freebsd-nq/sys/powerpc/aim/mmu_oea64.c
Konstantin Belousov 39ffa8c138 Change pmap_enter(9) interface to take flags parameter and superpage
mapping size (currently unused).  The flags includes the fault access
bits, wired flag as PMAP_ENTER_WIRED, and a new flag
PMAP_ENTER_NOSLEEP to indicate that pmap should not sleep.

For powerpc aim both 32 and 64 bit, fix implementation to ensure that
the requested mapping is created when PMAP_ENTER_NOSLEEP is not
specified, in particular, wait for the available memory required to
proceed.

In collaboration with:	alc
Tested by:	nwhitehorn (ppc aim32 and booke)
Sponsored by:	The FreeBSD Foundation and EMC / Isilon Storage Division
MFC after:	2 weeks
2014-08-08 17:12:03 +00:00

2709 lines
71 KiB
C

/*-
* Copyright (c) 2001 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Matt Thomas <matt@3am-software.com> of Allegro Networks, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*-
* Copyright (C) 1995, 1996 Wolfgang Solfrank.
* Copyright (C) 1995, 1996 TooLs GmbH.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by TooLs GmbH.
* 4. The name of TooLs GmbH may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* $NetBSD: pmap.c,v 1.28 2000/03/26 20:42:36 kleink Exp $
*/
/*-
* Copyright (C) 2001 Benno Rice.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY Benno Rice ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* Manages physical address maps.
*
* Since the information managed by this module is also stored by the
* logical address mapping module, this module may throw away valid virtual
* to physical mappings at almost any time. However, invalidations of
* mappings must be done as requested.
*
* In order to cope with hardware architectures which make virtual to
* physical map invalidates expensive, this module may delay invalidate
* reduced protection operations until such time as they are actually
* necessary. This module is given full information as to which processors
* are currently using which maps, and to when physical maps must be made
* correct.
*/
#include "opt_compat.h"
#include "opt_kstack_pages.h"
#include <sys/param.h>
#include <sys/kernel.h>
#include <sys/queue.h>
#include <sys/cpuset.h>
#include <sys/ktr.h>
#include <sys/lock.h>
#include <sys/msgbuf.h>
#include <sys/malloc.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/rwlock.h>
#include <sys/sched.h>
#include <sys/sysctl.h>
#include <sys/systm.h>
#include <sys/vmmeter.h>
#include <sys/kdb.h>
#include <dev/ofw/openfirm.h>
#include <vm/vm.h>
#include <vm/vm_param.h>
#include <vm/vm_kern.h>
#include <vm/vm_page.h>
#include <vm/vm_map.h>
#include <vm/vm_object.h>
#include <vm/vm_extern.h>
#include <vm/vm_pageout.h>
#include <vm/uma.h>
#include <machine/_inttypes.h>
#include <machine/cpu.h>
#include <machine/platform.h>
#include <machine/frame.h>
#include <machine/md_var.h>
#include <machine/psl.h>
#include <machine/bat.h>
#include <machine/hid.h>
#include <machine/pte.h>
#include <machine/sr.h>
#include <machine/trap.h>
#include <machine/mmuvar.h>
#include "mmu_oea64.h"
#include "mmu_if.h"
#include "moea64_if.h"
void moea64_release_vsid(uint64_t vsid);
uintptr_t moea64_get_unique_vsid(void);
#define DISABLE_TRANS(msr) msr = mfmsr(); mtmsr(msr & ~PSL_DR)
#define ENABLE_TRANS(msr) mtmsr(msr)
#define VSID_MAKE(sr, hash) ((sr) | (((hash) & 0xfffff) << 4))
#define VSID_TO_HASH(vsid) (((vsid) >> 4) & 0xfffff)
#define VSID_HASH_MASK 0x0000007fffffffffULL
/*
* Locking semantics:
* -- Read lock: if no modifications are being made to either the PVO lists
* or page table or if any modifications being made result in internal
* changes (e.g. wiring, protection) such that the existence of the PVOs
* is unchanged and they remain associated with the same pmap (in which
* case the changes should be protected by the pmap lock)
* -- Write lock: required if PTEs/PVOs are being inserted or removed.
*/
#define LOCK_TABLE_RD() rw_rlock(&moea64_table_lock)
#define UNLOCK_TABLE_RD() rw_runlock(&moea64_table_lock)
#define LOCK_TABLE_WR() rw_wlock(&moea64_table_lock)
#define UNLOCK_TABLE_WR() rw_wunlock(&moea64_table_lock)
struct ofw_map {
cell_t om_va;
cell_t om_len;
uint64_t om_pa;
cell_t om_mode;
};
extern unsigned char _etext[];
extern unsigned char _end[];
extern int dumpsys_minidump;
/*
* Map of physical memory regions.
*/
static struct mem_region *regions;
static struct mem_region *pregions;
static u_int phys_avail_count;
static int regions_sz, pregions_sz;
extern void bs_remap_earlyboot(void);
/*
* Lock for the pteg and pvo tables.
*/
struct rwlock moea64_table_lock;
struct mtx moea64_slb_mutex;
/*
* PTEG data.
*/
u_int moea64_pteg_count;
u_int moea64_pteg_mask;
/*
* PVO data.
*/
struct pvo_head *moea64_pvo_table; /* pvo entries by pteg index */
uma_zone_t moea64_upvo_zone; /* zone for pvo entries for unmanaged pages */
uma_zone_t moea64_mpvo_zone; /* zone for pvo entries for managed pages */
#define BPVO_POOL_SIZE 327680
static struct pvo_entry *moea64_bpvo_pool;
static int moea64_bpvo_pool_index = 0;
#define VSID_NBPW (sizeof(u_int32_t) * 8)
#ifdef __powerpc64__
#define NVSIDS (NPMAPS * 16)
#define VSID_HASHMASK 0xffffffffUL
#else
#define NVSIDS NPMAPS
#define VSID_HASHMASK 0xfffffUL
#endif
static u_int moea64_vsid_bitmap[NVSIDS / VSID_NBPW];
static boolean_t moea64_initialized = FALSE;
/*
* Statistics.
*/
u_int moea64_pte_valid = 0;
u_int moea64_pte_overflow = 0;
u_int moea64_pvo_entries = 0;
u_int moea64_pvo_enter_calls = 0;
u_int moea64_pvo_remove_calls = 0;
SYSCTL_INT(_machdep, OID_AUTO, moea64_pte_valid, CTLFLAG_RD,
&moea64_pte_valid, 0, "");
SYSCTL_INT(_machdep, OID_AUTO, moea64_pte_overflow, CTLFLAG_RD,
&moea64_pte_overflow, 0, "");
SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_entries, CTLFLAG_RD,
&moea64_pvo_entries, 0, "");
SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_enter_calls, CTLFLAG_RD,
&moea64_pvo_enter_calls, 0, "");
SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_remove_calls, CTLFLAG_RD,
&moea64_pvo_remove_calls, 0, "");
vm_offset_t moea64_scratchpage_va[2];
struct pvo_entry *moea64_scratchpage_pvo[2];
uintptr_t moea64_scratchpage_pte[2];
struct mtx moea64_scratchpage_mtx;
uint64_t moea64_large_page_mask = 0;
uint64_t moea64_large_page_size = 0;
int moea64_large_page_shift = 0;
/*
* PVO calls.
*/
static int moea64_pvo_enter(mmu_t, pmap_t, uma_zone_t, struct pvo_head *,
vm_offset_t, vm_offset_t, uint64_t, int, int8_t);
static void moea64_pvo_remove(mmu_t, struct pvo_entry *);
static struct pvo_entry *moea64_pvo_find_va(pmap_t, vm_offset_t);
/*
* Utility routines.
*/
static boolean_t moea64_query_bit(mmu_t, vm_page_t, u_int64_t);
static u_int moea64_clear_bit(mmu_t, vm_page_t, u_int64_t);
static void moea64_kremove(mmu_t, vm_offset_t);
static void moea64_syncicache(mmu_t, pmap_t pmap, vm_offset_t va,
vm_offset_t pa, vm_size_t sz);
/*
* Kernel MMU interface
*/
void moea64_clear_modify(mmu_t, vm_page_t);
void moea64_copy_page(mmu_t, vm_page_t, vm_page_t);
void moea64_copy_pages(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
vm_page_t *mb, vm_offset_t b_offset, int xfersize);
int moea64_enter(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t,
u_int flags, int8_t psind);
void moea64_enter_object(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_page_t,
vm_prot_t);
void moea64_enter_quick(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t);
vm_paddr_t moea64_extract(mmu_t, pmap_t, vm_offset_t);
vm_page_t moea64_extract_and_hold(mmu_t, pmap_t, vm_offset_t, vm_prot_t);
void moea64_init(mmu_t);
boolean_t moea64_is_modified(mmu_t, vm_page_t);
boolean_t moea64_is_prefaultable(mmu_t, pmap_t, vm_offset_t);
boolean_t moea64_is_referenced(mmu_t, vm_page_t);
int moea64_ts_referenced(mmu_t, vm_page_t);
vm_offset_t moea64_map(mmu_t, vm_offset_t *, vm_paddr_t, vm_paddr_t, int);
boolean_t moea64_page_exists_quick(mmu_t, pmap_t, vm_page_t);
int moea64_page_wired_mappings(mmu_t, vm_page_t);
void moea64_pinit(mmu_t, pmap_t);
void moea64_pinit0(mmu_t, pmap_t);
void moea64_protect(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_prot_t);
void moea64_qenter(mmu_t, vm_offset_t, vm_page_t *, int);
void moea64_qremove(mmu_t, vm_offset_t, int);
void moea64_release(mmu_t, pmap_t);
void moea64_remove(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
void moea64_remove_pages(mmu_t, pmap_t);
