Neel Natu 9c4d547896 Deprecate the 3-way return values from vm_gla2gpa() and vm_copy_setup().
Prior to this change both functions returned 0 for success, -1 for failure
and +1 to indicate that an exception was injected into the guest.

The numerical value of ERESTART also happens to be -1 so when these functions
returned -1 it had to be translated to a positive errno value to prevent the
VM_RUN ioctl from being inadvertently restarted. This made it easy to introduce
bugs when writing emulation code.

Fix this by adding an 'int *guest_fault' parameter and setting it to '1' if
an exception was delivered to the guest. The return value is 0 or EFAULT so
no additional translation is needed.

Reviewed by:	tychon
MFC after:	2 weeks
Differential Revision:	https://reviews.freebsd.org/D2428
2015-05-06 16:25:20 +00:00

2428 lines
55 KiB
C

/*-
* Copyright (c) 2011 NetApp, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/module.h>
#include <sys/sysctl.h>
#include <sys/malloc.h>
#include <sys/pcpu.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/rwlock.h>
#include <sys/sched.h>
#include <sys/smp.h>
#include <sys/systm.h>
#include <vm/vm.h>
#include <vm/vm_object.h>
#include <vm/vm_page.h>
#include <vm/pmap.h>
#include <vm/vm_map.h>
#include <vm/vm_extern.h>
#include <vm/vm_param.h>
#include <machine/cpu.h>
#include <machine/vm.h>
#include <machine/pcb.h>
#include <machine/smp.h>
#include <x86/psl.h>
#include <x86/apicreg.h>
#include <machine/vmparam.h>
#include <machine/vmm.h>
#include <machine/vmm_dev.h>
#include <machine/vmm_instruction_emul.h>
#include "vmm_ioport.h"
#include "vmm_ktr.h"
#include "vmm_host.h"
#include "vmm_mem.h"
#include "vmm_util.h"
#include "vatpic.h"
#include "vatpit.h"
#include "vhpet.h"
#include "vioapic.h"
#include "vlapic.h"
#include "vpmtmr.h"
#include "vrtc.h"
#include "vmm_stat.h"
#include "vmm_lapic.h"
#include "io/ppt.h"
#include "io/iommu.h"
struct vlapic;
/*
* Initialization:
* (a) allocated when vcpu is created
* (i) initialized when vcpu is created and when it is reinitialized
* (o) initialized the first time the vcpu is created
* (x) initialized before use
*/
struct vcpu {
struct mtx mtx; /* (o) protects 'state' and 'hostcpu' */
enum vcpu_state state; /* (o) vcpu state */
int hostcpu; /* (o) vcpu's host cpu */
struct vlapic *vlapic; /* (i) APIC device model */
enum x2apic_state x2apic_state; /* (i) APIC mode */
uint64_t exitintinfo; /* (i) events pending at VM exit */
int nmi_pending; /* (i) NMI pending */
int extint_pending; /* (i) INTR pending */
int exception_pending; /* (i) exception pending */
int exc_vector; /* (x) exception collateral */
int exc_errcode_valid;
uint32_t exc_errcode;
struct savefpu *guestfpu; /* (a,i) guest fpu state */
uint64_t guest_xcr0; /* (i) guest %xcr0 register */
void *stats; /* (a,i) statistics */
struct vm_exit exitinfo; /* (x) exit reason and collateral */
uint64_t nextrip; /* (x) next instruction to execute */
};
#define vcpu_lock_initialized(v) mtx_initialized(&((v)->mtx))
#define vcpu_lock_init(v) mtx_init(&((v)->mtx), "vcpu lock", 0, MTX_SPIN)
#define vcpu_lock(v) mtx_lock_spin(&((v)->mtx))
#define vcpu_unlock(v) mtx_unlock_spin(&((v)->mtx))
#define vcpu_assert_locked(v) mtx_assert(&((v)->mtx), MA_OWNED)
struct mem_seg {
vm_paddr_t gpa;
size_t len;
boolean_t wired;
vm_object_t object;
};
#define VM_MAX_MEMORY_SEGMENTS 2
/*
* Initialization:
* (o) initialized the first time the VM is created
* (i) initialized when VM is created and when it is reinitialized
* (x) initialized before use
*/
struct vm {
void *cookie; /* (i) cpu-specific data */
void *iommu; /* (x) iommu-specific data */
struct vhpet *vhpet; /* (i) virtual HPET */
struct vioapic *vioapic; /* (i) virtual ioapic */
struct vatpic *vatpic; /* (i) virtual atpic */
struct vatpit *vatpit; /* (i) virtual atpit */
struct vpmtmr *vpmtmr; /* (i) virtual ACPI PM timer */
struct vrtc *vrtc; /* (o) virtual RTC */
volatile cpuset_t active_cpus; /* (i) active vcpus */
int suspend; /* (i) stop VM execution */
volatile cpuset_t suspended_cpus; /* (i) suspended vcpus */
volatile cpuset_t halted_cpus; /* (x) cpus in a hard halt */
cpuset_t rendezvous_req_cpus; /* (x) rendezvous requested */
cpuset_t rendezvous_done_cpus; /* (x) rendezvous finished */
void *rendezvous_arg; /* (x) rendezvous func/arg */
vm_rendezvous_func_t rendezvous_func;
struct mtx rendezvous_mtx; /* (o) rendezvous lock */
int num_mem_segs; /* (o) guest memory segments */
struct mem_seg mem_segs[VM_MAX_MEMORY_SEGMENTS];
struct vmspace *vmspace; /* (o) guest's address space */
char name[VM_MAX_NAMELEN]; /* (o) virtual machine name */
struct vcpu vcpu[VM_MAXCPU]; /* (i) guest vcpus */
};
static int vmm_initialized;
static struct vmm_ops *ops;
#define VMM_INIT(num) (ops != NULL ? (*ops->init)(num) : 0)
#define VMM_CLEANUP() (ops != NULL ? (*ops->cleanup)() : 0)
#define VMM_RESUME() (ops != NULL ? (*ops->resume)() : 0)
#define VMINIT(vm, pmap) (ops != NULL ? (*ops->vminit)(vm, pmap): NULL)
#define VMRUN(vmi, vcpu, rip, pmap, rptr, sptr) \
(ops != NULL ? (*ops->vmrun)(vmi, vcpu, rip, pmap, rptr, sptr) : ENXIO)
#define VMCLEANUP(vmi) (ops != NULL ? (*ops->vmcleanup)(vmi) : NULL)
#define VMSPACE_ALLOC(min, max) \
(ops != NULL ? (*ops->vmspace_alloc)(min, max) : NULL)
#define VMSPACE_FREE(vmspace) \
(ops != NULL ? (*ops->vmspace_free)(vmspace) : ENXIO)
#define VMGETREG(vmi, vcpu, num, retval) \
(ops != NULL ? (*ops->vmgetreg)(vmi, vcpu, num, retval) : ENXIO)
#define VMSETREG(vmi, vcpu, num, val) \
(ops != NULL ? (*ops->vmsetreg)(vmi, vcpu, num, val) : ENXIO)
#define VMGETDESC(vmi, vcpu, num, desc) \
(ops != NULL ? (*ops->vmgetdesc)(vmi, vcpu, num, desc) : ENXIO)
#define VMSETDESC(vmi, vcpu, num, desc) \
(ops != NULL ? (*ops->vmsetdesc)(vmi, vcpu, num, desc) : ENXIO)
#define VMGETCAP(vmi, vcpu, num, retval) \
(ops != NULL ? (*ops->vmgetcap)(vmi, vcpu, num, retval) : ENXIO)
#define VMSETCAP(vmi, vcpu, num, val) \
(ops != NULL ? (*ops->vmsetcap)(vmi, vcpu, num, val) : ENXIO)
#define VLAPIC_INIT(vmi, vcpu) \
(ops != NULL ? (*ops->vlapic_init)(vmi, vcpu) : NULL)
#define VLAPIC_CLEANUP(vmi, vlapic) \
(ops != NULL ? (*ops->vlapic_cleanup)(vmi, vlapic) : NULL)
#define fpu_start_emulating() load_cr0(rcr0() | CR0_TS)
#define fpu_stop_emulating() clts()
static MALLOC_DEFINE(M_VM, "vm", "vm");
/* statistics */
static VMM_STAT(VCPU_TOTAL_RUNTIME, "vcpu total runtime");
SYSCTL_NODE(_hw, OID_AUTO, vmm, CTLFLAG_RW, NULL, NULL);
/*
* Halt the guest if all vcpus are executing a HLT instruction with
* interrupts disabled.
