freebsd-nq/sys/dev/drm2/ttm/ttm_page_alloc.c
2013-08-25 15:33:17 +00:00

902 lines
22 KiB
C

/*
* Copyright (c) Red Hat Inc.
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sub license,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*
* Authors: Dave Airlie <airlied@redhat.com>
* Jerome Glisse <jglisse@redhat.com>
* Pauli Nieminen <suokkos@gmail.com>
*/
/*
* Copyright (c) 2013 The FreeBSD Foundation
* All rights reserved.
*
* Portions of this software were developed by Konstantin Belousov
* <kib@FreeBSD.org> under sponsorship from the FreeBSD Foundation.
*/
/* simple list based uncached page pool
* - Pool collects resently freed pages for reuse
* - Use page->lru to keep a free list
* - doesn't track currently in use pages
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <dev/drm2/drmP.h>
#include <dev/drm2/ttm/ttm_bo_driver.h>
#include <dev/drm2/ttm/ttm_page_alloc.h>
#ifdef TTM_HAS_AGP
#include <asm/agp.h>
#endif
#define NUM_PAGES_TO_ALLOC (PAGE_SIZE/sizeof(vm_page_t))
#define SMALL_ALLOCATION 16
#define FREE_ALL_PAGES (~0U)
/* times are in msecs */
#define PAGE_FREE_INTERVAL 1000
/**
* struct ttm_page_pool - Pool to reuse recently allocated uc/wc pages.
*
* @lock: Protects the shared pool from concurrnet access. Must be used with
* irqsave/irqrestore variants because pool allocator maybe called from
* delayed work.
* @fill_lock: Prevent concurrent calls to fill.
* @list: Pool of free uc/wc pages for fast reuse.
* @gfp_flags: Flags to pass for alloc_page.
* @npages: Number of pages in pool.
*/
struct ttm_page_pool {
struct mtx lock;
bool fill_lock;
bool dma32;
struct pglist list;
int ttm_page_alloc_flags;
unsigned npages;
char *name;
unsigned long nfrees;
unsigned long nrefills;
};
/**
* Limits for the pool. They are handled without locks because only place where
* they may change is in sysfs store. They won't have immediate effect anyway
* so forcing serialization to access them is pointless.
*/
struct ttm_pool_opts {
unsigned alloc_size;
unsigned max_size;
unsigned small;
};
#define NUM_POOLS 4
/**
* struct ttm_pool_manager - Holds memory pools for fst allocation
*
* Manager is read only object for pool code so it doesn't need locking.
*
* @free_interval: minimum number of jiffies between freeing pages from pool.
* @page_alloc_inited: reference counting for pool allocation.
* @work: Work that is used to shrink the pool. Work is only run when there is
* some pages to free.
* @small_allocation: Limit in number of pages what is small allocation.
*
* @pools: All pool objects in use.
**/
struct ttm_pool_manager {
unsigned int kobj_ref;
eventhandler_tag lowmem_handler;
struct ttm_pool_opts options;
union {
struct ttm_page_pool u_pools[NUM_POOLS];
struct _utag {
struct ttm_page_pool u_wc_pool;
struct ttm_page_pool u_uc_pool;
struct ttm_page_pool u_wc_pool_dma32;
struct ttm_page_pool u_uc_pool_dma32;
} _ut;
} _u;
};
#define pools _u.u_pools
#define wc_pool _u._ut.u_wc_pool
#define uc_pool _u._ut.u_uc_pool
#define wc_pool_dma32 _u._ut.u_wc_pool_dma32
#define uc_pool_dma32 _u._ut.u_uc_pool_dma32
MALLOC_DEFINE(M_TTM_POOLMGR, "ttm_poolmgr", "TTM Pool Manager");
static void
ttm_vm_page_free(vm_page_t m)
{
KASSERT(m->object == NULL, ("ttm page %p is owned", m));
KASSERT(m->wire_count == 1, ("ttm lost wire %p", m));
KASSERT((m->flags & PG_FICTITIOUS) != 0, ("ttm lost fictitious %p", m));
KASSERT((m->oflags & VPO_UNMANAGED) == 0, ("ttm got unmanaged %p", m));
m->flags &= ~PG_FICTITIOUS;
m->oflags |= VPO_UNMANAGED;
vm_page_unwire(m, 0);
vm_page_free(m);