void moea64_remove_all(mmu_t, vm_page_t);
void moea64_remove_write(mmu_t, vm_page_t);
void moea64_unwire(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
void moea64_zero_page(mmu_t, vm_page_t);
void moea64_zero_page_area(mmu_t, vm_page_t, int, int);
void moea64_zero_page_idle(mmu_t, vm_page_t);
void moea64_activate(mmu_t, struct thread *);
void moea64_deactivate(mmu_t, struct thread *);
void *moea64_mapdev(mmu_t, vm_paddr_t, vm_size_t);
void *moea64_mapdev_attr(mmu_t, vm_offset_t, vm_size_t, vm_memattr_t);
void moea64_unmapdev(mmu_t, vm_offset_t, vm_size_t);
vm_paddr_t moea64_kextract(mmu_t, vm_offset_t);
void moea64_page_set_memattr(mmu_t, vm_page_t m, vm_memattr_t ma);
void moea64_kenter_attr(mmu_t, vm_offset_t, vm_offset_t, vm_memattr_t ma);
void moea64_kenter(mmu_t, vm_offset_t, vm_paddr_t);
boolean_t moea64_dev_direct_mapped(mmu_t, vm_paddr_t, vm_size_t);
static void moea64_sync_icache(mmu_t, pmap_t, vm_offset_t, vm_size_t);
vm_offset_t moea64_dumpsys_map(mmu_t mmu, struct pmap_md *md, vm_size_t ofs,
vm_size_t *sz);
struct pmap_md * moea64_scan_md(mmu_t mmu, struct pmap_md *prev);
static mmu_method_t moea64_methods[] = {
MMUMETHOD(mmu_clear_modify, moea64_clear_modify),
MMUMETHOD(mmu_copy_page, moea64_copy_page),
MMUMETHOD(mmu_copy_pages, moea64_copy_pages),
MMUMETHOD(mmu_enter, moea64_enter),
MMUMETHOD(mmu_enter_object, moea64_enter_object),
MMUMETHOD(mmu_enter_quick, moea64_enter_quick),
MMUMETHOD(mmu_extract, moea64_extract),
MMUMETHOD(mmu_extract_and_hold, moea64_extract_and_hold),
MMUMETHOD(mmu_init, moea64_init),
MMUMETHOD(mmu_is_modified, moea64_is_modified),
MMUMETHOD(mmu_is_prefaultable, moea64_is_prefaultable),
MMUMETHOD(mmu_is_referenced, moea64_is_referenced),
MMUMETHOD(mmu_ts_referenced, moea64_ts_referenced),
MMUMETHOD(mmu_map, moea64_map),
MMUMETHOD(mmu_page_exists_quick,moea64_page_exists_quick),
MMUMETHOD(mmu_page_wired_mappings,moea64_page_wired_mappings),
MMUMETHOD(mmu_pinit, moea64_pinit),
MMUMETHOD(mmu_pinit0, moea64_pinit0),
MMUMETHOD(mmu_protect, moea64_protect),
MMUMETHOD(mmu_qenter, moea64_qenter),
MMUMETHOD(mmu_qremove, moea64_qremove),
MMUMETHOD(mmu_release, moea64_release),
MMUMETHOD(mmu_remove, moea64_remove),
MMUMETHOD(mmu_remove_pages, moea64_remove_pages),
MMUMETHOD(mmu_remove_all, moea64_remove_all),
MMUMETHOD(mmu_remove_write, moea64_remove_write),
MMUMETHOD(mmu_sync_icache, moea64_sync_icache),
MMUMETHOD(mmu_unwire, moea64_unwire),
MMUMETHOD(mmu_zero_page, moea64_zero_page),
MMUMETHOD(mmu_zero_page_area, moea64_zero_page_area),
MMUMETHOD(mmu_zero_page_idle, moea64_zero_page_idle),
MMUMETHOD(mmu_activate, moea64_activate),
MMUMETHOD(mmu_deactivate, moea64_deactivate),
MMUMETHOD(mmu_page_set_memattr, moea64_page_set_memattr),
/* Internal interfaces */
MMUMETHOD(mmu_mapdev, moea64_mapdev),
MMUMETHOD(mmu_mapdev_attr, moea64_mapdev_attr),
MMUMETHOD(mmu_unmapdev, moea64_unmapdev),
MMUMETHOD(mmu_kextract, moea64_kextract),
MMUMETHOD(mmu_kenter, moea64_kenter),
MMUMETHOD(mmu_kenter_attr, moea64_kenter_attr),
MMUMETHOD(mmu_dev_direct_mapped,moea64_dev_direct_mapped),
MMUMETHOD(mmu_scan_md, moea64_scan_md),
MMUMETHOD(mmu_dumpsys_map, moea64_dumpsys_map),
{ 0, 0 }
};
MMU_DEF(oea64_mmu, "mmu_oea64_base", moea64_methods, 0);
static __inline u_int
va_to_pteg(uint64_t vsid, vm_offset_t addr, int large)
{
uint64_t hash;
int shift;
shift = large ? moea64_large_page_shift : ADDR_PIDX_SHFT;
hash = (vsid & VSID_HASH_MASK) ^ (((uint64_t)addr & ADDR_PIDX) >>
shift);
return (hash & moea64_pteg_mask);
}
static __inline struct pvo_head *
vm_page_to_pvoh(vm_page_t m)
{
return (&m->md.mdpg_pvoh);
}
static __inline void
moea64_pte_create(struct lpte *pt, uint64_t vsid, vm_offset_t va,
uint64_t pte_lo, int flags)
{
/*
* Construct a PTE. Default to IMB initially. Valid bit only gets
* set when the real pte is set in memory.
*
* Note: Don't set the valid bit for correct operation of tlb update.
*/
pt->pte_hi = (vsid << LPTE_VSID_SHIFT) |
(((uint64_t)(va & ADDR_PIDX) >> ADDR_API_SHFT64) & LPTE_API);
if (flags & PVO_LARGE)
pt->pte_hi |= LPTE_BIG;
pt->pte_lo = pte_lo;
}
static __inline uint64_t
moea64_calc_wimg(vm_offset_t pa, vm_memattr_t ma)
{
uint64_t pte_lo;
int i;
if (ma != VM_MEMATTR_DEFAULT) {
switch (ma) {
case VM_MEMATTR_UNCACHEABLE:
return (LPTE_I | LPTE_G);
case VM_MEMATTR_WRITE_COMBINING:
case VM_MEMATTR_WRITE_BACK:
case VM_MEMATTR_PREFETCHABLE:
return (LPTE_I);
case VM_MEMATTR_WRITE_THROUGH:
return (LPTE_W | LPTE_M);
}
}
/*
* Assume the page is cache inhibited and access is guarded unless
* it's in our available memory array.
*/
pte_lo = LPTE_I | LPTE_G;
for (i = 0; i < pregions_sz; i++) {
if ((pa >= pregions[i].mr_start) &&
(pa < (pregions[i].mr_start + pregions[i].mr_size))) {
pte_lo &= ~(LPTE_I | LPTE_G);
pte_lo |= LPTE_M;
break;
}
}
return pte_lo;
}
/*
* Quick sort callout for comparing memory regions.
*/
static int om_cmp(const void *a, const void *b);
static int
om_cmp(const void *a, const void *b)
{
const struct ofw_map *mapa;
const struct ofw_map *mapb;
mapa = a;
mapb = b;
if (mapa->om_pa < mapb->om_pa)
return (-1);
else if (mapa->om_pa > mapb->om_pa)
return (1);
else
return (0);
}
static void
moea64_add_ofw_mappings(mmu_t mmup, phandle_t mmu, size_t sz)
{
struct ofw_map translations[sz/(4*sizeof(cell_t))]; /*>= 4 cells per */
pcell_t acells, trans_cells[sz/sizeof(cell_t)];
register_t msr;
vm_offset_t off;
vm_paddr_t pa_base;
int i, j;
bzero(translations, sz);
OF_getprop(OF_finddevice("/"), "#address-cells", &acells,
sizeof(acells));
if (OF_getprop(mmu, "translations", trans_cells, sz) == -1)
panic("moea64_bootstrap: can't get ofw translations");
CTR0(KTR_PMAP, "moea64_add_ofw_mappings: translations");
sz /= sizeof(cell_t);
for (i = 0, j = 0; i < sz; j++) {
translations[j].om_va = trans_cells[i++];
translations[j].om_len = trans_cells[i++];
translations[j].om_pa = trans_cells[i++];
if (acells == 2) {
translations[j].om_pa <<= 32;
translations[j].om_pa |= trans_cells[i++];
}
translations[j].om_mode = trans_cells[i++];
}
KASSERT(i == sz, ("Translations map has incorrect cell count (%d/%zd)",
i, sz));
sz = j;
qsort(translations, sz, sizeof (*translations), om_cmp);
for (i = 0; i < sz; i++) {
pa_base = translations[i].om_pa;
#ifndef __powerpc64__
if ((translations[i].om_pa >> 32) != 0)
panic("OFW translations above 32-bit boundary!");
#endif
if (pa_base % PAGE_SIZE)
panic("OFW translation not page-aligned (phys)!");
if (translations[i].om_va % PAGE_SIZE)
panic("OFW translation not page-aligned (virt)!");
CTR3(KTR_PMAP, "translation: pa=%#zx va=%#x len=%#x",
pa_base, translations[i].om_va, translations[i].om_len);
/* Now enter the pages for this mapping */
DISABLE_TRANS(msr);
for (off = 0; off < translations[i].om_len; off += PAGE_SIZE) {
if (moea64_pvo_find_va(kernel_pmap,
translations[i].om_va + off) != NULL)
continue;
moea64_kenter(mmup, translations[i].om_va + off,
pa_base + off);
}
ENABLE_TRANS(msr);
}
}
#ifdef __powerpc64__
static void
moea64_probe_large_page(void)
{
uint16_t pvr = mfpvr() >> 16;
switch (pvr) {
case IBM970:
case IBM970FX:
case IBM970MP:
powerpc_sync(); isync();
mtspr(SPR_HID4, mfspr(SPR_HID4) & ~HID4_970_DISABLE_LG_PG);
powerpc_sync(); isync();
/* FALLTHROUGH */
default:
moea64_large_page_size = 0x1000000; /* 16 MB */
moea64_large_page_shift = 24;
}
moea64_large_page_mask = moea64_large_page_size - 1;
}
static void
moea64_bootstrap_slb_prefault(vm_offset_t va, int large)
{
struct slb *cache;
struct slb entry;
uint64_t esid, slbe;
uint64_t i;
cache = PCPU_GET(slb);
esid = va >> ADDR_SR_SHFT;
slbe = (esid << SLBE_ESID_SHIFT) | SLBE_VALID;
for (i = 0; i < 64; i++) {
if (cache[i].slbe == (slbe | i))
return;
}
entry.slbe = slbe;
entry.slbv = KERNEL_VSID(esid) << SLBV_VSID_SHIFT;
if (large)
entry.slbv |= SLBV_L;
slb_insert_kernel(entry.slbe, entry.slbv);
}
#endif
static void
moea64_setup_direct_map(mmu_t mmup, vm_offset_t kernelstart,
vm_offset_t kernelend)
{
register_t msr;
vm_paddr_t pa;
vm_offset_t size, off;
uint64_t pte_lo;
int i;
if (moea64_large_page_size == 0)
hw_direct_map = 0;
DISABLE_TRANS(msr);
if (hw_direct_map) {
LOCK_TABLE_WR();
PMAP_LOCK(kernel_pmap);
for (i = 0; i < pregions_sz; i++) {
for (pa = pregions[i].mr_start; pa < pregions[i].mr_start +
pregions[i].mr_size; pa += moea64_large_page_size) {
pte_lo = LPTE_M;
/*
* Set memory access as guarded if prefetch within
* the page could exit the available physmem area.
