9ec7b004d0
support for NFSv4 as well as NFSv2 and 3. It lives in 3 subdirs under sys/fs: nfs - functions that are common to the client and server nfsclient - a mutation of sys/nfsclient that call generic functions to do RPCs and handle state. As such, it retains the buffer cache handling characteristics and vnode semantics that are found in sys/nfsclient, for the most part. nfsserver - the server. It includes a DRC designed specifically for NFSv4, that is used instead of the generic DRC in sys/rpc. The build glue will be checked in later, so at this point, it consists of 3 new subdirs that should not affect kernel building. Approved by: kib (mentor)
1272 lines
34 KiB
C
1272 lines
34 KiB
C
/*-
|
|
* Copyright (c) 1989, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to Berkeley by
|
|
* Rick Macklem at The University of Guelph.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
/*
|
|
* generally, I don't like #includes inside .h files, but it seems to
|
|
* be the easiest way to handle the port.
|
|
*/
|
|
#include <fs/nfs/nfsport.h>
|
|
#include <netinet/if_ether.h>
|
|
#include <net/if_types.h>
|
|
|
|
extern u_int32_t newnfs_true, newnfs_false, newnfs_xdrneg1;
|
|
extern struct vop_vector newnfs_vnodeops;
|
|
extern struct vop_vector newnfs_fifoops;
|
|
extern uma_zone_t newnfsnode_zone;
|
|
extern struct buf_ops buf_ops_newnfs;
|
|
extern int ncl_pbuf_freecnt;
|
|
extern short nfsv4_cbport;
|
|
extern int nfscl_enablecallb;
|
|
extern int nfs_numnfscbd;
|
|
extern int nfscl_inited;
|
|
struct mtx nfs_clstate_mutex;
|
|
struct mtx ncl_iod_mutex;
|
|
NFSDLOCKMUTEX;
|
|
|
|
extern void (*ncl_call_invalcaches)(struct vnode *);
|
|
|
|
/*
|
|
* Comparison function for vfs_hash functions.
|
|
*/
|
|
int
|
|
newnfs_vncmpf(struct vnode *vp, void *arg)
|
|
{
|
|
struct nfsfh *nfhp = (struct nfsfh *)arg;
|
|
struct nfsnode *np = VTONFS(vp);
|
|
|
|
if (np->n_fhp->nfh_len != nfhp->nfh_len ||
|
|
NFSBCMP(np->n_fhp->nfh_fh, nfhp->nfh_fh, nfhp->nfh_len))
|
|
return (1);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Look up a vnode/nfsnode by file handle.
|
|
* Callers must check for mount points!!
|
|
* In all cases, a pointer to a
|
|
* nfsnode structure is returned.
|
|
* This variant takes a "struct nfsfh *" as second argument and uses
|
|
* that structure up, either by hanging off the nfsnode or FREEing it.
|
|
*/
|
|
int
|
|
nfscl_nget(struct mount *mntp, struct vnode *dvp, struct nfsfh *nfhp,
|
|
struct componentname *cnp, struct thread *td, struct nfsnode **npp,
|
|
void *stuff)
|
|
{
|
|
struct nfsnode *np, *dnp;
|
|
struct vnode *vp, *nvp;
|
|
struct nfsv4node *newd, *oldd;
|
|
int error;
|
|
u_int hash;
|
|
struct nfsmount *nmp;
|
|
|
|
nmp = VFSTONFS(mntp);
|
|
dnp = VTONFS(dvp);
|
|
*npp = NULL;
|
|
|
|
hash = fnv_32_buf(nfhp->nfh_fh, nfhp->nfh_len, FNV1_32_INIT);
|
|
|
|
error = vfs_hash_get(mntp, hash, LK_EXCLUSIVE,
|
|
td, &nvp, newnfs_vncmpf, nfhp);
|
|
if (error == 0 && nvp != NULL) {
|
|
/*
|
|
* I believe there is a slight chance that vgonel() could
|
|
* get called on this vnode between when vn_lock() drops
|
|
* the VI_LOCK() and vget() acquires it again, so that it
|
|
* hasn't yet had v_usecount incremented. If this were to
|
|
* happen, the VI_DOOMED flag would be set, so check for
|
|
* that here. Since we now have the v_usecount incremented,
|
|
* we should be ok until we vrele() it, if the VI_DOOMED
|
|
* flag isn't set now.
|
|
*/
|
|
VI_LOCK(nvp);
|
|
if ((nvp->v_iflag & VI_DOOMED)) {
|
|
VI_UNLOCK(nvp);
|
|
vrele(nvp);
|
|
error = ENOENT;
|
|
} else {
|
|
VI_UNLOCK(nvp);
|
|
}
|
|
}
|
|
if (error) {
|
|
FREE((caddr_t)nfhp, M_NFSFH);
|
|
return (error);
|
|
}
|
|
if (nvp != NULL) {
|
|
np = VTONFS(nvp);
|
|
/*
|
|
* For NFSv4, check to see if it is the same name and
|
|
* replace the name, if it is different.
|
|
*/
|
|
oldd = newd = NULL;
|
|
if ((nmp->nm_flag & NFSMNT_NFSV4) && np->n_v4 != NULL &&
|
|
nvp->v_type == VREG &&
|
|
(np->n_v4->n4_namelen != cnp->cn_namelen ||
|
|
NFSBCMP(cnp->cn_nameptr, NFS4NODENAME(np->n_v4),
|
|
cnp->cn_namelen) ||
|
|
dnp->n_fhp->nfh_len != np->n_v4->n4_fhlen ||
|
|
NFSBCMP(dnp->n_fhp->nfh_fh, np->n_v4->n4_data,
|
|
dnp->n_fhp->nfh_len))) {
|
|
MALLOC(newd, struct nfsv4node *,
|
|
sizeof (struct nfsv4node) + dnp->n_fhp->nfh_len +
|
|
+ cnp->cn_namelen - 1, M_NFSV4NODE, M_WAITOK);
|
|
NFSLOCKNODE(np);
|
|
if (newd != NULL && np->n_v4 != NULL && nvp->v_type == VREG
|
|
&& (np->n_v4->n4_namelen != cnp->cn_namelen ||
|
|
NFSBCMP(cnp->cn_nameptr, NFS4NODENAME(np->n_v4),
|
|
cnp->cn_namelen) ||
|
|
dnp->n_fhp->nfh_len != np->n_v4->n4_fhlen ||
|
|
NFSBCMP(dnp->n_fhp->nfh_fh, np->n_v4->n4_data,
|
|
dnp->n_fhp->nfh_len))) {
|
|
oldd = np->n_v4;
|
|
np->n_v4 = newd;
|
|
newd = NULL;
|
|
np->n_v4->n4_fhlen = dnp->n_fhp->nfh_len;
|
|
np->n_v4->n4_namelen = cnp->cn_namelen;
|
|
NFSBCOPY(dnp->n_fhp->nfh_fh, np->n_v4->n4_data,
|
|
dnp->n_fhp->nfh_len);
|
|
NFSBCOPY(cnp->cn_nameptr, NFS4NODENAME(np->n_v4),
|
|
cnp->cn_namelen);
|
|
}
|
|
NFSUNLOCKNODE(np);
|
|
}
|
|
if (newd != NULL)
|
|
FREE((caddr_t)newd, M_NFSV4NODE);
|
|
if (oldd != NULL)
|
|
FREE((caddr_t)oldd, M_NFSV4NODE);
|
|
*npp = np;
|
|
FREE((caddr_t)nfhp, M_NFSFH);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Allocate before getnewvnode since doing so afterward
|
|
* might cause a bogus v_data pointer to get dereferenced
|
|
* elsewhere if zalloc should block.
