Maxime Henrion 07159f9c56 Cleanup of the d_mmap_t interface.
- Get rid of the useless atop() / pmap_phys_address() detour.  The
  device mmap handlers must now give back the physical address
  without atop()'ing it.
- Don't borrow the physical address of the mapping in the returned
  int.  Now we properly pass a vm_offset_t * and expect it to be
  filled by the mmap handler when the mapping was successful.  The
  mmap handler must now return 0 when successful, any other value
  is considered as an error.  Previously, returning -1 was the only
  way to fail.  This change thus accidentally fixes some devices
  which were bogusly returning errno constants which would have been
  considered as addresses by the device pager.
- Garbage collect the poorly named pmap_phys_address() now that it's
  no longer used.
- Convert all the d_mmap_t consumers to the new API.

I'm still not sure wheter we need a __FreeBSD_version bump for this,
since and we didn't guarantee API/ABI stability until 5.1-RELEASE.

Discussed with:		alc, phk, jake
Reviewed by:		peter
Compile-tested on:	LINT (i386), GENERIC (alpha and sparc64)
Runtime-tested on:	i386
2003-02-25 03:21:22 +00:00

2515 lines
60 KiB
C

/*
* Copyright (c) 2001 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Matt Thomas <matt@3am-software.com> of Allegro Networks, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Copyright (C) 1995, 1996 Wolfgang Solfrank.
* Copyright (C) 1995, 1996 TooLs GmbH.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by TooLs GmbH.
* 4. The name of TooLs GmbH may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* $NetBSD: pmap.c,v 1.28 2000/03/26 20:42:36 kleink Exp $
*/
/*
* Copyright (C) 2001 Benno Rice.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY Benno Rice ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef lint
static const char rcsid[] =
"$FreeBSD$";
#endif /* not lint */
/*
* Manages physical address maps.
*
* In addition to hardware address maps, this module is called upon to
* provide software-use-only maps which may or may not be stored in the
* same form as hardware maps. These pseudo-maps are used to store
* intermediate results from copy operations to and from address spaces.
*
* Since the information managed by this module is also stored by the
* logical address mapping module, this module may throw away valid virtual
* to physical mappings at almost any time. However, invalidations of
* mappings must be done as requested.
*
* In order to cope with hardware architectures which make virtual to
* physical map invalidates expensive, this module may delay invalidate
* reduced protection operations until such time as they are actually
* necessary. This module is given full information as to which processors
* are currently using which maps, and to when physical maps must be made
* correct.
*/
#include <sys/param.h>
#include <sys/kernel.h>
#include <sys/ktr.h>
#include <sys/lock.h>
#include <sys/msgbuf.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/sysctl.h>
#include <sys/systm.h>
#include <sys/vmmeter.h>
#include <dev/ofw/openfirm.h>
#include <vm/vm.h>
#include <vm/vm_param.h>
#include <vm/vm_kern.h>
#include <vm/vm_page.h>
#include <vm/vm_map.h>
#include <vm/vm_object.h>
#include <vm/vm_extern.h>
#include <vm/vm_pageout.h>
#include <vm/vm_pager.h>
#include <vm/uma.h>
#include <machine/powerpc.h>
#include <machine/bat.h>
#include <machine/frame.h>
#include <machine/md_var.h>
#include <machine/psl.h>
#include <machine/pte.h>
#include <machine/sr.h>
#define PMAP_DEBUG
#define TODO panic("%s: not implemented", __func__);
#define PMAP_LOCK(pm)
#define PMAP_UNLOCK(pm)
#define TLBIE(va) __asm __volatile("tlbie %0" :: "r"(va))
#define TLBSYNC() __asm __volatile("tlbsync");
#define SYNC() __asm __volatile("sync");
#define EIEIO() __asm __volatile("eieio");
#define VSID_MAKE(sr, hash) ((sr) | (((hash) & 0xfffff) << 4))
#define VSID_TO_SR(vsid) ((vsid) & 0xf)
#define VSID_TO_HASH(vsid) (((vsid) >> 4) & 0xfffff)
#define PVO_PTEGIDX_MASK 0x0007 /* which PTEG slot */
#define PVO_PTEGIDX_VALID 0x0008 /* slot is valid */
#define PVO_WIRED 0x0010 /* PVO entry is wired */
#define PVO_MANAGED 0x0020 /* PVO entry is managed */
#define PVO_EXECUTABLE 0x0040 /* PVO entry is executable */
#define PVO_BOOTSTRAP 0x0080 /* PVO entry allocated during
bootstrap */
#define PVO_VADDR(pvo) ((pvo)->pvo_vaddr & ~ADDR_POFF)
#define PVO_ISEXECUTABLE(pvo) ((pvo)->pvo_vaddr & PVO_EXECUTABLE)
#define PVO_PTEGIDX_GET(pvo) ((pvo)->pvo_vaddr & PVO_PTEGIDX_MASK)
#define PVO_PTEGIDX_ISSET(pvo) ((pvo)->pvo_vaddr & PVO_PTEGIDX_VALID)
#define PVO_PTEGIDX_CLR(pvo) \
((void)((pvo)->pvo_vaddr &= ~(PVO_PTEGIDX_VALID|PVO_PTEGIDX_MASK)))
#define PVO_PTEGIDX_SET(pvo, i) \
((void)((pvo)->pvo_vaddr |= (i)|PVO_PTEGIDX_VALID))
#define PMAP_PVO_CHECK(pvo)
struct ofw_map {
vm_offset_t om_va;
vm_size_t om_len;
vm_offset_t om_pa;
u_int om_mode;
};
int pmap_bootstrapped = 0;
/*
* Virtual and physical address of message buffer.
*/
struct msgbuf *msgbufp;
vm_offset_t msgbuf_phys;
/*
* Physical addresses of first and last available physical page.
*/
vm_offset_t avail_start;
vm_offset_t avail_end;
int pmap_pagedaemon_waken;
/*
* Map of physical memory regions.
*/
vm_offset_t phys_avail[128];
u_int phys_avail_count;
static struct mem_region *regions;
static struct mem_region *pregions;
int regions_sz, pregions_sz;
static struct ofw_map *translations;
/*
* First and last available kernel virtual addresses.
*/
vm_offset_t virtual_avail;
vm_offset_t virtual_end;
vm_offset_t kernel_vm_end;
/*
* Kernel pmap.
*/
struct pmap kernel_pmap_store;
extern struct pmap ofw_pmap;
/*
* PTEG data.
*/
static struct pteg *pmap_pteg_table;
u_int pmap_pteg_count;
u_int pmap_pteg_mask;
/*
* PVO data.
*/
struct pvo_head *pmap_pvo_table; /* pvo entries by pteg index */
struct pvo_head pmap_pvo_kunmanaged =
LIST_HEAD_INITIALIZER(pmap_pvo_kunmanaged); /* list of unmanaged pages */
struct pvo_head pmap_pvo_unmanaged =
LIST_HEAD_INITIALIZER(pmap_pvo_unmanaged); /* list of unmanaged pages */
uma_zone_t pmap_upvo_zone; /* zone for pvo entries for unmanaged pages */
uma_zone_t pmap_mpvo_zone; /* zone for pvo entries for managed pages */
struct vm_object pmap_upvo_zone_obj;
struct vm_object pmap_mpvo_zone_obj;
static vm_object_t pmap_pvo_obj;
static u_int pmap_pvo_count;
#define BPVO_POOL_SIZE 32768
static struct pvo_entry *pmap_bpvo_pool;
static int pmap_bpvo_pool_index = 0;
#define VSID_NBPW (sizeof(u_int32_t) * 8)
static u_int pmap_vsid_bitmap[NPMAPS / VSID_NBPW];
static boolean_t pmap_initialized = FALSE;
/*
* Statistics.
*/
u_int pmap_pte_valid = 0;
u_int pmap_pte_overflow = 0;
u_int pmap_pte_replacements = 0;
u_int pmap_pvo_entries = 0;
u_int pmap_pvo_enter_calls = 0;
u_int pmap_pvo_remove_calls = 0;
u_int pmap_pte_spills = 0;
SYSCTL_INT(_machdep, OID_AUTO, pmap_pte_valid, CTLFLAG_RD, &pmap_pte_valid,
0, "");
SYSCTL_INT(_machdep, OID_AUTO, pmap_pte_overflow, CTLFLAG_RD,
&pmap_pte_overflow, 0, "");
SYSCTL_INT(_machdep, OID_AUTO, pmap_pte_replacements, CTLFLAG_RD,
&pmap_pte_replacements, 0, "");
SYSCTL_INT(_machdep, OID_AUTO, pmap_pvo_entries, CTLFLAG_RD, &pmap_pvo_entries,
0, "");
SYSCTL_INT(_machdep, OID_AUTO, pmap_pvo_enter_calls, CTLFLAG_RD,
&pmap_pvo_enter_calls, 0, "");
SYSCTL_INT(_machdep, OID_AUTO, pmap_pvo_remove_calls, CTLFLAG_RD,
&pmap_pvo_remove_calls, 0, "");
SYSCTL_INT(_machdep, OID_AUTO, pmap_pte_spills, CTLFLAG_RD,
&pmap_pte_spills, 0, "");
struct pvo_entry *pmap_pvo_zeropage;
vm_offset_t pmap_rkva_start = VM_MIN_KERNEL_ADDRESS;
u_int pmap_rkva_count = 4;
/*
* Allocate physical memory for use in pmap_bootstrap.