}
static vm_memattr_t
ttm_caching_state_to_vm(enum ttm_caching_state cstate)
{
switch (cstate) {
case tt_uncached:
return (VM_MEMATTR_UNCACHEABLE);
case tt_wc:
return (VM_MEMATTR_WRITE_COMBINING);
case tt_cached:
return (VM_MEMATTR_WRITE_BACK);
}
panic("caching state %d\n", cstate);
}
static void ttm_pool_kobj_release(struct ttm_pool_manager *m)
{
free(m, M_TTM_POOLMGR);
}
#if 0
/* XXXKIB sysctl */
static ssize_t ttm_pool_store(struct ttm_pool_manager *m,
struct attribute *attr, const char *buffer, size_t size)
{
int chars;
unsigned val;
chars = sscanf(buffer, "%u", &val);
if (chars == 0)
return size;
/* Convert kb to number of pages */
val = val / (PAGE_SIZE >> 10);
if (attr == &ttm_page_pool_max)
m->options.max_size = val;
else if (attr == &ttm_page_pool_small)
m->options.small = val;
else if (attr == &ttm_page_pool_alloc_size) {
if (val > NUM_PAGES_TO_ALLOC*8) {
pr_err("Setting allocation size to %lu is not allowed. Recommended size is %lu\n",
NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 7),
NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 10));
return size;
} else if (val > NUM_PAGES_TO_ALLOC) {
pr_warn("Setting allocation size to larger than %lu is not recommended\n",
NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 10));
}
m->options.alloc_size = val;
}
return size;
}
static ssize_t ttm_pool_show(struct ttm_pool_manager *m,
struct attribute *attr, char *buffer)
{
unsigned val = 0;
if (attr == &ttm_page_pool_max)
val = m->options.max_size;
else if (attr == &ttm_page_pool_small)
val = m->options.small;
else if (attr == &ttm_page_pool_alloc_size)
val = m->options.alloc_size;
val = val * (PAGE_SIZE >> 10);
return snprintf(buffer, PAGE_SIZE, "%u\n", val);
}
#endif
static struct ttm_pool_manager *_manager;
static int set_pages_array_wb(vm_page_t *pages, int addrinarray)
{
vm_page_t m;
int i;
for (i = 0; i < addrinarray; i++) {
m = pages[i];
#ifdef TTM_HAS_AGP
unmap_page_from_agp(m);
#endif
pmap_page_set_memattr(m, VM_MEMATTR_WRITE_BACK);
}
return 0;
}
static int set_pages_array_wc(vm_page_t *pages, int addrinarray)
{
vm_page_t m;
int i;
for (i = 0; i < addrinarray; i++) {
m = pages[i];
#ifdef TTM_HAS_AGP
map_page_into_agp(pages[i]);
#endif
pmap_page_set_memattr(m, VM_MEMATTR_WRITE_COMBINING);
}
return 0;
}
static int set_pages_array_uc(vm_page_t *pages, int addrinarray)
{
vm_page_t m;
int i;
for (i = 0; i < addrinarray; i++) {
m = pages[i];
#ifdef TTM_HAS_AGP
map_page_into_agp(pages[i]);
#endif
pmap_page_set_memattr(m, VM_MEMATTR_UNCACHEABLE);
}
return 0;
}
/**
* Select the right pool or requested caching state and ttm flags. */
static struct ttm_page_pool *ttm_get_pool(int flags,
enum ttm_caching_state cstate)
{
int pool_index;
if (cstate == tt_cached)
return NULL;
if (cstate == tt_wc)
pool_index = 0x0;
else
pool_index = 0x1;
if (flags & TTM_PAGE_FLAG_DMA32)
pool_index |= 0x2;
return &_manager->pools[pool_index];
}
/* set memory back to wb and free the pages. */
static void ttm_pages_put(vm_page_t *pages, unsigned npages)
{
unsigned i;
/* Our VM handles vm memattr automatically on the page free. */
if (set_pages_array_wb(pages, npages))
printf("[TTM] Failed to set %d pages to wb!\n", npages);
for (i = 0; i < npages; ++i)
ttm_vm_page_free(pages[i]);
}
static void ttm_pool_update_free_locked(struct ttm_page_pool *pool,
unsigned freed_pages)
{
pool->npages -= freed_pages;
pool->nfrees += freed_pages;
}
/**
* Free pages from pool.
*
* To prevent hogging the ttm_swap process we only free NUM_PAGES_TO_ALLOC
* number of pages in one go.