|
|
*/
|
|
np = uma_zalloc(newnfsnode_zone, M_WAITOK | M_ZERO);
|
|
|
|
error = getnewvnode("newnfs", mntp, &newnfs_vnodeops, &nvp);
|
|
if (error) {
|
|
uma_zfree(newnfsnode_zone, np);
|
|
FREE((caddr_t)nfhp, M_NFSFH);
|
|
return (error);
|
|
}
|
|
vp = nvp;
|
|
vp->v_bufobj.bo_ops = &buf_ops_newnfs;
|
|
vp->v_data = np;
|
|
np->n_vnode = vp;
|
|
/*
|
|
* Initialize the mutex even if the vnode is going to be a loser.
|
|
* This simplifies the logic in reclaim, which can then unconditionally
|
|
* destroy the mutex (in the case of the loser, or if hash_insert
|
|
* happened to return an error no special casing is needed).
|
|
*/
|
|
mtx_init(&np->n_mtx, "NEWNFSnode lock", NULL, MTX_DEF | MTX_DUPOK);
|
|
|
|
/*
|
|
* Are we getting the root? If so, make sure the vnode flags
|
|
* are correct
|
|
*/
|
|
if ((nfhp->nfh_len == nmp->nm_fhsize) &&
|
|
!bcmp(nfhp->nfh_fh, nmp->nm_fh, nfhp->nfh_len)) {
|
|
if (vp->v_type == VNON)
|
|
vp->v_type = VDIR;
|
|
vp->v_vflag |= VV_ROOT;
|
|
}
|
|
|
|
np->n_fhp = nfhp;
|
|
/*
|
|
* For NFSv4, we have to attach the directory file handle and
|
|
* file name, so that Open Ops can be done later.
|
|
*/
|
|
if (nmp->nm_flag & NFSMNT_NFSV4) {
|
|
MALLOC(np->n_v4, struct nfsv4node *, sizeof (struct nfsv4node)
|
|
+ dnp->n_fhp->nfh_len + cnp->cn_namelen - 1, M_NFSV4NODE,
|
|
M_WAITOK);
|
|
np->n_v4->n4_fhlen = dnp->n_fhp->nfh_len;
|
|
np->n_v4->n4_namelen = cnp->cn_namelen;
|
|
NFSBCOPY(dnp->n_fhp->nfh_fh, np->n_v4->n4_data,
|
|
dnp->n_fhp->nfh_len);
|
|
NFSBCOPY(cnp->cn_nameptr, NFS4NODENAME(np->n_v4),
|
|
cnp->cn_namelen);
|
|
} else {
|
|
np->n_v4 = NULL;
|
|
}
|
|
|
|
/*
|
|
* NFS supports recursive and shared locking.
|
|
*/
|
|
VN_LOCK_AREC(vp);
|
|
VN_LOCK_ASHARE(vp);
|
|
lockmgr(vp->v_vnlock, LK_EXCLUSIVE, NULL);
|
|
error = insmntque(vp, mntp);
|
|
if (error != 0) {
|
|
*npp = NULL;
|
|
mtx_destroy(&np->n_mtx);
|
|
FREE((caddr_t)nfhp, M_NFSFH);
|
|
if (np->n_v4 != NULL)
|
|
FREE((caddr_t)np->n_v4, M_NFSV4NODE);
|
|
uma_zfree(newnfsnode_zone, np);
|
|
return (error);
|
|
}
|
|
error = vfs_hash_insert(vp, hash, LK_EXCLUSIVE,
|
|
td, &nvp, newnfs_vncmpf, nfhp);
|
|
if (error)
|
|
return (error);
|
|
if (nvp != NULL) {
|
|
*npp = VTONFS(nvp);
|
|
/* vfs_hash_insert() vput()'s the losing vnode */
|
|
return (0);
|
|
}
|
|
*npp = np;
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Anothe variant of nfs_nget(). This one is only used by reopen. It
|
|
* takes almost the same args as nfs_nget(), but only succeeds if an entry
|
|
* exists in the cache. (Since files should already be "open" with a
|
|
* vnode ref cnt on the node when reopen calls this, it should always
|
|
* succeed.)
|
|
* Also, don't get a vnode lock, since it may already be locked by some
|
|
* other process that is handling it. This is ok, since all other threads
|
|
* on the client are blocked by the nfsc_lock being exclusively held by the
|
|
* caller of this function.
|
|
*/
|
|
int
|
|
nfscl_ngetreopen(struct mount *mntp, u_int8_t *fhp, int fhsize,
|
|
struct thread *td, struct nfsnode **npp)
|
|
{
|
|
struct vnode *nvp;
|
|
u_int hash;
|
|
struct nfsfh *nfhp;
|
|
int error;
|
|
|
|
*npp = NULL;
|
|
/* For forced dismounts, just return error. */
|
|
if ((mntp->mnt_kern_flag & MNTK_UNMOUNTF))
|
|
return (EINTR);
|
|
MALLOC(nfhp, struct nfsfh *, sizeof (struct nfsfh) + fhsize,
|
|
M_NFSFH, M_WAITOK);
|
|
bcopy(fhp, &nfhp->nfh_fh[0], fhsize);
|
|
nfhp->nfh_len = fhsize;
|
|
|
|
hash = fnv_32_buf(fhp, fhsize, FNV1_32_INIT);
|
|
|
|
/*
|
|
* First, try to get the vnode locked, but don't block for the lock.
|
|
*/
|
|
error = vfs_hash_get(mntp, hash, (LK_EXCLUSIVE | LK_NOWAIT), td, &nvp,
|
|
newnfs_vncmpf, nfhp);
|
|
if (error == 0 && nvp != NULL) {
|
|
VOP_UNLOCK(nvp, 0);
|
|
} else if (error == EBUSY) {
|
|
/*
|
|
* The LK_EXCLOTHER lock type tells nfs_lock1() to not try
|
|
* and lock the vnode, but just get a v_usecount on it.
|
|
* LK_NOWAIT is set so that when vget() returns ENOENT,
|
|
* vfs_hash_get() fails instead of looping.
|
|
* If this succeeds, it is safe so long as a vflush() with
|
|
* FORCECLOSE has not been done. Since the Renew thread is
|
|
* stopped and the MNTK_UNMOUNTF flag is set before doing
|
|
* a vflush() with FORCECLOSE, we should be ok here.