*/
if (pa & moea64_large_page_mask) {
pa &= moea64_large_page_mask;
pte_lo |= LPTE_G;
}
if (pa + moea64_large_page_size >
pregions[i].mr_start + pregions[i].mr_size)
pte_lo |= LPTE_G;
moea64_pvo_enter(mmup, kernel_pmap, moea64_upvo_zone,
NULL, pa, pa, pte_lo,
PVO_WIRED | PVO_LARGE, 0);
}
}
PMAP_UNLOCK(kernel_pmap);
UNLOCK_TABLE_WR();
} else {
size = sizeof(struct pvo_head) * moea64_pteg_count;
off = (vm_offset_t)(moea64_pvo_table);
for (pa = off; pa < off + size; pa += PAGE_SIZE)
moea64_kenter(mmup, pa, pa);
size = BPVO_POOL_SIZE*sizeof(struct pvo_entry);
off = (vm_offset_t)(moea64_bpvo_pool);
for (pa = off; pa < off + size; pa += PAGE_SIZE)
moea64_kenter(mmup, pa, pa);
/*
* Map certain important things, like ourselves.
*
* NOTE: We do not map the exception vector space. That code is
* used only in real mode, and leaving it unmapped allows us to
* catch NULL pointer deferences, instead of making NULL a valid
* address.
*/
for (pa = kernelstart & ~PAGE_MASK; pa < kernelend;
pa += PAGE_SIZE)
moea64_kenter(mmup, pa, pa);
}
ENABLE_TRANS(msr);
/*
* Allow user to override unmapped_buf_allowed for testing.
* XXXKIB Only direct map implementation was tested.
*/
if (!TUNABLE_INT_FETCH("vfs.unmapped_buf_allowed",
&unmapped_buf_allowed))
unmapped_buf_allowed = hw_direct_map;
}
void
moea64_early_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
{
int i, j;
vm_size_t physsz, hwphyssz;
#ifndef __powerpc64__
/* We don't have a direct map since there is no BAT */
hw_direct_map = 0;
/* Make sure battable is zero, since we have no BAT */
for (i = 0; i < 16; i++) {
battable[i].batu = 0;
battable[i].batl = 0;
}
#else
moea64_probe_large_page();
/* Use a direct map if we have large page support */
if (moea64_large_page_size > 0)
hw_direct_map = 1;
else
hw_direct_map = 0;
#endif
/* Get physical memory regions from firmware */
mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
CTR0(KTR_PMAP, "moea64_bootstrap: physical memory");
if (sizeof(phys_avail)/sizeof(phys_avail[0]) < regions_sz)
panic("moea64_bootstrap: phys_avail too small");
phys_avail_count = 0;
physsz = 0;
hwphyssz = 0;
TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
for (i = 0, j = 0; i < regions_sz; i++, j += 2) {
CTR3(KTR_PMAP, "region: %#zx - %#zx (%#zx)",
regions[i].mr_start, regions[i].mr_start +
regions[i].mr_size, regions[i].mr_size);
if (hwphyssz != 0 &&
(physsz + regions[i].mr_size) >= hwphyssz) {
if (physsz < hwphyssz) {
phys_avail[j] = regions[i].mr_start;
phys_avail[j + 1] = regions[i].mr_start +
hwphyssz - physsz;
physsz = hwphyssz;
phys_avail_count++;
}
break;
}
phys_avail[j] = regions[i].mr_start;
phys_avail[j + 1] = regions[i].mr_start + regions[i].mr_size;
phys_avail_count++;
physsz += regions[i].mr_size;
}
/* Check for overlap with the kernel and exception vectors */
for (j = 0; j < 2*phys_avail_count; j+=2) {
if (phys_avail[j] < EXC_LAST)
phys_avail[j] += EXC_LAST;
if (kernelstart >= phys_avail[j] &&
kernelstart < phys_avail[j+1]) {
if (kernelend < phys_avail[j+1]) {
phys_avail[2*phys_avail_count] =
(kernelend & ~PAGE_MASK) + PAGE_SIZE;
phys_avail[2*phys_avail_count + 1] =
phys_avail[j+1];
phys_avail_count++;
}
phys_avail[j+1] = kernelstart & ~PAGE_MASK;
}
if (kernelend >= phys_avail[j] &&
kernelend < phys_avail[j+1]) {
if (kernelstart > phys_avail[j]) {
phys_avail[2*phys_avail_count] = phys_avail[j];
phys_avail[2*phys_avail_count + 1] =
kernelstart & ~PAGE_MASK;
phys_avail_count++;
}
phys_avail[j] = (kernelend & ~PAGE_MASK) + PAGE_SIZE;
}
}
physmem = btoc(physsz);
#ifdef PTEGCOUNT
moea64_pteg_count = PTEGCOUNT;
#else
moea64_pteg_count = 0x1000;
while (moea64_pteg_count < physmem)
moea64_pteg_count <<= 1;
moea64_pteg_count >>= 1;
#endif /* PTEGCOUNT */
}
void
moea64_mid_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
{
vm_size_t size;
register_t msr;
int i;
/*
* Set PTEG mask
*/
moea64_pteg_mask = moea64_pteg_count - 1;
/*
* Allocate pv/overflow lists.
*/
size = sizeof(struct pvo_head) * moea64_pteg_count;
moea64_pvo_table = (struct pvo_head *)moea64_bootstrap_alloc(size,
PAGE_SIZE);
CTR1(KTR_PMAP, "moea64_bootstrap: PVO table at %p", moea64_pvo_table);
DISABLE_TRANS(msr);
for (i = 0; i < moea64_pteg_count; i++)
LIST_INIT(&moea64_pvo_table[i]);
ENABLE_TRANS(msr);
/*
* Initialize the lock that synchronizes access to the pteg and pvo
* tables.
*/
rw_init_flags(&moea64_table_lock, "pmap tables", RW_RECURSE);
mtx_init(&moea64_slb_mutex, "SLB table", NULL, MTX_DEF);
/*
* Initialise the unmanaged pvo pool.
*/
moea64_bpvo_pool = (struct pvo_entry *)moea64_bootstrap_alloc(
BPVO_POOL_SIZE*sizeof(struct pvo_entry), 0);
moea64_bpvo_pool_index = 0;
/*
* Make sure kernel vsid is allocated as well as VSID 0.
*/
#ifndef __powerpc64__
moea64_vsid_bitmap[(KERNEL_VSIDBITS & (NVSIDS - 1)) / VSID_NBPW]
|= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
moea64_vsid_bitmap[0] |= 1;
#endif
/*
* Initialize the kernel pmap (which is statically allocated).
*/
#ifdef __powerpc64__
for (i = 0; i < 64; i++) {
pcpup->pc_slb[i].slbv = 0;
pcpup->pc_slb[i].slbe = 0;
}
#else
for (i = 0; i < 16; i++)
kernel_pmap->pm_sr[i] = EMPTY_SEGMENT + i;
#endif
kernel_pmap->pmap_phys = kernel_pmap;
CPU_FILL(&kernel_pmap->pm_active);
RB_INIT(&kernel_pmap->pmap_pvo);
PMAP_LOCK_INIT(kernel_pmap);
/*
* Now map in all the other buffers we allocated earlier
*/
moea64_setup_direct_map(mmup, kernelstart, kernelend);
}
void
moea64_late_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
{
ihandle_t mmui;
phandle_t chosen;
phandle_t mmu;
size_t sz;
int i;
vm_offset_t pa, va;
void *dpcpu;
/*
* Set up the Open Firmware pmap and add its mappings if not in real
* mode.
*/
chosen = OF_finddevice("/chosen");
if (chosen != -1 && OF_getprop(chosen, "mmu", &mmui, 4) != -1) {
mmu = OF_instance_to_package(mmui);
if (mmu == -1 || (sz = OF_getproplen(mmu, "translations")) == -1)
sz = 0;
if (sz > 6144 /* tmpstksz - 2 KB headroom */)
panic("moea64_bootstrap: too many ofw translations");
if (sz > 0)
moea64_add_ofw_mappings(mmup, mmu, sz);
}
/*
* Calculate the last available physical address.
*/
for (i = 0; phys_avail[i + 2] != 0; i += 2)
;
Maxmem = powerpc_btop(phys_avail[i + 1]);
/*
* Initialize MMU and remap early physical mappings
*/
MMU_CPU_BOOTSTRAP(mmup,0);
mtmsr(mfmsr() | PSL_DR | PSL_IR);
pmap_bootstrapped++;
bs_remap_earlyboot();
/*
* Set the start and end of kva.
*/
virtual_avail = VM_MIN_KERNEL_ADDRESS;
virtual_end = VM_MAX_SAFE_KERNEL_ADDRESS;
/*
* Map the entire KVA range into the SLB. We must not fault there.
*/
#ifdef __powerpc64__
for (va = virtual_avail; va < virtual_end; va += SEGMENT_LENGTH)
moea64_bootstrap_slb_prefault(va, 0);
#endif
/*
* Figure out how far we can extend virtual_end into segment 16
* without running into existing mappings. Segment 16 is guaranteed
* to contain neither RAM nor devices (at least on Apple hardware),
* but will generally contain some OFW mappings we should not
* step on.
*/
#ifndef __powerpc64__ /* KVA is in high memory on PPC64 */
PMAP_LOCK(kernel_pmap);
while (virtual_end < VM_MAX_KERNEL_ADDRESS &&
moea64_pvo_find_va(kernel_pmap, virtual_end+1) == NULL)
virtual_end += PAGE_SIZE;
PMAP_UNLOCK(kernel_pmap);
#endif
/*
* Allocate a kernel stack with a guard page for thread0 and map it
* into the kernel page map.
*/
pa = moea64_bootstrap_alloc(KSTACK_PAGES * PAGE_SIZE, PAGE_SIZE);
va = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
virtual_avail = va + KSTACK_PAGES * PAGE_SIZE;
CTR2(KTR_PMAP, "moea64_bootstrap: kstack0 at %#x (%#x)", pa, va);
thread0.td_kstack = va;
thread0.td_kstack_pages = KSTACK_PAGES;
for (i = 0; i < KSTACK_PAGES; i++) {
moea64_kenter(mmup, va, pa);
pa += PAGE_SIZE;
va += PAGE_SIZE;
}
/*
* Allocate virtual address space for the message buffer.
*/
pa = msgbuf_phys = moea64_bootstrap_alloc(msgbufsize, PAGE_SIZE);
msgbufp = (struct msgbuf *)virtual_avail;
va = virtual_avail;
virtual_avail += round_page(msgbufsize);
while (va < virtual_avail) {
moea64_kenter(mmup, va, pa);
pa += PAGE_SIZE;
va += PAGE_SIZE;
}
/*
* Allocate virtual address space for the dynamic percpu area.
*/
pa = moea64_bootstrap_alloc(DPCPU_SIZE, PAGE_SIZE);
dpcpu = (void *)virtual_avail;
va = virtual_avail;
virtual_avail += DPCPU_SIZE;
while (va < virtual_avail) {
moea64_kenter(mmup, va, pa);
pa += PAGE_SIZE;
va += PAGE_SIZE;
}
dpcpu_init(dpcpu, 0);
/*
* Allocate some things for page zeroing. We put this directly
* in the page table, marked with LPTE_LOCKED, to avoid any
* of the PVO book-keeping or other parts of the VM system
* from even knowing that this hack exists.