*/
static int halt_detection_enabled = 1;
SYSCTL_INT(_hw_vmm, OID_AUTO, halt_detection, CTLFLAG_RDTUN,
&halt_detection_enabled, 0,
"Halt VM if all vcpus execute HLT with interrupts disabled");
static int vmm_ipinum;
SYSCTL_INT(_hw_vmm, OID_AUTO, ipinum, CTLFLAG_RD, &vmm_ipinum, 0,
"IPI vector used for vcpu notifications");
static int trace_guest_exceptions;
SYSCTL_INT(_hw_vmm, OID_AUTO, trace_guest_exceptions, CTLFLAG_RDTUN,
&trace_guest_exceptions, 0,
"Trap into hypervisor on all guest exceptions and reflect them back");
static int vmm_force_iommu = 0;
TUNABLE_INT("hw.vmm.force_iommu", &vmm_force_iommu);
SYSCTL_INT(_hw_vmm, OID_AUTO, force_iommu, CTLFLAG_RDTUN, &vmm_force_iommu, 0,
"Force use of I/O MMU even if no passthrough devices were found.");
static void
vcpu_cleanup(struct vm *vm, int i, bool destroy)
{
struct vcpu *vcpu = &vm->vcpu[i];
VLAPIC_CLEANUP(vm->cookie, vcpu->vlapic);
if (destroy) {
vmm_stat_free(vcpu->stats);
fpu_save_area_free(vcpu->guestfpu);
}
}
static void
vcpu_init(struct vm *vm, int vcpu_id, bool create)
{
struct vcpu *vcpu;
KASSERT(vcpu_id >= 0 && vcpu_id < VM_MAXCPU,
("vcpu_init: invalid vcpu %d", vcpu_id));
vcpu = &vm->vcpu[vcpu_id];
if (create) {
KASSERT(!vcpu_lock_initialized(vcpu), ("vcpu %d already "
"initialized", vcpu_id));
vcpu_lock_init(vcpu);
vcpu->state = VCPU_IDLE;
vcpu->hostcpu = NOCPU;
vcpu->guestfpu = fpu_save_area_alloc();
vcpu->stats = vmm_stat_alloc();
}
vcpu->vlapic = VLAPIC_INIT(vm->cookie, vcpu_id);
vm_set_x2apic_state(vm, vcpu_id, X2APIC_DISABLED);
vcpu->exitintinfo = 0;
vcpu->nmi_pending = 0;
vcpu->extint_pending = 0;
vcpu->exception_pending = 0;
vcpu->guest_xcr0 = XFEATURE_ENABLED_X87;
fpu_save_area_reset(vcpu->guestfpu);
vmm_stat_init(vcpu->stats);
}
int
vcpu_trace_exceptions(struct vm *vm, int vcpuid)
{
return (trace_guest_exceptions);
}
struct vm_exit *
vm_exitinfo(struct vm *vm, int cpuid)
{
struct vcpu *vcpu;
if (cpuid < 0 || cpuid >= VM_MAXCPU)
panic("vm_exitinfo: invalid cpuid %d", cpuid);
vcpu = &vm->vcpu[cpuid];
return (&vcpu->exitinfo);
}
static void
vmm_resume(void)
{
VMM_RESUME();
}
static int
vmm_init(void)
{
int error;
vmm_host_state_init();
vmm_ipinum = lapic_ipi_alloc(&IDTVEC(justreturn));
if (vmm_ipinum < 0)
vmm_ipinum = IPI_AST;
error = vmm_mem_init();
if (error)
return (error);
if (vmm_is_intel())
ops = &vmm_ops_intel;
else if (vmm_is_amd())
ops = &vmm_ops_amd;
else
return (ENXIO);
vmm_resume_p = vmm_resume;
return (VMM_INIT(vmm_ipinum));
}
static int
vmm_handler(module_t mod, int what, void *arg)
{
int error;
switch (what) {
case MOD_LOAD:
vmmdev_init();
if (vmm_force_iommu || ppt_avail_devices() > 0)
iommu_init();
error = vmm_init();
if (error == 0)
vmm_initialized = 1;
break;
case MOD_UNLOAD:
error = vmmdev_cleanup();
if (error == 0) {
vmm_resume_p = NULL;
iommu_cleanup();
if (vmm_ipinum != IPI_AST)
lapic_ipi_free(vmm_ipinum);
error = VMM_CLEANUP();
/*
* Something bad happened - prevent new
* VMs from being created
*/
if (error)
vmm_initialized = 0;
}
break;
default:
error = 0;
break;
}
return (error);
}
static moduledata_t vmm_kmod = {
"vmm",
vmm_handler,
NULL
};
/*
* vmm initialization has the following dependencies:
*
* - iommu initialization must happen after the pci passthru driver has had
* a chance to attach to any passthru devices (after SI_SUB_CONFIGURE).
*
* - VT-x initialization requires smp_rendezvous() and therefore must happen
* after SMP is fully functional (after SI_SUB_SMP).
*/
DECLARE_MODULE(vmm, vmm_kmod, SI_SUB_SMP + 1, SI_ORDER_ANY);
MODULE_VERSION(vmm, 1);
static void
vm_init(struct vm *vm, bool create)
{
int i;
vm->cookie = VMINIT(vm, vmspace_pmap(vm->vmspace));
vm->iommu = NULL;
vm->vioapic = vioapic_init(vm);
vm->vhpet = vhpet_init(vm);
vm->vatpic = vatpic_init(vm);
vm->vatpit = vatpit_init(vm);
vm->vpmtmr = vpmtmr_init(vm);
if (create)
vm->vrtc = vrtc_init(vm);
CPU_ZERO(&vm->active_cpus);
vm->suspend = 0;
CPU_ZERO(&vm->suspended_cpus);
for (i = 0; i < VM_MAXCPU; i++)
vcpu_init(vm, i, create);
}
int
vm_create(const char *name, struct vm **retvm)
{
struct vm *vm;
struct vmspace *vmspace;
/*
* If vmm.ko could not be successfully initialized then don't attempt
* to create the virtual machine.
*/
if (!vmm_initialized)
return (ENXIO);
if (name == NULL || strlen(name) >= VM_MAX_NAMELEN)
return (EINVAL);
vmspace = VMSPACE_ALLOC(0, VM_MAXUSER_ADDRESS);
if (vmspace == NULL)
return (ENOMEM);
vm = malloc(sizeof(struct vm), M_VM, M_WAITOK | M_ZERO);
strcpy(vm->name, name);
vm->num_mem_segs = 0;
vm->vmspace = vmspace;
mtx_init(&vm->rendezvous_mtx, "vm rendezvous lock", 0, MTX_DEF);
vm_init(vm, true);
*retvm = vm;
return (0);
}
static void
vm_free_mem_seg(struct vm *vm, struct mem_seg *seg)
{
if (seg->object != NULL)
vmm_mem_free(vm->vmspace, seg->gpa, seg->len);
bzero(seg, sizeof(*seg));
}
static void
vm_cleanup(struct vm *vm, bool destroy)
{
int i;
ppt_unassign_all(vm);
if (vm->iommu != NULL)
iommu_destroy_domain(vm->iommu);
if (destroy)
vrtc_cleanup(vm->vrtc);
else
vrtc_reset(vm->vrtc);
vpmtmr_cleanup(vm->vpmtmr);
vatpit_cleanup(vm->vatpit);
vhpet_cleanup(vm->vhpet);
vatpic_cleanup(vm->vatpic);
vioapic_cleanup(vm->vioapic);
for (i = 0; i < VM_MAXCPU; i++)
vcpu_cleanup(vm, i, destroy);
VMCLEANUP(vm->cookie);
if (destroy) {
for (i = 0; i < vm->num_mem_segs; i++)
vm_free_mem_seg(vm, &vm->mem_segs[i]);
vm->num_mem_segs = 0;
VMSPACE_FREE(vm->vmspace);
vm->vmspace = NULL;
}
}
void
vm_destroy(struct vm *vm)
{
vm_cleanup(vm, true);
free(vm, M_VM);
}
int
vm_reinit(struct vm *vm)
{
int error;
/*
* A virtual machine can be reset only if all vcpus are suspended.
*/
if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) {
vm_cleanup(vm, false);
vm_init(vm, false);
error = 0;
} else {
error = EBUSY;
}
return (error);
}
const char *
vm_name(struct vm *vm)
{
return (vm->name);
}
int
vm_map_mmio(struct vm *vm, vm_paddr_t gpa, size_t len, vm_paddr_t hpa)
{
vm_object_t obj;
if ((obj = vmm_mmio_alloc(vm->vmspace, gpa, len, hpa)) == NULL)
return (ENOMEM);
else
return (0);
}
int
vm_unmap_mmio(struct vm *vm, vm_paddr_t gpa, size_t len)
{
vmm_mmio_free(vm->vmspace, gpa, len);
return (0);
}
boolean_t
vm_mem_allocated(struct vm *vm, vm_paddr_t gpa)
{
int i;
vm_paddr_t gpabase, gpalimit;
for (i = 0; i < vm->num_mem_segs; i++) {
gpabase = vm->mem_segs[i].gpa;
gpalimit = gpabase + vm->mem_segs[i].len;
if (gpa >= gpabase && gpa < gpalimit)
return (TRUE); /* 'gpa' is regular memory */
}
if (ppt_is_mmio(vm, gpa))
return (TRUE); /* 'gpa' is pci passthru mmio */
return (FALSE);
}
int
vm_malloc(struct vm *vm, vm_paddr_t gpa, size_t len)
{
int available, allocated;
struct mem_seg *seg;
vm_object_t object;
vm_paddr_t g;
if ((gpa & PAGE_MASK) || (len & PAGE_MASK) || len == 0)
return (EINVAL);
available = allocated = 0;
g = gpa;
while (g < gpa + len) {
if (vm_mem_allocated(vm, g))
allocated++;
else
available++;
g += PAGE_SIZE;
}
/*
* If there are some allocated and some available pages in the address
* range then it is an error.
