freebsd-nq/sys/vm/uma_core.c
Jeff Roberson d0b06acbe1 This fixes a bug where isitem never got set to 1 if a certain chain of events
relating to extreme low memory situations occured.  This was only ever seen on
the port build cluster, so many thanks to kris for helping me debug this.

Tested by:	kris
2002-04-07 22:47:36 +00:00

1912 lines
46 KiB
C

/*
* Copyright (c) 2002, Jeffrey Roberson <jroberson@chesapeake.net>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice unmodified, this list of conditions, and the following
* disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* $FreeBSD$
*
*/
/*
* uma_core.c Implementation of the Universal Memory allocator
*
* This allocator is intended to replace the multitude of similar object caches
* in the standard FreeBSD kernel. The intent is to be flexible as well as
* effecient. A primary design goal is to return unused memory to the rest of
* the system. This will make the system as a whole more flexible due to the
* ability to move memory to subsystems which most need it instead of leaving
* pools of reserved memory unused.
*
* The basic ideas stem from similar slab/zone based allocators whose algorithms
* are well known.
*
*/
/*
* TODO:
* - Improve memory usage for large allocations
* - Improve INVARIANTS (0xdeadc0de write out)
* - Investigate cache size adjustments
*/
/* I should really use ktr.. */
/*
#define UMA_DEBUG 1
#define UMA_DEBUG_ALLOC 1
#define UMA_DEBUG_ALLOC_1 1
*/
#include "opt_param.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/types.h>
#include <sys/queue.h>
#include <sys/malloc.h>
#include <sys/lock.h>
#include <sys/sysctl.h>
#include <machine/types.h>
#include <sys/mutex.h>
#include <sys/smp.h>
#include <vm/vm.h>
#include <vm/vm_object.h>
#include <vm/vm_page.h>
#include <vm/vm_param.h>
#include <vm/vm_map.h>
#include <vm/vm_kern.h>
#include <vm/vm_extern.h>
#include <vm/uma.h>
#include <vm/uma_int.h>
/*
* This is the zone from which all zones are spawned. The idea is that even
* the zone heads are allocated from the allocator, so we use the bss section
* to bootstrap us.
*/
static struct uma_zone master_zone;
static uma_zone_t zones = &master_zone;
/* This is the zone from which all of uma_slab_t's are allocated. */
static uma_zone_t slabzone;
/*
* The initial hash tables come out of this zone so they can be allocated
* prior to malloc coming up.
*/
static uma_zone_t hashzone;
/*
* Zone that buckets come from.
*/
static uma_zone_t bucketzone;
/* Linked list of all zones in the system */
static LIST_HEAD(,uma_zone) uma_zones = LIST_HEAD_INITIALIZER(&uma_zones);
/* This mutex protects the zone list */
static struct mtx uma_mtx;
/* Linked list of boot time pages */
static LIST_HEAD(,uma_slab) uma_boot_pages =
LIST_HEAD_INITIALIZER(&uma_boot_pages);
/* Count of free boottime pages */
static int uma_boot_free = 0;
/* Is the VM done starting up? */
static int booted = 0;
/* This is the handle used to schedule our working set calculator */
static struct callout uma_callout;
/* This is mp_maxid + 1, for use while looping over each cpu */
static int maxcpu;
/*
* This structure is passed as the zone ctor arg so that I don't have to create
* a special allocation function just for zones.
*/
struct uma_zctor_args {
char *name;
int size;
uma_ctor ctor;
uma_dtor dtor;
uma_init uminit;
uma_fini fini;
int align;
u_int16_t flags;
};
/*
* This is the malloc hash table which is used to find the zone that a
* malloc allocation came from. It is not currently resizeable. The
* memory for the actual hash bucket is allocated in kmeminit.
*/
struct uma_hash mhash;
struct uma_hash *mallochash = &mhash;
/* Prototypes.. */
static void *obj_alloc(uma_zone_t, int, u_int8_t *, int);
static void *page_alloc(uma_zone_t, int, u_int8_t *, int);
static void page_free(void *, int, u_int8_t);
static uma_slab_t slab_zalloc(uma_zone_t, int);
static void cache_drain(uma_zone_t);
static void bucket_drain(uma_zone_t, uma_bucket_t);
static void zone_drain(uma_zone_t);
static void zone_ctor(void *, int, void *);
static void zero_init(void *, int);
static void zone_small_init(uma_zone_t zone);
static void zone_large_init(uma_zone_t zone);
static void zone_foreach(void (*zfunc)(uma_zone_t));
static void zone_timeout(uma_zone_t zone);
static void hash_expand(struct uma_hash *);
static void uma_timeout(void *);
static void uma_startup3(void);
static void *uma_zalloc_internal(uma_zone_t, void *, int, int *, int);
static void uma_zfree_internal(uma_zone_t,
void *, void *, int);
void uma_print_zone(uma_zone_t);
void uma_print_stats(void);
static int sysctl_vm_zone(SYSCTL_HANDLER_ARGS);
SYSCTL_OID(_vm, OID_AUTO, zone, CTLTYPE_STRING|CTLFLAG_RD,
NULL, 0, sysctl_vm_zone, "A", "Zone Info");
SYSINIT(uma_startup3, SI_SUB_VM_CONF, SI_ORDER_SECOND, uma_startup3, NULL);
/*
* Routine called by timeout which is used to fire off some time interval
* based calculations. (working set, stats, etc.)
*
* Arguments:
* arg Unused
*
* Returns:
* Nothing
*/
static void
uma_timeout(void *unused)
{
zone_foreach(zone_timeout);
/* Reschedule this event */
callout_reset(&uma_callout, UMA_WORKING_TIME * hz, uma_timeout, NULL);
}
/*
* Routine to perform timeout driven calculations. This does the working set
* as well as hash expanding, and per cpu statistics aggregation.
*
* Arguments:
* zone The zone to operate on
*
* Returns:
* Nothing
*/
static void
zone_timeout(uma_zone_t zone)
{
uma_cache_t cache;
u_int64_t alloc;
int free;
int cpu;
alloc = 0;
free = 0;
/*
* Aggregate per cpu cache statistics back to the zone.
*
* I may rewrite this to set a flag in the per cpu cache instead of
* locking. If the flag is not cleared on the next round I will have
* to lock and do it here instead so that the statistics don't get too
* far out of sync.
*/
if (!(zone->uz_flags & UMA_ZFLAG_INTERNAL)) {
for (cpu = 0; cpu < maxcpu; cpu++) {
if (CPU_ABSENT(cpu))
continue;
CPU_LOCK(zone, cpu);
cache = &zone->uz_cpu[cpu];
/* Add them up, and reset */
alloc += cache->uc_allocs;
cache->uc_allocs = 0;
if (cache->uc_allocbucket)
free += cache->uc_allocbucket->ub_ptr + 1;
if (cache->uc_freebucket)
free += cache->uc_freebucket->ub_ptr + 1;
CPU_UNLOCK(zone, cpu);
}
}
/* Now push these stats back into the zone.. */
ZONE_LOCK(zone);
zone->uz_allocs += alloc;
/*
* cachefree is an instantanious snapshot of what is in the per cpu
* caches, not an accurate counter
*/
zone->uz_cachefree = free;
/*
* Expand the zone hash table.