*/
if (!hw_direct_map) {
mtx_init(&moea64_scratchpage_mtx, "pvo zero page", NULL,
MTX_DEF);
for (i = 0; i < 2; i++) {
moea64_scratchpage_va[i] = (virtual_end+1) - PAGE_SIZE;
virtual_end -= PAGE_SIZE;
moea64_kenter(mmup, moea64_scratchpage_va[i], 0);
moea64_scratchpage_pvo[i] = moea64_pvo_find_va(
kernel_pmap, (vm_offset_t)moea64_scratchpage_va[i]);
LOCK_TABLE_RD();
moea64_scratchpage_pte[i] = MOEA64_PVO_TO_PTE(
mmup, moea64_scratchpage_pvo[i]);
moea64_scratchpage_pvo[i]->pvo_pte.lpte.pte_hi
|= LPTE_LOCKED;
MOEA64_PTE_CHANGE(mmup, moea64_scratchpage_pte[i],
&moea64_scratchpage_pvo[i]->pvo_pte.lpte,
moea64_scratchpage_pvo[i]->pvo_vpn);
UNLOCK_TABLE_RD();
}
}
}
/*
* Activate a user pmap. The pmap must be activated before its address
* space can be accessed in any way.
*/
void
moea64_activate(mmu_t mmu, struct thread *td)
{
pmap_t pm;
pm = &td->td_proc->p_vmspace->vm_pmap;
CPU_SET(PCPU_GET(cpuid), &pm->pm_active);
#ifdef __powerpc64__
PCPU_SET(userslb, pm->pm_slb);
#else
PCPU_SET(curpmap, pm->pmap_phys);
#endif
}
void
moea64_deactivate(mmu_t mmu, struct thread *td)
{
pmap_t pm;
pm = &td->td_proc->p_vmspace->vm_pmap;
CPU_CLR(PCPU_GET(cpuid), &pm->pm_active);
#ifdef __powerpc64__
PCPU_SET(userslb, NULL);
#else
PCPU_SET(curpmap, NULL);
#endif
}
void
moea64_unwire(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva)
{
struct pvo_entry key, *pvo;
uintptr_t pt;
LOCK_TABLE_RD();
PMAP_LOCK(pm);
key.pvo_vaddr = sva;
for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
pvo != NULL && PVO_VADDR(pvo) < eva;
pvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo)) {
pt = MOEA64_PVO_TO_PTE(mmu, pvo);
if ((pvo->pvo_vaddr & PVO_WIRED) == 0)
panic("moea64_unwire: pvo %p is missing PVO_WIRED",
pvo);
pvo->pvo_vaddr &= ~PVO_WIRED;
if ((pvo->pvo_pte.lpte.pte_hi & LPTE_WIRED) == 0)
panic("moea64_unwire: pte %p is missing LPTE_WIRED",
&pvo->pvo_pte.lpte);
pvo->pvo_pte.lpte.pte_hi &= ~LPTE_WIRED;
if (pt != -1) {
/*
* The PTE's wired attribute is not a hardware
* feature, so there is no need to invalidate any TLB
* entries.
*/
MOEA64_PTE_CHANGE(mmu, pt, &pvo->pvo_pte.lpte,
pvo->pvo_vpn);
}
pm->pm_stats.wired_count--;
}
UNLOCK_TABLE_RD();
PMAP_UNLOCK(pm);
}
/*
* This goes through and sets the physical address of our
* special scratch PTE to the PA we want to zero or copy. Because
* of locking issues (this can get called in pvo_enter() by
* the UMA allocator), we can't use most other utility functions here
*/
static __inline
void moea64_set_scratchpage_pa(mmu_t mmup, int which, vm_offset_t pa) {
KASSERT(!hw_direct_map, ("Using OEA64 scratchpage with a direct map!"));
mtx_assert(&moea64_scratchpage_mtx, MA_OWNED);
moea64_scratchpage_pvo[which]->pvo_pte.lpte.pte_lo &=
~(LPTE_WIMG | LPTE_RPGN);
moea64_scratchpage_pvo[which]->pvo_pte.lpte.pte_lo |=
moea64_calc_wimg(pa, VM_MEMATTR_DEFAULT) | (uint64_t)pa;
MOEA64_PTE_CHANGE(mmup, moea64_scratchpage_pte[which],
&moea64_scratchpage_pvo[which]->pvo_pte.lpte,
moea64_scratchpage_pvo[which]->pvo_vpn);
isync();
}
void
moea64_copy_page(mmu_t mmu, vm_page_t msrc, vm_page_t mdst)
{
vm_offset_t dst;
vm_offset_t src;
dst = VM_PAGE_TO_PHYS(mdst);
src = VM_PAGE_TO_PHYS(msrc);
if (hw_direct_map) {
bcopy((void *)src, (void *)dst, PAGE_SIZE);
} else {
mtx_lock(&moea64_scratchpage_mtx);
moea64_set_scratchpage_pa(mmu, 0, src);
moea64_set_scratchpage_pa(mmu, 1, dst);
bcopy((void *)moea64_scratchpage_va[0],
(void *)moea64_scratchpage_va[1], PAGE_SIZE);
mtx_unlock(&moea64_scratchpage_mtx);
}
}
static inline void
moea64_copy_pages_dmap(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
vm_page_t *mb, vm_offset_t b_offset, int xfersize)
{
void *a_cp, *b_cp;
vm_offset_t a_pg_offset, b_pg_offset;
int cnt;
while (xfersize > 0) {
a_pg_offset = a_offset & PAGE_MASK;
cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
a_cp = (char *)VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT]) +
a_pg_offset;
b_pg_offset = b_offset & PAGE_MASK;
cnt = min(cnt, PAGE_SIZE - b_pg_offset);
b_cp = (char *)VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT]) +
b_pg_offset;
bcopy(a_cp, b_cp, cnt);
a_offset += cnt;
b_offset += cnt;
xfersize -= cnt;
}
}
static inline void
moea64_copy_pages_nodmap(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
vm_page_t *mb, vm_offset_t b_offset, int xfersize)
{
void *a_cp, *b_cp;
vm_offset_t a_pg_offset, b_pg_offset;
int cnt;
mtx_lock(&moea64_scratchpage_mtx);
while (xfersize > 0) {
a_pg_offset = a_offset & PAGE_MASK;
cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
moea64_set_scratchpage_pa(mmu, 0,
VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT]));
a_cp = (char *)moea64_scratchpage_va[0] + a_pg_offset;
b_pg_offset = b_offset & PAGE_MASK;
cnt = min(cnt, PAGE_SIZE - b_pg_offset);
moea64_set_scratchpage_pa(mmu, 1,
VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT]));
b_cp = (char *)moea64_scratchpage_va[1] + b_pg_offset;
bcopy(a_cp, b_cp, cnt);
a_offset += cnt;
b_offset += cnt;
xfersize -= cnt;
}
mtx_unlock(&moea64_scratchpage_mtx);
}
void
moea64_copy_pages(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
vm_page_t *mb, vm_offset_t b_offset, int xfersize)
{
if (hw_direct_map) {
moea64_copy_pages_dmap(mmu, ma, a_offset, mb, b_offset,
xfersize);
} else {
moea64_copy_pages_nodmap(mmu, ma, a_offset, mb, b_offset,
xfersize);
}
}
void
moea64_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size)
{
vm_offset_t pa = VM_PAGE_TO_PHYS(m);
if (size + off > PAGE_SIZE)
panic("moea64_zero_page: size + off > PAGE_SIZE");
if (hw_direct_map) {
bzero((caddr_t)pa + off, size);
} else {
mtx_lock(&moea64_scratchpage_mtx);
moea64_set_scratchpage_pa(mmu, 0, pa);
bzero((caddr_t)moea64_scratchpage_va[0] + off, size);
mtx_unlock(&moea64_scratchpage_mtx);
}
}
/*
* Zero a page of physical memory by temporarily mapping it
*/
void
moea64_zero_page(mmu_t mmu, vm_page_t m)
{
vm_offset_t pa = VM_PAGE_TO_PHYS(m);
vm_offset_t va, off;
if (!hw_direct_map) {
mtx_lock(&moea64_scratchpage_mtx);
moea64_set_scratchpage_pa(mmu, 0, pa);
va = moea64_scratchpage_va[0];
} else {
va = pa;
}
for (off = 0; off < PAGE_SIZE; off += cacheline_size)
__asm __volatile("dcbz 0,%0" :: "r"(va + off));
if (!hw_direct_map)
mtx_unlock(&moea64_scratchpage_mtx);
}
void
moea64_zero_page_idle(mmu_t mmu, vm_page_t m)
{
moea64_zero_page(mmu, m);
}
/*
* Map the given physical page at the specified virtual address in the
* target pmap with the protection requested. If specified the page
* will be wired down.
*/
int
moea64_enter(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
vm_prot_t prot, u_int flags, int8_t psind)
{
struct pvo_head *pvo_head;
uma_zone_t zone;
uint64_t pte_lo;
u_int pvo_flags;
int error;
if ((m->oflags & VPO_UNMANAGED) == 0 && !vm_page_xbusied(m))
VM_OBJECT_ASSERT_LOCKED(m->object);
if ((m->oflags & VPO_UNMANAGED) != 0 || !moea64_initialized) {
pvo_head = NULL;
zone = moea64_upvo_zone;
pvo_flags = 0;
} else {
pvo_head = vm_page_to_pvoh(m);
zone = moea64_mpvo_zone;
pvo_flags = PVO_MANAGED;
}
pte_lo = moea64_calc_wimg(VM_PAGE_TO_PHYS(m), pmap_page_get_memattr(m));
if (prot & VM_PROT_WRITE) {
pte_lo |= LPTE_BW;
if (pmap_bootstrapped &&
(m->oflags & VPO_UNMANAGED) == 0)
vm_page_aflag_set(m, PGA_WRITEABLE);
} else
pte_lo |= LPTE_BR;
if ((prot & VM_PROT_EXECUTE) == 0)
pte_lo |= LPTE_NOEXEC;
if ((flags & PMAP_ENTER_WIRED) != 0)
pvo_flags |= PVO_WIRED;
for (;;) {
LOCK_TABLE_WR();
PMAP_LOCK(pmap);
error = moea64_pvo_enter(mmu, pmap, zone, pvo_head, va,
VM_PAGE_TO_PHYS(m), pte_lo, pvo_flags, psind);
PMAP_UNLOCK(pmap);
UNLOCK_TABLE_WR();
if (error != ENOMEM)
break;
if ((flags & PMAP_ENTER_NOSLEEP) != 0)
return (KERN_RESOURCE_SHORTAGE);
VM_OBJECT_ASSERT_UNLOCKED(m->object);
VM_WAIT;
}
/*
* Flush the page from the instruction cache if this page is
* mapped executable and cacheable.
*/
if (pmap != kernel_pmap && !(m->aflags & PGA_EXECUTABLE) &&
(pte_lo & (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0) {
vm_page_aflag_set(m, PGA_EXECUTABLE);
moea64_syncicache(mmu, pmap, va, VM_PAGE_TO_PHYS(m), PAGE_SIZE);
}
return (KERN_SUCCESS);
}
static void
moea64_syncicache(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_offset_t pa,
vm_size_t sz)
{
/*
* This is much trickier than on older systems because
* we can't sync the icache on physical addresses directly
* without a direct map. Instead we check a couple of cases
* where the memory is already mapped in and, failing that,
* use the same trick we use for page zeroing to create
* a temporary mapping for this physical address.