*/
static vm_offset_t pmap_bootstrap_alloc(vm_size_t, u_int);
/*
* PTE calls.
*/
static int pmap_pte_insert(u_int, struct pte *);
/*
* PVO calls.
*/
static int pmap_pvo_enter(pmap_t, uma_zone_t, struct pvo_head *,
vm_offset_t, vm_offset_t, u_int, int);
static void pmap_pvo_remove(struct pvo_entry *, int);
static struct pvo_entry *pmap_pvo_find_va(pmap_t, vm_offset_t, int *);
static struct pte *pmap_pvo_to_pte(const struct pvo_entry *, int);
/*
* Utility routines.
*/
static void * pmap_pvo_allocf(uma_zone_t, int, u_int8_t *, int);
static struct pvo_entry *pmap_rkva_alloc(void);
static void pmap_pa_map(struct pvo_entry *, vm_offset_t,
struct pte *, int *);
static void pmap_pa_unmap(struct pvo_entry *, struct pte *, int *);
static void pmap_syncicache(vm_offset_t, vm_size_t);
static boolean_t pmap_query_bit(vm_page_t, int);
static u_int pmap_clear_bit(vm_page_t, int, int *);
static void tlbia(void);
static __inline int
va_to_sr(u_int *sr, vm_offset_t va)
{
return (sr[(uintptr_t)va >> ADDR_SR_SHFT]);
}
static __inline u_int
va_to_pteg(u_int sr, vm_offset_t addr)
{
u_int hash;
hash = (sr & SR_VSID_MASK) ^ (((u_int)addr & ADDR_PIDX) >>
ADDR_PIDX_SHFT);
return (hash & pmap_pteg_mask);
}
static __inline struct pvo_head *
pa_to_pvoh(vm_offset_t pa, vm_page_t *pg_p)
{
struct vm_page *pg;
pg = PHYS_TO_VM_PAGE(pa);
if (pg_p != NULL)
*pg_p = pg;
if (pg == NULL)
return (&pmap_pvo_unmanaged);
return (&pg->md.mdpg_pvoh);
}
static __inline struct pvo_head *
vm_page_to_pvoh(vm_page_t m)
{
return (&m->md.mdpg_pvoh);
}
static __inline void
pmap_attr_clear(vm_page_t m, int ptebit)
{
m->md.mdpg_attrs &= ~ptebit;
}
static __inline int
pmap_attr_fetch(vm_page_t m)
{
return (m->md.mdpg_attrs);
}
static __inline void
pmap_attr_save(vm_page_t m, int ptebit)
{
m->md.mdpg_attrs |= ptebit;
}
static __inline int
pmap_pte_compare(const struct pte *pt, const struct pte *pvo_pt)
{
if (pt->pte_hi == pvo_pt->pte_hi)
return (1);
return (0);
}
static __inline int
pmap_pte_match(struct pte *pt, u_int sr, vm_offset_t va, int which)
{
return (pt->pte_hi & ~PTE_VALID) ==
(((sr & SR_VSID_MASK) << PTE_VSID_SHFT) |
((va >> ADDR_API_SHFT) & PTE_API) | which);
}
static __inline void
pmap_pte_create(struct pte *pt, u_int sr, vm_offset_t va, u_int pte_lo)
{
/*
* Construct a PTE. Default to IMB initially. Valid bit only gets
* set when the real pte is set in memory.
*
* Note: Don't set the valid bit for correct operation of tlb update.
*/
pt->pte_hi = ((sr & SR_VSID_MASK) << PTE_VSID_SHFT) |
(((va & ADDR_PIDX) >> ADDR_API_SHFT) & PTE_API);
pt->pte_lo = pte_lo;
}
static __inline void
pmap_pte_synch(struct pte *pt, struct pte *pvo_pt)
{
pvo_pt->pte_lo |= pt->pte_lo & (PTE_REF | PTE_CHG);
}
static __inline void
pmap_pte_clear(struct pte *pt, vm_offset_t va, int ptebit)
{
/*
* As shown in Section 7.6.3.2.3
*/
pt->pte_lo &= ~ptebit;
TLBIE(va);
EIEIO();
TLBSYNC();
SYNC();
}
static __inline void
pmap_pte_set(struct pte *pt, struct pte *pvo_pt)
{
pvo_pt->pte_hi |= PTE_VALID;
/*
* Update the PTE as defined in section 7.6.3.1.
* Note that the REF/CHG bits are from pvo_pt and thus should havce
* been saved so this routine can restore them (if desired).
*/
pt->pte_lo = pvo_pt->pte_lo;
EIEIO();
pt->pte_hi = pvo_pt->pte_hi;
SYNC();
pmap_pte_valid++;
}
static __inline void
pmap_pte_unset(struct pte *pt, struct pte *pvo_pt, vm_offset_t va)
{
pvo_pt->pte_hi &= ~PTE_VALID;
/*
* Force the reg & chg bits back into the PTEs.
*/
SYNC();
/*
* Invalidate the pte.
*/
pt->pte_hi &= ~PTE_VALID;
SYNC();
TLBIE(va);
EIEIO();
TLBSYNC();
SYNC();
/*
* Save the reg & chg bits.
*/
pmap_pte_synch(pt, pvo_pt);
pmap_pte_valid--;
}
static __inline void
pmap_pte_change(struct pte *pt, struct pte *pvo_pt, vm_offset_t va)
{
/*
* Invalidate the PTE
*/
pmap_pte_unset(pt, pvo_pt, va);
pmap_pte_set(pt, pvo_pt);
}
/*
* Quick sort callout for comparing memory regions.
*/
static int mr_cmp(const void *a, const void *b);
static int om_cmp(const void *a, const void *b);
static int
mr_cmp(const void *a, const void *b)
{
const struct mem_region *regiona;
const struct mem_region *regionb;
regiona = a;
regionb = b;
if (regiona->mr_start < regionb->mr_start)
return (-1);
else if (regiona->mr_start > regionb->mr_start)
return (1);
else
return (0);
}
static int
om_cmp(const void *a, const void *b)
{
const struct ofw_map *mapa;
const struct ofw_map *mapb;
mapa = a;
mapb = b;
if (mapa->om_pa < mapb->om_pa)
return (-1);
else if (mapa->om_pa > mapb->om_pa)
return (1);
else
return (0);
}
void
pmap_bootstrap(vm_offset_t kernelstart, vm_offset_t kernelend)
{
ihandle_t mmui;
phandle_t chosen, mmu;
int sz;
int i, j;
int ofw_mappings;
vm_size_t size, physsz;
vm_offset_t pa, va, off;
u_int batl, batu;
/*
* Set up BAT0 to map the lowest 256 MB area
*/
battable[0x0].batl = BATL(0x00000000, BAT_M, BAT_PP_RW);
battable[0x0].batu = BATU(0x00000000, BAT_BL_256M, BAT_Vs);
/*
* Map PCI memory space.
*/
battable[0x8].batl = BATL(0x80000000, BAT_I|BAT_G, BAT_PP_RW);
battable[0x8].batu = BATU(0x80000000, BAT_BL_256M, BAT_Vs);
battable[0x9].batl = BATL(0x90000000, BAT_I|BAT_G, BAT_PP_RW);
battable[0x9].batu = BATU(0x90000000, BAT_BL_256M, BAT_Vs);
battable[0xa].batl = BATL(0xa0000000, BAT_I|BAT_G, BAT_PP_RW);
battable[0xa].batu = BATU(0xa0000000, BAT_BL_256M, BAT_Vs);
battable[0xb].batl = BATL(0xb0000000, BAT_I|BAT_G, BAT_PP_RW);
battable[0xb].batu = BATU(0xb0000000, BAT_BL_256M, BAT_Vs);
/*
* Map obio devices.
*/
battable[0xf].batl = BATL(0xf0000000, BAT_I|BAT_G, BAT_PP_RW);
battable[0xf].batu = BATU(0xf0000000, BAT_BL_256M, BAT_Vs);
/*
* Use an IBAT and a DBAT to map the bottom segment of memory
* where we are.
*/
batu = BATU(0x00000000, BAT_BL_256M, BAT_Vs);
batl = BATL(0x00000000, BAT_M, BAT_PP_RW);
__asm ("mtibatu 0,%0; mtibatl 0,%1; mtdbatu 0,%0; mtdbatl 0,%1"
:: "r"(batu), "r"(batl));
#if 0
/* map frame buffer */
batu = BATU(0x90000000, BAT_BL_256M, BAT_Vs);
batl = BATL(0x90000000, BAT_I|BAT_G, BAT_PP_RW);
__asm ("mtdbatu 1,%0; mtdbatl 1,%1"
:: "r"(batu), "r"(batl));
#endif
#if 1
/* map pci space */
batu = BATU(0x80000000, BAT_BL_256M, BAT_Vs);
batl = BATL(0x80000000, BAT_I|BAT_G, BAT_PP_RW);
__asm ("mtdbatu 1,%0; mtdbatl 1,%1"
:: "r"(batu), "r"(batl));
#endif
/*
* Set the start and end of kva.