*/
if (allocated && available)
return (EINVAL);
/*
* If the entire address range being requested has already been
* allocated then there isn't anything more to do.
*/
if (allocated && available == 0)
return (0);
if (vm->num_mem_segs >= VM_MAX_MEMORY_SEGMENTS)
return (E2BIG);
seg = &vm->mem_segs[vm->num_mem_segs];
if ((object = vmm_mem_alloc(vm->vmspace, gpa, len)) == NULL)
return (ENOMEM);
seg->gpa = gpa;
seg->len = len;
seg->object = object;
seg->wired = FALSE;
vm->num_mem_segs++;
return (0);
}
static vm_paddr_t
vm_maxmem(struct vm *vm)
{
int i;
vm_paddr_t gpa, maxmem;
maxmem = 0;
for (i = 0; i < vm->num_mem_segs; i++) {
gpa = vm->mem_segs[i].gpa + vm->mem_segs[i].len;
if (gpa > maxmem)
maxmem = gpa;
}
return (maxmem);
}
static void
vm_gpa_unwire(struct vm *vm)
{
int i, rv;
struct mem_seg *seg;
for (i = 0; i < vm->num_mem_segs; i++) {
seg = &vm->mem_segs[i];
if (!seg->wired)
continue;
rv = vm_map_unwire(&vm->vmspace->vm_map,
seg->gpa, seg->gpa + seg->len,
VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES);
KASSERT(rv == KERN_SUCCESS, ("vm(%s) memory segment "
"%#lx/%ld could not be unwired: %d",
vm_name(vm), seg->gpa, seg->len, rv));
seg->wired = FALSE;
}
}
static int
vm_gpa_wire(struct vm *vm)
{
int i, rv;
struct mem_seg *seg;
for (i = 0; i < vm->num_mem_segs; i++) {
seg = &vm->mem_segs[i];
if (seg->wired)
continue;
/* XXX rlimits? */
rv = vm_map_wire(&vm->vmspace->vm_map,
seg->gpa, seg->gpa + seg->len,
VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES);
if (rv != KERN_SUCCESS)
break;
seg->wired = TRUE;
}
if (i < vm->num_mem_segs) {
/*
* Undo the wiring before returning an error.
*/
vm_gpa_unwire(vm);
return (EAGAIN);
}
return (0);
}
static void
vm_iommu_modify(struct vm *vm, boolean_t map)
{
int i, sz;
vm_paddr_t gpa, hpa;
struct mem_seg *seg;
void *vp, *cookie, *host_domain;
sz = PAGE_SIZE;
host_domain = iommu_host_domain();
for (i = 0; i < vm->num_mem_segs; i++) {
seg = &vm->mem_segs[i];
KASSERT(seg->wired, ("vm(%s) memory segment %#lx/%ld not wired",
vm_name(vm), seg->gpa, seg->len));
gpa = seg->gpa;
while (gpa < seg->gpa + seg->len) {
vp = vm_gpa_hold(vm, gpa, PAGE_SIZE, VM_PROT_WRITE,
&cookie);
KASSERT(vp != NULL, ("vm(%s) could not map gpa %#lx",
vm_name(vm), gpa));
vm_gpa_release(cookie);
hpa = DMAP_TO_PHYS((uintptr_t)vp);
if (map) {
iommu_create_mapping(vm->iommu, gpa, hpa, sz);
iommu_remove_mapping(host_domain, hpa, sz);
} else {
iommu_remove_mapping(vm->iommu, gpa, sz);
iommu_create_mapping(host_domain, hpa, hpa, sz);
}
gpa += PAGE_SIZE;
}
}
/*
* Invalidate the cached translations associated with the domain
* from which pages were removed.
*/
if (map)
iommu_invalidate_tlb(host_domain);
else
iommu_invalidate_tlb(vm->iommu);
}
#define vm_iommu_unmap(vm) vm_iommu_modify((vm), FALSE)
#define vm_iommu_map(vm) vm_iommu_modify((vm), TRUE)
int
vm_unassign_pptdev(struct vm *vm, int bus, int slot, int func)
{
int error;
error = ppt_unassign_device(vm, bus, slot, func);
if (error)
return (error);
if (ppt_assigned_devices(vm) == 0) {
vm_iommu_unmap(vm);
vm_gpa_unwire(vm);
}
return (0);
}
int
vm_assign_pptdev(struct vm *vm, int bus, int slot, int func)
{
int error;
vm_paddr_t maxaddr;
/*
* Virtual machines with pci passthru devices get special treatment:
* - the guest physical memory is wired
* - the iommu is programmed to do the 'gpa' to 'hpa' translation
*
* We need to do this before the first pci passthru device is attached.
*/
if (ppt_assigned_devices(vm) == 0) {
KASSERT(vm->iommu == NULL,
("vm_assign_pptdev: iommu must be NULL"));
maxaddr = vm_maxmem(vm);
vm->iommu = iommu_create_domain(maxaddr);
error = vm_gpa_wire(vm);
if (error)
return (error);
vm_iommu_map(vm);
}
error = ppt_assign_device(vm, bus, slot, func);
return (error);
}
void *
vm_gpa_hold(struct vm *vm, vm_paddr_t gpa, size_t len, int reqprot,
void **cookie)
{
int count, pageoff;
vm_page_t m;
pageoff = gpa & PAGE_MASK;
if (len > PAGE_SIZE - pageoff)
panic("vm_gpa_hold: invalid gpa/len: 0x%016lx/%lu", gpa, len);
count = vm_fault_quick_hold_pages(&vm->vmspace->vm_map,
trunc_page(gpa), PAGE_SIZE, reqprot, &m, 1);
if (count == 1) {
*cookie = m;
return ((void *)(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)) + pageoff));
} else {
*cookie = NULL;
return (NULL);
}
}
void
vm_gpa_release(void *cookie)
{
vm_page_t m = cookie;
vm_page_lock(m);
vm_page_unhold(m);
vm_page_unlock(m);
}
int
vm_gpabase2memseg(struct vm *vm, vm_paddr_t gpabase,
struct vm_memory_segment *seg)
{
int i;
for (i = 0; i < vm->num_mem_segs; i++) {
if (gpabase == vm->mem_segs[i].gpa) {
seg->gpa = vm->mem_segs[i].gpa;
seg->len = vm->mem_segs[i].len;
seg->wired = vm->mem_segs[i].wired;
return (0);
}
}
return (-1);
}
int
vm_get_memobj(struct vm *vm, vm_paddr_t gpa, size_t len,
vm_offset_t *offset, struct vm_object **object)
{
int i;
size_t seg_len;
vm_paddr_t seg_gpa;
vm_object_t seg_obj;
for (i = 0; i < vm->num_mem_segs; i++) {
if ((seg_obj = vm->mem_segs[i].object) == NULL)
continue;
seg_gpa = vm->mem_segs[i].gpa;
seg_len = vm->mem_segs[i].len;
if (gpa >= seg_gpa && gpa < seg_gpa + seg_len) {
*offset = gpa - seg_gpa;
*object = seg_obj;
vm_object_reference(seg_obj);
return (0);
}
}
return (EINVAL);
}
int
vm_get_register(struct vm *vm, int vcpu, int reg, uint64_t *retval)
{
if (vcpu < 0 || vcpu >= VM_MAXCPU)
return (EINVAL);
if (reg >= VM_REG_LAST)
return (EINVAL);
return (VMGETREG(vm->cookie, vcpu, reg, retval));
}
int
vm_set_register(struct vm *vm, int vcpuid, int reg, uint64_t val)
{
struct vcpu *vcpu;
int error;
if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
return (EINVAL);
if (reg >= VM_REG_LAST)
return (EINVAL);
error = VMSETREG(vm->cookie, vcpuid, reg, val);
if (error || reg != VM_REG_GUEST_RIP)
return (error);
/* Set 'nextrip' to match the value of %rip */
VCPU_CTR1(vm, vcpuid, "Setting nextrip to %#lx", val);
vcpu = &vm->vcpu[vcpuid];
vcpu->nextrip = val;
return (0);
}
static boolean_t
is_descriptor_table(int reg)
{
switch (reg) {
case VM_REG_GUEST_IDTR:
case VM_REG_GUEST_GDTR:
return (TRUE);
default:
return (FALSE);
}
}
static boolean_t
is_segment_register(int reg)
{
switch (reg) {
case VM_REG_GUEST_ES:
case VM_REG_GUEST_CS:
case VM_REG_GUEST_SS:
case VM_REG_GUEST_DS:
case VM_REG_GUEST_FS:
case VM_REG_GUEST_GS:
case VM_REG_GUEST_TR:
case VM_REG_GUEST_LDTR:
return (TRUE);
default:
return (FALSE);
}
}
int
vm_get_seg_desc(struct vm *vm, int vcpu, int reg,
struct seg_desc *desc)
{
if (vcpu < 0 || vcpu >= VM_MAXCPU)
return (EINVAL);
if (!is_segment_register(reg) && !is_descriptor_table(reg))
return (EINVAL);
return (VMGETDESC(vm->cookie, vcpu, reg, desc));
}
int
vm_set_seg_desc(struct vm *vm, int vcpu, int reg,
struct seg_desc *desc)
{
if (vcpu < 0 || vcpu >= VM_MAXCPU)
return (EINVAL);
if (!is_segment_register(reg) && !is_descriptor_table(reg))
return (EINVAL);
return (VMSETDESC(vm->cookie, vcpu, reg, desc));
}
static void
restore_guest_fpustate(struct vcpu *vcpu)
{
/* flush host state to the pcb */
fpuexit(curthread);
/* restore guest FPU state */
fpu_stop_emulating();
fpurestore(vcpu->guestfpu);
/* restore guest XCR0 if XSAVE is enabled in the host */
if (rcr4() & CR4_XSAVE)
load_xcr(0, vcpu->guest_xcr0);
/*
* The FPU is now "dirty" with the guest's state so turn on emulation
* to trap any access to the FPU by the host.
