freebsd-nq/sys/dev/cxgbe/adapter.h
2011-02-18 08:00:26 +00:00

570 lines
16 KiB
C

/*-
* Copyright (c) 2011 Chelsio Communications, Inc.
* All rights reserved.
* Written by: Navdeep Parhar <np@FreeBSD.org>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*
*/
#ifndef __T4_ADAPTER_H__
#define __T4_ADAPTER_H__
#include <sys/bus.h>
#include <sys/rman.h>
#include <sys/types.h>
#include <sys/malloc.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pcireg.h>
#include <machine/bus.h>
#include <sys/socket.h>
#include <sys/sysctl.h>
#include <net/ethernet.h>
#include <net/if.h>
#include <net/if_media.h>
#include <netinet/tcp_lro.h>
#include "offload.h"
#include "common/t4fw_interface.h"
#define T4_FWNAME "t4fw"
MALLOC_DECLARE(M_CXGBE);
#define CXGBE_UNIMPLEMENTED(s) \
panic("%s (%s, line %d) not implemented yet.", s, __FILE__, __LINE__)
#if defined(__i386__) || defined(__amd64__)
static __inline void
prefetch(void *x)
{
__asm volatile("prefetcht0 %0" :: "m" (*(unsigned long *)x));
}
#else
#define prefetch(x)
#endif
#ifdef __amd64__
/* XXX: need systemwide bus_space_read_8/bus_space_write_8 */
static __inline uint64_t
t4_bus_space_read_8(bus_space_tag_t tag, bus_space_handle_t handle,
bus_size_t offset)
{
KASSERT(tag == X86_BUS_SPACE_IO,
("64-bit reads from I/O space not possible."));
return (*(volatile uint64_t *)(handle + offset));
}
static __inline void
t4_bus_space_write_8(bus_space_tag_t tag, bus_space_handle_t bsh,
bus_size_t offset, uint64_t value)
{
KASSERT(tag == X86_BUS_SPACE_IO,
("64-bit writes to I/O space not possible."));
*(volatile uint64_t *)(bsh + offset) = value;
}
#else
static __inline uint64_t
t4_bus_space_read_8(bus_space_tag_t tag, bus_space_handle_t handle,
bus_size_t offset)
{
return (uint64_t)bus_space_read_4(tag, handle, offset) +
((uint64_t)bus_space_read_4(tag, handle, offset + 4) << 32);
}
static __inline void
t4_bus_space_write_8(bus_space_tag_t tag, bus_space_handle_t bsh,
bus_size_t offset, uint64_t value)
{
bus_space_write_4(tag, bsh, offset, value);
bus_space_write_4(tag, bsh, offset + 4, value >> 32);
}
#endif
struct adapter;
typedef struct adapter adapter_t;
enum {
FW_IQ_QSIZE = 256,
FW_IQ_ESIZE = 64, /* At least 64 mandated by the firmware spec */
RX_IQ_QSIZE = 1024,
RX_IQ_ESIZE = 64, /* At least 64 so CPL_RX_PKT will fit */
RX_FL_ESIZE = 64, /* 8 64bit addresses */
FL_BUF_SIZES = 4,
TX_EQ_QSIZE = 1024,
TX_EQ_ESIZE = 64,
TX_SGL_SEGS = 36,
TX_WR_FLITS = SGE_MAX_WR_LEN / 8
};
enum {
/* adapter flags */
FULL_INIT_DONE = (1 << 0),
FW_OK = (1 << 1),
INTR_FWD = (1 << 2),
CXGBE_BUSY = (1 << 9),
/* port flags */
DOOMED = (1 << 0),
VI_ENABLED = (1 << 1),
};
#define IS_DOOMED(pi) (pi->flags & DOOMED)
#define SET_DOOMED(pi) do {pi->flags |= DOOMED;} while (0)
#define IS_BUSY(sc) (sc->flags & CXGBE_BUSY)
#define SET_BUSY(sc) do {sc->flags |= CXGBE_BUSY;} while (0)