*
* @pool: to free the pages from
* @free_all: If set to true will free all pages in pool
**/
static int ttm_page_pool_free(struct ttm_page_pool *pool, unsigned nr_free)
{
vm_page_t p, p1;
vm_page_t *pages_to_free;
unsigned freed_pages = 0,
npages_to_free = nr_free;
unsigned i;
if (NUM_PAGES_TO_ALLOC < nr_free)
npages_to_free = NUM_PAGES_TO_ALLOC;
pages_to_free = malloc(npages_to_free * sizeof(vm_page_t),
M_TEMP, M_WAITOK | M_ZERO);
restart:
mtx_lock(&pool->lock);
TAILQ_FOREACH_REVERSE_SAFE(p, &pool->list, pglist, plinks.q, p1) {
if (freed_pages >= npages_to_free)
break;
pages_to_free[freed_pages++] = p;
/* We can only remove NUM_PAGES_TO_ALLOC at a time. */
if (freed_pages >= NUM_PAGES_TO_ALLOC) {
/* remove range of pages from the pool */
for (i = 0; i < freed_pages; i++)
TAILQ_REMOVE(&pool->list, pages_to_free[i], plinks.q);
ttm_pool_update_free_locked(pool, freed_pages);
/**
* Because changing page caching is costly
* we unlock the pool to prevent stalling.
*/
mtx_unlock(&pool->lock);
ttm_pages_put(pages_to_free, freed_pages);
if (likely(nr_free != FREE_ALL_PAGES))
nr_free -= freed_pages;
if (NUM_PAGES_TO_ALLOC >= nr_free)
npages_to_free = nr_free;
else
npages_to_free = NUM_PAGES_TO_ALLOC;
freed_pages = 0;
/* free all so restart the processing */
if (nr_free)
goto restart;
/* Not allowed to fall through or break because
* following context is inside spinlock while we are
* outside here.
*/
goto out;
}
}
/* remove range of pages from the pool */
if (freed_pages) {
for (i = 0; i < freed_pages; i++)
TAILQ_REMOVE(&pool->list, pages_to_free[i], plinks.q);
ttm_pool_update_free_locked(pool, freed_pages);
nr_free -= freed_pages;
}
mtx_unlock(&pool->lock);
if (freed_pages)
ttm_pages_put(pages_to_free, freed_pages);
out:
free(pages_to_free, M_TEMP);
return nr_free;
}
/* Get good estimation how many pages are free in pools */
static int ttm_pool_get_num_unused_pages(void)
{
unsigned i;
int total = 0;
for (i = 0; i < NUM_POOLS; ++i)
total += _manager->pools[i].npages;
return total;
}
/**
* Callback for mm to request pool to reduce number of page held.
*/
static int ttm_pool_mm_shrink(void *arg)
{
static unsigned int start_pool = 0;
unsigned i;
unsigned pool_offset = atomic_fetchadd_int(&start_pool, 1);
struct ttm_page_pool *pool;
int shrink_pages = 100; /* XXXKIB */
pool_offset = pool_offset % NUM_POOLS;
/* select start pool in round robin fashion */
for (i = 0; i < NUM_POOLS; ++i) {
unsigned nr_free = shrink_pages;
if (shrink_pages == 0)
break;
pool = &_manager->pools[(i + pool_offset)%NUM_POOLS];
shrink_pages = ttm_page_pool_free(pool, nr_free);
}
/* return estimated number of unused pages in pool */
return ttm_pool_get_num_unused_pages();
}
static void ttm_pool_mm_shrink_init(struct ttm_pool_manager *manager)
{
manager->lowmem_handler = EVENTHANDLER_REGISTER(vm_lowmem,
ttm_pool_mm_shrink, manager, EVENTHANDLER_PRI_ANY);
}
static void ttm_pool_mm_shrink_fini(struct ttm_pool_manager *manager)
{
EVENTHANDLER_DEREGISTER(vm_lowmem, manager->lowmem_handler);
}
static int ttm_set_pages_caching(vm_page_t *pages,
enum ttm_caching_state cstate, unsigned cpages)
{
int r = 0;
/* Set page caching */
switch (cstate) {
case tt_uncached:
r = set_pages_array_uc(pages, cpages);
if (r)
printf("[TTM] Failed to set %d pages to uc!\n", cpages);
break;
case tt_wc:
r = set_pages_array_wc(pages, cpages);
if (r)
printf("[TTM] Failed to set %d pages to wc!\n", cpages);
break;
default:
break;
}
return r;
}
/**
* Free pages the pages that failed to change the caching state. If there is
* any pages that have changed their caching state already put them to the
* pool.