*/
fpu_start_emulating();
}
static void
save_guest_fpustate(struct vcpu *vcpu)
{
if ((rcr0() & CR0_TS) == 0)
panic("fpu emulation not enabled in host!");
/* save guest XCR0 and restore host XCR0 */
if (rcr4() & CR4_XSAVE) {
vcpu->guest_xcr0 = rxcr(0);
load_xcr(0, vmm_get_host_xcr0());
}
/* save guest FPU state */
fpu_stop_emulating();
fpusave(vcpu->guestfpu);
fpu_start_emulating();
}
static VMM_STAT(VCPU_IDLE_TICKS, "number of ticks vcpu was idle");
static int
vcpu_set_state_locked(struct vcpu *vcpu, enum vcpu_state newstate,
bool from_idle)
{
int error;
vcpu_assert_locked(vcpu);
/*
* State transitions from the vmmdev_ioctl() must always begin from
* the VCPU_IDLE state. This guarantees that there is only a single
* ioctl() operating on a vcpu at any point.
*/
if (from_idle) {
while (vcpu->state != VCPU_IDLE)
msleep_spin(&vcpu->state, &vcpu->mtx, "vmstat", hz);
} else {
KASSERT(vcpu->state != VCPU_IDLE, ("invalid transition from "
"vcpu idle state"));
}
if (vcpu->state == VCPU_RUNNING) {
KASSERT(vcpu->hostcpu == curcpu, ("curcpu %d and hostcpu %d "
"mismatch for running vcpu", curcpu, vcpu->hostcpu));
} else {
KASSERT(vcpu->hostcpu == NOCPU, ("Invalid hostcpu %d for a "
"vcpu that is not running", vcpu->hostcpu));
}
/*
* The following state transitions are allowed:
* IDLE -> FROZEN -> IDLE
* FROZEN -> RUNNING -> FROZEN
* FROZEN -> SLEEPING -> FROZEN
*/
switch (vcpu->state) {
case VCPU_IDLE:
case VCPU_RUNNING:
case VCPU_SLEEPING:
error = (newstate != VCPU_FROZEN);
break;
case VCPU_FROZEN:
error = (newstate == VCPU_FROZEN);
break;
default:
error = 1;
break;
}
if (error)
return (EBUSY);
vcpu->state = newstate;
if (newstate == VCPU_RUNNING)
vcpu->hostcpu = curcpu;
else
vcpu->hostcpu = NOCPU;
if (newstate == VCPU_IDLE)
wakeup(&vcpu->state);
return (0);
}
static void
vcpu_require_state(struct vm *vm, int vcpuid, enum vcpu_state newstate)
{
int error;
if ((error = vcpu_set_state(vm, vcpuid, newstate, false)) != 0)
panic("Error %d setting state to %d\n", error, newstate);
}
static void
vcpu_require_state_locked(struct vcpu *vcpu, enum vcpu_state newstate)
{
int error;
if ((error = vcpu_set_state_locked(vcpu, newstate, false)) != 0)
panic("Error %d setting state to %d", error, newstate);
}
static void
vm_set_rendezvous_func(struct vm *vm, vm_rendezvous_func_t func)
{
KASSERT(mtx_owned(&vm->rendezvous_mtx), ("rendezvous_mtx not locked"));
/*
* Update 'rendezvous_func' and execute a write memory barrier to
* ensure that it is visible across all host cpus. This is not needed
* for correctness but it does ensure that all the vcpus will notice
* that the rendezvous is requested immediately.
*/
vm->rendezvous_func = func;
wmb();
}
#define RENDEZVOUS_CTR0(vm, vcpuid, fmt) \
do { \
if (vcpuid >= 0) \
VCPU_CTR0(vm, vcpuid, fmt); \
else \
VM_CTR0(vm, fmt); \
} while (0)
static void
vm_handle_rendezvous(struct vm *vm, int vcpuid)
{
KASSERT(vcpuid == -1 || (vcpuid >= 0 && vcpuid < VM_MAXCPU),
("vm_handle_rendezvous: invalid vcpuid %d", vcpuid));
mtx_lock(&vm->rendezvous_mtx);
while (vm->rendezvous_func != NULL) {
/* 'rendezvous_req_cpus' must be a subset of 'active_cpus' */
CPU_AND(&vm->rendezvous_req_cpus, &vm->active_cpus);
if (vcpuid != -1 &&
CPU_ISSET(vcpuid, &vm->rendezvous_req_cpus) &&
!CPU_ISSET(vcpuid, &vm->rendezvous_done_cpus)) {
VCPU_CTR0(vm, vcpuid, "Calling rendezvous func");
(*vm->rendezvous_func)(vm, vcpuid, vm->rendezvous_arg);
CPU_SET(vcpuid, &vm->rendezvous_done_cpus);
}
if (CPU_CMP(&vm->rendezvous_req_cpus,
&vm->rendezvous_done_cpus) == 0) {
VCPU_CTR0(vm, vcpuid, "Rendezvous completed");
vm_set_rendezvous_func(vm, NULL);
wakeup(&vm->rendezvous_func);
break;
}
RENDEZVOUS_CTR0(vm, vcpuid, "Wait for rendezvous completion");
mtx_sleep(&vm->rendezvous_func, &vm->rendezvous_mtx, 0,
"vmrndv", 0);
}
mtx_unlock(&vm->rendezvous_mtx);
}
/*
* Emulate a guest 'hlt' by sleeping until the vcpu is ready to run.
*/
static int
vm_handle_hlt(struct vm *vm, int vcpuid, bool intr_disabled, bool *retu)
{
struct vcpu *vcpu;
const char *wmesg;
int t, vcpu_halted, vm_halted;
KASSERT(!CPU_ISSET(vcpuid, &vm->halted_cpus), ("vcpu already halted"));
vcpu = &vm->vcpu[vcpuid];
vcpu_halted = 0;
vm_halted = 0;
vcpu_lock(vcpu);
while (1) {
/*
* Do a final check for pending NMI or interrupts before
* really putting this thread to sleep. Also check for
* software events that would cause this vcpu to wakeup.
*
* These interrupts/events could have happened after the
* vcpu returned from VMRUN() and before it acquired the
* vcpu lock above.
*/
if (vm->rendezvous_func != NULL || vm->suspend)
break;
if (vm_nmi_pending(vm, vcpuid))
break;
if (!intr_disabled) {
if (vm_extint_pending(vm, vcpuid) ||
vlapic_pending_intr(vcpu->vlapic, NULL)) {
break;
}
}
/* Don't go to sleep if the vcpu thread needs to yield */
if (vcpu_should_yield(vm, vcpuid))
break;
/*
* Some Linux guests implement "halt" by having all vcpus
* execute HLT with interrupts disabled. 'halted_cpus' keeps
* track of the vcpus that have entered this state. When all
* vcpus enter the halted state the virtual machine is halted.
*/
if (intr_disabled) {
wmesg = "vmhalt";
VCPU_CTR0(vm, vcpuid, "Halted");
if (!vcpu_halted && halt_detection_enabled) {
vcpu_halted = 1;
CPU_SET_ATOMIC(vcpuid, &vm->halted_cpus);
}
if (CPU_CMP(&vm->halted_cpus, &vm->active_cpus) == 0) {
vm_halted = 1;
break;
}
} else {
wmesg = "vmidle";
}
t = ticks;
vcpu_require_state_locked(vcpu, VCPU_SLEEPING);
/*
* XXX msleep_spin() cannot be interrupted by signals so
* wake up periodically to check pending signals.