#define CLR_BUSY(sc) do {sc->flags &= ~CXGBE_BUSY;} while (0)
struct port_info {
device_t dev;
struct adapter *adapter;
struct ifnet *ifp;
struct ifmedia media;
struct mtx pi_lock;
char lockname[16];
unsigned long flags;
int if_flags;
uint16_t viid;
int16_t xact_addr_filt;/* index of exact MAC address filter */
uint16_t rss_size; /* size of VI's RSS table slice */
uint8_t lport; /* associated offload logical port */
int8_t mdio_addr;
uint8_t port_type;
uint8_t mod_type;
uint8_t port_id;
uint8_t tx_chan;
/* These need to be int as they are used in sysctl */
int ntxq; /* # of tx queues */
int first_txq; /* index of first tx queue */
int nrxq; /* # of rx queues */
int first_rxq; /* index of first rx queue */
int tmr_idx;
int pktc_idx;
int qsize_rxq;
int qsize_txq;
struct link_config link_cfg;
struct port_stats stats;
struct callout tick;
struct sysctl_ctx_list ctx; /* lives from ifconfig up to down */
struct sysctl_oid *oid_rxq;
struct sysctl_oid *oid_txq;
uint8_t hw_addr[ETHER_ADDR_LEN]; /* factory MAC address, won't change */
};
struct fl_sdesc {
struct mbuf *m;
bus_dmamap_t map;
caddr_t cl;
uint8_t tag_idx; /* the sc->fl_tag this map comes from */
#ifdef INVARIANTS
__be64 ba_tag;
#endif
};
struct tx_desc {
__be64 flit[8];
};
struct tx_map {
struct mbuf *m;
bus_dmamap_t map;
};
struct tx_sdesc {
uint8_t desc_used; /* # of hardware descriptors used by the WR */
uint8_t map_used; /* # of frames sent out in the WR */
};
typedef void (iq_intr_handler_t)(void *);
enum {
/* iq flags */
IQ_ALLOCATED = (1 << 1), /* firmware resources allocated */
IQ_STARTED = (1 << 2), /* started */
};
/*
* Ingress Queue: T4 is producer, driver is consumer.
*/
struct sge_iq {
bus_dma_tag_t desc_tag;
bus_dmamap_t desc_map;
struct mtx iq_lock;
char lockname[16];
unsigned int flags;
struct adapter *adapter;
__be64 *desc; /* KVA of descriptor ring */
bus_addr_t ba; /* bus address of descriptor ring */
const __be64 *cdesc; /* current descriptor */
uint8_t gen; /* generation bit */
uint8_t intr_params; /* interrupt holdoff parameters */
int8_t intr_pktc_idx; /* packet count threshold index */
uint8_t intr_next; /* holdoff for next interrupt */
uint8_t esize; /* size (bytes) of each entry in the queue */
uint16_t qsize; /* size (# of entries) of the queue */
uint16_t cidx; /* consumer index */
uint16_t cntxt_id; /* SGE context id for the iq */
uint16_t abs_id; /* absolute SGE id for the iq */
iq_intr_handler_t *handler;
};
enum {
/* eq flags */
EQ_ALLOCATED = (1 << 1), /* firmware resources allocated */
EQ_STARTED = (1 << 2), /* started */
EQ_STALLED = (1 << 3), /* currently stalled */
};
/*
* Egress Queue: driver is producer, T4 is consumer.
*
* Note: A free list is an egress queue (driver produces the buffers and T4
* consumes them) but it's special enough to have its own struct (see sge_fl).