*/
virtual_avail = VM_MIN_KERNEL_ADDRESS;
virtual_end = VM_MAX_KERNEL_ADDRESS;
mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
CTR0(KTR_PMAP, "pmap_bootstrap: physical memory");
qsort(pregions, pregions_sz, sizeof(*pregions), mr_cmp);
for (i = 0; i < pregions_sz; i++) {
vm_offset_t pa;
vm_offset_t end;
CTR3(KTR_PMAP, "physregion: %#x - %#x (%#x)",
pregions[i].mr_start,
pregions[i].mr_start + pregions[i].mr_size,
pregions[i].mr_size);
/*
* Install entries into the BAT table to allow all
* of physmem to be convered by on-demand BAT entries.
* The loop will sometimes set the same battable element
* twice, but that's fine since they won't be used for
* a while yet.
*/
pa = pregions[i].mr_start & 0xf0000000;
end = pregions[i].mr_start + pregions[i].mr_size;
do {
u_int n = pa >> ADDR_SR_SHFT;
battable[n].batl = BATL(pa, BAT_M, BAT_PP_RW);
battable[n].batu = BATU(pa, BAT_BL_256M, BAT_Vs);
pa += SEGMENT_LENGTH;
} while (pa < end);
}
if (sizeof(phys_avail)/sizeof(phys_avail[0]) < regions_sz)
panic("pmap_bootstrap: phys_avail too small");
qsort(regions, regions_sz, sizeof(*regions), mr_cmp);
phys_avail_count = 0;
physsz = 0;
for (i = 0, j = 0; i < regions_sz; i++, j += 2) {
CTR3(KTR_PMAP, "region: %#x - %#x (%#x)", regions[i].mr_start,
regions[i].mr_start + regions[i].mr_size,
regions[i].mr_size);
phys_avail[j] = regions[i].mr_start;
phys_avail[j + 1] = regions[i].mr_start + regions[i].mr_size;
phys_avail_count++;
physsz += regions[i].mr_size;
}
physmem = btoc(physsz);
/*
* Allocate PTEG table.
*/
#ifdef PTEGCOUNT
pmap_pteg_count = PTEGCOUNT;
#else
pmap_pteg_count = 0x1000;
while (pmap_pteg_count < physmem)
pmap_pteg_count <<= 1;
pmap_pteg_count >>= 1;
#endif /* PTEGCOUNT */
size = pmap_pteg_count * sizeof(struct pteg);
CTR2(KTR_PMAP, "pmap_bootstrap: %d PTEGs, %d bytes", pmap_pteg_count,
size);
pmap_pteg_table = (struct pteg *)pmap_bootstrap_alloc(size, size);
CTR1(KTR_PMAP, "pmap_bootstrap: PTEG table at %p", pmap_pteg_table);
bzero((void *)pmap_pteg_table, pmap_pteg_count * sizeof(struct pteg));
pmap_pteg_mask = pmap_pteg_count - 1;
/*
* Allocate pv/overflow lists.
*/
size = sizeof(struct pvo_head) * pmap_pteg_count;
pmap_pvo_table = (struct pvo_head *)pmap_bootstrap_alloc(size,
PAGE_SIZE);
CTR1(KTR_PMAP, "pmap_bootstrap: PVO table at %p", pmap_pvo_table);
for (i = 0; i < pmap_pteg_count; i++)
LIST_INIT(&pmap_pvo_table[i]);
/*
* Allocate the message buffer.
*/
msgbuf_phys = pmap_bootstrap_alloc(MSGBUF_SIZE, 0);
/*
* Initialise the unmanaged pvo pool.
*/
pmap_bpvo_pool = (struct pvo_entry *)pmap_bootstrap_alloc(
BPVO_POOL_SIZE*sizeof(struct pvo_entry), 0);
pmap_bpvo_pool_index = 0;
/*
* Make sure kernel vsid is allocated as well as VSID 0.
*/
pmap_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS - 1)) / VSID_NBPW]
|= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
pmap_vsid_bitmap[0] |= 1;
/*
* Set up the OpenFirmware pmap and add it's mappings.
*/
pmap_pinit(&ofw_pmap);
ofw_pmap.pm_sr[KERNEL_SR] = KERNEL_SEGMENT;
if ((chosen = OF_finddevice("/chosen")) == -1)
panic("pmap_bootstrap: can't find /chosen");
OF_getprop(chosen, "mmu", &mmui, 4);
if ((mmu = OF_instance_to_package(mmui)) == -1)
panic("pmap_bootstrap: can't get mmu package");
if ((sz = OF_getproplen(mmu, "translations")) == -1)
panic("pmap_bootstrap: can't get ofw translation count");
translations = NULL;
for (i = 0; phys_avail[i + 2] != 0; i += 2) {
if (phys_avail[i + 1] >= sz)
translations = (struct ofw_map *)phys_avail[i];
}
if (translations == NULL)
panic("pmap_bootstrap: no space to copy translations");
bzero(translations, sz);
if (OF_getprop(mmu, "translations", translations, sz) == -1)
panic("pmap_bootstrap: can't get ofw translations");
CTR0(KTR_PMAP, "pmap_bootstrap: translations");
sz /= sizeof(*translations);
qsort(translations, sz, sizeof (*translations), om_cmp);
for (i = 0, ofw_mappings = 0; i < sz; i++) {
CTR3(KTR_PMAP, "translation: pa=%#x va=%#x len=%#x",
translations[i].om_pa, translations[i].om_va,
translations[i].om_len);
/*
* If the mapping is 1:1, let the RAM and device on-demand
* BAT tables take care of the translation.
*/
if (translations[i].om_va == translations[i].om_pa)
continue;
/* Enter the pages */
for (off = 0; off < translations[i].om_len; off += PAGE_SIZE) {
struct vm_page m;
m.phys_addr = translations[i].om_pa + off;
pmap_enter(&ofw_pmap, translations[i].om_va + off, &m,
VM_PROT_ALL, 1);
ofw_mappings++;
}
}
#ifdef SMP
TLBSYNC();
#endif
/*
* Initialize the kernel pmap (which is statically allocated).
*/
for (i = 0; i < 16; i++) {
kernel_pmap->pm_sr[i] = EMPTY_SEGMENT;
}
kernel_pmap->pm_sr[KERNEL_SR] = KERNEL_SEGMENT;
kernel_pmap->pm_active = ~0;
/*
* Allocate a kernel stack with a guard page for thread0 and map it
* into the kernel page map.
*/
pa = pmap_bootstrap_alloc(KSTACK_PAGES * PAGE_SIZE, 0);
kstack0_phys = pa;
kstack0 = virtual_avail + (KSTACK_GUARD_PAGES * PAGE_SIZE);
CTR2(KTR_PMAP, "pmap_bootstrap: kstack0 at %#x (%#x)", kstack0_phys,
kstack0);
virtual_avail += (KSTACK_PAGES + KSTACK_GUARD_PAGES) * PAGE_SIZE;
for (i = 0; i < KSTACK_PAGES; i++) {
pa = kstack0_phys + i * PAGE_SIZE;
va = kstack0 + i * PAGE_SIZE;
pmap_kenter(va, pa);
TLBIE(va);
}
/*
* Calculate the first and last available physical addresses.
*/
avail_start = phys_avail[0];
for (i = 0; phys_avail[i + 2] != 0; i += 2)
;
avail_end = phys_avail[i + 1];
Maxmem = powerpc_btop(avail_end);
/*
* Allocate virtual address space for the message buffer.
*/
msgbufp = (struct msgbuf *)virtual_avail;
virtual_avail += round_page(MSGBUF_SIZE);
/*
* Initialize hardware.
*/
for (i = 0; i < 16; i++) {
mtsrin(i << ADDR_SR_SHFT, EMPTY_SEGMENT);
}
__asm __volatile ("mtsr %0,%1"
:: "n"(KERNEL_SR), "r"(KERNEL_SEGMENT));
__asm __volatile ("sync; mtsdr1 %0; isync"
:: "r"((u_int)pmap_pteg_table | (pmap_pteg_mask >> 10)));
tlbia();
pmap_bootstrapped++;
}
/*
* Activate a user pmap. The pmap must be activated before it's address
* space can be accessed in any way.
*/
void
pmap_activate(struct thread *td)
{
pmap_t pm, pmr;
/*
* Load all the data we need up front to encourage the compiler to
* not issue any loads while we have interrupts disabled below.