*
* This is done if the number of slabs is larger than the hash size.
* What I'm trying to do here is completely reduce collisions. This
* may be a little aggressive. Should I allow for two collisions max?
*/
if ((zone->uz_flags & UMA_ZFLAG_OFFPAGE) &&
!(zone->uz_flags & UMA_ZFLAG_MALLOC)) {
if (zone->uz_pages / zone->uz_ppera
>= zone->uz_hash.uh_hashsize)
hash_expand(&zone->uz_hash);
}
/*
* Here we compute the working set size as the total number of items
* left outstanding since the last time interval. This is slightly
* suboptimal. What we really want is the highest number of outstanding
* items during the last time quantum. This should be close enough.
*
* The working set size is used to throttle the zone_drain function.
* We don't want to return memory that we may need again immediately.
*/
alloc = zone->uz_allocs - zone->uz_oallocs;
zone->uz_oallocs = zone->uz_allocs;
zone->uz_wssize = alloc;
ZONE_UNLOCK(zone);
}
/*
* Expands the hash table for OFFPAGE zones. This is done from zone_timeout
* to reduce collisions. This must not be done in the regular allocation path,
* otherwise, we can recurse on the vm while allocating pages.
*
* Arguments:
* hash The hash you want to expand by a factor of two.
*
* Returns:
* Nothing
*
* Discussion:
*/
static void
hash_expand(struct uma_hash *hash)
{
struct slabhead *newhash;
struct slabhead *oldhash;
uma_slab_t slab;
int hzonefree;
int hashsize;
int alloc;
int hval;
int i;
/*
* Remember the old hash size and see if it has to go back to the
* hash zone, or malloc. The hash zone is used for the initial hash
*/
hashsize = hash->uh_hashsize;
oldhash = hash->uh_slab_hash;
if (hashsize == UMA_HASH_SIZE_INIT)
hzonefree = 1;
else
hzonefree = 0;
/* We're just going to go to a power of two greater */
if (hash->uh_hashsize) {
alloc = sizeof(hash->uh_slab_hash[0]) * (hash->uh_hashsize * 2);
/* XXX Shouldn't be abusing DEVBUF here */
newhash = (struct slabhead *)malloc(alloc, M_DEVBUF, M_NOWAIT);
if (newhash == NULL) {
return;
}
hash->uh_hashsize *= 2;
} else {
alloc = sizeof(hash->uh_slab_hash[0]) * UMA_HASH_SIZE_INIT;
newhash = uma_zalloc_internal(hashzone, NULL, M_WAITOK, NULL, -1);
hash->uh_hashsize = UMA_HASH_SIZE_INIT;
}
bzero(newhash, alloc);
hash->uh_hashmask = hash->uh_hashsize - 1;
/*
* I need to investigate hash algorithms for resizing without a
* full rehash.
*/
for (i = 0; i < hashsize; i++)
while (!SLIST_EMPTY(&hash->uh_slab_hash[i])) {
slab = SLIST_FIRST(&hash->uh_slab_hash[i]);
SLIST_REMOVE_HEAD(&hash->uh_slab_hash[i], us_hlink);
hval = UMA_HASH(hash, slab->us_data);
SLIST_INSERT_HEAD(&newhash[hval], slab, us_hlink);
}
if (hash->uh_slab_hash) {
if (hzonefree)
uma_zfree_internal(hashzone,
hash->uh_slab_hash, NULL, 0);
else
free(hash->uh_slab_hash, M_DEVBUF);
}
hash->uh_slab_hash = newhash;
return;
}
/*
* Frees all outstanding items in a bucket
*
* Arguments:
* zone The zone to free to, must be unlocked.
* bucket The free/alloc bucket with items, cpu queue must be locked.
*
* Returns:
* Nothing
*/
static void
bucket_drain(uma_zone_t zone, uma_bucket_t bucket)
{
uma_slab_t slab;
int mzone;
void *item;
if (bucket == NULL)
return;
slab = NULL;
mzone = 0;
/* We have to lookup the slab again for malloc.. */
if (zone->uz_flags & UMA_ZFLAG_MALLOC)
mzone = 1;
while (bucket->ub_ptr > -1) {
item = bucket->ub_bucket[bucket->ub_ptr];
#ifdef INVARIANTS
bucket->ub_bucket[bucket->ub_ptr] = NULL;
KASSERT(item != NULL,
("bucket_drain: botched ptr, item is NULL"));
#endif
bucket->ub_ptr--;
/*
* This is extremely inefficient. The slab pointer was passed
* to uma_zfree_arg, but we lost it because the buckets don't
* hold them. This will go away when free() gets a size passed
* to it.
*/
if (mzone)
slab = hash_sfind(mallochash,
(u_int8_t *)((unsigned long)item &
(~UMA_SLAB_MASK)));
uma_zfree_internal(zone, item, slab, 1);
}
}
/*
* Drains the per cpu caches for a zone.
*
* Arguments:
* zone The zone to drain, must be unlocked.
*
* Returns:
* Nothing
*
* This function returns with the zone locked so that the per cpu queues can
* not be filled until zone_drain is finished.
*
*/
static void
cache_drain(uma_zone_t zone)
{
uma_bucket_t bucket;
uma_cache_t cache;
int cpu;
/*
* Flush out the per cpu queues.
*
* XXX This causes unnecessary thrashing due to immediately having
* empty per cpu queues. I need to improve this.
*/
/*
* We have to lock each cpu cache before locking the zone
*/
ZONE_UNLOCK(zone);
for (cpu = 0; cpu < maxcpu; cpu++) {
if (CPU_ABSENT(cpu))
continue;
CPU_LOCK(zone, cpu);
cache = &zone->uz_cpu[cpu];
bucket_drain(zone, cache->uc_allocbucket);
bucket_drain(zone, cache->uc_freebucket);
}
/*
* Drain the bucket queues and free the buckets, we just keep two per
* cpu (alloc/free).
*/
ZONE_LOCK(zone);
while ((bucket = LIST_FIRST(&zone->uz_full_bucket)) != NULL) {
LIST_REMOVE(bucket, ub_link);
ZONE_UNLOCK(zone);
bucket_drain(zone, bucket);
uma_zfree_internal(bucketzone, bucket, NULL, 0);
ZONE_LOCK(zone);
}
/* Now we do the free queue.. */
while ((bucket = LIST_FIRST(&zone->uz_free_bucket)) != NULL) {
LIST_REMOVE(bucket, ub_link);
uma_zfree_internal(bucketzone, bucket, NULL, 0);
}
/* We unlock here, but they will all block until the zone is unlocked */
for (cpu = 0; cpu < maxcpu; cpu++) {
if (CPU_ABSENT(cpu))
continue;
CPU_UNLOCK(zone, cpu);
}
zone->uz_cachefree = 0;
}
/*
* Frees pages from a zone back to the system. This is done on demand from
* the pageout daemon.
*
* Arguments:
* zone The zone to free pages from
*
* Returns:
* Nothing.