*/
msleep_spin(vcpu, &vcpu->mtx, wmesg, hz);
vcpu_require_state_locked(vcpu, VCPU_FROZEN);
vmm_stat_incr(vm, vcpuid, VCPU_IDLE_TICKS, ticks - t);
}
if (vcpu_halted)
CPU_CLR_ATOMIC(vcpuid, &vm->halted_cpus);
vcpu_unlock(vcpu);
if (vm_halted)
vm_suspend(vm, VM_SUSPEND_HALT);
return (0);
}
static int
vm_handle_paging(struct vm *vm, int vcpuid, bool *retu)
{
int rv, ftype;
struct vm_map *map;
struct vcpu *vcpu;
struct vm_exit *vme;
vcpu = &vm->vcpu[vcpuid];
vme = &vcpu->exitinfo;
KASSERT(vme->inst_length == 0, ("%s: invalid inst_length %d",
__func__, vme->inst_length));
ftype = vme->u.paging.fault_type;
KASSERT(ftype == VM_PROT_READ ||
ftype == VM_PROT_WRITE || ftype == VM_PROT_EXECUTE,
("vm_handle_paging: invalid fault_type %d", ftype));
if (ftype == VM_PROT_READ || ftype == VM_PROT_WRITE) {
rv = pmap_emulate_accessed_dirty(vmspace_pmap(vm->vmspace),
vme->u.paging.gpa, ftype);
if (rv == 0) {
VCPU_CTR2(vm, vcpuid, "%s bit emulation for gpa %#lx",
ftype == VM_PROT_READ ? "accessed" : "dirty",
vme->u.paging.gpa);
goto done;
}
}
map = &vm->vmspace->vm_map;
rv = vm_fault(map, vme->u.paging.gpa, ftype, VM_FAULT_NORMAL);
VCPU_CTR3(vm, vcpuid, "vm_handle_paging rv = %d, gpa = %#lx, "
"ftype = %d", rv, vme->u.paging.gpa, ftype);
if (rv != KERN_SUCCESS)
return (EFAULT);
done:
return (0);
}
static int
vm_handle_inst_emul(struct vm *vm, int vcpuid, bool *retu)
{
struct vie *vie;
struct vcpu *vcpu;
struct vm_exit *vme;
uint64_t gla, gpa, cs_base;
struct vm_guest_paging *paging;
mem_region_read_t mread;
mem_region_write_t mwrite;
enum vm_cpu_mode cpu_mode;
int cs_d, error, fault, length;
vcpu = &vm->vcpu[vcpuid];
vme = &vcpu->exitinfo;
gla = vme->u.inst_emul.gla;
gpa = vme->u.inst_emul.gpa;
cs_base = vme->u.inst_emul.cs_base;
cs_d = vme->u.inst_emul.cs_d;
vie = &vme->u.inst_emul.vie;
paging = &vme->u.inst_emul.paging;
cpu_mode = paging->cpu_mode;
VCPU_CTR1(vm, vcpuid, "inst_emul fault accessing gpa %#lx", gpa);
/* Fetch, decode and emulate the faulting instruction */
if (vie->num_valid == 0) {
/*
* If the instruction length is not known then assume a
* maximum size instruction.
*/
length = vme->inst_length ? vme->inst_length : VIE_INST_SIZE;
error = vmm_fetch_instruction(vm, vcpuid, paging, vme->rip +
cs_base, length, vie, &fault);
} else {
/*
* The instruction bytes have already been copied into 'vie'
*/
error = fault = 0;
}
if (error || fault)
return (error);
if (vmm_decode_instruction(vm, vcpuid, gla, cpu_mode, cs_d, vie) != 0) {
VCPU_CTR1(vm, vcpuid, "Error decoding instruction at %#lx",
vme->rip + cs_base);
*retu = true; /* dump instruction bytes in userspace */
return (0);
}
/*
* If the instruction length was not specified then update it now
* along with 'nextrip'.
*/
if (vme->inst_length == 0) {
vme->inst_length = vie->num_processed;
vcpu->nextrip += vie->num_processed;
}
/* return to userland unless this is an in-kernel emulated device */
if (gpa >= DEFAULT_APIC_BASE && gpa < DEFAULT_APIC_BASE + PAGE_SIZE) {
mread = lapic_mmio_read;
mwrite = lapic_mmio_write;
} else if (gpa >= VIOAPIC_BASE && gpa < VIOAPIC_BASE + VIOAPIC_SIZE) {
mread = vioapic_mmio_read;
mwrite = vioapic_mmio_write;
} else if (gpa >= VHPET_BASE && gpa < VHPET_BASE + VHPET_SIZE) {
mread = vhpet_mmio_read;
mwrite = vhpet_mmio_write;
} else {
*retu = true;
return (0);
}
error = vmm_emulate_instruction(vm, vcpuid, gpa, vie, paging,
mread, mwrite, retu);
return (error);
}
static int
vm_handle_suspend(struct vm *vm, int vcpuid, bool *retu)
{
int i, done;
struct vcpu *vcpu;
done = 0;
vcpu = &vm->vcpu[vcpuid];
CPU_SET_ATOMIC(vcpuid, &vm->suspended_cpus);
/*
* Wait until all 'active_cpus' have suspended themselves.
*
* Since a VM may be suspended at any time including when one or
* more vcpus are doing a rendezvous we need to call the rendezvous
* handler while we are waiting to prevent a deadlock.
*/
vcpu_lock(vcpu);
while (1) {
if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) {
VCPU_CTR0(vm, vcpuid, "All vcpus suspended");
break;
}
if (vm->rendezvous_func == NULL) {
VCPU_CTR0(vm, vcpuid, "Sleeping during suspend");
vcpu_require_state_locked(vcpu, VCPU_SLEEPING);
msleep_spin(vcpu, &vcpu->mtx, "vmsusp", hz);
vcpu_require_state_locked(vcpu, VCPU_FROZEN);
} else {
VCPU_CTR0(vm, vcpuid, "Rendezvous during suspend");
vcpu_unlock(vcpu);
vm_handle_rendezvous(vm, vcpuid);
vcpu_lock(vcpu);
}
}
vcpu_unlock(vcpu);
/*
* Wakeup the other sleeping vcpus and return to userspace.
*/
for (i = 0; i < VM_MAXCPU; i++) {
if (CPU_ISSET(i, &vm->suspended_cpus)) {
vcpu_notify_event(vm, i, false);
}
}
*retu = true;
return (0);
}
int
vm_suspend(struct vm *vm, enum vm_suspend_how how)
{
int i;
if (how <= VM_SUSPEND_NONE || how >= VM_SUSPEND_LAST)
return (EINVAL);
if (atomic_cmpset_int(&vm->suspend, 0, how) == 0) {
VM_CTR2(vm, "virtual machine already suspended %d/%d",
vm->suspend, how);
return (EALREADY);
}
VM_CTR1(vm, "virtual machine successfully suspended %d", how);
/*
* Notify all active vcpus that they are now suspended.