*/
pm = &td->td_proc->p_vmspace->vm_pmap;
if ((pmr = (pmap_t)pmap_kextract((vm_offset_t)pm)) == NULL)
pmr = pm;
pm->pm_active |= PCPU_GET(cpumask);
PCPU_SET(curpmap, pmr);
}
void
pmap_deactivate(struct thread *td)
{
pmap_t pm;
pm = &td->td_proc->p_vmspace->vm_pmap;
pm->pm_active &= ~(PCPU_GET(cpumask));
PCPU_SET(curpmap, NULL);
}
vm_offset_t
pmap_addr_hint(vm_object_t object, vm_offset_t va, vm_size_t size)
{
return (va);
}
void
pmap_change_wiring(pmap_t pm, vm_offset_t va, boolean_t wired)
{
struct pvo_entry *pvo;
pvo = pmap_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
if (pvo != NULL) {
if (wired) {
if ((pvo->pvo_vaddr & PVO_WIRED) == 0)
pm->pm_stats.wired_count++;
pvo->pvo_vaddr |= PVO_WIRED;
} else {
if ((pvo->pvo_vaddr & PVO_WIRED) != 0)
pm->pm_stats.wired_count--;
pvo->pvo_vaddr &= ~PVO_WIRED;
}
}
}
void
pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr,
vm_size_t len, vm_offset_t src_addr)
{
/*
* This is not needed as it's mainly an optimisation.
* It may want to be implemented later though.
*/
}
void
pmap_copy_page(vm_page_t msrc, vm_page_t mdst)
{
vm_offset_t dst;
vm_offset_t src;
dst = VM_PAGE_TO_PHYS(mdst);
src = VM_PAGE_TO_PHYS(msrc);
kcopy((void *)src, (void *)dst, PAGE_SIZE);
}
/*
* Zero a page of physical memory by temporarily mapping it into the tlb.
*/
void
pmap_zero_page(vm_page_t m)
{
vm_offset_t pa = VM_PAGE_TO_PHYS(m);
caddr_t va;
if (pa < SEGMENT_LENGTH) {
va = (caddr_t) pa;
} else if (pmap_initialized) {
if (pmap_pvo_zeropage == NULL)
pmap_pvo_zeropage = pmap_rkva_alloc();
pmap_pa_map(pmap_pvo_zeropage, pa, NULL, NULL);
va = (caddr_t)PVO_VADDR(pmap_pvo_zeropage);
} else {
panic("pmap_zero_page: can't zero pa %#x", pa);
}
bzero(va, PAGE_SIZE);
if (pa >= SEGMENT_LENGTH)
pmap_pa_unmap(pmap_pvo_zeropage, NULL, NULL);
}
void
pmap_zero_page_area(vm_page_t m, int off, int size)
{
vm_offset_t pa = VM_PAGE_TO_PHYS(m);
caddr_t va;
if (pa < SEGMENT_LENGTH) {
va = (caddr_t) pa;
} else if (pmap_initialized) {
if (pmap_pvo_zeropage == NULL)
pmap_pvo_zeropage = pmap_rkva_alloc();
pmap_pa_map(pmap_pvo_zeropage, pa, NULL, NULL);
va = (caddr_t)PVO_VADDR(pmap_pvo_zeropage);
} else {
panic("pmap_zero_page: can't zero pa %#x", pa);
}
bzero(va + off, size);
if (pa >= SEGMENT_LENGTH)
pmap_pa_unmap(pmap_pvo_zeropage, NULL, NULL);
}
void
pmap_zero_page_idle(vm_page_t m)
{
/* XXX this is called outside of Giant, is pmap_zero_page safe? */
/* XXX maybe have a dedicated mapping for this to avoid the problem? */
mtx_lock(&Giant);
pmap_zero_page(m);
mtx_unlock(&Giant);
}
/*
* Map the given physical page at the specified virtual address in the
* target pmap with the protection requested. If specified the page
* will be wired down.
*/
void
pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
boolean_t wired)
{
struct pvo_head *pvo_head;
uma_zone_t zone;
vm_page_t pg;
u_int pte_lo, pvo_flags, was_exec, i;
int error;
if (!pmap_initialized) {
pvo_head = &pmap_pvo_kunmanaged;
zone = pmap_upvo_zone;
pvo_flags = 0;
pg = NULL;
was_exec = PTE_EXEC;
} else {
pvo_head = vm_page_to_pvoh(m);
pg = m;
zone = pmap_mpvo_zone;
pvo_flags = PVO_MANAGED;
was_exec = 0;
}
/*
* If this is a managed page, and it's the first reference to the page,
* clear the execness of the page. Otherwise fetch the execness.
*/
if (pg != NULL) {
if (LIST_EMPTY(pvo_head)) {
pmap_attr_clear(pg, PTE_EXEC);
} else {
was_exec = pmap_attr_fetch(pg) & PTE_EXEC;
}
}
/*
* Assume the page is cache inhibited and access is guarded unless
* it's in our available memory array.
*/
pte_lo = PTE_I | PTE_G;
for (i = 0; i < pregions_sz; i++) {
if ((VM_PAGE_TO_PHYS(m) >= pregions[i].mr_start) &&
(VM_PAGE_TO_PHYS(m) <
(pregions[i].mr_start + pregions[i].mr_size))) {
pte_lo &= ~(PTE_I | PTE_G);
break;
}
}
if (prot & VM_PROT_WRITE)
pte_lo |= PTE_BW;
else
pte_lo |= PTE_BR;
pvo_flags |= (prot & VM_PROT_EXECUTE);
if (wired)
pvo_flags |= PVO_WIRED;
error = pmap_pvo_enter(pmap, zone, pvo_head, va, VM_PAGE_TO_PHYS(m),
pte_lo, pvo_flags);
/*
* Flush the real page from the instruction cache if this page is
* mapped executable and cacheable and was not previously mapped (or
* was not mapped executable).
*/
if (error == 0 && (pvo_flags & PVO_EXECUTABLE) &&
(pte_lo & PTE_I) == 0 && was_exec == 0) {
/*
* Flush the real memory from the cache.
*/
pmap_syncicache(VM_PAGE_TO_PHYS(m), PAGE_SIZE);
if (pg != NULL)
pmap_attr_save(pg, PTE_EXEC);
}
/* XXX syncicache always until problems are sorted */
pmap_syncicache(VM_PAGE_TO_PHYS(m), PAGE_SIZE);
}
vm_offset_t
pmap_extract(pmap_t pm, vm_offset_t va)
{
struct pvo_entry *pvo;
pvo = pmap_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
if (pvo != NULL) {
return ((pvo->pvo_pte.pte_lo & PTE_RPGN) | (va & ADDR_POFF));
}
return (0);
}
/*
* Grow the number of kernel page table entries. Unneeded.
*/
void
pmap_growkernel(vm_offset_t addr)
{
}
void
pmap_init(vm_offset_t phys_start, vm_offset_t phys_end)
{
CTR0(KTR_PMAP, "pmap_init");
pmap_pvo_obj = vm_object_allocate(OBJT_PHYS, 16);
pmap_pvo_count = 0;
pmap_upvo_zone = uma_zcreate("UPVO entry", sizeof (struct pvo_entry),
NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM);
uma_zone_set_allocf(pmap_upvo_zone, pmap_pvo_allocf);
pmap_mpvo_zone = uma_zcreate("MPVO entry", sizeof(struct pvo_entry),
NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM);
uma_zone_set_allocf(pmap_mpvo_zone, pmap_pvo_allocf);
pmap_initialized = TRUE;
}
void
pmap_init2(void)
{
CTR0(KTR_PMAP, "pmap_init2");
}
boolean_t
pmap_is_modified(vm_page_t m)
{
if ((m->flags & (PG_FICTITIOUS |PG_UNMANAGED)) != 0)
return (FALSE);
return (pmap_query_bit(m, PTE_CHG));
}
void
pmap_clear_reference(vm_page_t m)
{
if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
return;
pmap_clear_bit(m, PTE_REF, NULL);
}
void
pmap_clear_modify(vm_page_t m)
{
if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
return;
pmap_clear_bit(m, PTE_CHG, NULL);
}
/*
* pmap_ts_referenced:
*
* Return a count of reference bits for a page, clearing those bits.
* It is not necessary for every reference bit to be cleared, but it
* is necessary that 0 only be returned when there are truly no
* reference bits set.
*
* XXX: The exact number of bits to check and clear is a matter that
* should be tested and standardized at some point in the future for
* optimal aging of shared pages.
*/
int
pmap_ts_referenced(vm_page_t m)
{
int count;
if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
return (0);
count = pmap_clear_bit(m, PTE_REF, NULL);
return (count);
}
/*
* Map a wired page into kernel virtual address space.
*/
void
pmap_kenter(vm_offset_t va, vm_offset_t pa)
{
u_int pte_lo;
int error;
int i;
#if 0
if (va < VM_MIN_KERNEL_ADDRESS)
panic("pmap_kenter: attempt to enter non-kernel address %#x",
va);
#endif
pte_lo = PTE_I | PTE_G;
for (i = 0; i < pregions_sz; i++) {
if ((pa >= pregions[i].mr_start) &&
(pa < (pregions[i].mr_start + pregions[i].mr_size))) {
pte_lo &= ~(PTE_I | PTE_G);
break;
}
}
error = pmap_pvo_enter(kernel_pmap, pmap_upvo_zone,
&pmap_pvo_kunmanaged, va, pa, pte_lo, PVO_WIRED);
if (error != 0 && error != ENOENT)
panic("pmap_kenter: failed to enter va %#x pa %#x: %d", va,
pa, error);
/*
* Flush the real memory from the instruction cache.
*/
if ((pte_lo & (PTE_I | PTE_G)) == 0) {
pmap_syncicache(pa, PAGE_SIZE);
}
}
/*
* Extract the physical page address associated with the given kernel virtual
* address.