*/
static void
zone_drain(uma_zone_t zone)
{
uma_slab_t slab;
uma_slab_t n;
u_int64_t extra;
u_int8_t flags;
u_int8_t *mem;
int i;
/*
* We don't want to take pages from staticly allocated zones at this
* time
*/
if (zone->uz_flags & UMA_ZFLAG_NOFREE || zone->uz_freef == NULL)
return;
ZONE_LOCK(zone);
if (!(zone->uz_flags & UMA_ZFLAG_INTERNAL))
cache_drain(zone);
if (zone->uz_free < zone->uz_wssize)
goto finished;
#ifdef UMA_DEBUG
printf("%s working set size: %llu free items: %u\n",
zone->uz_name, (unsigned long long)zone->uz_wssize, zone->uz_free);
#endif
extra = zone->uz_wssize - zone->uz_free;
extra /= zone->uz_ipers;
/* extra is now the number of extra slabs that we can free */
if (extra == 0)
goto finished;
slab = LIST_FIRST(&zone->uz_free_slab);
while (slab && extra) {
n = LIST_NEXT(slab, us_link);
/* We have no where to free these to */
if (slab->us_flags & UMA_SLAB_BOOT) {
slab = n;
continue;
}
LIST_REMOVE(slab, us_link);
zone->uz_pages -= zone->uz_ppera;
zone->uz_free -= zone->uz_ipers;
if (zone->uz_fini)
for (i = 0; i < zone->uz_ipers; i++)
zone->uz_fini(
slab->us_data + (zone->uz_rsize * i),
zone->uz_size);
flags = slab->us_flags;
mem = slab->us_data;
if (zone->uz_flags & UMA_ZFLAG_OFFPAGE) {
if (zone->uz_flags & UMA_ZFLAG_MALLOC) {
UMA_HASH_REMOVE(mallochash,
slab, slab->us_data);
} else {
UMA_HASH_REMOVE(&zone->uz_hash,
slab, slab->us_data);
}
uma_zfree_internal(slabzone, slab, NULL, 0);
} else if (zone->uz_flags & UMA_ZFLAG_MALLOC)
UMA_HASH_REMOVE(mallochash, slab, slab->us_data);
#ifdef UMA_DEBUG
printf("%s: Returning %d bytes.\n",
zone->uz_name, UMA_SLAB_SIZE * zone->uz_ppera);
#endif
zone->uz_freef(mem, UMA_SLAB_SIZE * zone->uz_ppera, flags);
slab = n;
extra--;
}
finished:
ZONE_UNLOCK(zone);
}
/*
* Allocate a new slab for a zone. This does not insert the slab onto a list.
*
* Arguments:
* zone The zone to allocate slabs for
* wait Shall we wait?
*
* Returns:
* The slab that was allocated or NULL if there is no memory and the
* caller specified M_NOWAIT.
*
*/
static uma_slab_t
slab_zalloc(uma_zone_t zone, int wait)
{
uma_slab_t slab; /* Starting slab */
u_int8_t *mem;
u_int8_t flags;
int i;
#ifdef UMA_DEBUG
printf("slab_zalloc: Allocating a new slab for %s\n", zone->uz_name);
#endif
if (zone->uz_maxpages &&
zone->uz_pages + zone->uz_ppera > zone->uz_maxpages)
return (NULL);
if (booted || (zone->uz_flags & UMA_ZFLAG_PRIVALLOC)) {
ZONE_UNLOCK(zone);
mtx_lock(&Giant);
slab = (uma_slab_t )zone->uz_allocf(zone,
zone->uz_ppera * UMA_SLAB_SIZE, &flags, wait);
mtx_unlock(&Giant);
ZONE_LOCK(zone);
if (slab != NULL)
slab->us_data = (u_int8_t *)slab;
else
return (NULL);
} else {
if (zone->uz_ppera > 1)
panic("UMA: Attemping to allocate multiple pages before vm has started.\n");
if (zone->uz_flags & UMA_ZFLAG_MALLOC)
panic("Mallocing before uma_startup2 has been called.\n");
if (uma_boot_free == 0)
panic("UMA: Ran out of pre init pages, increase UMA_BOOT_PAGES\n");
slab = LIST_FIRST(&uma_boot_pages);
LIST_REMOVE(slab, us_link);
uma_boot_free--;
}
mem = slab->us_data;
/* Alloc slab structure for offpage, otherwise adjust it's position */
if (!(zone->uz_flags & UMA_ZFLAG_OFFPAGE)) {
slab = (uma_slab_t )(mem + zone->uz_pgoff);
} else {
slab = uma_zalloc_internal(slabzone, NULL, wait, NULL, -1);
if (slab == NULL) /* XXX This should go away */
panic("UMA: No free slab structures");
if (!(zone->uz_flags & UMA_ZFLAG_MALLOC))
UMA_HASH_INSERT(&zone->uz_hash, slab, mem);
}
if (zone->uz_flags & UMA_ZFLAG_MALLOC) {
#ifdef UMA_DEBUG
printf("Inserting %p into malloc hash from slab %p\n",
mem, slab);
#endif
UMA_HASH_INSERT(mallochash, slab, mem);
}
slab->us_zone = zone;
slab->us_data = mem;
/*
* This is intended to spread data out across cache lines.
*
* This code doesn't seem to work properly on x86, and on alpha
* it makes absolutely no performance difference. I'm sure it could
* use some tuning, but sun makes outrageous claims about it's
* performance.
*/
#if 0
if (zone->uz_cachemax) {
slab->us_data += zone->uz_cacheoff;
zone->uz_cacheoff += UMA_CACHE_INC;
if (zone->uz_cacheoff > zone->uz_cachemax)
zone->uz_cacheoff = 0;
}
#endif
slab->us_freecount = zone->uz_ipers;
slab->us_firstfree = 0;
slab->us_flags = flags;
for (i = 0; i < zone->uz_ipers; i++)
slab->us_freelist[i] = i+1;
if (zone->uz_init)
for (i = 0; i < zone->uz_ipers; i++)
zone->uz_init(slab->us_data + (zone->uz_rsize * i),
zone->uz_size);
zone->uz_pages += zone->uz_ppera;
zone->uz_free += zone->uz_ipers;
return (slab);
}
/*
* Allocates a number of pages from the system
*
* Arguments:
* zone Unused
* bytes The number of bytes requested
* wait Shall we wait?
*
* Returns:
* A pointer to the alloced memory or possibly
* NULL if M_NOWAIT is set.
*/
static void *
page_alloc(uma_zone_t zone, int bytes, u_int8_t *pflag, int wait)
{
void *p; /* Returned page */
/*
* XXX The original zone allocator did this, but I don't think it's
* necessary in current.
*/
if (lockstatus(&kernel_map->lock, NULL)) {
*pflag = UMA_SLAB_KMEM;
p = (void *) kmem_malloc(kmem_map, bytes, wait);
} else {
*pflag = UMA_SLAB_KMAP;
p = (void *) kmem_alloc(kernel_map, bytes);
}
return (p);
}
/*
* Allocates a number of pages from within an object
*
* Arguments:
* zone Unused
* bytes The number of bytes requested
* wait Shall we wait?