*/
if (!pmap_bootstrapped) {
/*
* If PMAP is not bootstrapped, we are likely to be
* in real mode.
*/
__syncicache((void *)pa, sz);
} else if (pmap == kernel_pmap) {
__syncicache((void *)va, sz);
} else if (hw_direct_map) {
__syncicache((void *)pa, sz);
} else {
/* Use the scratch page to set up a temp mapping */
mtx_lock(&moea64_scratchpage_mtx);
moea64_set_scratchpage_pa(mmu, 1, pa & ~ADDR_POFF);
__syncicache((void *)(moea64_scratchpage_va[1] +
(va & ADDR_POFF)), sz);
mtx_unlock(&moea64_scratchpage_mtx);
}
}
/*
* Maps a sequence of resident pages belonging to the same object.
* The sequence begins with the given page m_start. This page is
* mapped at the given virtual address start. Each subsequent page is
* mapped at a virtual address that is offset from start by the same
* amount as the page is offset from m_start within the object. The
* last page in the sequence is the page with the largest offset from
* m_start that can be mapped at a virtual address less than the given
* virtual address end. Not every virtual page between start and end
* is mapped; only those for which a resident page exists with the
* corresponding offset from m_start are mapped.
*/
void
moea64_enter_object(mmu_t mmu, pmap_t pm, vm_offset_t start, vm_offset_t end,
vm_page_t m_start, vm_prot_t prot)
{
vm_page_t m;
vm_pindex_t diff, psize;
VM_OBJECT_ASSERT_LOCKED(m_start->object);
psize = atop(end - start);
m = m_start;
while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
moea64_enter(mmu, pm, start + ptoa(diff), m, prot &
(VM_PROT_READ | VM_PROT_EXECUTE), PMAP_ENTER_NOSLEEP, 0);
m = TAILQ_NEXT(m, listq);
}
}
void
moea64_enter_quick(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_page_t m,
vm_prot_t prot)
{
moea64_enter(mmu, pm, va, m, prot & (VM_PROT_READ | VM_PROT_EXECUTE),
PMAP_ENTER_NOSLEEP, 0);
}
vm_paddr_t
moea64_extract(mmu_t mmu, pmap_t pm, vm_offset_t va)
{
struct pvo_entry *pvo;
vm_paddr_t pa;
PMAP_LOCK(pm);
pvo = moea64_pvo_find_va(pm, va);
if (pvo == NULL)
pa = 0;
else
pa = (pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) |
(va - PVO_VADDR(pvo));
PMAP_UNLOCK(pm);
return (pa);
}
/*
* Atomically extract and hold the physical page with the given
* pmap and virtual address pair if that mapping permits the given
* protection.
*/
vm_page_t
moea64_extract_and_hold(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_prot_t prot)
{
struct pvo_entry *pvo;
vm_page_t m;
vm_paddr_t pa;
m = NULL;
pa = 0;
PMAP_LOCK(pmap);
retry:
pvo = moea64_pvo_find_va(pmap, va & ~ADDR_POFF);
if (pvo != NULL && (pvo->pvo_pte.lpte.pte_hi & LPTE_VALID) &&
((pvo->pvo_pte.lpte.pte_lo & LPTE_PP) == LPTE_RW ||
(prot & VM_PROT_WRITE) == 0)) {
if (vm_page_pa_tryrelock(pmap,
pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN, &pa))
goto retry;
m = PHYS_TO_VM_PAGE(pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN);
vm_page_hold(m);
}
PA_UNLOCK_COND(pa);
PMAP_UNLOCK(pmap);
return (m);
}
static mmu_t installed_mmu;
static void *
moea64_uma_page_alloc(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
{
/*
* This entire routine is a horrible hack to avoid bothering kmem
* for new KVA addresses. Because this can get called from inside
* kmem allocation routines, calling kmem for a new address here
* can lead to multiply locking non-recursive mutexes.
*/
vm_offset_t va;
vm_page_t m;
int pflags, needed_lock;
*flags = UMA_SLAB_PRIV;
needed_lock = !PMAP_LOCKED(kernel_pmap);
pflags = malloc2vm_flags(wait) | VM_ALLOC_WIRED;
for (;;) {
m = vm_page_alloc(NULL, 0, pflags | VM_ALLOC_NOOBJ);
if (m == NULL) {
if (wait & M_NOWAIT)
return (NULL);
VM_WAIT;
} else
break;
}
va = VM_PAGE_TO_PHYS(m);
LOCK_TABLE_WR();
if (needed_lock)
PMAP_LOCK(kernel_pmap);
moea64_pvo_enter(installed_mmu, kernel_pmap, moea64_upvo_zone,
NULL, va, VM_PAGE_TO_PHYS(m), LPTE_M, PVO_WIRED | PVO_BOOTSTRAP,
0);
if (needed_lock)
PMAP_UNLOCK(kernel_pmap);
UNLOCK_TABLE_WR();
if ((wait & M_ZERO) && (m->flags & PG_ZERO) == 0)
bzero((void *)va, PAGE_SIZE);
return (void *)va;
}
extern int elf32_nxstack;
void
moea64_init(mmu_t mmu)
{
CTR0(KTR_PMAP, "moea64_init");
moea64_upvo_zone = uma_zcreate("UPVO entry", sizeof (struct pvo_entry),
NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
UMA_ZONE_VM | UMA_ZONE_NOFREE);
moea64_mpvo_zone = uma_zcreate("MPVO entry", sizeof(struct pvo_entry),
NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
UMA_ZONE_VM | UMA_ZONE_NOFREE);
if (!hw_direct_map) {
installed_mmu = mmu;
uma_zone_set_allocf(moea64_upvo_zone,moea64_uma_page_alloc);
uma_zone_set_allocf(moea64_mpvo_zone,moea64_uma_page_alloc);
}
#ifdef COMPAT_FREEBSD32
elf32_nxstack = 1;
#endif
moea64_initialized = TRUE;
}
boolean_t
moea64_is_referenced(mmu_t mmu, vm_page_t m)
{
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
("moea64_is_referenced: page %p is not managed", m));
return (moea64_query_bit(mmu, m, PTE_REF));
}
boolean_t
moea64_is_modified(mmu_t mmu, vm_page_t m)
{
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
("moea64_is_modified: page %p is not managed", m));
/*
* If the page is not exclusive busied, then PGA_WRITEABLE cannot be
* concurrently set while the object is locked. Thus, if PGA_WRITEABLE
* is clear, no PTEs can have LPTE_CHG set.
*/
VM_OBJECT_ASSERT_LOCKED(m->object);
if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
return (FALSE);
return (moea64_query_bit(mmu, m, LPTE_CHG));
}
boolean_t
moea64_is_prefaultable(mmu_t mmu, pmap_t pmap, vm_offset_t va)
{
struct pvo_entry *pvo;
boolean_t rv;
PMAP_LOCK(pmap);
pvo = moea64_pvo_find_va(pmap, va & ~ADDR_POFF);
rv = pvo == NULL || (pvo->pvo_pte.lpte.pte_hi & LPTE_VALID) == 0;
PMAP_UNLOCK(pmap);
return (rv);
}
void
moea64_clear_modify(mmu_t mmu, vm_page_t m)
{
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
("moea64_clear_modify: page %p is not managed", m));
VM_OBJECT_ASSERT_WLOCKED(m->object);
KASSERT(!vm_page_xbusied(m),
("moea64_clear_modify: page %p is exclusive busied", m));
/*
* If the page is not PGA_WRITEABLE, then no PTEs can have LPTE_CHG
* set. If the object containing the page is locked and the page is
* not exclusive busied, then PGA_WRITEABLE cannot be concurrently set.
*/
if ((m->aflags & PGA_WRITEABLE) == 0)
return;
moea64_clear_bit(mmu, m, LPTE_CHG);
}
/*
* Clear the write and modified bits in each of the given page's mappings.
*/
void
moea64_remove_write(mmu_t mmu, vm_page_t m)
{
struct pvo_entry *pvo;
uintptr_t pt;
pmap_t pmap;
uint64_t lo = 0;
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
("moea64_remove_write: page %p is not managed", m));
/*
* If the page is not exclusive busied, then PGA_WRITEABLE cannot be
* set by another thread while the object is locked. Thus,
* if PGA_WRITEABLE is clear, no page table entries need updating.
*/
VM_OBJECT_ASSERT_WLOCKED(m->object);
if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
return;
powerpc_sync();
LOCK_TABLE_RD();
LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
pmap = pvo->pvo_pmap;
PMAP_LOCK(pmap);
if ((pvo->pvo_pte.lpte.pte_lo & LPTE_PP) != LPTE_BR) {
pt = MOEA64_PVO_TO_PTE(mmu, pvo);
pvo->pvo_pte.lpte.pte_lo &= ~LPTE_PP;
pvo->pvo_pte.lpte.pte_lo |= LPTE_BR;
if (pt != -1) {
MOEA64_PTE_SYNCH(mmu, pt, &pvo->pvo_pte.lpte);
lo |= pvo->pvo_pte.lpte.pte_lo;
pvo->pvo_pte.lpte.pte_lo &= ~LPTE_CHG;
MOEA64_PTE_CHANGE(mmu, pt,
&pvo->pvo_pte.lpte, pvo->pvo_vpn);
if (pvo->pvo_pmap == kernel_pmap)
isync();
}
}
if ((lo & LPTE_CHG) != 0)
vm_page_dirty(m);
PMAP_UNLOCK(pmap);
}
UNLOCK_TABLE_RD();
vm_page_aflag_clear(m, PGA_WRITEABLE);
}
/*
* moea64_ts_referenced:
*
* Return a count of reference bits for a page, clearing those bits.
* It is not necessary for every reference bit to be cleared, but it
* is necessary that 0 only be returned when there are truly no
* reference bits set.
*
* XXX: The exact number of bits to check and clear is a matter that
* should be tested and standardized at some point in the future for
* optimal aging of shared pages.
*/
int
moea64_ts_referenced(mmu_t mmu, vm_page_t m)
{
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
("moea64_ts_referenced: page %p is not managed", m));
return (moea64_clear_bit(mmu, m, LPTE_REF));
}
/*
* Modify the WIMG settings of all mappings for a page.