*/
vm_offset_t
pmap_kextract(vm_offset_t va)
{
struct pvo_entry *pvo;
pvo = pmap_pvo_find_va(kernel_pmap, va & ~ADDR_POFF, NULL);
if (pvo == NULL) {
return (0);
}
return ((pvo->pvo_pte.pte_lo & PTE_RPGN) | (va & ADDR_POFF));
}
/*
* Remove a wired page from kernel virtual address space.
*/
void
pmap_kremove(vm_offset_t va)
{
pmap_remove(kernel_pmap, va, va + PAGE_SIZE);
}
/*
* Map a range of physical addresses into kernel virtual address space.
*
* The value passed in *virt is a suggested virtual address for the mapping.
* Architectures which can support a direct-mapped physical to virtual region
* can return the appropriate address within that region, leaving '*virt'
* unchanged. We cannot and therefore do not; *virt is updated with the
* first usable address after the mapped region.
*/
vm_offset_t
pmap_map(vm_offset_t *virt, vm_offset_t pa_start, vm_offset_t pa_end, int prot)
{
vm_offset_t sva, va;
sva = *virt;
va = sva;
for (; pa_start < pa_end; pa_start += PAGE_SIZE, va += PAGE_SIZE)
pmap_kenter(va, pa_start);
*virt = va;
return (sva);
}
int
pmap_mincore(pmap_t pmap, vm_offset_t addr)
{
TODO;
return (0);
}
void
pmap_object_init_pt(pmap_t pm, vm_offset_t addr, vm_object_t object,
vm_pindex_t pindex, vm_size_t size, int limit)
{
KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
("pmap_remove_pages: non current pmap"));
/* XXX */
}
/*
* Lower the permission for all mappings to a given page.
*/
void
pmap_page_protect(vm_page_t m, vm_prot_t prot)
{
struct pvo_head *pvo_head;
struct pvo_entry *pvo, *next_pvo;
struct pte *pt;
/*
* Since the routine only downgrades protection, if the
* maximal protection is desired, there isn't any change
* to be made.
*/
if ((prot & (VM_PROT_READ|VM_PROT_WRITE)) ==
(VM_PROT_READ|VM_PROT_WRITE))
return;
pvo_head = vm_page_to_pvoh(m);
for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
next_pvo = LIST_NEXT(pvo, pvo_vlink);
PMAP_PVO_CHECK(pvo); /* sanity check */
/*
* Downgrading to no mapping at all, we just remove the entry.
*/
if ((prot & VM_PROT_READ) == 0) {
pmap_pvo_remove(pvo, -1);
continue;
}
/*
* If EXEC permission is being revoked, just clear the flag
* in the PVO.
*/
if ((prot & VM_PROT_EXECUTE) == 0)
pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
/*
* If this entry is already RO, don't diddle with the page
* table.
*/
if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR) {
PMAP_PVO_CHECK(pvo);
continue;
}
/*
* Grab the PTE before we diddle the bits so pvo_to_pte can
* verify the pte contents are as expected.
*/
pt = pmap_pvo_to_pte(pvo, -1);
pvo->pvo_pte.pte_lo &= ~PTE_PP;
pvo->pvo_pte.pte_lo |= PTE_BR;
if (pt != NULL)
pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
PMAP_PVO_CHECK(pvo); /* sanity check */
}
}
/*
* Returns true if the pmap's pv is one of the first
* 16 pvs linked to from this page. This count may
* be changed upwards or downwards in the future; it
* is only necessary that true be returned for a small
* subset of pmaps for proper page aging.
*/
boolean_t
pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
{
int loops;
struct pvo_entry *pvo;
if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
return FALSE;
loops = 0;
LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
if (pvo->pvo_pmap == pmap)
return (TRUE);
if (++loops >= 16)
break;
}
return (FALSE);
}
static u_int pmap_vsidcontext;
void
pmap_pinit(pmap_t pmap)
{
int i, mask;
u_int entropy;
entropy = 0;
__asm __volatile("mftb %0" : "=r"(entropy));
/*
* Allocate some segment registers for this pmap.
*/
for (i = 0; i < NPMAPS; i += VSID_NBPW) {
u_int hash, n;
/*
* Create a new value by mutiplying by a prime and adding in
* entropy from the timebase register. This is to make the
* VSID more random so that the PT hash function collides
* less often. (Note that the prime casues gcc to do shifts
* instead of a multiply.)
*/
pmap_vsidcontext = (pmap_vsidcontext * 0x1105) + entropy;
hash = pmap_vsidcontext & (NPMAPS - 1);
if (hash == 0) /* 0 is special, avoid it */
continue;
n = hash >> 5;
mask = 1 << (hash & (VSID_NBPW - 1));
hash = (pmap_vsidcontext & 0xfffff);
if (pmap_vsid_bitmap[n] & mask) { /* collision? */
/* anything free in this bucket? */
if (pmap_vsid_bitmap[n] == 0xffffffff) {
entropy = (pmap_vsidcontext >> 20);
continue;
}
i = ffs(~pmap_vsid_bitmap[i]) - 1;
mask = 1 << i;
hash &= 0xfffff & ~(VSID_NBPW - 1);
hash |= i;
}
pmap_vsid_bitmap[n] |= mask;
for (i = 0; i < 16; i++)
pmap->pm_sr[i] = VSID_MAKE(i, hash);
return;
}
panic("pmap_pinit: out of segments");
}
/*
* Initialize the pmap associated with process 0.
*/
void
pmap_pinit0(pmap_t pm)
{
pmap_pinit(pm);
bzero(&pm->pm_stats, sizeof(pm->pm_stats));
}
void
pmap_pinit2(pmap_t pmap)
{
/* XXX: Remove this stub when no longer called */
}
void
pmap_prefault(pmap_t pm, vm_offset_t va, vm_map_entry_t entry)
{
KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
("pmap_prefault: non current pmap"));
/* XXX */
}
/*
* Set the physical protection on the specified range of this map as requested.
*/
void
pmap_protect(pmap_t pm, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
{
struct pvo_entry *pvo;
struct pte *pt;
int pteidx;
CTR4(KTR_PMAP, "pmap_protect: pm=%p sva=%#x eva=%#x prot=%#x", pm, sva,
eva, prot);
KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
("pmap_protect: non current pmap"));
if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
pmap_remove(pm, sva, eva);
return;
}
for (; sva < eva; sva += PAGE_SIZE) {
pvo = pmap_pvo_find_va(pm, sva, &pteidx);
if (pvo == NULL)
continue;
if ((prot & VM_PROT_EXECUTE) == 0)
pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
/*
* Grab the PTE pointer before we diddle with the cached PTE
* copy.
*/
pt = pmap_pvo_to_pte(pvo, pteidx);
/*
* Change the protection of the page.
*/
pvo->pvo_pte.pte_lo &= ~PTE_PP;
pvo->pvo_pte.pte_lo |= PTE_BR;
/*
* If the PVO is in the page table, update that pte as well.
*/
if (pt != NULL)
pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
}
}
/*
* Map a list of wired pages into kernel virtual address space. This is
* intended for temporary mappings which do not need page modification or
* references recorded. Existing mappings in the region are overwritten.
*/
void
pmap_qenter(vm_offset_t sva, vm_page_t *m, int count)
{
vm_offset_t va;
va = sva;
while (count-- > 0) {
pmap_kenter(va, VM_PAGE_TO_PHYS(*m));
va += PAGE_SIZE;
m++;
}
}
/*
* Remove page mappings from kernel virtual address space. Intended for
* temporary mappings entered by pmap_qenter.
*/
void
pmap_qremove(vm_offset_t sva, int count)
{
vm_offset_t va;
va = sva;
while (count-- > 0) {
pmap_kremove(va);
va += PAGE_SIZE;
}
}
void
pmap_release(pmap_t pmap)
{
int idx, mask;
/*
* Free segment register's VSID
*/
if (pmap->pm_sr[0] == 0)
panic("pmap_release");
idx = VSID_TO_HASH(pmap->pm_sr[0]) & (NPMAPS-1);
mask = 1 << (idx % VSID_NBPW);
idx /= VSID_NBPW;
pmap_vsid_bitmap[idx] &= ~mask;
}
/*
* Remove the given range of addresses from the specified map.
*/
void
pmap_remove(pmap_t pm, vm_offset_t sva, vm_offset_t eva)
{
struct pvo_entry *pvo;
int pteidx;
for (; sva < eva; sva += PAGE_SIZE) {
pvo = pmap_pvo_find_va(pm, sva, &pteidx);
if (pvo != NULL) {
pmap_pvo_remove(pvo, pteidx);
}
}
}
/*
* Remove physical page from all pmaps in which it resides. pmap_pvo_remove()
* will reflect changes in pte's back to the vm_page.
*/
void
pmap_remove_all(vm_page_t m)
{
struct pvo_head *pvo_head;
struct pvo_entry *pvo, *next_pvo;
KASSERT((m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0,
("pv_remove_all: illegal for unmanaged page %#x",
VM_PAGE_TO_PHYS(m)));
pvo_head = vm_page_to_pvoh(m);
for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
next_pvo = LIST_NEXT(pvo, pvo_vlink);
PMAP_PVO_CHECK(pvo); /* sanity check */
pmap_pvo_remove(pvo, -1);
}
vm_page_flag_clear(m, PG_WRITEABLE);
}
/*
* Remove all pages from specified address space, this aids process exit
* speeds. This is much faster than pmap_remove in the case of running down
* an entire address space. Only works for the current pmap.