*
* Returns:
* A pointer to the alloced memory or possibly
* NULL if M_NOWAIT is set.
*/
static void *
obj_alloc(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
{
vm_offset_t zkva;
vm_offset_t retkva;
vm_page_t p;
int pages;
retkva = NULL;
pages = zone->uz_pages;
/*
* This looks a little weird since we're getting one page at a time
*/
while (bytes > 0) {
p = vm_page_alloc(zone->uz_obj, pages,
VM_ALLOC_INTERRUPT);
if (p == NULL)
return (NULL);
zkva = zone->uz_kva + pages * PAGE_SIZE;
if (retkva == NULL)
retkva = zkva;
pmap_qenter(zkva, &p, 1);
bytes -= PAGE_SIZE;
pages += 1;
}
*flags = UMA_SLAB_PRIV;
return ((void *)retkva);
}
/*
* Frees a number of pages to the system
*
* Arguments:
* mem A pointer to the memory to be freed
* size The size of the memory being freed
* flags The original p->us_flags field
*
* Returns:
* Nothing
*
*/
static void
page_free(void *mem, int size, u_int8_t flags)
{
vm_map_t map;
if (flags & UMA_SLAB_KMEM)
map = kmem_map;
else if (flags & UMA_SLAB_KMAP)
map = kernel_map;
else
panic("UMA: page_free used with invalid flags %d\n", flags);
kmem_free(map, (vm_offset_t)mem, size);
}
/*
* Zero fill initializer
*
* Arguments/Returns follow uma_init specifications
*
*/
static void
zero_init(void *mem, int size)
{
bzero(mem, size);
}
/*
* Finish creating a small uma zone. This calculates ipers, and the zone size.
*
* Arguments
* zone The zone we should initialize
*
* Returns
* Nothing
*/
static void
zone_small_init(uma_zone_t zone)
{
int rsize;
int memused;
int ipers;
rsize = zone->uz_size;
if (rsize < UMA_SMALLEST_UNIT)
rsize = UMA_SMALLEST_UNIT;
if (rsize & zone->uz_align)
rsize = (rsize & ~zone->uz_align) + (zone->uz_align + 1);
zone->uz_rsize = rsize;
rsize += 1; /* Account for the byte of linkage */
zone->uz_ipers = (UMA_SLAB_SIZE - sizeof(struct uma_slab)) / rsize;
zone->uz_ppera = 1;
memused = zone->uz_ipers * zone->uz_rsize;
/* Can we do any better? */
if ((UMA_SLAB_SIZE - memused) >= UMA_MAX_WASTE) {
if (zone->uz_flags & UMA_ZFLAG_INTERNAL)
return;
ipers = UMA_SLAB_SIZE / zone->uz_rsize;
if (ipers > zone->uz_ipers) {
zone->uz_flags |= UMA_ZFLAG_OFFPAGE;
zone->uz_ipers = ipers;
}
}
}
/*
* Finish creating a large (> UMA_SLAB_SIZE) uma zone. Just give in and do
* OFFPAGE for now. When I can allow for more dynamic slab sizes this will be
* more complicated.
*
* Arguments
* zone The zone we should initialize
*
* Returns
* Nothing
*/
static void
zone_large_init(uma_zone_t zone)
{
int pages;
pages = zone->uz_size / UMA_SLAB_SIZE;
/* Account for remainder */
if ((pages * UMA_SLAB_SIZE) < zone->uz_size)
pages++;
zone->uz_ppera = pages;
zone->uz_ipers = 1;
zone->uz_flags |= UMA_ZFLAG_OFFPAGE;
zone->uz_rsize = zone->uz_size;
}
/*
* Zone header ctor. This initializes all fields, locks, etc. And inserts
* the zone onto the global zone list.
*
* Arguments/Returns follow uma_ctor specifications
* udata Actually uma_zcreat_args
*
*/
static void
zone_ctor(void *mem, int size, void *udata)
{
struct uma_zctor_args *arg = udata;
uma_zone_t zone = mem;
int cplen;
int cpu;
bzero(zone, size);
zone->uz_name = arg->name;
zone->uz_size = arg->size;
zone->uz_ctor = arg->ctor;
zone->uz_dtor = arg->dtor;
zone->uz_init = arg->uminit;
zone->uz_align = arg->align;
zone->uz_free = 0;
zone->uz_pages = 0;
zone->uz_flags = 0;
zone->uz_allocf = page_alloc;
zone->uz_freef = page_free;
if (arg->flags & UMA_ZONE_ZINIT)
zone->uz_init = zero_init;
if (arg->flags & UMA_ZONE_INTERNAL)
zone->uz_flags |= UMA_ZFLAG_INTERNAL;
if (arg->flags & UMA_ZONE_MALLOC)
zone->uz_flags |= UMA_ZFLAG_MALLOC;
if (arg->flags & UMA_ZONE_NOFREE)
zone->uz_flags |= UMA_ZFLAG_NOFREE;
if (zone->uz_size > UMA_SLAB_SIZE)
zone_large_init(zone);
else
zone_small_init(zone);
/* We do this so that the per cpu lock name is unique for each zone */
memcpy(zone->uz_lname, "PCPU ", 5);
cplen = min(strlen(zone->uz_name) + 1, LOCKNAME_LEN - 6);
memcpy(zone->uz_lname+5, zone->uz_name, cplen);
zone->uz_lname[LOCKNAME_LEN - 1] = '\0';
/*
* If we're putting the slab header in the actual page we need to
* figure out where in each page it goes. This calculates a right
* justified offset into the memory on a ALIGN_PTR boundary.
*/
if (!(zone->uz_flags & UMA_ZFLAG_OFFPAGE)) {
int totsize;
int waste;
/* Size of the slab struct and free list */
totsize = sizeof(struct uma_slab) + zone->uz_ipers;
if (totsize & UMA_ALIGN_PTR)
totsize = (totsize & ~UMA_ALIGN_PTR) +
(UMA_ALIGN_PTR + 1);
zone->uz_pgoff = UMA_SLAB_SIZE - totsize;
waste = zone->uz_pgoff;
waste -= (zone->uz_ipers * zone->uz_rsize);
/*
* This calculates how much space we have for cache line size
* optimizations. It works by offseting each slab slightly.
* Currently it breaks on x86, and so it is disabled.
*/
if (zone->uz_align < UMA_CACHE_INC && waste > UMA_CACHE_INC) {
zone->uz_cachemax = waste - UMA_CACHE_INC;
zone->uz_cacheoff = 0;
}
totsize = zone->uz_pgoff + sizeof(struct uma_slab)
+ zone->uz_ipers;
/* I don't think it's possible, but I'll make sure anyway */
if (totsize > UMA_SLAB_SIZE) {
printf("zone %s ipers %d rsize %d size %d\n",
zone->uz_name, zone->uz_ipers, zone->uz_rsize,
zone->uz_size);
panic("UMA slab won't fit.\n");
}
} else {
/* hash_expand here to allocate the initial hash table */
hash_expand(&zone->uz_hash);
zone->uz_pgoff = 0;
}
#ifdef UMA_DEBUG
printf("%s(%p) size = %d ipers = %d ppera = %d pgoff = %d\n",
zone->uz_name, zone,
zone->uz_size, zone->uz_ipers,
zone->uz_ppera, zone->uz_pgoff);
#endif
ZONE_LOCK_INIT(zone);
mtx_lock(&uma_mtx);
LIST_INSERT_HEAD(&uma_zones, zone, uz_link);
mtx_unlock(&uma_mtx);
/*
* Some internal zones don't have room allocated for the per cpu
* caches. If we're internal, bail out here.
