freebsd-nq/contrib/netbsd-tests/lib/libpthread/t_mutex.c
Alex Richardson 371f152c7f Significantly speed up libthr/mutex_test and make more reliable
Instead of using a simple global++ as the data race, with this change we
perform the increment by loading the global, delaying for a bit and then
storing back the incremented value. If I move the increment outside of the
mutex protected range, I can now see the data race with only 100 iterations
on amd64 in almost all cases. Before this change such a racy test almost
always passed with < 100,000 iterations and only reliably failed with the
current limit of 10 million.

I noticed this poorly written test because the mutex:mutex{2,3} and
timedmutex:mutex{2,3} tests were always timing out on our CheriBSD Jenkins.
Writing good concurrency tests is hard so I won't attempt to do so, but this
change should make the test more likely to fail if pthread_mutex_lock is not
implemented correctly while also significantly reducing the time it takes to
run these four tests. It will also reduce the time it takes for QEMU RISC-V
testsuite runs by almost 40 minutes (out of currently 7 hours).

Reviewed By:	brooks, ngie
Differential Revision: https://reviews.freebsd.org/D26473
2020-11-26 13:31:57 +00:00

845 lines
22 KiB
C

/* $NetBSD: t_mutex.c,v 1.15 2017/01/16 16:23:41 christos Exp $ */
/*
* Copyright (c) 2008 The NetBSD Foundation, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__COPYRIGHT("@(#) Copyright (c) 2008\
The NetBSD Foundation, inc. All rights reserved.");
__RCSID("$NetBSD: t_mutex.c,v 1.15 2017/01/16 16:23:41 christos Exp $");
#include <sys/time.h> /* For timespecadd */
#include <inttypes.h> /* For UINT16_MAX */
#include <pthread.h>
#include <stdio.h>
#ifdef __FreeBSD__
#include <stdlib.h>
#endif
#include <string.h>
#include <errno.h>
#include <time.h>
#include <unistd.h>
#include <sys/sched.h>
#include <sys/param.h>
#include <atf-c.h>
#include "h_common.h"
static pthread_mutex_t mutex;
static pthread_mutex_t static_mutex = PTHREAD_MUTEX_INITIALIZER;
static int global_x;
#ifdef TIMEDMUTEX
/* This code is used for verifying non-timed specific code */
static struct timespec ts_lengthy = {
.tv_sec = UINT16_MAX,
.tv_nsec = 0
};
/* This code is used for verifying timed-only specific code */
static struct timespec ts_shortlived = {
.tv_sec = 0,
.tv_nsec = 120
};
static int
mutex_lock(pthread_mutex_t *m, const struct timespec *ts)
{
struct timespec ts_wait;
ATF_REQUIRE(clock_gettime(CLOCK_REALTIME, &ts_wait) != -1);
timespecadd(&ts_wait, ts, &ts_wait);
return pthread_mutex_timedlock(m, &ts_wait);
}
#else
#define mutex_lock(a, b) pthread_mutex_lock(a)
#endif
static void *
mutex1_threadfunc(void *arg)
{
int *param;
printf("2: Second thread.\n");
param = arg;
printf("2: Locking mutex\n");
mutex_lock(&mutex, &ts_lengthy);
printf("2: Got mutex. *param = %d\n", *param);
ATF_REQUIRE_EQ(*param, 20);
(*param)++;
pthread_mutex_unlock(&mutex);
return param;
}
ATF_TC(mutex1);
ATF_TC_HEAD(mutex1, tc)
{
atf_tc_set_md_var(tc, "descr", "Checks mutexes");
}
ATF_TC_BODY(mutex1, tc)
{
int x;
pthread_t new;
void *joinval;
printf("1: Mutex-test 1\n");
PTHREAD_REQUIRE(pthread_mutex_init(&mutex, NULL));
x = 1;
PTHREAD_REQUIRE(mutex_lock(&mutex, &ts_lengthy));
PTHREAD_REQUIRE(pthread_create(&new, NULL, mutex1_threadfunc, &x));
printf("1: Before changing the value.\n");
sleep(2);
x = 20;
printf("1: Before releasing the mutex.\n");
sleep(2);
PTHREAD_REQUIRE(pthread_mutex_unlock(&mutex));
printf("1: After releasing the mutex.\n");
PTHREAD_REQUIRE(pthread_join(new, &joinval));
PTHREAD_REQUIRE(mutex_lock(&mutex, &ts_lengthy));
printf("1: Thread joined. X was %d. Return value (int) was %d\n",
x, *(int *)joinval);
ATF_REQUIRE_EQ(x, 21);
ATF_REQUIRE_EQ(*(int *)joinval, 21);
PTHREAD_REQUIRE(pthread_mutex_unlock(&mutex));
}
#ifdef __FreeBSD__
/*
* Increment the value using a noinline function that includes a small delay
* to increase the window for the RMW data race.