|
|
*/
|
|
if ((mntp->mnt_kern_flag & MNTK_UNMOUNTF))
|
|
error = EINTR;
|
|
else
|
|
error = vfs_hash_get(mntp, hash,
|
|
(LK_EXCLOTHER | LK_NOWAIT), td, &nvp,
|
|
newnfs_vncmpf, nfhp);
|
|
}
|
|
FREE(nfhp, M_NFSFH);
|
|
if (error)
|
|
return (error);
|
|
if (nvp != NULL) {
|
|
*npp = VTONFS(nvp);
|
|
return (0);
|
|
}
|
|
return (EINVAL);
|
|
}
|
|
|
|
/*
|
|
* Load the attribute cache (that lives in the nfsnode entry) with
|
|
* the attributes of the second argument and
|
|
* Iff vaper not NULL
|
|
* copy the attributes to *vaper
|
|
* Similar to nfs_loadattrcache(), except the attributes are passed in
|
|
* instead of being parsed out of the mbuf list.
|
|
*/
|
|
int
|
|
nfscl_loadattrcache(struct vnode **vpp, struct nfsvattr *nap, void *nvaper,
|
|
void *stuff, int writeattr, int dontshrink)
|
|
{
|
|
struct vnode *vp = *vpp;
|
|
struct vattr *vap, *nvap = &nap->na_vattr, *vaper = nvaper;
|
|
struct nfsnode *np;
|
|
struct nfsmount *nmp;
|
|
struct timespec mtime_save;
|
|
struct thread *td = curthread;
|
|
|
|
/*
|
|
* If v_type == VNON it is a new node, so fill in the v_type,
|
|
* n_mtime fields. Check to see if it represents a special
|
|
* device, and if so, check for a possible alias. Once the
|
|
* correct vnode has been obtained, fill in the rest of the
|
|
* information.
|
|
*/
|
|
np = VTONFS(vp);
|
|
NFSLOCKNODE(np);
|
|
if (vp->v_type != nvap->va_type) {
|
|
vp->v_type = nvap->va_type;
|
|
if (vp->v_type == VFIFO)
|
|
vp->v_op = &newnfs_fifoops;
|
|
np->n_mtime = nvap->va_mtime;
|
|
}
|
|
nmp = VFSTONFS(vp->v_mount);
|
|
vap = &np->n_vattr.na_vattr;
|
|
mtime_save = vap->va_mtime;
|
|
if (writeattr) {
|
|
np->n_vattr.na_filerev = nap->na_filerev;
|
|
np->n_vattr.na_size = nap->na_size;
|
|
np->n_vattr.na_mtime = nap->na_mtime;
|
|
np->n_vattr.na_ctime = nap->na_ctime;
|
|
np->n_vattr.na_fsid = nap->na_fsid;
|
|
} else {
|
|
NFSBCOPY((caddr_t)nap, (caddr_t)&np->n_vattr,
|
|
sizeof (struct nfsvattr));
|
|
}
|
|
|
|
/*
|
|
* For NFSv4, if the node's fsid is not equal to the mount point's
|
|
* fsid, return the low order 32bits of the node's fsid. This
|
|
* allows getcwd(3) to work. There is a chance that the fsid might
|
|
* be the same as a local fs, but since this is in an NFS mount
|
|
* point, I don't think that will cause any problems?
|
|
*/
|
|
if ((nmp->nm_flag & (NFSMNT_NFSV4 | NFSMNT_HASSETFSID)) ==
|
|
(NFSMNT_NFSV4 | NFSMNT_HASSETFSID) &&
|
|
(nmp->nm_fsid[0] != np->n_vattr.na_filesid[0] ||
|
|
nmp->nm_fsid[1] != np->n_vattr.na_filesid[1]))
|
|
vap->va_fsid = np->n_vattr.na_filesid[0];
|
|
else
|
|
vap->va_fsid = vp->v_mount->mnt_stat.f_fsid.val[0];
|
|
np->n_attrstamp = time_second;
|
|
/* Timestamp the NFS otw getattr fetch */
|
|
if (td->td_proc) {
|
|
np->n_ac_ts_tid = td->td_tid;
|
|
np->n_ac_ts_pid = td->td_proc->p_pid;
|
|
np->n_ac_ts_syscalls = td->td_syscalls;
|
|
} else
|
|
bzero(&np->n_ac_ts, sizeof(struct nfs_attrcache_timestamp));
|
|
|
|
if (vap->va_size != np->n_size) {
|
|
if (vap->va_type == VREG) {
|
|
if (dontshrink && vap->va_size < np->n_size) {
|
|
/*
|
|
* We've been told not to shrink the file;
|
|
* zero np->n_attrstamp to indicate that
|
|
* the attributes are stale.
|
|
*/
|
|
vap->va_size = np->n_size;
|
|
np->n_attrstamp = 0;
|
|
} else if (np->n_flag & NMODIFIED) {
|
|
/*
|
|
* We've modified the file: Use the larger
|
|
* of our size, and the server's size.
|
|
*/
|
|
if (vap->va_size < np->n_size) {
|
|
vap->va_size = np->n_size;
|
|
} else {
|
|
np->n_size = vap->va_size;
|
|
np->n_flag |= NSIZECHANGED;
|
|
}
|
|
} else {
|
|
np->n_size = vap->va_size;
|
|
np->n_flag |= NSIZECHANGED;
|
|
}
|
|
vnode_pager_setsize(vp, np->n_size);
|
|
} else {
|
|
np->n_size = vap->va_size;
|
|
}
|
|
}
|
|
/*
|
|
* The following checks are added to prevent a race between (say)
|
|
* a READDIR+ and a WRITE.
|
|
* READDIR+, WRITE requests sent out.
|
|
* READDIR+ resp, WRITE resp received on client.
|
|
* However, the WRITE resp was handled before the READDIR+ resp
|
|
* causing the post op attrs from the write to be loaded first
|
|
* and the attrs from the READDIR+ to be loaded later. If this
|
|
* happens, we have stale attrs loaded into the attrcache.
|
|
* We detect this by for the mtime moving back. We invalidate the
|
|
* attrcache when this happens.
|
|
*/
|
|
if (timespeccmp(&mtime_save, &vap->va_mtime, >))
|
|
/* Size changed or mtime went backwards */
|
|
np->n_attrstamp = 0;
|
|
if (vaper != NULL) {
|
|
NFSBCOPY((caddr_t)vap, (caddr_t)vaper, sizeof(*vap));
|
|
if (np->n_flag & NCHG) {
|
|
if (np->n_flag & NACC)
|
|
vaper->va_atime = np->n_atim;
|
|
if (np->n_flag & NUPD)
|
|
vaper->va_mtime = np->n_mtim;
|
|
}
|
|
}
|
|
NFSUNLOCKNODE(np);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Fill in the client id name. For these bytes:
|
|
* 1 - they must be unique
|
|
* 2 - they should be persistent across client reboots
|
|
* 1 is more critical than 2
|
|
* Use the mount point's unique id plus either the uuid or, if that
|
|
* isn't set, random junk.
|
|
*/
|
|
void
|
|
nfscl_fillclid(u_int64_t clval, char *uuid, u_int8_t *cp, u_int16_t idlen)
|
|
{
|
|
int uuidlen;
|
|
|
|
/*
|
|
* First, put in the 64bit mount point identifier.