*/
void
pmap_remove_pages(pmap_t pm, vm_offset_t sva, vm_offset_t eva)
{
KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
("pmap_remove_pages: non current pmap"));
pmap_remove(pm, sva, eva);
}
#ifndef KSTACK_MAX_PAGES
#define KSTACK_MAX_PAGES 32
#endif
/*
* Create the kernel stack and pcb for a new thread.
* This routine directly affects the fork perf for a process and
* create performance for a thread.
*/
void
pmap_new_thread(struct thread *td, int pages)
{
vm_page_t ma[KSTACK_MAX_PAGES];
vm_object_t ksobj;
vm_offset_t ks;
vm_page_t m;
u_int i;
/* Bounds check */
if (pages <= 1)
pages = KSTACK_PAGES;
else if (pages > KSTACK_MAX_PAGES)
pages = KSTACK_MAX_PAGES;
/*
* Allocate object for the kstack.
*/
ksobj = vm_object_allocate(OBJT_DEFAULT, pages);
td->td_kstack_obj = ksobj;
/*
* Get a kernel virtual address for the kstack for this thread.
*/
ks = kmem_alloc_nofault(kernel_map,
(pages + KSTACK_GUARD_PAGES) * PAGE_SIZE);
if (ks == 0)
panic("pmap_new_thread: kstack allocation failed");
TLBIE(ks);
ks += KSTACK_GUARD_PAGES * PAGE_SIZE;
td->td_kstack = ks;
/*
* Knowing the number of pages allocated is useful when you
* want to deallocate them.
*/
td->td_kstack_pages = pages;
for (i = 0; i < pages; i++) {
/*
* Get a kernel stack page.
*/
m = vm_page_grab(ksobj, i,
VM_ALLOC_NORMAL | VM_ALLOC_RETRY | VM_ALLOC_WIRED);
ma[i] = m;
vm_page_lock_queues();
vm_page_wakeup(m);
vm_page_flag_clear(m, PG_ZERO);
m->valid = VM_PAGE_BITS_ALL;
vm_page_unlock_queues();
}
/*
* Enter the page into the kernel address space
*/
pmap_qenter(ks, ma, pages);
}
void
pmap_dispose_thread(struct thread *td)
{
vm_object_t ksobj;
vm_offset_t ks;
vm_page_t m;
int i;
int pages;
pages = td->td_kstack_pages;
ksobj = td->td_kstack_obj;
ks = td->td_kstack;
for (i = 0; i < pages ; i++) {
m = vm_page_lookup(ksobj, i);
if (m == NULL)
panic("pmap_dispose_thread: kstack already missing?");
vm_page_lock_queues();
vm_page_busy(m);
vm_page_unwire(m, 0);
vm_page_free(m);
vm_page_unlock_queues();
}
pmap_qremove(ks, pages);
kmem_free(kernel_map, ks - (KSTACK_GUARD_PAGES * PAGE_SIZE),
(pages + KSTACK_GUARD_PAGES) * PAGE_SIZE);
vm_object_deallocate(ksobj);
}
void
pmap_new_altkstack(struct thread *td, int pages)
{
/* shuffle the original stack */
td->td_altkstack_obj = td->td_kstack_obj;
td->td_altkstack = td->td_kstack;
td->td_altkstack_pages = td->td_kstack_pages;
pmap_new_thread(td, pages);
}
void
pmap_dispose_altkstack(struct thread *td)
{
pmap_dispose_thread(td);
/* restore the original kstack */
td->td_kstack = td->td_altkstack;
td->td_kstack_obj = td->td_altkstack_obj;
td->td_kstack_pages = td->td_altkstack_pages;
td->td_altkstack = 0;
td->td_altkstack_obj = NULL;
td->td_altkstack_pages = 0;
}
void
pmap_swapin_thread(struct thread *td)
{
vm_page_t ma[KSTACK_MAX_PAGES];
vm_object_t ksobj;
vm_offset_t ks;
vm_page_t m;
int rv;
int i;
int pages;
pages = td->td_kstack_pages;
ksobj = td->td_kstack_obj;
ks = td->td_kstack;
for (i = 0; i < pages; i++) {
m = vm_page_grab(ksobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
if (m->valid != VM_PAGE_BITS_ALL) {
rv = vm_pager_get_pages(ksobj, &m, 1, 0);
if (rv != VM_PAGER_OK)
panic("pmap_swapin_thread: cannot get kstack");
m = vm_page_lookup(ksobj, i);
m->valid = VM_PAGE_BITS_ALL;
}
ma[i] = m;
vm_page_lock_queues();
vm_page_wire(m);
vm_page_wakeup(m);
vm_page_unlock_queues();
}
pmap_qenter(ks, ma, pages);
}
void
pmap_swapout_thread(struct thread *td)
{
vm_object_t ksobj;
vm_offset_t ks;
vm_page_t m;
int i;
int pages;
pages = td->td_kstack_pages;
ksobj = td->td_kstack_obj;
ks = (vm_offset_t)td->td_kstack;
for (i = 0; i < pages; i++) {
m = vm_page_lookup(ksobj, i);
if (m == NULL)
panic("pmap_swapout_thread: kstack already missing?");
vm_page_lock_queues();
vm_page_dirty(m);
vm_page_unwire(m, 0);
vm_page_unlock_queues();
}
pmap_qremove(ks, pages);
}
/*
* Allocate a physical page of memory directly from the phys_avail map.
* Can only be called from pmap_bootstrap before avail start and end are
* calculated.
*/
static vm_offset_t
pmap_bootstrap_alloc(vm_size_t size, u_int align)
{
vm_offset_t s, e;
int i, j;
size = round_page(size);
for (i = 0; phys_avail[i + 1] != 0; i += 2) {
if (align != 0)
s = (phys_avail[i] + align - 1) & ~(align - 1);
else
s = phys_avail[i];
e = s + size;
if (s < phys_avail[i] || e > phys_avail[i + 1])
continue;
if (s == phys_avail[i]) {
phys_avail[i] += size;
} else if (e == phys_avail[i + 1]) {
phys_avail[i + 1] -= size;
} else {
for (j = phys_avail_count * 2; j > i; j -= 2) {
phys_avail[j] = phys_avail[j - 2];
phys_avail[j + 1] = phys_avail[j - 1];
}
phys_avail[i + 3] = phys_avail[i + 1];
phys_avail[i + 1] = s;
phys_avail[i + 2] = e;
phys_avail_count++;
}
return (s);
}
panic("pmap_bootstrap_alloc: could not allocate memory");
}
/*
* Return an unmapped pvo for a kernel virtual address.
* Used by pmap functions that operate on physical pages.
*/
static struct pvo_entry *
pmap_rkva_alloc(void)
{
struct pvo_entry *pvo;
struct pte *pt;
vm_offset_t kva;
int pteidx;
if (pmap_rkva_count == 0)
panic("pmap_rkva_alloc: no more reserved KVAs");
kva = pmap_rkva_start + (PAGE_SIZE * --pmap_rkva_count);
pmap_kenter(kva, 0);
pvo = pmap_pvo_find_va(kernel_pmap, kva, &pteidx);
if (pvo == NULL)
panic("pmap_kva_alloc: pmap_pvo_find_va failed");
pt = pmap_pvo_to_pte(pvo, pteidx);
if (pt == NULL)
panic("pmap_kva_alloc: pmap_pvo_to_pte failed");
pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
PVO_PTEGIDX_CLR(pvo);
pmap_pte_overflow++;
return (pvo);
}
static void
pmap_pa_map(struct pvo_entry *pvo, vm_offset_t pa, struct pte *saved_pt,
int *depth_p)
{
struct pte *pt;
/*
* If this pvo already has a valid pte, we need to save it so it can
* be restored later. We then just reload the new PTE over the old
* slot.
*/
if (saved_pt != NULL) {
pt = pmap_pvo_to_pte(pvo, -1);
if (pt != NULL) {
pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
PVO_PTEGIDX_CLR(pvo);
pmap_pte_overflow++;
}
*saved_pt = pvo->pvo_pte;
pvo->pvo_pte.pte_lo &= ~PTE_RPGN;
}
pvo->pvo_pte.pte_lo |= pa;
if (!pmap_pte_spill(pvo->pvo_vaddr))
panic("pmap_pa_map: could not spill pvo %p", pvo);
if (depth_p != NULL)
(*depth_p)++;
}
static void
pmap_pa_unmap(struct pvo_entry *pvo, struct pte *saved_pt, int *depth_p)
{
struct pte *pt;
pt = pmap_pvo_to_pte(pvo, -1);
if (pt != NULL) {
pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
PVO_PTEGIDX_CLR(pvo);
pmap_pte_overflow++;
}
pvo->pvo_pte.pte_lo &= ~PTE_RPGN;
/*
* If there is a saved PTE and it's valid, restore it and return.