*/
__noinline static int
increment(int value)
{
for (volatile int i = 0; i < 100; i++) {
/* Small delay between read+write to increase chance of race */
__compiler_membar();
}
return value + 1;
}
static volatile bool thread2_started = false;
#endif
static void *
mutex2_threadfunc(void *arg)
{
long count = *(int *)arg;
#ifdef __FreeBSD__
thread2_started = true;
#endif
printf("2: Second thread (%p). Count is %ld\n", pthread_self(), count);
while (count--) {
PTHREAD_REQUIRE(mutex_lock(&mutex, &ts_lengthy));
#ifdef __FreeBSD__
global_x = increment(global_x);
#else
global_x++;
#endif
PTHREAD_REQUIRE(pthread_mutex_unlock(&mutex));
}
return (void *)count;
}
ATF_TC(mutex2);
ATF_TC_HEAD(mutex2, tc)
{
atf_tc_set_md_var(tc, "descr", "Checks mutexes");
#ifdef __NetBSD__
#if defined(__powerpc__)
atf_tc_set_md_var(tc, "timeout", "40");
#endif
#endif
}
ATF_TC_BODY(mutex2, tc)
{
int count, count2;
#ifdef __FreeBSD__
int num_increments;
#endif
pthread_t new;
void *joinval;
printf("1: Mutex-test 2\n");
#ifdef __NetBSD__
#if defined(__powerpc__)
atf_tc_expect_timeout("PR port-powerpc/44387");
#endif
#endif
PTHREAD_REQUIRE(pthread_mutex_init(&mutex, NULL));
global_x = 0;
#ifdef __FreeBSD__
num_increments = count = count2 = 1000;
if (getenv("NUM_ITERATIONS") != NULL) {
num_increments = count = count2 =
MIN(INT_MAX, strtoul(getenv("NUM_ITERATIONS"), NULL, 10));
}
printf("Will use %d iterations\n", num_increments);
#else
count = count2 = 10000000;
#endif
PTHREAD_REQUIRE(mutex_lock(&mutex, &ts_lengthy));
#ifdef __FreeBSD__
thread2_started = false;
#endif
PTHREAD_REQUIRE(pthread_create(&new, NULL, mutex2_threadfunc, &count2));
printf("1: Thread %p\n", pthread_self());
#ifdef __FreeBSD__
while (!thread2_started) {
/* Wait for thread 2 to start to increase chance of race */
}
printf("1: Unlocking to start increment loop %p\n", pthread_self());
#endif
PTHREAD_REQUIRE(pthread_mutex_unlock(&mutex));
while (count--) {
PTHREAD_REQUIRE(mutex_lock(&mutex, &ts_lengthy));
#ifdef __FreeBSD__
global_x = increment(global_x);
#else
global_x++;
#endif
PTHREAD_REQUIRE(pthread_mutex_unlock(&mutex));
}
PTHREAD_REQUIRE(pthread_join(new, &joinval));
PTHREAD_REQUIRE(mutex_lock(&mutex, &ts_lengthy));
printf("1: Thread joined. X was %d. Return value (long) was %ld\n",
global_x, (long)joinval);
#ifdef __FreeBSD__
ATF_REQUIRE_EQ_MSG(count, -1, "%d", count);
ATF_REQUIRE_EQ_MSG((long)joinval, -1, "%ld", (long)joinval);
ATF_REQUIRE_EQ_MSG(global_x, num_increments * 2, "%d vs %d", global_x,
num_increments * 2);