|
|
*/
|
|
if (idlen >= sizeof (u_int64_t)) {
|
|
NFSBCOPY((caddr_t)&clval, cp, sizeof (u_int64_t));
|
|
cp += sizeof (u_int64_t);
|
|
idlen -= sizeof (u_int64_t);
|
|
}
|
|
|
|
/*
|
|
* If uuid is non-zero length, use it.
|
|
*/
|
|
uuidlen = strlen(uuid);
|
|
if (uuidlen > 0 && idlen >= uuidlen) {
|
|
NFSBCOPY(uuid, cp, uuidlen);
|
|
cp += uuidlen;
|
|
idlen -= uuidlen;
|
|
}
|
|
|
|
/*
|
|
* This only normally happens if the uuid isn't set.
|
|
*/
|
|
while (idlen > 0) {
|
|
*cp++ = (u_int8_t)(arc4random() % 256);
|
|
idlen--;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Fill in a lock owner name. For now, pid + the process's creation time.
|
|
*/
|
|
void
|
|
nfscl_filllockowner(struct thread *td, u_int8_t *cp)
|
|
{
|
|
union {
|
|
u_int32_t lval;
|
|
u_int8_t cval[4];
|
|
} tl;
|
|
struct proc *p;
|
|
|
|
if (td == NULL) {
|
|
printf("NULL td\n");
|
|
bzero(cp, 12);
|
|
return;
|
|
}
|
|
p = td->td_proc;
|
|
if (p == NULL) {
|
|
printf("NULL pid\n");
|
|
bzero(cp, 12);
|
|
return;
|
|
}
|
|
tl.lval = p->p_pid;
|
|
*cp++ = tl.cval[0];
|
|
*cp++ = tl.cval[1];
|
|
*cp++ = tl.cval[2];
|
|
*cp++ = tl.cval[3];
|
|
if (p->p_stats == NULL) {
|
|
printf("pstats null\n");
|
|
bzero(cp, 8);
|
|
return;
|
|
}
|
|
tl.lval = p->p_stats->p_start.tv_sec;
|
|
*cp++ = tl.cval[0];
|
|
*cp++ = tl.cval[1];
|
|
*cp++ = tl.cval[2];
|
|
*cp++ = tl.cval[3];
|
|
tl.lval = p->p_stats->p_start.tv_usec;
|
|
*cp++ = tl.cval[0];
|
|
*cp++ = tl.cval[1];
|
|
*cp++ = tl.cval[2];
|
|
*cp = tl.cval[3];
|
|
}
|
|
|
|
/*
|
|
* Find the parent process for the thread passed in as an argument.
|
|
* If none exists, return NULL, otherwise return a thread for the parent.
|
|
* (Can be any of the threads, since it is only used for td->td_proc.)
|
|
*/
|
|
NFSPROC_T *
|
|
nfscl_getparent(struct thread *td)
|
|
{
|
|
struct proc *p;
|
|
struct thread *ptd;
|
|
|
|
if (td == NULL)
|
|
return (NULL);
|
|
p = td->td_proc;
|
|
if (p->p_pid == 0)
|
|
return (NULL);
|
|
p = p->p_pptr;
|
|
if (p == NULL)
|
|
return (NULL);
|
|
ptd = TAILQ_FIRST(&p->p_threads);
|
|
return (ptd);
|
|
}
|
|
|
|
/*
|
|
* Start up the renew kernel thread.
|
|
*/
|
|
static void
|
|
start_nfscl(void *arg)
|
|
{
|
|
struct nfsclclient *clp;
|
|
struct thread *td;
|
|
|
|
clp = (struct nfsclclient *)arg;
|
|
td = TAILQ_FIRST(&clp->nfsc_renewthread->p_threads);
|
|
nfscl_renewthread(clp, td);
|
|
kproc_exit(0);
|
|
}
|
|
|
|
void
|
|
nfscl_start_renewthread(struct nfsclclient *clp)
|
|
{
|
|
|
|
kproc_create(start_nfscl, (void *)clp, &clp->nfsc_renewthread, 0, 0,
|
|
"nfscl");
|
|
}
|
|
|
|
/*
|
|
* Handle wcc_data.
|
|
* For NFSv4, it assumes that nfsv4_wccattr() was used to set up the getattr
|
|
* as the first Op after PutFH.
|
|
* (For NFSv4, the postop attributes are after the Op, so they can't be
|
|
* parsed here. A separate call to nfscl_postop_attr() is required.)
|
|
*/
|
|
int
|
|
nfscl_wcc_data(struct nfsrv_descript *nd, struct vnode *vp,
|
|
struct nfsvattr *nap, int *flagp, int *wccflagp, void *stuff)
|
|
{
|
|
u_int32_t *tl;
|
|
struct nfsnode *np = VTONFS(vp);
|
|
struct nfsvattr nfsva;
|
|
int error = 0;
|
|
|
|
if (wccflagp != NULL)
|
|
*wccflagp = 0;
|
|
if (nd->nd_flag & ND_NFSV3) {
|
|
*flagp = 0;
|
|
NFSM_DISSECT(tl, u_int32_t *, NFSX_UNSIGNED);
|
|
if (*tl == newnfs_true) {
|
|
NFSM_DISSECT(tl, u_int32_t *, 6 * NFSX_UNSIGNED);
|
|
if (wccflagp != NULL) {
|
|
mtx_lock(&np->n_mtx);
|
|
*wccflagp = (np->n_mtime.tv_sec ==
|
|
fxdr_unsigned(u_int32_t, *(tl + 2)) &&
|
|
np->n_mtime.tv_nsec ==
|
|
fxdr_unsigned(u_int32_t, *(tl + 3)));
|
|
mtx_unlock(&np->n_mtx);
|
|
}
|
|
}
|
|
error = nfscl_postop_attr(nd, nap, flagp, stuff);
|
|
} else if ((nd->nd_flag & (ND_NOMOREDATA | ND_NFSV4 | ND_V4WCCATTR))
|
|
== (ND_NFSV4 | ND_V4WCCATTR)) {
|
|
error = nfsv4_loadattr(nd, NULL, &nfsva, NULL,
|
|
NULL, 0, NULL, NULL, NULL, NULL, NULL, 0,
|
|
NULL, NULL, NULL, NULL, NULL);
|
|
if (error)
|
|
return (error);
|
|
/*
|
|
* Get rid of Op# and status for next op.
|
|
*/
|
|
NFSM_DISSECT(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
|
|
if (*++tl)
|
|
nd->nd_flag |= ND_NOMOREDATA;
|
|
if (wccflagp != NULL &&
|
|
nfsva.na_vattr.va_mtime.tv_sec != 0) {
|
|
mtx_lock(&np->n_mtx);
|
|
*wccflagp = (np->n_mtime.tv_sec ==
|
|
nfsva.na_vattr.va_mtime.tv_sec &&
|
|
np->n_mtime.tv_nsec ==
|
|
nfsva.na_vattr.va_mtime.tv_sec);
|
|
mtx_unlock(&np->n_mtx);
|
|
}
|
|
}
|
|
nfsmout:
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Get postop attributes.