*/
void
moea64_page_set_memattr(mmu_t mmu, vm_page_t m, vm_memattr_t ma)
{
struct pvo_entry *pvo;
struct pvo_head *pvo_head;
uintptr_t pt;
pmap_t pmap;
uint64_t lo;
if ((m->oflags & VPO_UNMANAGED) != 0) {
m->md.mdpg_cache_attrs = ma;
return;
}
pvo_head = vm_page_to_pvoh(m);
lo = moea64_calc_wimg(VM_PAGE_TO_PHYS(m), ma);
LOCK_TABLE_RD();
LIST_FOREACH(pvo, pvo_head, pvo_vlink) {
pmap = pvo->pvo_pmap;
PMAP_LOCK(pmap);
pt = MOEA64_PVO_TO_PTE(mmu, pvo);
pvo->pvo_pte.lpte.pte_lo &= ~LPTE_WIMG;
pvo->pvo_pte.lpte.pte_lo |= lo;
if (pt != -1) {
MOEA64_PTE_CHANGE(mmu, pt, &pvo->pvo_pte.lpte,
pvo->pvo_vpn);
if (pvo->pvo_pmap == kernel_pmap)
isync();
}
PMAP_UNLOCK(pmap);
}
UNLOCK_TABLE_RD();
m->md.mdpg_cache_attrs = ma;
}
/*
* Map a wired page into kernel virtual address space.
*/
void
moea64_kenter_attr(mmu_t mmu, vm_offset_t va, vm_offset_t pa, vm_memattr_t ma)
{
uint64_t pte_lo;
int error;
pte_lo = moea64_calc_wimg(pa, ma);
LOCK_TABLE_WR();
PMAP_LOCK(kernel_pmap);
error = moea64_pvo_enter(mmu, kernel_pmap, moea64_upvo_zone,
NULL, va, pa, pte_lo, PVO_WIRED, 0);
PMAP_UNLOCK(kernel_pmap);
UNLOCK_TABLE_WR();
if (error != 0 && error != ENOENT)
panic("moea64_kenter: failed to enter va %#zx pa %#zx: %d", va,
pa, error);
}
void
moea64_kenter(mmu_t mmu, vm_offset_t va, vm_paddr_t pa)
{
moea64_kenter_attr(mmu, va, pa, VM_MEMATTR_DEFAULT);
}
/*
* Extract the physical page address associated with the given kernel virtual
* address.
*/
vm_paddr_t
moea64_kextract(mmu_t mmu, vm_offset_t va)
{
struct pvo_entry *pvo;
vm_paddr_t pa;
/*
* Shortcut the direct-mapped case when applicable. We never put
* anything but 1:1 mappings below VM_MIN_KERNEL_ADDRESS.
*/
if (va < VM_MIN_KERNEL_ADDRESS)
return (va);
PMAP_LOCK(kernel_pmap);
pvo = moea64_pvo_find_va(kernel_pmap, va);
KASSERT(pvo != NULL, ("moea64_kextract: no addr found for %#" PRIxPTR,
va));
pa = (pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) | (va - PVO_VADDR(pvo));
PMAP_UNLOCK(kernel_pmap);
return (pa);
}
/*
* Remove a wired page from kernel virtual address space.
*/
void
moea64_kremove(mmu_t mmu, vm_offset_t va)
{
moea64_remove(mmu, kernel_pmap, va, va + PAGE_SIZE);
}
/*
* Map a range of physical addresses into kernel virtual address space.
*
* The value passed in *virt is a suggested virtual address for the mapping.
* Architectures which can support a direct-mapped physical to virtual region
* can return the appropriate address within that region, leaving '*virt'
* unchanged. We cannot and therefore do not; *virt is updated with the
* first usable address after the mapped region.
*/
vm_offset_t
moea64_map(mmu_t mmu, vm_offset_t *virt, vm_paddr_t pa_start,
vm_paddr_t pa_end, int prot)
{
vm_offset_t sva, va;
sva = *virt;
va = sva;
for (; pa_start < pa_end; pa_start += PAGE_SIZE, va += PAGE_SIZE)
moea64_kenter(mmu, va, pa_start);
*virt = va;
return (sva);
}
/*
* Returns true if the pmap's pv is one of the first
* 16 pvs linked to from this page. This count may
* be changed upwards or downwards in the future; it
* is only necessary that true be returned for a small
* subset of pmaps for proper page aging.
*/
boolean_t
moea64_page_exists_quick(mmu_t mmu, pmap_t pmap, vm_page_t m)
{
int loops;
struct pvo_entry *pvo;
boolean_t rv;
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
("moea64_page_exists_quick: page %p is not managed", m));
loops = 0;
rv = FALSE;
LOCK_TABLE_RD();
LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
if (pvo->pvo_pmap == pmap) {
rv = TRUE;
break;
}
if (++loops >= 16)
break;
}
UNLOCK_TABLE_RD();
return (rv);
}
/*
* Return the number of managed mappings to the given physical page
* that are wired.
*/
int
moea64_page_wired_mappings(mmu_t mmu, vm_page_t m)
{
struct pvo_entry *pvo;
int count;
count = 0;
if ((m->oflags & VPO_UNMANAGED) != 0)
return (count);
LOCK_TABLE_RD();
LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink)
if ((pvo->pvo_vaddr & PVO_WIRED) != 0)
count++;
UNLOCK_TABLE_RD();
return (count);
}
static uintptr_t moea64_vsidcontext;
uintptr_t
moea64_get_unique_vsid(void) {
u_int entropy;
register_t hash;
uint32_t mask;
int i;
entropy = 0;
__asm __volatile("mftb %0" : "=r"(entropy));
mtx_lock(&moea64_slb_mutex);
for (i = 0; i < NVSIDS; i += VSID_NBPW) {
u_int n;
/*
* Create a new value by mutiplying by a prime and adding in
* entropy from the timebase register. This is to make the
* VSID more random so that the PT hash function collides
* less often. (Note that the prime casues gcc to do shifts
* instead of a multiply.)
*/
moea64_vsidcontext = (moea64_vsidcontext * 0x1105) + entropy;
hash = moea64_vsidcontext & (NVSIDS - 1);
if (hash == 0) /* 0 is special, avoid it */
continue;
n = hash >> 5;
mask = 1 << (hash & (VSID_NBPW - 1));
hash = (moea64_vsidcontext & VSID_HASHMASK);
if (moea64_vsid_bitmap[n] & mask) { /* collision? */
/* anything free in this bucket? */
if (moea64_vsid_bitmap[n] == 0xffffffff) {
entropy = (moea64_vsidcontext >> 20);
continue;
}
i = ffs(~moea64_vsid_bitmap[n]) - 1;
mask = 1 << i;
hash &= VSID_HASHMASK & ~(VSID_NBPW - 1);
hash |= i;
}
KASSERT(!(moea64_vsid_bitmap[n] & mask),
("Allocating in-use VSID %#zx\n", hash));
moea64_vsid_bitmap[n] |= mask;
mtx_unlock(&moea64_slb_mutex);
return (hash);
}
mtx_unlock(&moea64_slb_mutex);
panic("%s: out of segments",__func__);
}
#ifdef __powerpc64__
void
moea64_pinit(mmu_t mmu, pmap_t pmap)
{
RB_INIT(&pmap->pmap_pvo);
pmap->pm_slb_tree_root = slb_alloc_tree();
pmap->pm_slb = slb_alloc_user_cache();
pmap->pm_slb_len = 0;
}
#else
void
moea64_pinit(mmu_t mmu, pmap_t pmap)
{
int i;
uint32_t hash;
RB_INIT(&pmap->pmap_pvo);
if (pmap_bootstrapped)
pmap->pmap_phys = (pmap_t)moea64_kextract(mmu,
(vm_offset_t)pmap);
else
pmap->pmap_phys = pmap;
/*
* Allocate some segment registers for this pmap.
*/
hash = moea64_get_unique_vsid();
for (i = 0; i < 16; i++)
pmap->pm_sr[i] = VSID_MAKE(i, hash);
KASSERT(pmap->pm_sr[0] != 0, ("moea64_pinit: pm_sr[0] = 0"));
}
#endif
/*
* Initialize the pmap associated with process 0.
*/
void
moea64_pinit0(mmu_t mmu, pmap_t pm)
{
PMAP_LOCK_INIT(pm);
moea64_pinit(mmu, pm);
bzero(&pm->pm_stats, sizeof(pm->pm_stats));
}
/*
* Set the physical protection on the specified range of this map as requested.
*/
static void
moea64_pvo_protect(mmu_t mmu, pmap_t pm, struct pvo_entry *pvo, vm_prot_t prot)
{
uintptr_t pt;
struct vm_page *pg;
uint64_t oldlo;
PMAP_LOCK_ASSERT(pm, MA_OWNED);
/*
* Grab the PTE pointer before we diddle with the cached PTE
* copy.
*/
pt = MOEA64_PVO_TO_PTE(mmu, pvo);
/*
* Change the protection of the page.
*/
oldlo = pvo->pvo_pte.lpte.pte_lo;
pvo->pvo_pte.lpte.pte_lo &= ~LPTE_PP;
pvo->pvo_pte.lpte.pte_lo &= ~LPTE_NOEXEC;
if ((prot & VM_PROT_EXECUTE) == 0)
pvo->pvo_pte.lpte.pte_lo |= LPTE_NOEXEC;
if (prot & VM_PROT_WRITE)
pvo->pvo_pte.lpte.pte_lo |= LPTE_BW;
else
pvo->pvo_pte.lpte.pte_lo |= LPTE_BR;
pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN);
/*
* If the PVO is in the page table, update that pte as well.
*/
if (pt != -1)
MOEA64_PTE_CHANGE(mmu, pt, &pvo->pvo_pte.lpte,
pvo->pvo_vpn);
if (pm != kernel_pmap && pg != NULL && !(pg->aflags & PGA_EXECUTABLE) &&
(pvo->pvo_pte.lpte.pte_lo & (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0) {
if ((pg->oflags & VPO_UNMANAGED) == 0)
vm_page_aflag_set(pg, PGA_EXECUTABLE);
moea64_syncicache(mmu, pm, PVO_VADDR(pvo),
pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN, PAGE_SIZE);
}
/*
* Update vm about the REF/CHG bits if the page is managed and we have
* removed write access.
*/
if ((pvo->pvo_vaddr & PVO_MANAGED) == PVO_MANAGED &&
(oldlo & LPTE_PP) != LPTE_BR && !(prot & VM_PROT_WRITE)) {
if (pg != NULL) {
if (pvo->pvo_pte.lpte.pte_lo & LPTE_CHG)
vm_page_dirty(pg);
if (pvo->pvo_pte.lpte.pte_lo & LPTE_REF)
vm_page_aflag_set(pg, PGA_REFERENCED);
}
}
}
void
moea64_protect(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva,
vm_prot_t prot)
{
struct pvo_entry *pvo, *tpvo, key;
CTR4(KTR_PMAP, "moea64_protect: pm=%p sva=%#x eva=%#x prot=%#x", pm,
sva, eva, prot);
KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
("moea64_protect: non current pmap"));
if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
moea64_remove(mmu, pm, sva, eva);
return;
}
LOCK_TABLE_RD();
PMAP_LOCK(pm);
key.pvo_vaddr = sva;
for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) {
tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo);
moea64_pvo_protect(mmu, pm, pvo, prot);
}
UNLOCK_TABLE_RD();
PMAP_UNLOCK(pm);
}
/*
* Map a list of wired pages into kernel virtual address space. This is
* intended for temporary mappings which do not need page modification or
* references recorded. Existing mappings in the region are overwritten.