*/
for (i = 0; i < VM_MAXCPU; i++) {
if (CPU_ISSET(i, &vm->active_cpus))
vcpu_notify_event(vm, i, false);
}
return (0);
}
void
vm_exit_suspended(struct vm *vm, int vcpuid, uint64_t rip)
{
struct vm_exit *vmexit;
KASSERT(vm->suspend > VM_SUSPEND_NONE && vm->suspend < VM_SUSPEND_LAST,
("vm_exit_suspended: invalid suspend type %d", vm->suspend));
vmexit = vm_exitinfo(vm, vcpuid);
vmexit->rip = rip;
vmexit->inst_length = 0;
vmexit->exitcode = VM_EXITCODE_SUSPENDED;
vmexit->u.suspended.how = vm->suspend;
}
void
vm_exit_rendezvous(struct vm *vm, int vcpuid, uint64_t rip)
{
struct vm_exit *vmexit;
KASSERT(vm->rendezvous_func != NULL, ("rendezvous not in progress"));
vmexit = vm_exitinfo(vm, vcpuid);
vmexit->rip = rip;
vmexit->inst_length = 0;
vmexit->exitcode = VM_EXITCODE_RENDEZVOUS;
vmm_stat_incr(vm, vcpuid, VMEXIT_RENDEZVOUS, 1);
}
void
vm_exit_astpending(struct vm *vm, int vcpuid, uint64_t rip)
{
struct vm_exit *vmexit;
vmexit = vm_exitinfo(vm, vcpuid);
vmexit->rip = rip;
vmexit->inst_length = 0;
vmexit->exitcode = VM_EXITCODE_BOGUS;
vmm_stat_incr(vm, vcpuid, VMEXIT_ASTPENDING, 1);
}
int
vm_run(struct vm *vm, struct vm_run *vmrun)
{
int error, vcpuid;
struct vcpu *vcpu;
struct pcb *pcb;
uint64_t tscval;
struct vm_exit *vme;
bool retu, intr_disabled;
pmap_t pmap;
void *rptr, *sptr;
vcpuid = vmrun->cpuid;
if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
return (EINVAL);
if (!CPU_ISSET(vcpuid, &vm->active_cpus))
return (EINVAL);
if (CPU_ISSET(vcpuid, &vm->suspended_cpus))
return (EINVAL);
rptr = &vm->rendezvous_func;
sptr = &vm->suspend;
pmap = vmspace_pmap(vm->vmspace);
vcpu = &vm->vcpu[vcpuid];
vme = &vcpu->exitinfo;
restart:
critical_enter();
KASSERT(!CPU_ISSET(curcpu, &pmap->pm_active),
("vm_run: absurd pm_active"));
tscval = rdtsc();
pcb = PCPU_GET(curpcb);
set_pcb_flags(pcb, PCB_FULL_IRET);
restore_guest_fpustate(vcpu);
vcpu_require_state(vm, vcpuid, VCPU_RUNNING);
error = VMRUN(vm->cookie, vcpuid, vcpu->nextrip, pmap, rptr, sptr);
vcpu_require_state(vm, vcpuid, VCPU_FROZEN);
save_guest_fpustate(vcpu);
vmm_stat_incr(vm, vcpuid, VCPU_TOTAL_RUNTIME, rdtsc() - tscval);
critical_exit();
if (error == 0) {
retu = false;
vcpu->nextrip = vme->rip + vme->inst_length;
switch (vme->exitcode) {
case VM_EXITCODE_SUSPENDED:
error = vm_handle_suspend(vm, vcpuid, &retu);
break;
case VM_EXITCODE_IOAPIC_EOI:
vioapic_process_eoi(vm, vcpuid,
vme->u.ioapic_eoi.vector);
break;
case VM_EXITCODE_RENDEZVOUS:
vm_handle_rendezvous(vm, vcpuid);
error = 0;
break;
case VM_EXITCODE_HLT:
intr_disabled = ((vme->u.hlt.rflags & PSL_I) == 0);
error = vm_handle_hlt(vm, vcpuid, intr_disabled, &retu);
break;
case VM_EXITCODE_PAGING:
error = vm_handle_paging(vm, vcpuid, &retu);
break;
case VM_EXITCODE_INST_EMUL:
error = vm_handle_inst_emul(vm, vcpuid, &retu);
break;
case VM_EXITCODE_INOUT:
case VM_EXITCODE_INOUT_STR:
error = vm_handle_inout(vm, vcpuid, vme, &retu);
break;
case VM_EXITCODE_MONITOR:
case VM_EXITCODE_MWAIT:
vm_inject_ud(vm, vcpuid);
break;
default:
retu = true; /* handled in userland */
break;
}
}
if (error == 0 && retu == false)
goto restart;
/* copy the exit information */
bcopy(vme, &vmrun->vm_exit, sizeof(struct vm_exit));
return (error);
}
int
vm_restart_instruction(void *arg, int vcpuid)
{
struct vm *vm;
struct vcpu *vcpu;
enum vcpu_state state;
uint64_t rip;
int error;
vm = arg;
if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
return (EINVAL);
vcpu = &vm->vcpu[vcpuid];
state = vcpu_get_state(vm, vcpuid, NULL);
if (state == VCPU_RUNNING) {
/*
* When a vcpu is "running" the next instruction is determined
* by adding 'rip' and 'inst_length' in the vcpu's 'exitinfo'.
* Thus setting 'inst_length' to zero will cause the current
* instruction to be restarted.
*/
vcpu->exitinfo.inst_length = 0;
VCPU_CTR1(vm, vcpuid, "restarting instruction at %#lx by "
"setting inst_length to zero", vcpu->exitinfo.rip);
} else if (state == VCPU_FROZEN) {
/*
* When a vcpu is "frozen" it is outside the critical section
* around VMRUN() and 'nextrip' points to the next instruction.
* Thus instruction restart is achieved by setting 'nextrip'
* to the vcpu's %rip.
*/
error = vm_get_register(vm, vcpuid, VM_REG_GUEST_RIP, &rip);
KASSERT(!error, ("%s: error %d getting rip", __func__, error));
VCPU_CTR2(vm, vcpuid, "restarting instruction by updating "
"nextrip from %#lx to %#lx", vcpu->nextrip, rip);
vcpu->nextrip = rip;
} else {
panic("%s: invalid state %d", __func__, state);
}
return (0);
}
int
vm_exit_intinfo(struct vm *vm, int vcpuid, uint64_t info)
{
struct vcpu *vcpu;
int type, vector;
if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
return (EINVAL);
vcpu = &vm->vcpu[vcpuid];
if (info & VM_INTINFO_VALID) {
type = info & VM_INTINFO_TYPE;
vector = info & 0xff;
if (type == VM_INTINFO_NMI && vector != IDT_NMI)
return (EINVAL);
if (type == VM_INTINFO_HWEXCEPTION && vector >= 32)
return (EINVAL);
if (info & VM_INTINFO_RSVD)
return (EINVAL);
} else {
info = 0;
}
VCPU_CTR2(vm, vcpuid, "%s: info1(%#lx)", __func__, info);
vcpu->exitintinfo = info;
return (0);
}
enum exc_class {
EXC_BENIGN,
EXC_CONTRIBUTORY,
EXC_PAGEFAULT
};
#define IDT_VE 20 /* Virtualization Exception (Intel specific) */
static enum exc_class
exception_class(uint64_t info)
{
int type, vector;
KASSERT(info & VM_INTINFO_VALID, ("intinfo must be valid: %#lx", info));
type = info & VM_INTINFO_TYPE;
vector = info & 0xff;
/* Table 6-4, "Interrupt and Exception Classes", Intel SDM, Vol 3 */
switch (type) {
case VM_INTINFO_HWINTR:
case VM_INTINFO_SWINTR:
case VM_INTINFO_NMI:
return (EXC_BENIGN);
default:
/*
* Hardware exception.
*
* SVM and VT-x use identical type values to represent NMI,
* hardware interrupt and software interrupt.
*
* SVM uses type '3' for all exceptions. VT-x uses type '3'
* for exceptions except #BP and #OF. #BP and #OF use a type
* value of '5' or '6'. Therefore we don't check for explicit
* values of 'type' to classify 'intinfo' into a hardware
* exception.
*/
break;
}
switch (vector) {
case IDT_PF:
case IDT_VE:
return (EXC_PAGEFAULT);
case IDT_DE:
case IDT_TS:
case IDT_NP:
case IDT_SS:
case IDT_GP:
return (EXC_CONTRIBUTORY);
default:
return (EXC_BENIGN);
}
}
static int
nested_fault(struct vm *vm, int vcpuid, uint64_t info1, uint64_t info2,
uint64_t *retinfo)
{
enum exc_class exc1, exc2;
int type1, vector1;
KASSERT(info1 & VM_INTINFO_VALID, ("info1 %#lx is not valid", info1));
KASSERT(info2 & VM_INTINFO_VALID, ("info2 %#lx is not valid", info2));
/*
* If an exception occurs while attempting to call the double-fault
* handler the processor enters shutdown mode (aka triple fault).
*/
type1 = info1 & VM_INTINFO_TYPE;
vector1 = info1 & 0xff;
if (type1 == VM_INTINFO_HWEXCEPTION && vector1 == IDT_DF) {
VCPU_CTR2(vm, vcpuid, "triple fault: info1(%#lx), info2(%#lx)",
info1, info2);
vm_suspend(vm, VM_SUSPEND_TRIPLEFAULT);
*retinfo = 0;
return (0);
}
/*
* Table 6-5 "Conditions for Generating a Double Fault", Intel SDM, Vol3
*/
exc1 = exception_class(info1);
exc2 = exception_class(info2);
if ((exc1 == EXC_CONTRIBUTORY && exc2 == EXC_CONTRIBUTORY) ||
(exc1 == EXC_PAGEFAULT && exc2 != EXC_BENIGN)) {
/* Convert nested fault into a double fault. */
*retinfo = IDT_DF;
*retinfo |= VM_INTINFO_VALID | VM_INTINFO_HWEXCEPTION;
*retinfo |= VM_INTINFO_DEL_ERRCODE;
} else {
/* Handle exceptions serially */
*retinfo = info2;
}
return (1);
}
static uint64_t
vcpu_exception_intinfo(struct vcpu *vcpu)
{
uint64_t info = 0;
if (vcpu->exception_pending) {
info = vcpu->exc_vector & 0xff;
info |= VM_INTINFO_VALID | VM_INTINFO_HWEXCEPTION;
if (vcpu->exc_errcode_valid) {
info |= VM_INTINFO_DEL_ERRCODE;
info |= (uint64_t)vcpu->exc_errcode << 32;
}
}
return (info);
}
int
vm_entry_intinfo(struct vm *vm, int vcpuid, uint64_t *retinfo)
{
struct vcpu *vcpu;
uint64_t info1, info2;
int valid;
KASSERT(vcpuid >= 0 && vcpuid < VM_MAXCPU, ("invalid vcpu %d", vcpuid));
vcpu = &vm->vcpu[vcpuid];
info1 = vcpu->exitintinfo;
vcpu->exitintinfo = 0;
info2 = 0;
if (vcpu->exception_pending) {
info2 = vcpu_exception_intinfo(vcpu);
vcpu->exception_pending = 0;
VCPU_CTR2(vm, vcpuid, "Exception %d delivered: %#lx",
vcpu->exc_vector, info2);
}
if ((info1 & VM_INTINFO_VALID) && (info2 & VM_INTINFO_VALID)) {
valid = nested_fault(vm, vcpuid, info1, info2, retinfo);
} else if (info1 & VM_INTINFO_VALID) {
*retinfo = info1;
valid = 1;
} else if (info2 & VM_INTINFO_VALID) {
*retinfo = info2;
valid = 1;
} else {
valid = 0;
}
if (valid) {
VCPU_CTR4(vm, vcpuid, "%s: info1(%#lx), info2(%#lx), "
"retinfo(%#lx)", __func__, info1, info2, *retinfo);
}
return (valid);
}
int
vm_get_intinfo(struct vm *vm, int vcpuid, uint64_t *info1, uint64_t *info2)
{
struct vcpu *vcpu;
if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
return (EINVAL);
vcpu = &vm->vcpu[vcpuid];
*info1 = vcpu->exitintinfo;
*info2 = vcpu_exception_intinfo(vcpu);
return (0);
}
int
vm_inject_exception(struct vm *vm, int vcpuid, int vector, int errcode_valid,
uint32_t errcode, int restart_instruction)
{
struct vcpu *vcpu;
int error;
if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
return (EINVAL);
if (vector < 0 || vector >= 32)
return (EINVAL);
/*
* A double fault exception should never be injected directly into
* the guest. It is a derived exception that results from specific
* combinations of nested faults.