*/
static void ttm_handle_caching_state_failure(struct pglist *pages,
int ttm_flags, enum ttm_caching_state cstate,
vm_page_t *failed_pages, unsigned cpages)
{
unsigned i;
/* Failed pages have to be freed */
for (i = 0; i < cpages; ++i) {
TAILQ_REMOVE(pages, failed_pages[i], plinks.q);
ttm_vm_page_free(failed_pages[i]);
}
}
/**
* Allocate new pages with correct caching.
*
* This function is reentrant if caller updates count depending on number of
* pages returned in pages array.
*/
static int ttm_alloc_new_pages(struct pglist *pages, int ttm_alloc_flags,
int ttm_flags, enum ttm_caching_state cstate, unsigned count)
{
vm_page_t *caching_array;
vm_page_t p;
int r = 0;
unsigned i, cpages, aflags;
unsigned max_cpages = min(count,
(unsigned)(PAGE_SIZE/sizeof(vm_page_t)));
aflags = VM_ALLOC_NORMAL | VM_ALLOC_WIRED | VM_ALLOC_NOOBJ |
((ttm_alloc_flags & TTM_PAGE_FLAG_ZERO_ALLOC) != 0 ?
VM_ALLOC_ZERO : 0);
/* allocate array for page caching change */
caching_array = malloc(max_cpages * sizeof(vm_page_t), M_TEMP,
M_WAITOK | M_ZERO);
for (i = 0, cpages = 0; i < count; ++i) {
p = vm_page_alloc_contig(NULL, 0, aflags, 1, 0,
(ttm_alloc_flags & TTM_PAGE_FLAG_DMA32) ? 0xffffffff :
VM_MAX_ADDRESS, PAGE_SIZE, 0,
ttm_caching_state_to_vm(cstate));
if (!p) {
printf("[TTM] Unable to get page %u\n", i);
/* store already allocated pages in the pool after
* setting the caching state */
if (cpages) {
r = ttm_set_pages_caching(caching_array,
cstate, cpages);
if (r)
ttm_handle_caching_state_failure(pages,
ttm_flags, cstate,
caching_array, cpages);
}
r = -ENOMEM;
goto out;
}
p->oflags &= ~VPO_UNMANAGED;
p->flags |= PG_FICTITIOUS;
#ifdef CONFIG_HIGHMEM /* KIB: nop */
/* gfp flags of highmem page should never be dma32 so we
* we should be fine in such case
*/
if (!PageHighMem(p))
#endif
{
caching_array[cpages++] = p;
if (cpages == max_cpages) {
r = ttm_set_pages_caching(caching_array,
cstate, cpages);
if (r) {
ttm_handle_caching_state_failure(pages,
ttm_flags, cstate,
caching_array, cpages);
goto out;
}
cpages = 0;
}
}
TAILQ_INSERT_HEAD(pages, p, plinks.q);
}
if (cpages) {
r = ttm_set_pages_caching(caching_array, cstate, cpages);
if (r)
ttm_handle_caching_state_failure(pages,
ttm_flags, cstate,
caching_array, cpages);
}
out:
free(caching_array, M_TEMP);
return r;
}
/**
* Fill the given pool if there aren't enough pages and the requested number of
* pages is small.
*/
static void ttm_page_pool_fill_locked(struct ttm_page_pool *pool,
int ttm_flags, enum ttm_caching_state cstate, unsigned count)
{
vm_page_t p;
int r;
unsigned cpages = 0;
/**
* Only allow one pool fill operation at a time.
* If pool doesn't have enough pages for the allocation new pages are
* allocated from outside of pool.
*/
if (pool->fill_lock)
return;
pool->fill_lock = true;
/* If allocation request is small and there are not enough
* pages in a pool we fill the pool up first. */
if (count < _manager->options.small
&& count > pool->npages) {
struct pglist new_pages;
unsigned alloc_size = _manager->options.alloc_size;
/**
* Can't change page caching if in irqsave context. We have to
* drop the pool->lock.
*/
mtx_unlock(&pool->lock);
TAILQ_INIT(&new_pages);
r = ttm_alloc_new_pages(&new_pages, pool->ttm_page_alloc_flags,
ttm_flags, cstate, alloc_size);
mtx_lock(&pool->lock);
if (!r) {
TAILQ_CONCAT(&pool->list, &new_pages, plinks.q);
++pool->nrefills;
pool->npages += alloc_size;
} else {
printf("[TTM] Failed to fill pool (%p)\n", pool);
/* If we have any pages left put them to the pool. */
TAILQ_FOREACH(p, &pool->list, plinks.q) {
++cpages;
}
TAILQ_CONCAT(&pool->list, &new_pages, plinks.q);
pool->npages += cpages;
}
}
pool->fill_lock = false;
}
/**
* Cut 'count' number of pages from the pool and put them on the return list.