*/
struct sge_eq {
bus_dma_tag_t tx_tag; /* tag for transmit buffers */
bus_dma_tag_t desc_tag;
bus_dmamap_t desc_map;
char lockname[16];
unsigned int flags;
struct mtx eq_lock;
struct tx_desc *desc; /* KVA of descriptor ring */
bus_addr_t ba; /* bus address of descriptor ring */
struct tx_sdesc *sdesc; /* KVA of software descriptor ring */
struct buf_ring *br; /* tx buffer ring */
struct sge_qstat *spg; /* status page, for convenience */
uint16_t cap; /* max # of desc, for convenience */
uint16_t avail; /* available descriptors, for convenience */
uint16_t qsize; /* size (# of entries) of the queue */
uint16_t cidx; /* consumer idx (desc idx) */
uint16_t pidx; /* producer idx (desc idx) */
uint16_t pending; /* # of descriptors used since last doorbell */
uint32_t cntxt_id; /* SGE context id for the eq */
/* DMA maps used for tx */
struct tx_map *maps;
uint32_t map_total; /* # of DMA maps */
uint32_t map_pidx; /* next map to be used */
uint32_t map_cidx; /* reclaimed up to this index */
uint32_t map_avail; /* # of available maps */
} __aligned(CACHE_LINE_SIZE);
struct sge_fl {
bus_dma_tag_t desc_tag;
bus_dmamap_t desc_map;
bus_dma_tag_t tag[FL_BUF_SIZES];
uint8_t tag_idx;
struct mtx fl_lock;
char lockname[16];
__be64 *desc; /* KVA of descriptor ring, ptr to addresses */
bus_addr_t ba; /* bus address of descriptor ring */
struct fl_sdesc *sdesc; /* KVA of software descriptor ring */
uint32_t cap; /* max # of buffers, for convenience */
uint16_t qsize; /* size (# of entries) of the queue */
uint16_t cntxt_id; /* SGE context id for the freelist */
uint32_t cidx; /* consumer idx (buffer idx, NOT hw desc idx) */
uint32_t pidx; /* producer idx (buffer idx, NOT hw desc idx) */
uint32_t needed; /* # of buffers needed to fill up fl. */
uint32_t pending; /* # of bufs allocated since last doorbell */
unsigned int dmamap_failed;
};
/* txq: SGE egress queue + miscellaneous items */
struct sge_txq {
struct sge_eq eq; /* MUST be first */
struct mbuf *m; /* held up due to temporary resource shortage */
/* stats for common events first */
uint64_t txcsum; /* # of times hardware assisted with checksum */
uint64_t tso_wrs; /* # of IPv4 TSO work requests */
uint64_t vlan_insertion;/* # of times VLAN tag was inserted */
uint64_t imm_wrs; /* # of work requests with immediate data */
uint64_t sgl_wrs; /* # of work requests with direct SGL */
uint64_t txpkt_wrs; /* # of txpkt work requests (not coalesced) */
uint64_t txpkts_wrs; /* # of coalesced tx work requests */
uint64_t txpkts_pkts; /* # of frames in coalesced tx work requests */
/* stats for not-that-common events */
uint32_t no_dmamap; /* no DMA map to load the mbuf */
uint32_t no_desc; /* out of hardware descriptors */
uint32_t egr_update; /* # of SGE_EGR_UPDATE notifications for txq */
};
enum {
RXQ_LRO_ENABLED = (1 << 0)
};
/* rxq: SGE ingress queue + SGE free list + miscellaneous items */
struct sge_rxq {
struct sge_iq iq; /* MUST be first */
struct sge_fl fl;
unsigned int flags;
struct port_info *port; /* the port this rxq belongs to */
struct lro_ctrl lro; /* LRO state */
/* stats for common events first */
uint64_t rxcsum; /* # of times hardware assisted with checksum */