*/
if (zone->uz_flags & UMA_ZFLAG_INTERNAL)
return;
for (cpu = 0; cpu < maxcpu; cpu++) {
if (zone->uz_ipers < UMA_BUCKET_SIZE)
zone->uz_cpu[cpu].uc_count = zone->uz_ipers - 1;
else
zone->uz_cpu[cpu].uc_count = UMA_BUCKET_SIZE - 1;
CPU_LOCK_INIT(zone, cpu);
}
}
/*
* Traverses every zone in the system and calls a callback
*
* Arguments:
* zfunc A pointer to a function which accepts a zone
* as an argument.
*
* Returns:
* Nothing
*/
static void
zone_foreach(void (*zfunc)(uma_zone_t))
{
uma_zone_t zone;
mtx_lock(&uma_mtx);
LIST_FOREACH(zone, &uma_zones, uz_link) {
zfunc(zone);
}
mtx_unlock(&uma_mtx);
}
/* Public functions */
/* See uma.h */
void
uma_startup(void *bootmem)
{
struct uma_zctor_args args;
uma_slab_t slab;
int slabsize;
int i;
#ifdef UMA_DEBUG
printf("Creating uma zone headers zone.\n");
#endif
#ifdef SMP
maxcpu = mp_maxid + 1;
#else
maxcpu = 1;
#endif
#ifdef UMA_DEBUG
printf("Max cpu = %d, mp_maxid = %d\n", maxcpu, mp_maxid);
Debugger("stop");
#endif
mtx_init(&uma_mtx, "UMA lock", NULL, MTX_DEF);
/* "manually" Create the initial zone */
args.name = "UMA Zones";
args.size = sizeof(struct uma_zone) +
(sizeof(struct uma_cache) * (maxcpu - 1));
args.ctor = zone_ctor;
args.dtor = NULL;
args.uminit = zero_init;
args.fini = NULL;
args.align = 32 - 1;
args.flags = UMA_ZONE_INTERNAL;
/* The initial zone has no Per cpu queues so it's smaller */
zone_ctor(zones, sizeof(struct uma_zone), &args);
#ifdef UMA_DEBUG
printf("Filling boot free list.\n");
#endif
for (i = 0; i < UMA_BOOT_PAGES; i++) {
slab = (uma_slab_t)((u_int8_t *)bootmem + (i * UMA_SLAB_SIZE));
slab->us_data = (u_int8_t *)slab;
slab->us_flags = UMA_SLAB_BOOT;
LIST_INSERT_HEAD(&uma_boot_pages, slab, us_link);
uma_boot_free++;
}
#ifdef UMA_DEBUG
printf("Creating slab zone.\n");
#endif
/*
* This is the max number of free list items we'll have with
* offpage slabs.
*/
slabsize = UMA_SLAB_SIZE - sizeof(struct uma_slab);
slabsize /= UMA_MAX_WASTE;
slabsize++; /* In case there it's rounded */
slabsize += sizeof(struct uma_slab);
/* Now make a zone for slab headers */
slabzone = uma_zcreate("UMA Slabs",
slabsize,
NULL, NULL, NULL, NULL,
UMA_ALIGN_PTR, UMA_ZONE_INTERNAL);
hashzone = uma_zcreate("UMA Hash",
sizeof(struct slabhead *) * UMA_HASH_SIZE_INIT,
NULL, NULL, NULL, NULL,
UMA_ALIGN_PTR, UMA_ZONE_INTERNAL);
bucketzone = uma_zcreate("UMA Buckets", sizeof(struct uma_bucket),
NULL, NULL, NULL, NULL,
UMA_ALIGN_PTR, UMA_ZONE_INTERNAL);
#ifdef UMA_DEBUG
printf("UMA startup complete.\n");
#endif
}
/* see uma.h */
void
uma_startup2(void *hashmem, u_long elems)
{
bzero(hashmem, elems * sizeof(void *));
mallochash->uh_slab_hash = hashmem;
mallochash->uh_hashsize = elems;
mallochash->uh_hashmask = elems - 1;
booted = 1;
#ifdef UMA_DEBUG
printf("UMA startup2 complete.\n");
#endif
}
/*
* Initialize our callout handle
*
*/
static void
uma_startup3(void)
{
#ifdef UMA_DEBUG
printf("Starting callout.\n");
#endif
/* We'll be mpsafe once the vm is locked. */
callout_init(&uma_callout, 0);
callout_reset(&uma_callout, UMA_WORKING_TIME * hz, uma_timeout, NULL);
#ifdef UMA_DEBUG
printf("UMA startup3 complete.\n");
#endif
}
/* See uma.h */
uma_zone_t
uma_zcreate(char *name, int size, uma_ctor ctor, uma_dtor dtor, uma_init uminit,
uma_fini fini, int align, u_int16_t flags)
{
struct uma_zctor_args args;
/* This stuff is essential for the zone ctor */
args.name = name;
args.size = size;
args.ctor = ctor;
args.dtor = dtor;
args.uminit = uminit;
args.fini = fini;
args.align = align;
args.flags = flags;
return (uma_zalloc_internal(zones, &args, M_WAITOK, NULL, -1));
}
/* See uma.h */
void *
uma_zalloc_arg(uma_zone_t zone, void *udata, int wait)
{
void *item;
uma_cache_t cache;
uma_bucket_t bucket;
int isitem;
int cpu;
/* This is the fast path allocation */
#ifdef UMA_DEBUG_ALLOC_1
printf("Allocating one item from %s(%p)\n", zone->uz_name, zone);
#endif
cpu = PCPU_GET(cpuid);
CPU_LOCK(zone, cpu);
cache = &zone->uz_cpu[cpu];
cache->uc_allocs++;
zalloc_start:
bucket = cache->uc_allocbucket;
if (bucket) {
if (bucket->ub_ptr > -1) {
item = bucket->ub_bucket[bucket->ub_ptr];
#ifdef INVARIANTS
bucket->ub_bucket[bucket->ub_ptr] = NULL;
#endif
bucket->ub_ptr--;
KASSERT(item != NULL,
("uma_zalloc: Bucket pointer mangled."));
cache->uc_allocs++;
CPU_UNLOCK(zone, cpu);
if (zone->uz_ctor)
zone->uz_ctor(item, zone->uz_size, udata);
return (item);
} else if (cache->uc_freebucket) {
/*
* We have run out of items in our allocbucket.
* See if we can switch with our free bucket.