*/
if (saved_pt != NULL && (saved_pt->pte_lo & PTE_RPGN) != 0) {
if (depth_p != NULL && --(*depth_p) == 0)
panic("pmap_pa_unmap: restoring but depth == 0");
pvo->pvo_pte = *saved_pt;
if (!pmap_pte_spill(pvo->pvo_vaddr))
panic("pmap_pa_unmap: could not spill pvo %p", pvo);
}
}
static void
pmap_syncicache(vm_offset_t pa, vm_size_t len)
{
__syncicache((void *)pa, len);
}
static void
tlbia(void)
{
caddr_t i;
SYNC();
for (i = 0; i < (caddr_t)0x00040000; i += 0x00001000) {
TLBIE(i);
EIEIO();
}
TLBSYNC();
SYNC();
}
static int
pmap_pvo_enter(pmap_t pm, uma_zone_t zone, struct pvo_head *pvo_head,
vm_offset_t va, vm_offset_t pa, u_int pte_lo, int flags)
{
struct pvo_entry *pvo;
u_int sr;
int first;
u_int ptegidx;
int i;
int bootstrap;
pmap_pvo_enter_calls++;
first = 0;
bootstrap = 0;
/*
* Compute the PTE Group index.
*/
va &= ~ADDR_POFF;
sr = va_to_sr(pm->pm_sr, va);
ptegidx = va_to_pteg(sr, va);
/*
* Remove any existing mapping for this page. Reuse the pvo entry if
* there is a mapping.
*/
LIST_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
if ((pvo->pvo_pte.pte_lo & PTE_RPGN) == pa &&
(pvo->pvo_pte.pte_lo & PTE_PP) ==
(pte_lo & PTE_PP)) {
return (0);
}
pmap_pvo_remove(pvo, -1);
break;
}
}
/*
* If we aren't overwriting a mapping, try to allocate.
*/
if (pmap_initialized) {
pvo = uma_zalloc(zone, M_NOWAIT);
} else {
if (pmap_bpvo_pool_index >= BPVO_POOL_SIZE) {
panic("pmap_enter: bpvo pool exhausted, %d, %d, %d",
pmap_bpvo_pool_index, BPVO_POOL_SIZE,
BPVO_POOL_SIZE * sizeof(struct pvo_entry));
}
pvo = &pmap_bpvo_pool[pmap_bpvo_pool_index];
pmap_bpvo_pool_index++;
bootstrap = 1;
}
if (pvo == NULL) {
return (ENOMEM);
}
pmap_pvo_entries++;
pvo->pvo_vaddr = va;
pvo->pvo_pmap = pm;
LIST_INSERT_HEAD(&pmap_pvo_table[ptegidx], pvo, pvo_olink);
pvo->pvo_vaddr &= ~ADDR_POFF;
if (flags & VM_PROT_EXECUTE)
pvo->pvo_vaddr |= PVO_EXECUTABLE;
if (flags & PVO_WIRED)
pvo->pvo_vaddr |= PVO_WIRED;
if (pvo_head != &pmap_pvo_kunmanaged)
pvo->pvo_vaddr |= PVO_MANAGED;
if (bootstrap)
pvo->pvo_vaddr |= PVO_BOOTSTRAP;
pmap_pte_create(&pvo->pvo_pte, sr, va, pa | pte_lo);
/*
* Remember if the list was empty and therefore will be the first
* item.
*/
if (LIST_FIRST(pvo_head) == NULL)
first = 1;
LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
if (pvo->pvo_pte.pte_lo & PVO_WIRED)
pvo->pvo_pmap->pm_stats.wired_count++;
pvo->pvo_pmap->pm_stats.resident_count++;
/*
* We hope this succeeds but it isn't required.
*/
i = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
if (i >= 0) {
PVO_PTEGIDX_SET(pvo, i);
} else {
panic("pmap_pvo_enter: overflow");
pmap_pte_overflow++;
}
return (first ? ENOENT : 0);
}
static void
pmap_pvo_remove(struct pvo_entry *pvo, int pteidx)
{
struct pte *pt;
/*
* If there is an active pte entry, we need to deactivate it (and
* save the ref & cfg bits).
*/
pt = pmap_pvo_to_pte(pvo, pteidx);
if (pt != NULL) {
pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
PVO_PTEGIDX_CLR(pvo);
} else {
pmap_pte_overflow--;
}
/*
* Update our statistics.
*/
pvo->pvo_pmap->pm_stats.resident_count--;
if (pvo->pvo_pte.pte_lo & PVO_WIRED)
pvo->pvo_pmap->pm_stats.wired_count--;
/*
* Save the REF/CHG bits into their cache if the page is managed.
*/
if (pvo->pvo_vaddr & PVO_MANAGED) {
struct vm_page *pg;
pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.pte_lo & PTE_RPGN);
if (pg != NULL) {
pmap_attr_save(pg, pvo->pvo_pte.pte_lo &
(PTE_REF | PTE_CHG));
}
}
/*
* Remove this PVO from the PV list.
*/
LIST_REMOVE(pvo, pvo_vlink);
/*
* Remove this from the overflow list and return it to the pool
* if we aren't going to reuse it.
*/
LIST_REMOVE(pvo, pvo_olink);
if (!(pvo->pvo_vaddr & PVO_BOOTSTRAP))
uma_zfree(pvo->pvo_vaddr & PVO_MANAGED ? pmap_mpvo_zone :
pmap_upvo_zone, pvo);
pmap_pvo_entries--;
pmap_pvo_remove_calls++;
}
static __inline int
pmap_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx)
{
int pteidx;
/*
* We can find the actual pte entry without searching by grabbing
* the PTEG index from 3 unused bits in pte_lo[11:9] and by
* noticing the HID bit.
*/
pteidx = ptegidx * 8 + PVO_PTEGIDX_GET(pvo);
if (pvo->pvo_pte.pte_hi & PTE_HID)
pteidx ^= pmap_pteg_mask * 8;
return (pteidx);
}
static struct pvo_entry *
pmap_pvo_find_va(pmap_t pm, vm_offset_t va, int *pteidx_p)
{
struct pvo_entry *pvo;
int ptegidx;
u_int sr;
va &= ~ADDR_POFF;
sr = va_to_sr(pm->pm_sr, va);
ptegidx = va_to_pteg(sr, va);
LIST_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
if (pteidx_p)
*pteidx_p = pmap_pvo_pte_index(pvo, ptegidx);
return (pvo);
}
}
return (NULL);
}
static struct pte *
pmap_pvo_to_pte(const struct pvo_entry *pvo, int pteidx)
{
struct pte *pt;
/*
* If we haven't been supplied the ptegidx, calculate it.
*/
if (pteidx == -1) {
int ptegidx;
u_int sr;
sr = va_to_sr(pvo->pvo_pmap->pm_sr, pvo->pvo_vaddr);
ptegidx = va_to_pteg(sr, pvo->pvo_vaddr);
pteidx = pmap_pvo_pte_index(pvo, ptegidx);
}
pt = &pmap_pteg_table[pteidx >> 3].pt[pteidx & 7];
if ((pvo->pvo_pte.pte_hi & PTE_VALID) && !PVO_PTEGIDX_ISSET(pvo)) {
panic("pmap_pvo_to_pte: pvo %p has valid pte in pvo but no "
"valid pte index", pvo);
}
if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0 && PVO_PTEGIDX_ISSET(pvo)) {
panic("pmap_pvo_to_pte: pvo %p has valid pte index in pvo "
"pvo but no valid pte", pvo);
}
if ((pt->pte_hi ^ (pvo->pvo_pte.pte_hi & ~PTE_VALID)) == PTE_VALID) {
if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0) {
panic("pmap_pvo_to_pte: pvo %p has valid pte in "
"pmap_pteg_table %p but invalid in pvo", pvo, pt);
}
if (((pt->pte_lo ^ pvo->pvo_pte.pte_lo) & ~(PTE_CHG|PTE_REF))
!= 0) {
panic("pmap_pvo_to_pte: pvo %p pte does not match "
"pte %p in pmap_pteg_table", pvo, pt);
}
return (pt);
}
if (pvo->pvo_pte.pte_hi & PTE_VALID) {
panic("pmap_pvo_to_pte: pvo %p has invalid pte %p in "
"pmap_pteg_table but valid in pvo", pvo, pt);
}
return (NULL);
}
static void *
pmap_pvo_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
{
vm_page_t m;
if (bytes != PAGE_SIZE)
panic("pmap_pvo_allocf: benno was shortsighted. hit him.");
*flags = UMA_SLAB_PRIV;
m = vm_page_alloc(pmap_pvo_obj, pmap_pvo_count, VM_ALLOC_SYSTEM);
if (m == NULL)
return (NULL);
pmap_pvo_count++;
return ((void *)VM_PAGE_TO_PHYS(m));
}
/*
* XXX: THIS STUFF SHOULD BE IN pte.c?
*/
int
pmap_pte_spill(vm_offset_t addr)
{
struct pvo_entry *source_pvo, *victim_pvo;
struct pvo_entry *pvo;
int ptegidx, i, j;
u_int sr;
struct pteg *pteg;
struct pte *pt;
pmap_pte_spills++;
sr = mfsrin(addr);
ptegidx = va_to_pteg(sr, addr);
/*
* Have to substitute some entry. Use the primary hash for this.
