sync();
isync();
msr = mfmsr() | PSL_POW;
mtspr(SPR_HID0, hid0);
powerpc_sync();
while (1)
mtmsr(msr);
}
mttb(timebase);
PCPU_SET(curthread, curthread);
PCPU_SET(curpcb, curthread->td_pcb);
pmap_activate(curthread);
powerpc_sync();
mtspr(SPR_SPRG0, sprgs[0]);
mtspr(SPR_SPRG1, sprgs[1]);
mtspr(SPR_SPRG2, sprgs[2]);
mtspr(SPR_SPRG3, sprgs[3]);
mtspr(SPR_SRR0, srrs[0]);
mtspr(SPR_SRR1, srrs[1]);
mtmsr(saved_msr);
if (fputd == curthread)
enable_fpu(curthread);
if (vectd == curthread)
enable_vec(curthread);
powerpc_sync();
}