*/
if (cache->uc_freebucket->ub_ptr > -1) {
uma_bucket_t swap;
#ifdef UMA_DEBUG_ALLOC
printf("uma_zalloc: Swapping empty with alloc.\n");
#endif
swap = cache->uc_freebucket;
cache->uc_freebucket = cache->uc_allocbucket;
cache->uc_allocbucket = swap;
goto zalloc_start;
}
}
}
/*
* We can get here for three reasons:
*
* 1) The buckets are NULL
* 2) The zone is INTERNAL, and so it has no buckets.
* 3) The alloc and free buckets are both empty.
*
* Just handoff to uma_zalloc_internal to do the hard stuff
*
*/
#ifdef UMA_DEBUG_ALLOC
printf("uma_zalloc: Falling back to zalloc_internal.\n");
#endif
item = uma_zalloc_internal(zone, udata, wait, &isitem, cpu);
#ifdef UMA_DEBUG
printf("uma_zalloc: zalloc_internal completed.\n");
#endif
if (item && isitem == 0)
goto zalloc_start;
/*
* If isitem is set then we should just return it. The cpu lock
* was unlocked when we couldn't get a bucket.
*/
return item;
}
/*
* Allocates an item for an internal zone OR fills a bucket
*
* Arguments
* zone The zone to alloc for.
* udata The data to be passed to the constructor.
* wait M_WAITOK or M_NOWAIT.
* isitem The returned value is an item if this is true.
* cpu The cpu # of the cache that we should use, or -1.
*
* Returns
* NULL if there is no memory and M_NOWAIT is set
* An item if called on an interal zone
* Non NULL if called to fill a bucket and it was successful.
*
* Discussion:
* This was much cleaner before it had to do per cpu caches. It is
* complicated now because it has to handle the simple internal case, and
* the more involved bucket filling and allocation. The isitem is there
* to remove a failure case. You shouldn't fail on allocating from a zone
* because there were no buckets. This allows the exported zalloc to just
* return the item.
*
*/
static void *
uma_zalloc_internal(uma_zone_t zone, void *udata, int wait, int *isitem, int cpu)
{
uma_bucket_t bucket;
uma_cache_t cache;
uma_slab_t slab;
u_int8_t freei;
void *item;
bucket = NULL;
cache = NULL;
item = NULL;
/*
* This is to stop us from allocating per cpu buckets while we're running
* out of UMA_BOOT_PAGES. Otherwise, we would exhaust the boot pages.
*/
if (!booted && zone == bucketzone)
return (NULL);
#ifdef UMA_DEBUG_ALLOC
printf("INTERNAL: Allocating one item from %s(%p)\n", zone->uz_name, zone);
#endif
if (isitem != NULL)
*isitem = 0;
ZONE_LOCK(zone);
/* We got here because we need to fill some buckets */
if (cpu != -1) {
cache = &zone->uz_cpu[cpu];
zone->uz_allocs += cache->uc_allocs;
/* Check the free list */
bucket = LIST_FIRST(&zone->uz_full_bucket);
if (bucket) {
LIST_REMOVE(bucket, ub_link);
/* Our old one is now a free bucket */
if (cache->uc_allocbucket) {
KASSERT(cache->uc_allocbucket->ub_ptr == -1,
("uma_zalloc_internal: Freeing a non free bucket."));
LIST_INSERT_HEAD(&zone->uz_free_bucket,
cache->uc_allocbucket, ub_link);
}
KASSERT(bucket->ub_ptr != -1,
("uma_zalloc_internal: Returning an empty bucket."));
/*zone->uz_free -= bucket->ub_ptr + 1;*/
cache->uc_allocbucket = bucket;
ZONE_UNLOCK(zone);
return (bucket);
}
/* Bump up our uc_count so we get here less */
if (cache->uc_count < UMA_BUCKET_SIZE - 1)
cache->uc_count++;
/* Nothing on the free list, try to re-use the old one */
bucket = cache->uc_allocbucket;
if (bucket == NULL) {
/* Nope, we need a new one */
CPU_UNLOCK(zone, cpu);
ZONE_UNLOCK(zone);
bucket = uma_zalloc_internal(bucketzone,
NULL, wait, NULL, -1);
CPU_LOCK(zone, cpu);
ZONE_LOCK(zone);
/* Did we lose the race? */
if (cache->uc_allocbucket) {
#ifdef UMA_DEBUG
printf("uma_zalloc_internal: Lost race with another CPU.\n");
#endif
if (bucket)
uma_zfree_internal(bucketzone,
bucket, NULL, 0);
ZONE_UNLOCK(zone);
return (cache->uc_allocbucket);
}
cache->uc_allocbucket = bucket;
if (bucket) {
#ifdef INVARIANTS
bzero(bucket, bucketzone->uz_size);
#endif
bucket->ub_ptr = -1;
} else {
/*
* We may not get a bucket if we recurse, so
* return an actual item. The rest of this code
* does the right thing if the cache is NULL.
*/
#ifdef UMA_DEBUG
printf("uma_zalloc_internal: Bucketzone returned NULL\n");
#endif
CPU_UNLOCK(zone, cpu);
cache = NULL;
cpu = -1;
if (isitem != NULL)
*isitem = 1;
}
}
}
new_slab:
/* Find a slab with some space */
if (zone->uz_free) {
if (!LIST_EMPTY(&zone->uz_part_slab)) {
slab = LIST_FIRST(&zone->uz_part_slab);
} else {
slab = LIST_FIRST(&zone->uz_free_slab);
LIST_REMOVE(slab, us_link);
LIST_INSERT_HEAD(&zone->uz_part_slab, slab, us_link);
}
} else {
/*
* This is to prevent us from recursively trying to allocate
* buckets. The problem is that if an allocation forces us to
* grab a new bucket we will call page_alloc, which will go off
* and cause the vm to allocate vm_map_entries. If we need new
* buckets there too we will recurse in kmem_alloc and bad
* things happen. So instead we return a NULL bucket, and make
* the code that allocates buckets smart enough to deal with it */
if (zone == bucketzone && zone->uz_recurse != 0) {
ZONE_UNLOCK(zone);
return (NULL);
}
zone->uz_recurse++;
slab = slab_zalloc(zone, wait);
zone->uz_recurse--;
if (slab) {
LIST_INSERT_HEAD(&zone->uz_part_slab, slab, us_link);
/*
* We might not have been able to get a page, but another cpu
* could have while we were unlocked.