*
* @return count of pages still required to fulfill the request.
*/
static unsigned ttm_page_pool_get_pages(struct ttm_page_pool *pool,
struct pglist *pages,
int ttm_flags,
enum ttm_caching_state cstate,
unsigned count)
{
vm_page_t p;
unsigned i;
mtx_lock(&pool->lock);
ttm_page_pool_fill_locked(pool, ttm_flags, cstate, count);
if (count >= pool->npages) {
/* take all pages from the pool */
TAILQ_CONCAT(pages, &pool->list, plinks.q);
count -= pool->npages;
pool->npages = 0;
goto out;
}
for (i = 0; i < count; i++) {
p = TAILQ_FIRST(&pool->list);
TAILQ_REMOVE(&pool->list, p, plinks.q);
TAILQ_INSERT_TAIL(pages, p, plinks.q);
}
pool->npages -= count;
count = 0;
out:
mtx_unlock(&pool->lock);
return count;
}
/* Put all pages in pages list to correct pool to wait for reuse */
static void ttm_put_pages(vm_page_t *pages, unsigned npages, int flags,
enum ttm_caching_state cstate)
{
struct ttm_page_pool *pool = ttm_get_pool(flags, cstate);
unsigned i;
if (pool == NULL) {
/* No pool for this memory type so free the pages */
for (i = 0; i < npages; i++) {
if (pages[i]) {
ttm_vm_page_free(pages[i]);
pages[i] = NULL;
}
}
return;
}
mtx_lock(&pool->lock);
for (i = 0; i < npages; i++) {
if (pages[i]) {
TAILQ_INSERT_TAIL(&pool->list, pages[i], plinks.q);
pages[i] = NULL;
pool->npages++;
}
}
/* Check that we don't go over the pool limit */
npages = 0;
if (pool->npages > _manager->options.max_size) {
npages = pool->npages - _manager->options.max_size;
/* free at least NUM_PAGES_TO_ALLOC number of pages
* to reduce calls to set_memory_wb */
if (npages < NUM_PAGES_TO_ALLOC)
npages = NUM_PAGES_TO_ALLOC;
}
mtx_unlock(&pool->lock);
if (npages)
ttm_page_pool_free(pool, npages);
}
/*
* On success pages list will hold count number of correctly
* cached pages.
*/
static int ttm_get_pages(vm_page_t *pages, unsigned npages, int flags,
enum ttm_caching_state cstate)
{
struct ttm_page_pool *pool = ttm_get_pool(flags, cstate);
struct pglist plist;
vm_page_t p = NULL;
int gfp_flags, aflags;
unsigned count;
int r;
aflags = VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
((flags & TTM_PAGE_FLAG_ZERO_ALLOC) != 0 ? VM_ALLOC_ZERO : 0);
/* No pool for cached pages */
if (pool == NULL) {
for (r = 0; r < npages; ++r) {
p = vm_page_alloc_contig(NULL, 0, aflags, 1, 0,
(flags & TTM_PAGE_FLAG_DMA32) ? 0xffffffff :
VM_MAX_ADDRESS, PAGE_SIZE,
0, ttm_caching_state_to_vm(cstate));
if (!p) {
printf("[TTM] Unable to allocate page\n");
return -ENOMEM;
}
p->oflags &= ~VPO_UNMANAGED;
p->flags |= PG_FICTITIOUS;
pages[r] = p;
}
return 0;
}
/* combine zero flag to pool flags */
gfp_flags = flags | pool->ttm_page_alloc_flags;
/* First we take pages from the pool */
TAILQ_INIT(&plist);
npages = ttm_page_pool_get_pages(pool, &plist, flags, cstate, npages);
count = 0;
TAILQ_FOREACH(p, &plist, plinks.q) {
pages[count++] = p;
}
/* clear the pages coming from the pool if requested */
if (flags & TTM_PAGE_FLAG_ZERO_ALLOC) {
TAILQ_FOREACH(p, &plist, plinks.q) {
pmap_zero_page(p);
}
}
/* If pool didn't have enough pages allocate new one. */
if (npages > 0) {
/* ttm_alloc_new_pages doesn't reference pool so we can run
* multiple requests in parallel.