*/
if (vector == IDT_DF)
return (EINVAL);
vcpu = &vm->vcpu[vcpuid];
if (vcpu->exception_pending) {
VCPU_CTR2(vm, vcpuid, "Unable to inject exception %d due to "
"pending exception %d", vector, vcpu->exc_vector);
return (EBUSY);
}
/*
* From section 26.6.1 "Interruptibility State" in Intel SDM:
*
* Event blocking by "STI" or "MOV SS" is cleared after guest executes
* one instruction or incurs an exception.
*/
error = vm_set_register(vm, vcpuid, VM_REG_GUEST_INTR_SHADOW, 0);
KASSERT(error == 0, ("%s: error %d clearing interrupt shadow",
__func__, error));
if (restart_instruction)
vm_restart_instruction(vm, vcpuid);
vcpu->exception_pending = 1;
vcpu->exc_vector = vector;
vcpu->exc_errcode = errcode;
vcpu->exc_errcode_valid = errcode_valid;
VCPU_CTR1(vm, vcpuid, "Exception %d pending", vector);
return (0);
}
void
vm_inject_fault(void *vmarg, int vcpuid, int vector, int errcode_valid,
int errcode)
{
struct vm *vm;
int error, restart_instruction;
vm = vmarg;
restart_instruction = 1;
error = vm_inject_exception(vm, vcpuid, vector, errcode_valid,
errcode, restart_instruction);
KASSERT(error == 0, ("vm_inject_exception error %d", error));
}
void
vm_inject_pf(void *vmarg, int vcpuid, int error_code, uint64_t cr2)
{
struct vm *vm;
int error;
vm = vmarg;
VCPU_CTR2(vm, vcpuid, "Injecting page fault: error_code %#x, cr2 %#lx",
error_code, cr2);
error = vm_set_register(vm, vcpuid, VM_REG_GUEST_CR2, cr2);
KASSERT(error == 0, ("vm_set_register(cr2) error %d", error));
vm_inject_fault(vm, vcpuid, IDT_PF, 1, error_code);
}
static VMM_STAT(VCPU_NMI_COUNT, "number of NMIs delivered to vcpu");
int
vm_inject_nmi(struct vm *vm, int vcpuid)
{
struct vcpu *vcpu;
if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
return (EINVAL);
vcpu = &vm->vcpu[vcpuid];
vcpu->nmi_pending = 1;
vcpu_notify_event(vm, vcpuid, false);
return (0);
}
int
vm_nmi_pending(struct vm *vm, int vcpuid)
{
struct vcpu *vcpu;
if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
panic("vm_nmi_pending: invalid vcpuid %d", vcpuid);
vcpu = &vm->vcpu[vcpuid];
return (vcpu->nmi_pending);
}
void
vm_nmi_clear(struct vm *vm, int vcpuid)
{
struct vcpu *vcpu;
if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
panic("vm_nmi_pending: invalid vcpuid %d", vcpuid);
vcpu = &vm->vcpu[vcpuid];
if (vcpu->nmi_pending == 0)
panic("vm_nmi_clear: inconsistent nmi_pending state");
vcpu->nmi_pending = 0;
vmm_stat_incr(vm, vcpuid, VCPU_NMI_COUNT, 1);
}
static VMM_STAT(VCPU_EXTINT_COUNT, "number of ExtINTs delivered to vcpu");
int
vm_inject_extint(struct vm *vm, int vcpuid)
{
struct vcpu *vcpu;
if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
return (EINVAL);
vcpu = &vm->vcpu[vcpuid];
vcpu->extint_pending = 1;
vcpu_notify_event(vm, vcpuid, false);
return (0);
}
int
vm_extint_pending(struct vm *vm, int vcpuid)
{
struct vcpu *vcpu;
if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
panic("vm_extint_pending: invalid vcpuid %d", vcpuid);
vcpu = &vm->vcpu[vcpuid];
return (vcpu->extint_pending);
}
void
vm_extint_clear(struct vm *vm, int vcpuid)
{
struct vcpu *vcpu;
if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
panic("vm_extint_pending: invalid vcpuid %d", vcpuid);
vcpu = &vm->vcpu[vcpuid];
if (vcpu->extint_pending == 0)
panic("vm_extint_clear: inconsistent extint_pending state");
vcpu->extint_pending = 0;
vmm_stat_incr(vm, vcpuid, VCPU_EXTINT_COUNT, 1);
}
int
vm_get_capability(struct vm *vm, int vcpu, int type, int *retval)
{
if (vcpu < 0 || vcpu >= VM_MAXCPU)
return (EINVAL);
if (type < 0 || type >= VM_CAP_MAX)
return (EINVAL);
return (VMGETCAP(vm->cookie, vcpu, type, retval));
}
int
vm_set_capability(struct vm *vm, int vcpu, int type, int val)
{
if (vcpu < 0 || vcpu >= VM_MAXCPU)
return (EINVAL);
if (type < 0 || type >= VM_CAP_MAX)
return (EINVAL);
return (VMSETCAP(vm->cookie, vcpu, type, val));
}
struct vlapic *
vm_lapic(struct vm *vm, int cpu)
{
return (vm->vcpu[cpu].vlapic);
}
struct vioapic *
vm_ioapic(struct vm *vm)
{
return (vm->vioapic);
}
struct vhpet *
vm_hpet(struct vm *vm)
{
return (vm->vhpet);
}
boolean_t
vmm_is_pptdev(int bus, int slot, int func)
{
int found, i, n;
int b, s, f;
char *val, *cp, *cp2;
/*
* XXX
* The length of an environment variable is limited to 128 bytes which
* puts an upper limit on the number of passthru devices that may be
* specified using a single environment variable.
*
* Work around this by scanning multiple environment variable
* names instead of a single one - yuck!
*/
const char *names[] = { "pptdevs", "pptdevs2", "pptdevs3", NULL };
/* set pptdevs="1/2/3 4/5/6 7/8/9 10/11/12" */
found = 0;
for (i = 0; names[i] != NULL && !found; i++) {
cp = val = kern_getenv(names[i]);
while (cp != NULL && *cp != '\0') {
if ((cp2 = strchr(cp, ' ')) != NULL)
*cp2 = '\0';
n = sscanf(cp, "%d/%d/%d", &b, &s, &f);
if (n == 3 && bus == b && slot == s && func == f) {
found = 1;
break;
}
if (cp2 != NULL)
*cp2++ = ' ';
cp = cp2;
}
freeenv(val);
}
return (found);
}
void *
vm_iommu_domain(struct vm *vm)
{
return (vm->iommu);
}
int
vcpu_set_state(struct vm *vm, int vcpuid, enum vcpu_state newstate,
bool from_idle)
{
int error;
struct vcpu *vcpu;
if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
panic("vm_set_run_state: invalid vcpuid %d", vcpuid);
vcpu = &vm->vcpu[vcpuid];
vcpu_lock(vcpu);
error = vcpu_set_state_locked(vcpu, newstate, from_idle);
vcpu_unlock(vcpu);
return (error);
}
enum vcpu_state
vcpu_get_state(struct vm *vm, int vcpuid, int *hostcpu)
{
struct vcpu *vcpu;
enum vcpu_state state;
if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
panic("vm_get_run_state: invalid vcpuid %d", vcpuid);
vcpu = &vm->vcpu[vcpuid];
vcpu_lock(vcpu);
state = vcpu->state;
if (hostcpu != NULL)
*hostcpu = vcpu->hostcpu;
vcpu_unlock(vcpu);
return (state);
}
int
vm_activate_cpu(struct vm *vm, int vcpuid)
{
if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
return (EINVAL);
if (CPU_ISSET(vcpuid, &vm->active_cpus))
return (EBUSY);
VCPU_CTR0(vm, vcpuid, "activated");
CPU_SET_ATOMIC(vcpuid, &vm->active_cpus);
return (0);
}
cpuset_t
vm_active_cpus(struct vm *vm)
{
return (vm->active_cpus);
}
cpuset_t
vm_suspended_cpus(struct vm *vm)
{
return (vm->suspended_cpus);
}
void *
vcpu_stats(struct vm *vm, int vcpuid)
{
return (vm->vcpu[vcpuid].stats);
}
int
vm_get_x2apic_state(struct vm *vm, int vcpuid, enum x2apic_state *state)
{
if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
return (EINVAL);
*state = vm->vcpu[vcpuid].x2apic_state;
return (0);
}
int
vm_set_x2apic_state(struct vm *vm, int vcpuid, enum x2apic_state state)
{
if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
return (EINVAL);
if (state >= X2APIC_STATE_LAST)
return (EINVAL);
vm->vcpu[vcpuid].x2apic_state = state;
vlapic_set_x2apic_state(vm, vcpuid, state);
return (0);
}
/*
* This function is called to ensure that a vcpu "sees" a pending event
* as soon as possible:
* - If the vcpu thread is sleeping then it is woken up.