|
|
*/
|
|
int
|
|
nfscl_postop_attr(struct nfsrv_descript *nd, struct nfsvattr *nap, int *retp,
|
|
void *stuff)
|
|
{
|
|
u_int32_t *tl;
|
|
int error = 0;
|
|
|
|
*retp = 0;
|
|
if (nd->nd_flag & ND_NOMOREDATA)
|
|
return (error);
|
|
if (nd->nd_flag & ND_NFSV3) {
|
|
NFSM_DISSECT(tl, u_int32_t *, NFSX_UNSIGNED);
|
|
*retp = fxdr_unsigned(int, *tl);
|
|
} else if (nd->nd_flag & ND_NFSV4) {
|
|
/*
|
|
* For NFSv4, the postop attr are at the end, so no point
|
|
* in looking if nd_repstat != 0.
|
|
*/
|
|
if (!nd->nd_repstat) {
|
|
NFSM_DISSECT(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
|
|
if (*(tl + 1))
|
|
/* should never happen since nd_repstat != 0 */
|
|
nd->nd_flag |= ND_NOMOREDATA;
|
|
else
|
|
*retp = 1;
|
|
}
|
|
} else if (!nd->nd_repstat) {
|
|
/* For NFSv2, the attributes are here iff nd_repstat == 0 */
|
|
*retp = 1;
|
|
}
|
|
if (*retp) {
|
|
error = nfsm_loadattr(nd, nap);
|
|
if (error)
|
|
*retp = 0;
|
|
}
|
|
nfsmout:
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Fill in the setable attributes. The full argument indicates whether
|
|
* to fill in them all or just mode and time.
|
|
*/
|
|
void
|
|
nfscl_fillsattr(struct nfsrv_descript *nd, struct vattr *vap,
|
|
struct vnode *vp, int flags, u_int32_t rdev)
|
|
{
|
|
u_int32_t *tl;
|
|
struct nfsv2_sattr *sp;
|
|
nfsattrbit_t attrbits;
|
|
struct timeval curtime;
|
|
|
|
switch (nd->nd_flag & (ND_NFSV2 | ND_NFSV3 | ND_NFSV4)) {
|
|
case ND_NFSV2:
|
|
NFSM_BUILD(sp, struct nfsv2_sattr *, NFSX_V2SATTR);
|
|
if (vap->va_mode == (mode_t)VNOVAL)
|
|
sp->sa_mode = newnfs_xdrneg1;
|
|
else
|
|
sp->sa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode);
|
|
if (vap->va_uid == (uid_t)VNOVAL)
|
|
sp->sa_uid = newnfs_xdrneg1;
|
|
else
|
|
sp->sa_uid = txdr_unsigned(vap->va_uid);
|
|
if (vap->va_gid == (gid_t)VNOVAL)
|
|
sp->sa_gid = newnfs_xdrneg1;
|
|
else
|
|
sp->sa_gid = txdr_unsigned(vap->va_gid);
|
|
if (flags & NFSSATTR_SIZE0)
|
|
sp->sa_size = 0;
|
|
else if (flags & NFSSATTR_SIZENEG1)
|
|
sp->sa_size = newnfs_xdrneg1;
|
|
else if (flags & NFSSATTR_SIZERDEV)
|
|
sp->sa_size = txdr_unsigned(rdev);
|
|
else
|
|
sp->sa_size = txdr_unsigned(vap->va_size);
|
|
txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
|
|
txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
|
|
break;
|
|
case ND_NFSV3:
|
|
getmicrotime(&curtime);
|
|
if (vap->va_mode != (mode_t)VNOVAL) {
|
|
NFSM_BUILD(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
|
|
*tl++ = newnfs_true;
|
|
*tl = txdr_unsigned(vap->va_mode);
|
|
} else {
|
|
NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED);
|
|
*tl = newnfs_false;
|
|
}
|
|
if ((flags & NFSSATTR_FULL) && vap->va_uid != (uid_t)VNOVAL) {
|
|
NFSM_BUILD(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
|
|
*tl++ = newnfs_true;
|
|
*tl = txdr_unsigned(vap->va_uid);
|
|
} else {
|
|
NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED);
|
|
*tl = newnfs_false;
|
|
}
|
|
if ((flags & NFSSATTR_FULL) && vap->va_gid != (gid_t)VNOVAL) {
|
|
NFSM_BUILD(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
|
|
*tl++ = newnfs_true;
|
|
*tl = txdr_unsigned(vap->va_gid);
|
|
} else {
|
|
NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED);
|
|
*tl = newnfs_false;
|
|
}
|
|
if ((flags & NFSSATTR_FULL) && vap->va_size != VNOVAL) {
|
|
NFSM_BUILD(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
|
|
*tl++ = newnfs_true;
|
|
txdr_hyper(vap->va_size, tl);
|
|
} else {
|
|
NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED);
|
|
*tl = newnfs_false;
|
|
}
|
|
if (vap->va_atime.tv_sec != VNOVAL) {
|
|
if (vap->va_atime.tv_sec != curtime.tv_sec) {
|
|
NFSM_BUILD(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
|
|
*tl++ = txdr_unsigned(NFSV3SATTRTIME_TOCLIENT);
|
|
txdr_nfsv3time(&vap->va_atime, tl);
|
|
} else {
|
|
NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED);
|
|
*tl = txdr_unsigned(NFSV3SATTRTIME_TOSERVER);
|
|
}
|
|
} else {
|
|
NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED);
|
|
*tl = txdr_unsigned(NFSV3SATTRTIME_DONTCHANGE);
|
|
}
|
|
if (vap->va_mtime.tv_sec != VNOVAL) {
|
|
if (vap->va_mtime.tv_sec != curtime.tv_sec) {
|
|
NFSM_BUILD(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
|
|
*tl++ = txdr_unsigned(NFSV3SATTRTIME_TOCLIENT);
|
|
txdr_nfsv3time(&vap->va_mtime, tl);
|
|
} else {
|
|
NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED);
|
|
*tl = txdr_unsigned(NFSV3SATTRTIME_TOSERVER);
|
|
}
|
|
} else {
|
|
NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED);
|
|
*tl = txdr_unsigned(NFSV3SATTRTIME_DONTCHANGE);
|
|
}
|
|
break;
|
|
case ND_NFSV4:
|
|
NFSZERO_ATTRBIT(&attrbits);
|
|
if (vap->va_mode != (mode_t)VNOVAL)
|
|
NFSSETBIT_ATTRBIT(&attrbits, NFSATTRBIT_MODE);
|
|
if ((flags & NFSSATTR_FULL) && vap->va_uid != (uid_t)VNOVAL)
|
|
NFSSETBIT_ATTRBIT(&attrbits, NFSATTRBIT_OWNER);
|
|
if ((flags & NFSSATTR_FULL) && vap->va_gid != (gid_t)VNOVAL)
|
|
NFSSETBIT_ATTRBIT(&attrbits, NFSATTRBIT_OWNERGROUP);
|
|
if ((flags & NFSSATTR_FULL) && vap->va_size != VNOVAL)
|
|
NFSSETBIT_ATTRBIT(&attrbits, NFSATTRBIT_SIZE);
|
|
if (vap->va_atime.tv_sec != VNOVAL)
|
|
NFSSETBIT_ATTRBIT(&attrbits, NFSATTRBIT_TIMEACCESSSET);
|
|
if (vap->va_mtime.tv_sec != VNOVAL)
|
|
NFSSETBIT_ATTRBIT(&attrbits, NFSATTRBIT_TIMEMODIFYSET);
|
|
(void) nfsv4_fillattr(nd, vp, NULL, vap, NULL, 0, &attrbits,
|
|
NULL, NULL, 0, 0);
|
|
break;
|
|
};
|
|
}
|
|
|
|
/*
|
|
* nfscl_request() - mostly a wrapper for newnfs_request().