**/
TAILQ_INIT(&plist);
r = ttm_alloc_new_pages(&plist, gfp_flags, flags, cstate,
npages);
TAILQ_FOREACH(p, &plist, plinks.q) {
pages[count++] = p;
}
if (r) {
/* If there is any pages in the list put them back to
* the pool. */
printf("[TTM] Failed to allocate extra pages for large request\n");
ttm_put_pages(pages, count, flags, cstate);
return r;
}
}
return 0;
}
static void ttm_page_pool_init_locked(struct ttm_page_pool *pool, int flags,
char *name)
{
mtx_init(&pool->lock, "ttmpool", NULL, MTX_DEF);
pool->fill_lock = false;
TAILQ_INIT(&pool->list);
pool->npages = pool->nfrees = 0;
pool->ttm_page_alloc_flags = flags;
pool->name = name;
}
int ttm_page_alloc_init(struct ttm_mem_global *glob, unsigned max_pages)
{
if (_manager != NULL)
printf("[TTM] manager != NULL\n");
printf("[TTM] Initializing pool allocator\n");
_manager = malloc(sizeof(*_manager), M_TTM_POOLMGR, M_WAITOK | M_ZERO);
ttm_page_pool_init_locked(&_manager->wc_pool, 0, "wc");
ttm_page_pool_init_locked(&_manager->uc_pool, 0, "uc");
ttm_page_pool_init_locked(&_manager->wc_pool_dma32,
TTM_PAGE_FLAG_DMA32, "wc dma");
ttm_page_pool_init_locked(&_manager->uc_pool_dma32,
TTM_PAGE_FLAG_DMA32, "uc dma");
_manager->options.max_size = max_pages;
_manager->options.small = SMALL_ALLOCATION;
_manager->options.alloc_size = NUM_PAGES_TO_ALLOC;
refcount_init(&_manager->kobj_ref, 1);
ttm_pool_mm_shrink_init(_manager);
return 0;
}
void ttm_page_alloc_fini(void)
{
int i;
printf("[TTM] Finalizing pool allocator\n");
ttm_pool_mm_shrink_fini(_manager);
for (i = 0; i < NUM_POOLS; ++i)
ttm_page_pool_free(&_manager->pools[i], FREE_ALL_PAGES);
if (refcount_release(&_manager->kobj_ref))
ttm_pool_kobj_release(_manager);
_manager = NULL;
}
int ttm_pool_populate(struct ttm_tt *ttm)
{
struct ttm_mem_global *mem_glob = ttm->glob->mem_glob;
unsigned i;
int ret;
if (ttm->state != tt_unpopulated)
return 0;
for (i = 0; i < ttm->num_pages; ++i) {
ret = ttm_get_pages(&ttm->pages[i], 1,
ttm->page_flags,
ttm->caching_state);
if (ret != 0) {
ttm_pool_unpopulate(ttm);
return -ENOMEM;
}
ret = ttm_mem_global_alloc_page(mem_glob, ttm->pages[i],
false, false);
if (unlikely(ret != 0)) {
ttm_pool_unpopulate(ttm);
return -ENOMEM;
}
}
if (unlikely(ttm->page_flags & TTM_PAGE_FLAG_SWAPPED)) {
ret = ttm_tt_swapin(ttm);
if (unlikely(ret != 0)) {
ttm_pool_unpopulate(ttm);
return ret;
}
}
ttm->state = tt_unbound;
return 0;
}
void ttm_pool_unpopulate(struct ttm_tt *ttm)
{
unsigned i;
for (i = 0; i < ttm->num_pages; ++i) {
if (ttm->pages[i]) {
ttm_mem_global_free_page(ttm->glob->mem_glob,
ttm->pages[i]);
ttm_put_pages(&ttm->pages[i], 1,
ttm->page_flags,
ttm->caching_state);
}
}
ttm->state = tt_unpopulated;
}
#if 0
/* XXXKIB sysctl */
int ttm_page_alloc_debugfs(struct seq_file *m, void *data)
{
struct ttm_page_pool *p;
unsigned i;
char *h[] = {"pool", "refills", "pages freed", "size"};
if (!_manager) {
seq_printf(m, "No pool allocator running.\n");
return 0;
}
seq_printf(m, "%6s %12s %13s %8s\n",
h[0], h[1], h[2], h[3]);
for (i = 0; i < NUM_POOLS; ++i) {
p = &_manager->pools[i];
seq_printf(m, "%6s %12ld %13ld %8d\n",
p->name, p->nrefills,
p->nfrees, p->npages);
}
return 0;
}
#endif