* - If the vcpu is running on a different host_cpu then an IPI will be directed
* to the host_cpu to cause the vcpu to trap into the hypervisor.
*/
void
vcpu_notify_event(struct vm *vm, int vcpuid, bool lapic_intr)
{
int hostcpu;
struct vcpu *vcpu;
vcpu = &vm->vcpu[vcpuid];
vcpu_lock(vcpu);
hostcpu = vcpu->hostcpu;
if (vcpu->state == VCPU_RUNNING) {
KASSERT(hostcpu != NOCPU, ("vcpu running on invalid hostcpu"));
if (hostcpu != curcpu) {
if (lapic_intr) {
vlapic_post_intr(vcpu->vlapic, hostcpu,
vmm_ipinum);
} else {
ipi_cpu(hostcpu, vmm_ipinum);
}
} else {
/*
* If the 'vcpu' is running on 'curcpu' then it must
* be sending a notification to itself (e.g. SELF_IPI).
* The pending event will be picked up when the vcpu
* transitions back to guest context.
*/
}
} else {
KASSERT(hostcpu == NOCPU, ("vcpu state %d not consistent "
"with hostcpu %d", vcpu->state, hostcpu));
if (vcpu->state == VCPU_SLEEPING)
wakeup_one(vcpu);
}
vcpu_unlock(vcpu);
}
struct vmspace *
vm_get_vmspace(struct vm *vm)
{
return (vm->vmspace);
}
int
vm_apicid2vcpuid(struct vm *vm, int apicid)
{
/*
* XXX apic id is assumed to be numerically identical to vcpu id
*/
return (apicid);
}
void
vm_smp_rendezvous(struct vm *vm, int vcpuid, cpuset_t dest,
vm_rendezvous_func_t func, void *arg)
{
int i;
/*
* Enforce that this function is called without any locks
*/
WITNESS_WARN(WARN_PANIC, NULL, "vm_smp_rendezvous");
KASSERT(vcpuid == -1 || (vcpuid >= 0 && vcpuid < VM_MAXCPU),
("vm_smp_rendezvous: invalid vcpuid %d", vcpuid));
restart:
mtx_lock(&vm->rendezvous_mtx);
if (vm->rendezvous_func != NULL) {
/*
* If a rendezvous is already in progress then we need to
* call the rendezvous handler in case this 'vcpuid' is one
* of the targets of the rendezvous.
*/
RENDEZVOUS_CTR0(vm, vcpuid, "Rendezvous already in progress");
mtx_unlock(&vm->rendezvous_mtx);
vm_handle_rendezvous(vm, vcpuid);
goto restart;
}
KASSERT(vm->rendezvous_func == NULL, ("vm_smp_rendezvous: previous "
"rendezvous is still in progress"));
RENDEZVOUS_CTR0(vm, vcpuid, "Initiating rendezvous");
vm->rendezvous_req_cpus = dest;
CPU_ZERO(&vm->rendezvous_done_cpus);
vm->rendezvous_arg = arg;
vm_set_rendezvous_func(vm, func);
mtx_unlock(&vm->rendezvous_mtx);
/*
* Wake up any sleeping vcpus and trigger a VM-exit in any running
* vcpus so they handle the rendezvous as soon as possible.
*/
for (i = 0; i < VM_MAXCPU; i++) {
if (CPU_ISSET(i, &dest))
vcpu_notify_event(vm, i, false);
}
vm_handle_rendezvous(vm, vcpuid);
}
struct vatpic *
vm_atpic(struct vm *vm)
{
return (vm->vatpic);
}
struct vatpit *
vm_atpit(struct vm *vm)
{
return (vm->vatpit);
}
struct vpmtmr *
vm_pmtmr(struct vm *vm)
{
return (vm->vpmtmr);
}
struct vrtc *
vm_rtc(struct vm *vm)
{
return (vm->vrtc);
}
enum vm_reg_name
vm_segment_name(int seg)
{
static enum vm_reg_name seg_names[] = {
VM_REG_GUEST_ES,
VM_REG_GUEST_CS,
VM_REG_GUEST_SS,
VM_REG_GUEST_DS,
VM_REG_GUEST_FS,
VM_REG_GUEST_GS
};
KASSERT(seg >= 0 && seg < nitems(seg_names),
("%s: invalid segment encoding %d", __func__, seg));
return (seg_names[seg]);
}
void
vm_copy_teardown(struct vm *vm, int vcpuid, struct vm_copyinfo *copyinfo,
int num_copyinfo)
{
int idx;
for (idx = 0; idx < num_copyinfo; idx++) {
if (copyinfo[idx].cookie != NULL)
vm_gpa_release(copyinfo[idx].cookie);
}
bzero(copyinfo, num_copyinfo * sizeof(struct vm_copyinfo));
}
int
vm_copy_setup(struct vm *vm, int vcpuid, struct vm_guest_paging *paging,
uint64_t gla, size_t len, int prot, struct vm_copyinfo *copyinfo,
int num_copyinfo, int *fault)
{
int error, idx, nused;
size_t n, off, remaining;
void *hva, *cookie;
uint64_t gpa;
bzero(copyinfo, sizeof(struct vm_copyinfo) * num_copyinfo);
nused = 0;
remaining = len;
while (remaining > 0) {
KASSERT(nused < num_copyinfo, ("insufficient vm_copyinfo"));
error = vm_gla2gpa(vm, vcpuid, paging, gla, prot, &gpa, fault);
if (error || *fault)
return (error);
off = gpa & PAGE_MASK;
n = min(remaining, PAGE_SIZE - off);
copyinfo[nused].gpa = gpa;
copyinfo[nused].len = n;
remaining -= n;
gla += n;
nused++;
}
for (idx = 0; idx < nused; idx++) {
hva = vm_gpa_hold(vm, copyinfo[idx].gpa, copyinfo[idx].len,
prot, &cookie);
if (hva == NULL)
break;
copyinfo[idx].hva = hva;
copyinfo[idx].cookie = cookie;
}
if (idx != nused) {
vm_copy_teardown(vm, vcpuid, copyinfo, num_copyinfo);
return (EFAULT);
} else {
*fault = 0;
return (0);
}
}
void
vm_copyin(struct vm *vm, int vcpuid, struct vm_copyinfo *copyinfo, void *kaddr,
size_t len)
{
char *dst;
int idx;
dst = kaddr;
idx = 0;
while (len > 0) {
bcopy(copyinfo[idx].hva, dst, copyinfo[idx].len);
len -= copyinfo[idx].len;
dst += copyinfo[idx].len;
idx++;
}
}
void
vm_copyout(struct vm *vm, int vcpuid, const void *kaddr,
struct vm_copyinfo *copyinfo, size_t len)
{
const char *src;
int idx;
src = kaddr;
idx = 0;
while (len > 0) {
bcopy(src, copyinfo[idx].hva, copyinfo[idx].len);
len -= copyinfo[idx].len;
src += copyinfo[idx].len;
idx++;
}
}
/*
* Return the amount of in-use and wired memory for the VM. Since
* these are global stats, only return the values with for vCPU 0
*/
VMM_STAT_DECLARE(VMM_MEM_RESIDENT);
VMM_STAT_DECLARE(VMM_MEM_WIRED);
static void
vm_get_rescnt(struct vm *vm, int vcpu, struct vmm_stat_type *stat)
{
if (vcpu == 0) {
vmm_stat_set(vm, vcpu, VMM_MEM_RESIDENT,
PAGE_SIZE * vmspace_resident_count(vm->vmspace));
}
}
static void
vm_get_wiredcnt(struct vm *vm, int vcpu, struct vmm_stat_type *stat)
{
if (vcpu == 0) {
vmm_stat_set(vm, vcpu, VMM_MEM_WIRED,
PAGE_SIZE * pmap_wired_count(vmspace_pmap(vm->vmspace)));
}
}
VMM_STAT_FUNC(VMM_MEM_RESIDENT, "Resident memory", vm_get_rescnt);
VMM_STAT_FUNC(VMM_MEM_WIRED, "Wired memory", vm_get_wiredcnt);