|
|
*/
|
|
int
|
|
nfscl_request(struct nfsrv_descript *nd, struct vnode *vp, NFSPROC_T *p,
|
|
struct ucred *cred, void *stuff)
|
|
{
|
|
int ret, vers;
|
|
struct nfsmount *nmp;
|
|
|
|
nmp = VFSTONFS(vp->v_mount);
|
|
if (nd->nd_flag & ND_NFSV4)
|
|
vers = NFS_VER4;
|
|
else if (nd->nd_flag & ND_NFSV3)
|
|
vers = NFS_VER3;
|
|
else
|
|
vers = NFS_VER2;
|
|
ret = newnfs_request(nd, nmp, NULL, &nmp->nm_sockreq, vp, p, cred,
|
|
NFS_PROG, vers, NULL, 1, NULL);
|
|
return (ret);
|
|
}
|
|
|
|
/*
|
|
* fill in this bsden's variant of statfs using nfsstatfs.
|
|
*/
|
|
void
|
|
nfscl_loadsbinfo(struct nfsmount *nmp, struct nfsstatfs *sfp, void *statfs)
|
|
{
|
|
struct statfs *sbp = (struct statfs *)statfs;
|
|
nfsquad_t tquad;
|
|
|
|
if (nmp->nm_flag & (NFSMNT_NFSV3 | NFSMNT_NFSV4)) {
|
|
sbp->f_bsize = NFS_FABLKSIZE;
|
|
tquad.qval = sfp->sf_tbytes;
|
|
sbp->f_blocks = (long)(tquad.qval / ((u_quad_t)NFS_FABLKSIZE));
|
|
tquad.qval = sfp->sf_fbytes;
|
|
sbp->f_bfree = (long)(tquad.qval / ((u_quad_t)NFS_FABLKSIZE));
|
|
tquad.qval = sfp->sf_abytes;
|
|
sbp->f_bavail = (long)(tquad.qval / ((u_quad_t)NFS_FABLKSIZE));
|
|
tquad.qval = sfp->sf_tfiles;
|
|
sbp->f_files = (tquad.lval[0] & 0x7fffffff);
|
|
tquad.qval = sfp->sf_ffiles;
|
|
sbp->f_ffree = (tquad.lval[0] & 0x7fffffff);
|
|
} else if ((nmp->nm_flag & NFSMNT_NFSV4) == 0) {
|
|
sbp->f_bsize = (int32_t)sfp->sf_bsize;
|
|
sbp->f_blocks = (int32_t)sfp->sf_blocks;
|
|
sbp->f_bfree = (int32_t)sfp->sf_bfree;
|
|
sbp->f_bavail = (int32_t)sfp->sf_bavail;
|
|
sbp->f_files = 0;
|
|
sbp->f_ffree = 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Use the fsinfo stuff to update the mount point.
|
|
*/
|
|
void
|
|
nfscl_loadfsinfo(struct nfsmount *nmp, struct nfsfsinfo *fsp)
|
|
{
|
|
|
|
if ((nmp->nm_wsize == 0 || fsp->fs_wtpref < nmp->nm_wsize) &&
|
|
fsp->fs_wtpref >= NFS_FABLKSIZE)
|
|
nmp->nm_wsize = (fsp->fs_wtpref + NFS_FABLKSIZE - 1) &
|
|
~(NFS_FABLKSIZE - 1);
|
|
if (fsp->fs_wtmax < nmp->nm_wsize && fsp->fs_wtmax > 0) {
|
|
nmp->nm_wsize = fsp->fs_wtmax & ~(NFS_FABLKSIZE - 1);
|
|
if (nmp->nm_wsize == 0)
|
|
nmp->nm_wsize = fsp->fs_wtmax;
|
|
}
|
|
if (nmp->nm_wsize < NFS_FABLKSIZE)
|
|
nmp->nm_wsize = NFS_FABLKSIZE;
|
|
if ((nmp->nm_rsize == 0 || fsp->fs_rtpref < nmp->nm_rsize) &&
|
|
fsp->fs_rtpref >= NFS_FABLKSIZE)
|
|
nmp->nm_rsize = (fsp->fs_rtpref + NFS_FABLKSIZE - 1) &
|
|
~(NFS_FABLKSIZE - 1);
|
|
if (fsp->fs_rtmax < nmp->nm_rsize && fsp->fs_rtmax > 0) {
|
|
nmp->nm_rsize = fsp->fs_rtmax & ~(NFS_FABLKSIZE - 1);
|
|
if (nmp->nm_rsize == 0)
|
|
nmp->nm_rsize = fsp->fs_rtmax;
|
|
}
|
|
if (nmp->nm_rsize < NFS_FABLKSIZE)
|
|
nmp->nm_rsize = NFS_FABLKSIZE;
|
|
if ((nmp->nm_readdirsize == 0 || fsp->fs_dtpref < nmp->nm_readdirsize)
|
|
&& fsp->fs_dtpref >= NFS_DIRBLKSIZ)
|
|
nmp->nm_readdirsize = (fsp->fs_dtpref + NFS_DIRBLKSIZ - 1) &
|
|
~(NFS_DIRBLKSIZ - 1);
|
|
if (fsp->fs_rtmax < nmp->nm_readdirsize && fsp->fs_rtmax > 0) {
|
|
nmp->nm_readdirsize = fsp->fs_rtmax & ~(NFS_DIRBLKSIZ - 1);
|
|
if (nmp->nm_readdirsize == 0)
|
|
nmp->nm_readdirsize = fsp->fs_rtmax;
|
|
}
|
|
if (nmp->nm_readdirsize < NFS_DIRBLKSIZ)
|
|
nmp->nm_readdirsize = NFS_DIRBLKSIZ;
|
|
if (fsp->fs_maxfilesize > 0 &&
|
|
fsp->fs_maxfilesize < nmp->nm_maxfilesize)
|
|
nmp->nm_maxfilesize = fsp->fs_maxfilesize;
|
|
nmp->nm_mountp->mnt_stat.f_iosize = newnfs_iosize(nmp);
|
|
nmp->nm_state |= NFSSTA_GOTFSINFO;
|
|
}
|
|
|
|
/*
|
|
* Get a pointer to my IP addrress and return it.
|
|
* Return NULL if you can't find one.
|
|
*/
|
|
u_int8_t *
|
|
nfscl_getmyip(struct nfsmount *nmp, int *isinet6p)
|
|
{
|
|
struct sockaddr_in sad, *sin;
|
|
struct rtentry *rt;
|
|
u_int8_t *retp = NULL;
|
|
static struct in_addr laddr;
|
|
|
|
*isinet6p = 0;
|
|
/*
|
|
* Loop up a route for the destination address.