*/
} else if (zone->uz_free == 0) {
ZONE_UNLOCK(zone);
/* If we're filling a bucket return what we have */
if (bucket != NULL && bucket->ub_ptr != -1) {
return (bucket);
} else
return (NULL);
} else {
/* Another cpu must have succeeded */
if ((slab = LIST_FIRST(&zone->uz_part_slab)) == NULL) {
slab = LIST_FIRST(&zone->uz_free_slab);
LIST_REMOVE(slab, us_link);
LIST_INSERT_HEAD(&zone->uz_part_slab,
slab, us_link);
}
}
}
while (slab->us_freecount) {
freei = slab->us_firstfree;
slab->us_firstfree = slab->us_freelist[freei];
#ifdef INVARIANTS
slab->us_freelist[freei] = 255;
#endif
slab->us_freecount--;
zone->uz_free--;
item = slab->us_data + (zone->uz_rsize * freei);
if (cache == NULL) {
zone->uz_allocs++;
break;
}
bucket->ub_bucket[++bucket->ub_ptr] = item;
/* Don't overfill the bucket! */
if (bucket->ub_ptr == cache->uc_count)
break;
}
/* Move this slab to the full list */
if (slab->us_freecount == 0) {
LIST_REMOVE(slab, us_link);
LIST_INSERT_HEAD(&zone->uz_full_slab, slab, us_link);
}
if (cache != NULL) {
/* Try to keep the buckets totally full, but don't block */
if (bucket->ub_ptr < cache->uc_count) {
wait = M_NOWAIT;
goto new_slab;
}
}
ZONE_UNLOCK(zone);
/* Only construct at this time if we're not filling a bucket */
if (cache == NULL) {
if (zone->uz_ctor)
zone->uz_ctor(item, zone->uz_size, udata);
if (isitem != NULL)
*isitem = 1;
}
return (item);
}
/* See uma.h */
void
uma_zfree_arg(uma_zone_t zone, void *item, void *udata)
{
uma_cache_t cache;
uma_bucket_t bucket;
int cpu;
/* This is the fast path free */
#ifdef UMA_DEBUG_ALLOC_1
printf("Freeing item %p to %s(%p)\n", item, zone->uz_name, zone);
#endif
cpu = PCPU_GET(cpuid);
CPU_LOCK(zone, cpu);
cache = &zone->uz_cpu[cpu];
zfree_start:
bucket = cache->uc_freebucket;
if (bucket) {
/* Do we have room in our bucket? */
if (bucket->ub_ptr < cache->uc_count) {
bucket->ub_ptr++;
KASSERT(bucket->ub_bucket[bucket->ub_ptr] == NULL,
("uma_zfree: Freeing to non free bucket index."));
bucket->ub_bucket[bucket->ub_ptr] = item;
CPU_UNLOCK(zone, cpu);
if (zone->uz_dtor)
zone->uz_dtor(item, zone->uz_size, udata);
return;
} else if (cache->uc_allocbucket) {
#ifdef UMA_DEBUG_ALLOC
printf("uma_zfree: Swapping buckets.\n");
#endif
/*
* We have run out of space in our freebucket.
* See if we can switch with our alloc bucket.
*/
if (cache->uc_allocbucket->ub_ptr <
cache->uc_freebucket->ub_ptr) {
uma_bucket_t swap;
swap = cache->uc_freebucket;
cache->uc_freebucket = cache->uc_allocbucket;
cache->uc_allocbucket = swap;
goto zfree_start;
}
}
}
/*
* We can get here for three reasons:
*
* 1) The buckets are NULL
* 2) The zone is INTERNAL, and so it has no buckets.
* 3) The alloc and free buckets are both somewhat full.
*
*/
ZONE_LOCK(zone);
if (!(zone->uz_flags & UMA_ZFLAG_INTERNAL)) {
bucket = cache->uc_freebucket;
cache->uc_freebucket = NULL;
/* Can we throw this on the zone full list? */
if (bucket != NULL) {
#ifdef UMA_DEBUG_ALLOC
printf("uma_zfree: Putting old bucket on the free list.\n");
#endif
/* ub_ptr is pointing to the last free item */
KASSERT(bucket->ub_ptr != -1,
("uma_zfree: Attempting to insert an empty bucket onto the full list.\n"));
/*zone->uz_free += bucket->ub_ptr + 1;*/
LIST_INSERT_HEAD(&zone->uz_full_bucket,
bucket, ub_link);
bucket = LIST_FIRST(&zone->uz_free_bucket);
if (bucket)
LIST_REMOVE(bucket, ub_link);
}
/*
* Do we need to alloc one? Either the freebucket was NULL
* or the free_bucket list was empty.
*/
if (bucket == NULL) {
#ifdef UMA_DEBUG_ALLOC
printf("uma_zfree: Allocating new free bucket.\n");
#endif
/* This has to be done so we don't recurse on a lock */
ZONE_UNLOCK(zone);
CPU_UNLOCK(zone, cpu);
bucket = uma_zalloc_internal(bucketzone,
NULL, M_NOWAIT, NULL, -1);
CPU_LOCK(zone, cpu);
ZONE_LOCK(zone);
if (bucket) {
#ifdef INVARIANTS
bzero(bucket, bucketzone->uz_size);
#endif
bucket->ub_ptr = -1;
}
/* Did we lose the race? */
if (cache->uc_freebucket != NULL) {
if (bucket)
uma_zfree_internal(bucketzone,
bucket, NULL, 0);
ZONE_UNLOCK(zone);
goto zfree_start;
}
/* If we couldn't get one just free directly */
if (bucket == NULL)
goto zfree_internal;
}
cache->uc_freebucket = bucket;
ZONE_UNLOCK(zone);
goto zfree_start;
}
zfree_internal:
CPU_UNLOCK(zone, cpu);
ZONE_UNLOCK(zone);
uma_zfree_internal(zone, item, udata, 0);
return;
}
/*
* Frees an item to an INTERNAL zone or allocates a free bucket
*
* Arguments:
* zone The zone to free to
* item The item we're freeing
* udata User supplied data for the dtor
* skip Skip the dtor, it was done in uma_zfree_arg
*/
static void
uma_zfree_internal(uma_zone_t zone, void *item, void *udata, int skip)
{
uma_slab_t slab;
u_int8_t *mem;
u_int8_t freei;
ZONE_LOCK(zone);
if (!(zone->uz_flags & UMA_ZFLAG_MALLOC)) {
mem = (u_int8_t *)((unsigned long)item & (~UMA_SLAB_MASK));
if (zone->uz_flags & UMA_ZFLAG_OFFPAGE)
slab = hash_sfind(&zone->uz_hash, mem);
else {
mem += zone->uz_pgoff;
slab = (uma_slab_t)mem;
}
} else {
slab = (uma_slab_t)udata;
}
/* Do we need to remove from any lists? */
if (slab->us_freecount+1 == zone->uz_ipers) {
LIST_REMOVE(slab, us_link);
LIST_INSERT_HEAD(&zone->uz_free_slab, slab, us_link);
} else if (slab->us_freecount == 0) {
LIST_REMOVE(slab, us_link);
LIST_INSERT_HEAD(&zone->uz_part_slab, slab, us_link);
}
/* Slab management stuff */
freei = ((unsigned long)item - (unsigned long)slab->us_data)
/ zone->uz_rsize;
#ifdef INVARIANTS