* Use low bits of timebase as random generator.
*/
pteg = &pmap_pteg_table[ptegidx];
__asm __volatile("mftb %0" : "=r"(i));
i &= 7;
pt = &pteg->pt[i];
source_pvo = NULL;
victim_pvo = NULL;
LIST_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
/*
* We need to find a pvo entry for this address.
*/
PMAP_PVO_CHECK(pvo);
if (source_pvo == NULL &&
pmap_pte_match(&pvo->pvo_pte, sr, addr,
pvo->pvo_pte.pte_hi & PTE_HID)) {
/*
* Now found an entry to be spilled into the pteg.
* The PTE is now valid, so we know it's active.
*/
j = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
if (j >= 0) {
PVO_PTEGIDX_SET(pvo, j);
pmap_pte_overflow--;
PMAP_PVO_CHECK(pvo);
return (1);
}
source_pvo = pvo;
if (victim_pvo != NULL)
break;
}
/*
* We also need the pvo entry of the victim we are replacing
* so save the R & C bits of the PTE.
*/
if ((pt->pte_hi & PTE_HID) == 0 && victim_pvo == NULL &&
pmap_pte_compare(pt, &pvo->pvo_pte)) {
victim_pvo = pvo;
if (source_pvo != NULL)
break;
}
}
if (source_pvo == NULL)
return (0);
if (victim_pvo == NULL) {
if ((pt->pte_hi & PTE_HID) == 0)
panic("pmap_pte_spill: victim p-pte (%p) has no pvo"
"entry", pt);
/*
* If this is a secondary PTE, we need to search it's primary
* pvo bucket for the matching PVO.
*/
LIST_FOREACH(pvo, &pmap_pvo_table[ptegidx ^ pmap_pteg_mask],
pvo_olink) {
PMAP_PVO_CHECK(pvo);
/*
* We also need the pvo entry of the victim we are
* replacing so save the R & C bits of the PTE.
*/
if (pmap_pte_compare(pt, &pvo->pvo_pte)) {
victim_pvo = pvo;
break;
}
}
if (victim_pvo == NULL)
panic("pmap_pte_spill: victim s-pte (%p) has no pvo"
"entry", pt);
}
/*
* We are invalidating the TLB entry for the EA we are replacing even
* though it's valid. If we don't, we lose any ref/chg bit changes
* contained in the TLB entry.
*/
source_pvo->pvo_pte.pte_hi &= ~PTE_HID;
pmap_pte_unset(pt, &victim_pvo->pvo_pte, victim_pvo->pvo_vaddr);
pmap_pte_set(pt, &source_pvo->pvo_pte);
PVO_PTEGIDX_CLR(victim_pvo);
PVO_PTEGIDX_SET(source_pvo, i);
pmap_pte_replacements++;
PMAP_PVO_CHECK(victim_pvo);
PMAP_PVO_CHECK(source_pvo);
return (1);
}
static int
pmap_pte_insert(u_int ptegidx, struct pte *pvo_pt)
{
struct pte *pt;
int i;
/*
* First try primary hash.
*/
for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
if ((pt->pte_hi & PTE_VALID) == 0) {
pvo_pt->pte_hi &= ~PTE_HID;
pmap_pte_set(pt, pvo_pt);
return (i);
}
}
/*
* Now try secondary hash.
*/
ptegidx ^= pmap_pteg_mask;
ptegidx++;
for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
if ((pt->pte_hi & PTE_VALID) == 0) {
pvo_pt->pte_hi |= PTE_HID;
pmap_pte_set(pt, pvo_pt);
return (i);
}
}
panic("pmap_pte_insert: overflow");
return (-1);
}
static boolean_t
pmap_query_bit(vm_page_t m, int ptebit)
{
struct pvo_entry *pvo;
struct pte *pt;
if (pmap_attr_fetch(m) & ptebit)
return (TRUE);
LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
PMAP_PVO_CHECK(pvo); /* sanity check */
/*
* See if we saved the bit off. If so, cache it and return
* success.
*/
if (pvo->pvo_pte.pte_lo & ptebit) {
pmap_attr_save(m, ptebit);
PMAP_PVO_CHECK(pvo); /* sanity check */
return (TRUE);
}
}
/*
* No luck, now go through the hard part of looking at the PTEs
* themselves. Sync so that any pending REF/CHG bits are flushed to
* the PTEs.
*/
SYNC();
LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
PMAP_PVO_CHECK(pvo); /* sanity check */
/*
* See if this pvo has a valid PTE. if so, fetch the
* REF/CHG bits from the valid PTE. If the appropriate
* ptebit is set, cache it and return success.
*/
pt = pmap_pvo_to_pte(pvo, -1);
if (pt != NULL) {
pmap_pte_synch(pt, &pvo->pvo_pte);
if (pvo->pvo_pte.pte_lo & ptebit) {
pmap_attr_save(m, ptebit);
PMAP_PVO_CHECK(pvo); /* sanity check */
return (TRUE);
}
}
}
return (TRUE);
}
static u_int
pmap_clear_bit(vm_page_t m, int ptebit, int *origbit)
{
u_int count;
struct pvo_entry *pvo;
struct pte *pt;
int rv;
/*
* Clear the cached value.
*/
rv = pmap_attr_fetch(m);
pmap_attr_clear(m, ptebit);
/*
* Sync so that any pending REF/CHG bits are flushed to the PTEs (so
* we can reset the right ones). note that since the pvo entries and
* list heads are accessed via BAT0 and are never placed in the page
* table, we don't have to worry about further accesses setting the
* REF/CHG bits.
*/
SYNC();
/*
* For each pvo entry, clear the pvo's ptebit. If this pvo has a
* valid pte clear the ptebit from the valid pte.
*/
count = 0;
LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
PMAP_PVO_CHECK(pvo); /* sanity check */
pt = pmap_pvo_to_pte(pvo, -1);
if (pt != NULL) {
pmap_pte_synch(pt, &pvo->pvo_pte);
if (pvo->pvo_pte.pte_lo & ptebit) {
count++;
pmap_pte_clear(pt, PVO_VADDR(pvo), ptebit);
}
}
rv |= pvo->pvo_pte.pte_lo;
pvo->pvo_pte.pte_lo &= ~ptebit;
PMAP_PVO_CHECK(pvo); /* sanity check */
}
if (origbit != NULL) {
*origbit = rv;
}
return (count);
}
/*
* Return true if the physical range is encompassed by the battable[idx]
*/
static int
pmap_bat_mapped(int idx, vm_offset_t pa, vm_size_t size)
{
u_int prot;
u_int32_t start;
u_int32_t end;
u_int32_t bat_ble;
/*
* Return immediately if not a valid mapping
*/
if (!battable[idx].batu & BAT_Vs)
return (EINVAL);
/*
* The BAT entry must be cache-inhibited, guarded, and r/w
* so it can function as an i/o page
*/
prot = battable[idx].batl & (BAT_I|BAT_G|BAT_PP_RW);
if (prot != (BAT_I|BAT_G|BAT_PP_RW))
return (EPERM);
/*
* The address should be within the BAT range. Assume that the
* start address in the BAT has the correct alignment (thus
* not requiring masking)
*/
start = battable[idx].batl & BAT_PBS;
bat_ble = (battable[idx].batu & ~(BAT_EBS)) | 0x03;
end = start | (bat_ble << 15) | 0x7fff;
if ((pa < start) || ((pa + size) > end))
return (ERANGE);
return (0);
}
/*
* Map a set of physical memory pages into the kernel virtual
* address space. Return a pointer to where it is mapped. This
* routine is intended to be used for mapping device memory,
* NOT real memory.
*/
void *
pmap_mapdev(vm_offset_t pa, vm_size_t size)
{
vm_offset_t va, tmpva, ppa, offset;
int i;
ppa = trunc_page(pa);
offset = pa & PAGE_MASK;
size = roundup(offset + size, PAGE_SIZE);
GIANT_REQUIRED;
/*
* If the physical address lies within a valid BAT table entry,
* return the 1:1 mapping. This currently doesn't work
* for regions that overlap 256M BAT segments.
*/
for (i = 0; i < 16; i++) {
if (pmap_bat_mapped(i, pa, size) == 0)
return ((void *) pa);
}
va = kmem_alloc_pageable(kernel_map, size);
if (!va)
panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
for (tmpva = va; size > 0;) {
pmap_kenter(tmpva, ppa);
TLBIE(tmpva); /* XXX or should it be invalidate-all ? */
size -= PAGE_SIZE;
tmpva += PAGE_SIZE;
ppa += PAGE_SIZE;
}
return ((void *)(va + offset));
}
void
pmap_unmapdev(vm_offset_t va, vm_size_t size)
{
vm_offset_t base, offset;
/*
* If this is outside kernel virtual space, then it's a
* battable entry and doesn't require unmapping
*/
if ((va >= VM_MIN_KERNEL_ADDRESS) && (va <= VM_MAX_KERNEL_ADDRESS)) {
base = trunc_page(va);
offset = va & PAGE_MASK;
size = roundup(offset + size, PAGE_SIZE);
kmem_free(kernel_map, base, size);
}
}