|
|
*/
|
|
if (nmp->nm_nam->sa_family == AF_INET) {
|
|
bzero(&sad, sizeof (sad));
|
|
sin = (struct sockaddr_in *)nmp->nm_nam;
|
|
sad.sin_family = AF_INET;
|
|
sad.sin_len = sizeof (struct sockaddr_in);
|
|
sad.sin_addr.s_addr = sin->sin_addr.s_addr;
|
|
rt = rtalloc1((struct sockaddr *)&sad, 0, 0UL);
|
|
if (rt != NULL) {
|
|
if (rt->rt_ifp != NULL &&
|
|
rt->rt_ifa != NULL &&
|
|
((rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) &&
|
|
rt->rt_ifa->ifa_addr->sa_family == AF_INET) {
|
|
sin = (struct sockaddr_in *)
|
|
rt->rt_ifa->ifa_addr;
|
|
laddr.s_addr = sin->sin_addr.s_addr;
|
|
retp = (u_int8_t *)&laddr;
|
|
}
|
|
RTFREE_LOCKED(rt);
|
|
}
|
|
#ifdef INET6
|
|
} else if (nmp->nm_nam->sa_family == AF_INET6) {
|
|
struct sockaddr_in6 sad6, *sin6;
|
|
static struct in6_addr laddr6;
|
|
|
|
bzero(&sad6, sizeof (sad6));
|
|
sin6 = (struct sockaddr_in6 *)nmp->nm_nam;
|
|
sad6.sin6_family = AF_INET6;
|
|
sad6.sin6_len = sizeof (struct sockaddr_in6);
|
|
sad6.sin6_addr = sin6->sin6_addr;
|
|
rt = rtalloc1((struct sockaddr *)&sad6, 0, 0UL);
|
|
if (rt != NULL) {
|
|
if (rt->rt_ifp != NULL &&
|
|
rt->rt_ifa != NULL &&
|
|
((rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) &&
|
|
rt->rt_ifa->ifa_addr->sa_family == AF_INET6) {
|
|
sin6 = (struct sockaddr_in6 *)
|
|
rt->rt_ifa->ifa_addr;
|
|
laddr6 = sin6->sin6_addr;
|
|
retp = (u_int8_t *)&laddr6;
|
|
*isinet6p = 1;
|
|
}
|
|
RTFREE_LOCKED(rt);
|
|
}
|
|
#endif
|
|
}
|
|
return (retp);
|
|
}
|
|
|
|
/*
|
|
* Copy NFS uid, gids from the cred structure.
|
|
*/
|
|
void
|
|
newnfs_copyincred(struct ucred *cr, struct nfscred *nfscr)
|
|
{
|
|
int ngroups, i;
|
|
|
|
nfscr->nfsc_uid = cr->cr_uid;
|
|
ngroups = (cr->cr_ngroups > NGROUPS) ? NGROUPS :
|
|
cr->cr_ngroups;
|
|
for (i = 0; i < ngroups; i++)
|
|
nfscr->nfsc_groups[i] = cr->cr_groups[i];
|
|
nfscr->nfsc_ngroups = ngroups;
|
|
}
|
|
|
|
|
|
/*
|
|
* Do any client specific initialization.
|
|
*/
|
|
void
|
|
nfscl_init(void)
|
|
{
|
|
static int inited = 0;
|
|
|
|
if (inited)
|
|
return;
|
|
inited = 1;
|
|
nfscl_inited = 1;
|
|
ncl_pbuf_freecnt = nswbuf / 2 + 1;
|
|
}
|
|
|
|
/*
|
|
* Check each of the attributes to be set, to ensure they aren't already
|
|
* the correct value. Disable setting ones already correct.
|
|
*/
|
|
int
|
|
nfscl_checksattr(struct vattr *vap, struct nfsvattr *nvap)
|
|
{
|
|
|
|
if (vap->va_mode != (mode_t)VNOVAL) {
|
|
if (vap->va_mode == nvap->na_mode)
|
|
vap->va_mode = (mode_t)VNOVAL;
|
|
}
|
|
if (vap->va_uid != (uid_t)VNOVAL) {
|
|
if (vap->va_uid == nvap->na_uid)
|
|
vap->va_uid = (uid_t)VNOVAL;
|
|
}
|
|
if (vap->va_gid != (gid_t)VNOVAL) {
|
|
if (vap->va_gid == nvap->na_gid)
|
|
vap->va_gid = (gid_t)VNOVAL;
|
|
}
|
|
if (vap->va_size != VNOVAL) {
|
|
if (vap->va_size == nvap->na_size)
|
|
vap->va_size = VNOVAL;
|
|
}
|
|
|
|
/*
|
|
* We are normally called with only a partially initialized
|
|
* VAP. Since the NFSv3 spec says that server may use the
|
|
* file attributes to store the verifier, the spec requires
|
|
* us to do a SETATTR RPC. FreeBSD servers store the verifier
|
|
* in atime, but we can't really assume that all servers will
|
|
* so we ensure that our SETATTR sets both atime and mtime.
|
|
*/
|
|
if (vap->va_mtime.tv_sec == VNOVAL)
|
|
vfs_timestamp(&vap->va_mtime);
|
|
if (vap->va_atime.tv_sec == VNOVAL)
|
|
vap->va_atime = vap->va_mtime;
|
|
return (1);
|
|
}
|
|
|
|
/*
|
|
* Map nfsv4 errors to errno.h errors.
|
|
* The uid and gid arguments are only used for NFSERR_BADOWNER and that
|
|
* error should only be returned for the Open, Create and Setattr Ops.
|
|
* As such, most calls can just pass in 0 for those arguments.
|
|
*/
|
|
APPLESTATIC int
|
|
nfscl_maperr(struct thread *td, int error, uid_t uid, gid_t gid)
|
|
{
|
|
struct proc *p;
|
|
|
|
if (error < 10000)
|
|
return (error);
|
|
if (td != NULL)
|
|
p = td->td_proc;
|
|
else
|
|
p = NULL;
|
|
switch (error) {
|
|
case NFSERR_BADOWNER:
|
|
tprintf(p, LOG_INFO,
|
|
"No name and/or group mapping for uid,gid:(%d,%d)\n",
|
|
uid, gid);
|
|
return (EPERM);
|
|
case NFSERR_STALECLIENTID:
|
|
case NFSERR_STALESTATEID:
|
|
case NFSERR_EXPIRED:
|
|
case NFSERR_BADSTATEID:
|
|
printf("nfsv4 recover err returned %d\n", error);
|
|
return (EIO);
|
|
case NFSERR_BADHANDLE:
|
|
case NFSERR_SERVERFAULT:
|
|
case NFSERR_BADTYPE:
|
|
case NFSERR_FHEXPIRED:
|
|
case NFSERR_RESOURCE:
|
|
case NFSERR_MOVED:
|
|
case NFSERR_NOFILEHANDLE:
|
|
case NFSERR_MINORVERMISMATCH:
|
|
case NFSERR_OLDSTATEID:
|
|
case NFSERR_BADSEQID:
|
|
case NFSERR_LEASEMOVED:
|
|
case NFSERR_RECLAIMBAD:
|
|
case NFSERR_BADXDR:
|
|
case NFSERR_BADCHAR:
|
|
case NFSERR_BADNAME:
|
|
case NFSERR_OPILLEGAL:
|
|
printf("nfsv4 client/server protocol prob err=%d\n",
|
|
error);
|
|
return (EIO);
|
|
default:
|
|
tprintf(p, LOG_INFO, "nfsv4 err=%d\n", error);
|
|
return (EIO);
|
|
};
|
|
}
|
|
|
|
/*
|
|
* Locate a process by number; return only "live" processes -- i.e., neither
|
|
* zombies nor newly born but incompletely initialized processes. By not
|
|
* returning processes in the PRS_NEW state, we allow callers to avoid
|
|
* testing for that condition to avoid dereferencing p_ucred, et al.