if (((freei * zone->uz_rsize) + slab->us_data) != item)
panic("zone: %s(%p) slab %p freed address %p unaligned.\n",
zone->uz_name, zone, slab, item);
if (freei >= zone->uz_ipers)
panic("zone: %s(%p) slab %p freelist %i out of range 0-%d\n",
zone->uz_name, zone, slab, freei, zone->uz_ipers-1);
if (slab->us_freelist[freei] != 255) {
printf("Slab at %p, freei %d = %d.\n",
slab, freei, slab->us_freelist[freei]);
panic("Duplicate free of item %p from zone %p(%s)\n",
item, zone, zone->uz_name);
}
#endif
slab->us_freelist[freei] = slab->us_firstfree;
slab->us_firstfree = freei;
slab->us_freecount++;
/* Zone statistics */
zone->uz_free++;
ZONE_UNLOCK(zone);
if (!skip && zone->uz_dtor)
zone->uz_dtor(item, zone->uz_size, udata);
}
/* See uma.h */
void
uma_zone_set_max(uma_zone_t zone, int nitems)
{
ZONE_LOCK(zone);
if (zone->uz_ppera > 1)
zone->uz_maxpages = nitems / zone->uz_ppera;
else
zone->uz_maxpages = nitems / zone->uz_ipers;
ZONE_UNLOCK(zone);
}
/* See uma.h */
void
uma_zone_set_freef(uma_zone_t zone, uma_free freef)
{
ZONE_LOCK(zone);
zone->uz_freef = freef;
ZONE_UNLOCK(zone);
}
/* See uma.h */
void
uma_zone_set_allocf(uma_zone_t zone, uma_alloc allocf)
{
ZONE_LOCK(zone);
zone->uz_flags |= UMA_ZFLAG_PRIVALLOC;
zone->uz_allocf = allocf;
ZONE_UNLOCK(zone);
}
/* See uma.h */
int
uma_zone_set_obj(uma_zone_t zone, struct vm_object *obj, int count)
{
int pages;
vm_offset_t kva;
ZONE_LOCK(zone);
mtx_lock(&Giant);
zone->uz_obj = obj;
pages = count / zone->uz_ipers;
if (pages * zone->uz_ipers < count)
pages++;
zone->uz_kva = NULL;
ZONE_UNLOCK(zone);
kva = kmem_alloc_pageable(kernel_map, pages * UMA_SLAB_SIZE);
ZONE_LOCK(zone);
zone->uz_kva = kva;
if (zone->uz_kva == 0) {
ZONE_UNLOCK(zone);
return (0);
}
zone->uz_maxpages = pages;
if (zone->uz_obj == NULL)
zone->uz_obj = vm_object_allocate(OBJT_DEFAULT,
zone->uz_maxpages);
else
_vm_object_allocate(OBJT_DEFAULT,
zone->uz_maxpages, zone->uz_obj);
zone->uz_allocf = obj_alloc;
zone->uz_flags |= UMA_ZFLAG_NOFREE | UMA_ZFLAG_PRIVALLOC;
mtx_unlock(&Giant);
ZONE_UNLOCK(zone);
return (1);
}
/* See uma.h */
void
uma_prealloc(uma_zone_t zone, int items)
{
int slabs;
uma_slab_t slab;
ZONE_LOCK(zone);
slabs = items / zone->uz_ipers;
if (slabs * zone->uz_ipers < items)
slabs++;
while (slabs > 0) {
slab = slab_zalloc(zone, M_WAITOK);
LIST_INSERT_HEAD(&zone->uz_free_slab, slab, us_link);
slabs--;
}
ZONE_UNLOCK(zone);
}
/* See uma.h */
void
uma_reclaim(void)
{
/*
* You might think that the delay below would improve performance since
* the allocator will give away memory that it may ask for immediately.
* Really, it makes things worse, since cpu cycles are so much cheaper
* than disk activity.
*/
#if 0
static struct timeval tv = {0};
struct timeval now;
getmicrouptime(&now);
if (now.tv_sec > tv.tv_sec + 30)
tv = now;
else
return;
#endif
#ifdef UMA_DEBUG
printf("UMA: vm asked us to release pages!\n");
#endif
zone_foreach(zone_drain);
/*
* Some slabs may have been freed but this zone will be visited early
* we visit again so that we can free pages that are empty once other
* zones are drained. We have to do the same for buckets.
*/
zone_drain(slabzone);
zone_drain(bucketzone);
}
void *
uma_large_malloc(int size, int wait)
{
void *mem;
uma_slab_t slab;
u_int8_t flags;
slab = uma_zalloc_internal(slabzone, NULL, wait, NULL, -1);
if (slab == NULL)
return (NULL);
mem = page_alloc(NULL, size, &flags, wait);
if (mem) {
slab->us_data = mem;
slab->us_flags = flags | UMA_SLAB_MALLOC;
slab->us_size = size;
UMA_HASH_INSERT(mallochash, slab, mem);
} else {
uma_zfree_internal(slabzone, slab, NULL, 0);
}
return (mem);
}
void
uma_large_free(uma_slab_t slab)
{
UMA_HASH_REMOVE(mallochash, slab, slab->us_data);
page_free(slab->us_data, slab->us_size, slab->us_flags);
uma_zfree_internal(slabzone, slab, NULL, 0);
}
void
uma_print_stats(void)
{
zone_foreach(uma_print_zone);
}
void
uma_print_zone(uma_zone_t zone)
{
printf("%s(%p) size %d(%d) flags %d ipers %d ppera %d out %d free %d\n",
zone->uz_name, zone, zone->uz_size, zone->uz_rsize, zone->uz_flags,
zone->uz_ipers, zone->uz_ppera,
(zone->uz_ipers * zone->uz_pages) - zone->uz_free, zone->uz_free);
}
/*
* Sysctl handler for vm.zone
*
* stolen from vm_zone.c
*/
static int
sysctl_vm_zone(SYSCTL_HANDLER_ARGS)
{
int error, len, cnt;
const int linesize = 128; /* conservative */
int totalfree;
char *tmpbuf, *offset;
uma_zone_t z;
char *p;
cnt = 0;
LIST_FOREACH(z, &uma_zones, uz_link)
cnt++;
MALLOC(tmpbuf, char *, (cnt == 0 ? 1 : cnt) * linesize,
M_TEMP, M_WAITOK);
len = snprintf(tmpbuf, linesize,
"\nITEM SIZE LIMIT USED FREE REQUESTS\n\n");
if (cnt == 0)
tmpbuf[len - 1] = '\0';
error = SYSCTL_OUT(req, tmpbuf, cnt == 0 ? len-1 : len);
if (error || cnt == 0)
goto out;
offset = tmpbuf;
mtx_lock(&uma_mtx);
LIST_FOREACH(z, &uma_zones, uz_link) {
if (cnt == 0) /* list may have changed size */
break;
ZONE_LOCK(z);
totalfree = z->uz_free + z->uz_cachefree;
len = snprintf(offset, linesize,
"%-12.12s %6.6u, %8.8u, %6.6u, %6.6u, %8.8llu\n",
z->uz_name, z->uz_size,
z->uz_maxpages * z->uz_ipers,
(z->uz_ipers * (z->uz_pages / z->uz_ppera)) - totalfree,
totalfree,
(unsigned long long)z->uz_allocs);
ZONE_UNLOCK(z);
for (p = offset + 12; p > offset && *p == ' '; --p)
/* nothing */ ;
p[1] = ':';
cnt--;
offset += len;
}
mtx_unlock(&uma_mtx);
*offset++ = '\0';
error = SYSCTL_OUT(req, tmpbuf, offset - tmpbuf);
out:
FREE(tmpbuf, M_TEMP);
return (error);
}