*/
void
moea64_qenter(mmu_t mmu, vm_offset_t va, vm_page_t *m, int count)
{
while (count-- > 0) {
moea64_kenter(mmu, va, VM_PAGE_TO_PHYS(*m));
va += PAGE_SIZE;
m++;
}
}
/*
* Remove page mappings from kernel virtual address space. Intended for
* temporary mappings entered by moea64_qenter.
*/
void
moea64_qremove(mmu_t mmu, vm_offset_t va, int count)
{
while (count-- > 0) {
moea64_kremove(mmu, va);
va += PAGE_SIZE;
}
}
void
moea64_release_vsid(uint64_t vsid)
{
int idx, mask;
mtx_lock(&moea64_slb_mutex);
idx = vsid & (NVSIDS-1);
mask = 1 << (idx % VSID_NBPW);
idx /= VSID_NBPW;
KASSERT(moea64_vsid_bitmap[idx] & mask,
("Freeing unallocated VSID %#jx", vsid));
moea64_vsid_bitmap[idx] &= ~mask;
mtx_unlock(&moea64_slb_mutex);
}
void
moea64_release(mmu_t mmu, pmap_t pmap)
{
/*
* Free segment registers' VSIDs
*/
#ifdef __powerpc64__
slb_free_tree(pmap);
slb_free_user_cache(pmap->pm_slb);
#else
KASSERT(pmap->pm_sr[0] != 0, ("moea64_release: pm_sr[0] = 0"));
moea64_release_vsid(VSID_TO_HASH(pmap->pm_sr[0]));
#endif
}
/*
* Remove all pages mapped by the specified pmap
*/
void
moea64_remove_pages(mmu_t mmu, pmap_t pm)
{
struct pvo_entry *pvo, *tpvo;
LOCK_TABLE_WR();
PMAP_LOCK(pm);
RB_FOREACH_SAFE(pvo, pvo_tree, &pm->pmap_pvo, tpvo) {
if (!(pvo->pvo_vaddr & PVO_WIRED))
moea64_pvo_remove(mmu, pvo);
}
UNLOCK_TABLE_WR();
PMAP_UNLOCK(pm);
}
/*
* Remove the given range of addresses from the specified map.
*/
void
moea64_remove(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva)
{
struct pvo_entry *pvo, *tpvo, key;
/*
* Perform an unsynchronized read. This is, however, safe.
*/
if (pm->pm_stats.resident_count == 0)
return;
LOCK_TABLE_WR();
PMAP_LOCK(pm);
key.pvo_vaddr = sva;
for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) {
tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo);
moea64_pvo_remove(mmu, pvo);
}
UNLOCK_TABLE_WR();
PMAP_UNLOCK(pm);
}
/*
* Remove physical page from all pmaps in which it resides. moea64_pvo_remove()
* will reflect changes in pte's back to the vm_page.
*/
void
moea64_remove_all(mmu_t mmu, vm_page_t m)
{
struct pvo_entry *pvo, *next_pvo;
pmap_t pmap;
LOCK_TABLE_WR();
LIST_FOREACH_SAFE(pvo, vm_page_to_pvoh(m), pvo_vlink, next_pvo) {
pmap = pvo->pvo_pmap;
PMAP_LOCK(pmap);
moea64_pvo_remove(mmu, pvo);
PMAP_UNLOCK(pmap);
}
UNLOCK_TABLE_WR();
if ((m->aflags & PGA_WRITEABLE) && moea64_is_modified(mmu, m))
vm_page_dirty(m);
vm_page_aflag_clear(m, PGA_WRITEABLE);
vm_page_aflag_clear(m, PGA_EXECUTABLE);
}
/*
* Allocate a physical page of memory directly from the phys_avail map.
* Can only be called from moea64_bootstrap before avail start and end are
* calculated.
*/
vm_offset_t
moea64_bootstrap_alloc(vm_size_t size, u_int align)
{
vm_offset_t s, e;
int i, j;
size = round_page(size);
for (i = 0; phys_avail[i + 1] != 0; i += 2) {
if (align != 0)
s = (phys_avail[i] + align - 1) & ~(align - 1);
else
s = phys_avail[i];
e = s + size;
if (s < phys_avail[i] || e > phys_avail[i + 1])
continue;
if (s + size > platform_real_maxaddr())
continue;
if (s == phys_avail[i]) {
phys_avail[i] += size;
} else if (e == phys_avail[i + 1]) {
phys_avail[i + 1] -= size;
} else {
for (j = phys_avail_count * 2; j > i; j -= 2) {
phys_avail[j] = phys_avail[j - 2];
phys_avail[j + 1] = phys_avail[j - 1];
}
phys_avail[i + 3] = phys_avail[i + 1];
phys_avail[i + 1] = s;
phys_avail[i + 2] = e;
phys_avail_count++;
}
return (s);
}
panic("moea64_bootstrap_alloc: could not allocate memory");
}
static int
moea64_pvo_enter(mmu_t mmu, pmap_t pm, uma_zone_t zone,
struct pvo_head *pvo_head, vm_offset_t va, vm_offset_t pa,
uint64_t pte_lo, int flags, int8_t psind __unused)
{
struct pvo_entry *pvo;
uintptr_t pt;
uint64_t vsid;
int first;
u_int ptegidx;
int i;
int bootstrap;
/*
* One nasty thing that can happen here is that the UMA calls to
* allocate new PVOs need to map more memory, which calls pvo_enter(),
* which calls UMA...
*
* We break the loop by detecting recursion and allocating out of
* the bootstrap pool.
*/
first = 0;
bootstrap = (flags & PVO_BOOTSTRAP);
if (!moea64_initialized)
bootstrap = 1;
PMAP_LOCK_ASSERT(pm, MA_OWNED);
rw_assert(&moea64_table_lock, RA_WLOCKED);
/*
* Compute the PTE Group index.
*/
va &= ~ADDR_POFF;
vsid = va_to_vsid(pm, va);
ptegidx = va_to_pteg(vsid, va, flags & PVO_LARGE);
/*
* Remove any existing mapping for this page. Reuse the pvo entry if
* there is a mapping.
*/
moea64_pvo_enter_calls++;
LIST_FOREACH(pvo, &moea64_pvo_table[ptegidx], pvo_olink) {
if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
if ((pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) == pa &&
(pvo->pvo_pte.lpte.pte_lo & (LPTE_NOEXEC | LPTE_PP))
== (pte_lo & (LPTE_NOEXEC | LPTE_PP))) {
/*
* The physical page and protection are not
* changing. Instead, this may be a request
* to change the mapping's wired attribute.
*/
pt = -1;
if ((flags & PVO_WIRED) != 0 &&
(pvo->pvo_vaddr & PVO_WIRED) == 0) {
pt = MOEA64_PVO_TO_PTE(mmu, pvo);
pvo->pvo_vaddr |= PVO_WIRED;
pvo->pvo_pte.lpte.pte_hi |= LPTE_WIRED;
pm->pm_stats.wired_count++;
} else if ((flags & PVO_WIRED) == 0 &&
(pvo->pvo_vaddr & PVO_WIRED) != 0) {
pt = MOEA64_PVO_TO_PTE(mmu, pvo);
pvo->pvo_vaddr &= ~PVO_WIRED;
pvo->pvo_pte.lpte.pte_hi &= ~LPTE_WIRED;
pm->pm_stats.wired_count--;
}
if (!(pvo->pvo_pte.lpte.pte_hi & LPTE_VALID)) {
KASSERT(pt == -1,
("moea64_pvo_enter: valid pt"));
/* Re-insert if spilled */
i = MOEA64_PTE_INSERT(mmu, ptegidx,
&pvo->pvo_pte.lpte);
if (i >= 0)
PVO_PTEGIDX_SET(pvo, i);
moea64_pte_overflow--;
} else if (pt != -1) {
/*
* The PTE's wired attribute is not a
* hardware feature, so there is no
* need to invalidate any TLB entries.
*/
MOEA64_PTE_CHANGE(mmu, pt,
&pvo->pvo_pte.lpte, pvo->pvo_vpn);
}
return (0);
}
moea64_pvo_remove(mmu, pvo);
break;
}
}
/*
* If we aren't overwriting a mapping, try to allocate.
*/
if (bootstrap) {
if (moea64_bpvo_pool_index >= BPVO_POOL_SIZE) {
panic("moea64_enter: bpvo pool exhausted, %d, %d, %zd",
moea64_bpvo_pool_index, BPVO_POOL_SIZE,
BPVO_POOL_SIZE * sizeof(struct pvo_entry));
}
pvo = &moea64_bpvo_pool[moea64_bpvo_pool_index];
moea64_bpvo_pool_index++;
bootstrap = 1;
} else {
pvo = uma_zalloc(zone, M_NOWAIT);
}
if (pvo == NULL)
return (ENOMEM);
moea64_pvo_entries++;
pvo->pvo_vaddr = va;
pvo->pvo_vpn = (uint64_t)((va & ADDR_PIDX) >> ADDR_PIDX_SHFT)
| (vsid << 16);
pvo->pvo_pmap = pm;
LIST_INSERT_HEAD(&moea64_pvo_table[ptegidx], pvo, pvo_olink);
pvo->pvo_vaddr &= ~ADDR_POFF;
if (flags & PVO_WIRED)
pvo->pvo_vaddr |= PVO_WIRED;
if (pvo_head != NULL)
pvo->pvo_vaddr |= PVO_MANAGED;
if (bootstrap)
pvo->pvo_vaddr |= PVO_BOOTSTRAP;
if (flags & PVO_LARGE)
pvo->pvo_vaddr |= PVO_LARGE;
moea64_pte_create(&pvo->pvo_pte.lpte, vsid, va,
(uint64_t)(pa) | pte_lo, flags);
/*
* Add to pmap list
*/
RB_INSERT(pvo_tree, &pm->pmap_pvo, pvo);
/*
* Remember if the list was empty and therefore will be the first
* item.
*/
if (pvo_head != NULL) {
if (LIST_FIRST(pvo_head) == NULL)
first = 1;
LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
}
if (pvo->pvo_vaddr & PVO_WIRED) {
pvo->pvo_pte.lpte.pte_hi |= LPTE_WIRED;
pm->pm_stats.wired_count++;
}
pm->pm_stats.resident_count++;
/*
* We hope this succeeds but it isn't required.
*/
i = MOEA64_PTE_INSERT(mmu, ptegidx, &pvo->pvo_pte.lpte);
if (i >= 0) {
PVO_PTEGIDX_SET(pvo, i);
} else {
panic("moea64_pvo_enter: overflow");
moea64_pte_overflow++;
}
if (pm == kernel_pmap)
isync();
#ifdef __powerpc64__
/*
* Make sure all our bootstrap mappings are in the SLB as soon
* as virtual memory is switched on.