|
|
* Identical to pfind() in kern_proc.c, except it assume the list is
|
|
* already locked.
|
|
*/
|
|
static struct proc *
|
|
pfind_locked(pid_t pid)
|
|
{
|
|
struct proc *p;
|
|
|
|
LIST_FOREACH(p, PIDHASH(pid), p_hash)
|
|
if (p->p_pid == pid) {
|
|
if (p->p_state == PRS_NEW) {
|
|
p = NULL;
|
|
break;
|
|
}
|
|
PROC_LOCK(p);
|
|
break;
|
|
}
|
|
return (p);
|
|
}
|
|
|
|
/*
|
|
* Check to see if the process for this owner exists. Return 1 if it doesn't
|
|
* and 0 otherwise.
|
|
*/
|
|
int
|
|
nfscl_procdoesntexist(u_int8_t *own)
|
|
{
|
|
union {
|
|
u_int32_t lval;
|
|
u_int8_t cval[4];
|
|
} tl;
|
|
struct proc *p;
|
|
pid_t pid;
|
|
int ret = 0;
|
|
|
|
tl.cval[0] = *own++;
|
|
tl.cval[1] = *own++;
|
|
tl.cval[2] = *own++;
|
|
tl.cval[3] = *own++;
|
|
pid = tl.lval;
|
|
p = pfind_locked(pid);
|
|
if (p == NULL)
|
|
return (1);
|
|
if (p->p_stats == NULL) {
|
|
PROC_UNLOCK(p);
|
|
return (0);
|
|
}
|
|
tl.cval[0] = *own++;
|
|
tl.cval[1] = *own++;
|
|
tl.cval[2] = *own++;
|
|
tl.cval[3] = *own++;
|
|
if (tl.lval != p->p_stats->p_start.tv_sec) {
|
|
ret = 1;
|
|
} else {
|
|
tl.cval[0] = *own++;
|
|
tl.cval[1] = *own++;
|
|
tl.cval[2] = *own++;
|
|
tl.cval[3] = *own;
|
|
if (tl.lval != p->p_stats->p_start.tv_usec)
|
|
ret = 1;
|
|
}
|
|
PROC_UNLOCK(p);
|
|
return (ret);
|
|
}
|
|
|
|
/*
|
|
* - nfs pseudo system call for the client
|
|
*/
|
|
/*
|
|
* MPSAFE
|
|
*/
|
|
static int
|
|
nfssvc_nfscl(struct thread *td, struct nfssvc_args *uap)
|
|
{
|
|
struct file *fp;
|
|
struct nfscbd_args nfscbdarg;
|
|
struct nfsd_nfscbd_args nfscbdarg2;
|
|
int error;
|
|
|
|
if (uap->flag & NFSSVC_CBADDSOCK) {
|
|
error = copyin(uap->argp, (caddr_t)&nfscbdarg, sizeof(nfscbdarg));
|
|
if (error)
|
|
return (error);
|
|
if ((error = fget(td, nfscbdarg.sock, &fp)) != 0) {
|
|
return (error);
|
|
}
|
|
if (fp->f_type != DTYPE_SOCKET) {
|
|
fdrop(fp, td);
|
|
return (EPERM);
|
|
}
|
|
error = nfscbd_addsock(fp);
|
|
fdrop(fp, td);
|
|
if (!error && nfscl_enablecallb == 0) {
|
|
nfsv4_cbport = nfscbdarg.port;
|
|
nfscl_enablecallb = 1;
|
|
}
|
|
} else if (uap->flag & NFSSVC_NFSCBD) {
|
|
if (uap->argp == NULL)
|
|
return (EINVAL);
|
|
error = copyin(uap->argp, (caddr_t)&nfscbdarg2,
|
|
sizeof(nfscbdarg2));
|
|
if (error)
|
|
return (error);
|
|
error = nfscbd_nfsd(td, &nfscbdarg2);
|
|
} else {
|
|
error = EINVAL;
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
extern int (*nfsd_call_nfscl)(struct thread *, struct nfssvc_args *);
|
|
|
|
/*
|
|
* Called once to initialize data structures...
|
|
*/
|
|
static int
|
|
nfscl_modevent(module_t mod, int type, void *data)
|
|
{
|
|
int error = 0;
|
|
static int loaded = 0;
|
|
|
|
switch (type) {
|
|
case MOD_LOAD:
|
|
if (loaded)
|
|
return (0);
|
|
newnfs_portinit();
|
|
mtx_init(&nfs_clstate_mutex, "nfs_clstate_mutex", NULL,
|
|
MTX_DEF);
|
|
mtx_init(&ncl_iod_mutex, "ncl_iod_mutex", NULL, MTX_DEF);
|
|
nfscl_init();
|
|
NFSD_LOCK();
|
|
nfsrvd_cbinit(0);
|
|
NFSD_UNLOCK();
|
|
ncl_call_invalcaches = ncl_invalcaches;
|
|
nfsd_call_nfscl = nfssvc_nfscl;
|
|
loaded = 1;
|
|
break;
|
|
|
|
case MOD_UNLOAD:
|
|
if (nfs_numnfscbd != 0) {
|
|
error = EBUSY;
|
|
break;
|
|
}
|
|
|
|
ncl_call_invalcaches = NULL;
|
|
nfsd_call_nfscl = NULL;
|
|
/* and get rid of the mutexes */
|
|
mtx_destroy(&nfs_clstate_mutex);
|
|
mtx_destroy(&ncl_iod_mutex);
|
|
loaded = 0;
|
|
break;
|
|
default:
|
|
error = EOPNOTSUPP;
|
|
break;
|
|
}
|
|
return error;
|
|
}
|
|
static moduledata_t nfscl_mod = {
|
|
"nfscl",
|
|
nfscl_modevent,
|
|
NULL,
|
|
};
|
|
DECLARE_MODULE(nfscl, nfscl_mod, SI_SUB_VFS, SI_ORDER_ANY);
|
|
|
|
/* So that loader and kldload(2) can find us, wherever we are.. */
|
|
MODULE_VERSION(nfscl, 1);
|
|
MODULE_DEPEND(nfscl, newnfsd, 1, 1, 1);
|
|
|