uint64_t vlan_extraction;/* # of times VLAN tag was extracted */
/* stats for not-that-common events */
} __aligned(CACHE_LINE_SIZE);
struct sge {
uint16_t timer_val[SGE_NTIMERS];
uint8_t counter_val[SGE_NCOUNTERS];
int nrxq; /* total rx queues (all ports and the rest) */
int ntxq; /* total tx queues (all ports and the rest) */
int niq; /* total ingress queues */
int neq; /* total egress queues */
struct sge_iq fwq; /* Firmware event queue */
struct sge_iq *fiq; /* Forwarded interrupt queues (INTR_FWD) */
struct sge_txq *txq; /* NIC tx queues */
struct sge_rxq *rxq; /* NIC rx queues */
uint16_t iq_start;
int eq_start;
struct sge_iq **iqmap; /* iq->cntxt_id to iq mapping */
struct sge_eq **eqmap; /* eq->cntxt_id to eq mapping */
};
struct adapter {
device_t dev;
struct cdev *cdev;
/* PCIe register resources */
int regs_rid;
struct resource *regs_res;
int msix_rid;
struct resource *msix_res;
bus_space_handle_t bh;
bus_space_tag_t bt;
bus_size_t mmio_len;
unsigned int pf;
unsigned int mbox;
/* Interrupt information */
int intr_type;
int intr_count;
struct irq {
struct resource *res;
int rid;
void *tag;
} *irq;
bus_dma_tag_t dmat; /* Parent DMA tag */
struct sge sge;
struct port_info *port[MAX_NPORTS];
uint8_t chan_map[NCHAN];
struct tid_info tids;
int registered_device_map;
int open_device_map;
int flags;
char fw_version[32];
struct adapter_params params;
struct t4_virt_res vres;
struct mtx sc_lock;
char lockname[16];
};
#define ADAPTER_LOCK(sc) mtx_lock(&(sc)->sc_lock)
#define ADAPTER_UNLOCK(sc) mtx_unlock(&(sc)->sc_lock)
#define ADAPTER_LOCK_ASSERT_OWNED(sc) mtx_assert(&(sc)->sc_lock, MA_OWNED)
#define ADAPTER_LOCK_ASSERT_NOTOWNED(sc) mtx_assert(&(sc)->sc_lock, MA_NOTOWNED)
#define PORT_LOCK(pi) mtx_lock(&(pi)->pi_lock)
#define PORT_UNLOCK(pi) mtx_unlock(&(pi)->pi_lock)
#define PORT_LOCK_ASSERT_OWNED(pi) mtx_assert(&(pi)->pi_lock, MA_OWNED)
#define PORT_LOCK_ASSERT_NOTOWNED(pi) mtx_assert(&(pi)->pi_lock, MA_NOTOWNED)
#define IQ_LOCK(iq) mtx_lock(&(iq)->iq_lock)
#define IQ_UNLOCK(iq) mtx_unlock(&(iq)->iq_lock)
#define IQ_LOCK_ASSERT_OWNED(iq) mtx_assert(&(iq)->iq_lock, MA_OWNED)
#define IQ_LOCK_ASSERT_NOTOWNED(iq) mtx_assert(&(iq)->iq_lock, MA_NOTOWNED)
#define FL_LOCK(fl) mtx_lock(&(fl)->fl_lock)
#define FL_TRYLOCK(fl) mtx_trylock(&(fl)->fl_lock)
#define FL_UNLOCK(fl) mtx_unlock(&(fl)->fl_lock)
#define FL_LOCK_ASSERT_OWNED(fl) mtx_assert(&(fl)->fl_lock, MA_OWNED)
#define FL_LOCK_ASSERT_NOTOWNED(fl) mtx_assert(&(fl)->fl_lock, MA_NOTOWNED)
#define RXQ_LOCK(rxq) IQ_LOCK(&(rxq)->iq)
#define RXQ_UNLOCK(rxq) IQ_UNLOCK(&(rxq)->iq)
#define RXQ_LOCK_ASSERT_OWNED(rxq) IQ_LOCK_ASSERT_OWNED(&(rxq)->iq)
#define RXQ_LOCK_ASSERT_NOTOWNED(rxq) IQ_LOCK_ASSERT_NOTOWNED(&(rxq)->iq)
#define RXQ_FL_LOCK(rxq) FL_LOCK(&(rxq)->fl)
#define RXQ_FL_UNLOCK(rxq) FL_UNLOCK(&(rxq)->fl)
#define RXQ_FL_LOCK_ASSERT_OWNED(rxq) FL_LOCK_ASSERT_OWNED(&(rxq)->fl)
#define RXQ_FL_LOCK_ASSERT_NOTOWNED(rxq) FL_LOCK_ASSERT_NOTOWNED(&(rxq)->fl)
#define EQ_LOCK(eq) mtx_lock(&(eq)->eq_lock)
#define EQ_TRYLOCK(eq) mtx_trylock(&(eq)->eq_lock)
#define EQ_UNLOCK(eq) mtx_unlock(&(eq)->eq_lock)
#define EQ_LOCK_ASSERT_OWNED(eq) mtx_assert(&(eq)->eq_lock, MA_OWNED)