*/
if (!pmap_bootstrapped)
moea64_bootstrap_slb_prefault(va, flags & PVO_LARGE);
#endif
return (first ? ENOENT : 0);
}
static void
moea64_pvo_remove(mmu_t mmu, struct pvo_entry *pvo)
{
struct vm_page *pg;
uintptr_t pt;
PMAP_LOCK_ASSERT(pvo->pvo_pmap, MA_OWNED);
rw_assert(&moea64_table_lock, RA_WLOCKED);
/*
* If there is an active pte entry, we need to deactivate it (and
* save the ref & cfg bits).
*/
pt = MOEA64_PVO_TO_PTE(mmu, pvo);
if (pt != -1) {
MOEA64_PTE_UNSET(mmu, pt, &pvo->pvo_pte.lpte, pvo->pvo_vpn);
PVO_PTEGIDX_CLR(pvo);
} else {
moea64_pte_overflow--;
}
/*
* Update our statistics.
*/
pvo->pvo_pmap->pm_stats.resident_count--;
if (pvo->pvo_vaddr & PVO_WIRED)
pvo->pvo_pmap->pm_stats.wired_count--;
/*
* Remove this PVO from the pmap list.
*/
RB_REMOVE(pvo_tree, &pvo->pvo_pmap->pmap_pvo, pvo);
/*
* Remove this from the overflow list and return it to the pool
* if we aren't going to reuse it.
*/
LIST_REMOVE(pvo, pvo_olink);
/*
* Update vm about the REF/CHG bits if the page is managed.
*/
pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN);
if ((pvo->pvo_vaddr & PVO_MANAGED) == PVO_MANAGED && pg != NULL) {
LIST_REMOVE(pvo, pvo_vlink);
if ((pvo->pvo_pte.lpte.pte_lo & LPTE_PP) != LPTE_BR) {
if (pvo->pvo_pte.lpte.pte_lo & LPTE_CHG)
vm_page_dirty(pg);
if (pvo->pvo_pte.lpte.pte_lo & LPTE_REF)
vm_page_aflag_set(pg, PGA_REFERENCED);
if (LIST_EMPTY(vm_page_to_pvoh(pg)))
vm_page_aflag_clear(pg, PGA_WRITEABLE);
}
if (LIST_EMPTY(vm_page_to_pvoh(pg)))
vm_page_aflag_clear(pg, PGA_EXECUTABLE);
}
moea64_pvo_entries--;
moea64_pvo_remove_calls++;
if (!(pvo->pvo_vaddr & PVO_BOOTSTRAP))
uma_zfree((pvo->pvo_vaddr & PVO_MANAGED) ? moea64_mpvo_zone :
moea64_upvo_zone, pvo);
}
static struct pvo_entry *
moea64_pvo_find_va(pmap_t pm, vm_offset_t va)
{
struct pvo_entry key;
key.pvo_vaddr = va & ~ADDR_POFF;
return (RB_FIND(pvo_tree, &pm->pmap_pvo, &key));
}
static boolean_t
moea64_query_bit(mmu_t mmu, vm_page_t m, u_int64_t ptebit)
{
struct pvo_entry *pvo;
uintptr_t pt;
LOCK_TABLE_RD();
LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
/*
* See if we saved the bit off. If so, return success.
*/
if (pvo->pvo_pte.lpte.pte_lo & ptebit) {
UNLOCK_TABLE_RD();
return (TRUE);
}
}
/*
* No luck, now go through the hard part of looking at the PTEs
* themselves. Sync so that any pending REF/CHG bits are flushed to
* the PTEs.
*/
powerpc_sync();
LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
/*
* See if this pvo has a valid PTE. if so, fetch the
* REF/CHG bits from the valid PTE. If the appropriate
* ptebit is set, return success.
*/
PMAP_LOCK(pvo->pvo_pmap);
pt = MOEA64_PVO_TO_PTE(mmu, pvo);
if (pt != -1) {
MOEA64_PTE_SYNCH(mmu, pt, &pvo->pvo_pte.lpte);
if (pvo->pvo_pte.lpte.pte_lo & ptebit) {
PMAP_UNLOCK(pvo->pvo_pmap);
UNLOCK_TABLE_RD();
return (TRUE);
}
}
PMAP_UNLOCK(pvo->pvo_pmap);
}
UNLOCK_TABLE_RD();
return (FALSE);
}
static u_int
moea64_clear_bit(mmu_t mmu, vm_page_t m, u_int64_t ptebit)
{
u_int count;
struct pvo_entry *pvo;
uintptr_t pt;
/*
* Sync so that any pending REF/CHG bits are flushed to the PTEs (so
* we can reset the right ones). note that since the pvo entries and
* list heads are accessed via BAT0 and are never placed in the page
* table, we don't have to worry about further accesses setting the
* REF/CHG bits.
*/
powerpc_sync();
/*
* For each pvo entry, clear the pvo's ptebit. If this pvo has a
* valid pte clear the ptebit from the valid pte.
*/
count = 0;
LOCK_TABLE_RD();
LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
PMAP_LOCK(pvo->pvo_pmap);
pt = MOEA64_PVO_TO_PTE(mmu, pvo);
if (pt != -1) {
MOEA64_PTE_SYNCH(mmu, pt, &pvo->pvo_pte.lpte);
if (pvo->pvo_pte.lpte.pte_lo & ptebit) {
count++;
MOEA64_PTE_CLEAR(mmu, pt, &pvo->pvo_pte.lpte,
pvo->pvo_vpn, ptebit);
}
}
pvo->pvo_pte.lpte.pte_lo &= ~ptebit;
PMAP_UNLOCK(pvo->pvo_pmap);
}
UNLOCK_TABLE_RD();
return (count);
}
boolean_t
moea64_dev_direct_mapped(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
{
struct pvo_entry *pvo, key;
vm_offset_t ppa;
int error = 0;
PMAP_LOCK(kernel_pmap);
key.pvo_vaddr = ppa = pa & ~ADDR_POFF;
for (pvo = RB_FIND(pvo_tree, &kernel_pmap->pmap_pvo, &key);
ppa < pa + size; ppa += PAGE_SIZE,
pvo = RB_NEXT(pvo_tree, &kernel_pmap->pmap_pvo, pvo)) {
if (pvo == NULL ||
(pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) != ppa) {
error = EFAULT;
break;
}
}
PMAP_UNLOCK(kernel_pmap);
return (error);
}
/*
* Map a set of physical memory pages into the kernel virtual
* address space. Return a pointer to where it is mapped. This
* routine is intended to be used for mapping device memory,
* NOT real memory.
*/
void *
moea64_mapdev_attr(mmu_t mmu, vm_offset_t pa, vm_size_t size, vm_memattr_t ma)
{
vm_offset_t va, tmpva, ppa, offset;
ppa = trunc_page(pa);
offset = pa & PAGE_MASK;
size = roundup2(offset + size, PAGE_SIZE);
va = kva_alloc(size);
if (!va)
panic("moea64_mapdev: Couldn't alloc kernel virtual memory");
for (tmpva = va; size > 0;) {
moea64_kenter_attr(mmu, tmpva, ppa, ma);
size -= PAGE_SIZE;
tmpva += PAGE_SIZE;
ppa += PAGE_SIZE;
}
return ((void *)(va + offset));
}
void *
moea64_mapdev(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
{
return moea64_mapdev_attr(mmu, pa, size, VM_MEMATTR_DEFAULT);
}
void
moea64_unmapdev(mmu_t mmu, vm_offset_t va, vm_size_t size)
{
vm_offset_t base, offset;
base = trunc_page(va);
offset = va & PAGE_MASK;
size = roundup2(offset + size, PAGE_SIZE);
kva_free(base, size);
}
void
moea64_sync_icache(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_size_t sz)
{
struct pvo_entry *pvo;
vm_offset_t lim;
vm_paddr_t pa;
vm_size_t len;
PMAP_LOCK(pm);
while (sz > 0) {
lim = round_page(va);
len = MIN(lim - va, sz);
pvo = moea64_pvo_find_va(pm, va & ~ADDR_POFF);
if (pvo != NULL && !(pvo->pvo_pte.lpte.pte_lo & LPTE_I)) {
pa = (pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) |
(va & ADDR_POFF);
moea64_syncicache(mmu, pm, va, pa, len);
}
va += len;
sz -= len;
}
PMAP_UNLOCK(pm);
}
vm_offset_t
moea64_dumpsys_map(mmu_t mmu, struct pmap_md *md, vm_size_t ofs,
vm_size_t *sz)
{
if (md->md_vaddr == ~0UL)
return (md->md_paddr + ofs);
else
return (md->md_vaddr + ofs);
}
struct pmap_md *
moea64_scan_md(mmu_t mmu, struct pmap_md *prev)
{
static struct pmap_md md;
struct pvo_entry *pvo;
vm_offset_t va;
if (dumpsys_minidump) {
md.md_paddr = ~0UL; /* Minidumps use virtual addresses. */
if (prev == NULL) {
/* 1st: kernel .data and .bss. */
md.md_index = 1;
md.md_vaddr = trunc_page((uintptr_t)_etext);
md.md_size = round_page((uintptr_t)_end) - md.md_vaddr;
return (&md);
}
switch (prev->md_index) {
case 1:
/* 2nd: msgbuf and tables (see pmap_bootstrap()). */
md.md_index = 2;
md.md_vaddr = (vm_offset_t)msgbufp->msg_ptr;
md.md_size = round_page(msgbufp->msg_size);
break;
case 2:
/* 3rd: kernel VM. */
va = prev->md_vaddr + prev->md_size;
/* Find start of next chunk (from va). */
while (va < virtual_end) {
/* Don't dump the buffer cache. */
if (va >= kmi.buffer_sva &&
va < kmi.buffer_eva) {
va = kmi.buffer_eva;
continue;
}
pvo = moea64_pvo_find_va(kernel_pmap,
va & ~ADDR_POFF);
if (pvo != NULL &&
(pvo->pvo_pte.lpte.pte_hi & LPTE_VALID))
break;
va += PAGE_SIZE;
}
if (va < virtual_end) {
md.md_vaddr = va;
va += PAGE_SIZE;
/* Find last page in chunk. */
while (va < virtual_end) {
/* Don't run into the buffer cache. */
if (va == kmi.buffer_sva)
break;
pvo = moea64_pvo_find_va(kernel_pmap,
va & ~ADDR_POFF);
if (pvo == NULL ||
!(pvo->pvo_pte.lpte.pte_hi & LPTE_VALID))
break;
va += PAGE_SIZE;
}
md.md_size = va - md.md_vaddr;
break;
}
md.md_index = 3;
/* FALLTHROUGH */
default:
return (NULL);
}
} else { /* minidumps */
if (prev == NULL) {
/* first physical chunk. */
md.md_paddr = pregions[0].mr_start;
md.md_size = pregions[0].mr_size;
md.md_vaddr = ~0UL;
md.md_index = 1;
} else if (md.md_index < pregions_sz) {
md.md_paddr = pregions[md.md_index].mr_start;
md.md_size = pregions[md.md_index].mr_size;
md.md_vaddr = ~0UL;
md.md_index++;
} else {
/* There's no next physical chunk. */
return (NULL);
}
}
return (&md);
}