#define EQ_LOCK_ASSERT_NOTOWNED(eq) mtx_assert(&(eq)->eq_lock, MA_NOTOWNED)
#define TXQ_LOCK(txq) EQ_LOCK(&(txq)->eq)
#define TXQ_TRYLOCK(txq) EQ_TRYLOCK(&(txq)->eq)
#define TXQ_UNLOCK(txq) EQ_UNLOCK(&(txq)->eq)
#define TXQ_LOCK_ASSERT_OWNED(txq) EQ_LOCK_ASSERT_OWNED(&(txq)->eq)
#define TXQ_LOCK_ASSERT_NOTOWNED(txq) EQ_LOCK_ASSERT_NOTOWNED(&(txq)->eq)
#define for_each_txq(pi, iter, txq) \
txq = &pi->adapter->sge.txq[pi->first_txq]; \
for (iter = 0; iter < pi->ntxq; ++iter, ++txq)
#define for_each_rxq(pi, iter, rxq) \
rxq = &pi->adapter->sge.rxq[pi->first_rxq]; \
for (iter = 0; iter < pi->nrxq; ++iter, ++rxq)
#define NFIQ(sc) ((sc)->intr_count > 1 ? (sc)->intr_count - 1 : 1)
static inline uint32_t
t4_read_reg(struct adapter *sc, uint32_t reg)
{
return bus_space_read_4(sc->bt, sc->bh, reg);
}
static inline void
t4_write_reg(struct adapter *sc, uint32_t reg, uint32_t val)
{
bus_space_write_4(sc->bt, sc->bh, reg, val);
}
static inline uint64_t
t4_read_reg64(struct adapter *sc, uint32_t reg)
{
return t4_bus_space_read_8(sc->bt, sc->bh, reg);
}
static inline void
t4_write_reg64(struct adapter *sc, uint32_t reg, uint64_t val)
{
t4_bus_space_write_8(sc->bt, sc->bh, reg, val);
}
static inline void
t4_os_pci_read_cfg1(struct adapter *sc, int reg, uint8_t *val)
{
*val = pci_read_config(sc->dev, reg, 1);
}
static inline void
t4_os_pci_write_cfg1(struct adapter *sc, int reg, uint8_t val)
{
pci_write_config(sc->dev, reg, val, 1);
}
static inline void
t4_os_pci_read_cfg2(struct adapter *sc, int reg, uint16_t *val)
{
*val = pci_read_config(sc->dev, reg, 2);
}
static inline void
t4_os_pci_write_cfg2(struct adapter *sc, int reg, uint16_t val)
{
pci_write_config(sc->dev, reg, val, 2);
}
static inline void
t4_os_pci_read_cfg4(struct adapter *sc, int reg, uint32_t *val)
{
*val = pci_read_config(sc->dev, reg, 4);
}
static inline void
t4_os_pci_write_cfg4(struct adapter *sc, int reg, uint32_t val)
{
pci_write_config(sc->dev, reg, val, 4);
}
static inline struct port_info *
adap2pinfo(struct adapter *sc, int idx)
{
return (sc->port[idx]);
}
static inline void
t4_os_set_hw_addr(struct adapter *sc, int idx, uint8_t hw_addr[])
{
bcopy(hw_addr, sc->port[idx]->hw_addr, ETHER_ADDR_LEN);
}
static inline bool is_10G_port(const struct port_info *pi)
{
return ((pi->link_cfg.supported & FW_PORT_CAP_SPEED_10G) != 0);
}
int t4_os_find_pci_capability(struct adapter *, int);
int t4_os_pci_save_state(struct adapter *);
int t4_os_pci_restore_state(struct adapter *);
void t4_os_portmod_changed(const struct adapter *, int);
void t4_os_link_changed(struct adapter *, int, int);
void t4_sge_init(struct adapter *);
int t4_create_dma_tag(struct adapter *);
int t4_destroy_dma_tag(struct adapter *);
int t4_setup_adapter_iqs(struct adapter *);
int t4_teardown_adapter_iqs(struct adapter *);
int t4_setup_eth_queues(struct port_info *);
int t4_teardown_eth_queues(struct port_info *);
void t4_intr_all(void *);
void t4_intr_fwd(void *);
void t4_intr_err(void *);
void t4_intr_evt(void *);
void t4_intr_data(void *);
int t4_eth_tx(struct ifnet *, struct sge_txq *, struct mbuf *);
void t4_update_fl_bufsize(struct ifnet *);
#endif