#else
ATF_REQUIRE_EQ(global_x, 20000000);
#endif
#ifdef __NetBSD__
#if defined(__powerpc__)
/* XXX force a timeout in ppc case since an un-triggered race
otherwise looks like a "failure" */
/* We sleep for longer than the timeout to make ATF not
complain about unexpected success */
sleep(41);
#endif
#endif
}
#ifdef __FreeBSD__
static volatile bool thread3_started = false;
#endif
static void *
mutex3_threadfunc(void *arg)
{
long count = *(int *)arg;
#ifdef __FreeBSD__
thread3_started = true;
#endif
printf("2: Second thread (%p). Count is %ld\n", pthread_self(), count);
while (count--) {
PTHREAD_REQUIRE(mutex_lock(&static_mutex, &ts_lengthy));
#ifdef __FreeBSD__
global_x = increment(global_x);
#else
global_x++;
#endif
PTHREAD_REQUIRE(pthread_mutex_unlock(&static_mutex));
}
return (void *)count;
}
ATF_TC(mutex3);
ATF_TC_HEAD(mutex3, tc)
{
atf_tc_set_md_var(tc, "descr", "Checks mutexes using a static "
"initializer");
#ifdef __NetBSD__
#if defined(__powerpc__)
atf_tc_set_md_var(tc, "timeout", "40");
#endif
#endif
}
ATF_TC_BODY(mutex3, tc)
{
int count, count2;
#ifdef __FreeBSD__
int num_increments;
#endif
pthread_t new;
void *joinval;
printf("1: Mutex-test 3\n");
#ifdef __NetBSD__
#if defined(__powerpc__)
atf_tc_expect_timeout("PR port-powerpc/44387");
#endif
#endif
global_x = 0;
#ifdef __FreeBSD__
num_increments = count = count2 = 1000;
if (getenv("NUM_ITERATIONS") != NULL) {
num_increments = count = count2 =
MIN(INT_MAX, strtoul(getenv("NUM_ITERATIONS"), NULL, 10));
}
printf("Will use %d iterations\n", num_increments);
#else
count = count2 = 10000000;
#endif
PTHREAD_REQUIRE(mutex_lock(&static_mutex, &ts_lengthy));
PTHREAD_REQUIRE(pthread_create(&new, NULL, mutex3_threadfunc, &count2));
printf("1: Thread %p\n", pthread_self());
#ifdef __FreeBSD__
while (!thread3_started) {
/* Wait for thread 3 to start to increase chance of race */
}
printf("1: Unlocking to start increment loop %p\n", pthread_self());
#endif
PTHREAD_REQUIRE(pthread_mutex_unlock(&static_mutex));
while (count--) {
PTHREAD_REQUIRE(mutex_lock(&static_mutex, &ts_lengthy));
#ifdef __FreeBSD__
global_x = increment(global_x);
#else
global_x++;
#endif
PTHREAD_REQUIRE(pthread_mutex_unlock(&static_mutex));
}
PTHREAD_REQUIRE(pthread_join(new, &joinval));
PTHREAD_REQUIRE(mutex_lock(&static_mutex, &ts_lengthy));
printf("1: Thread joined. X was %d. Return value (long) was %ld\n",
global_x, (long)joinval);
#ifdef __FreeBSD__
ATF_REQUIRE_EQ_MSG(count, -1, "%d", count);
ATF_REQUIRE_EQ_MSG((long)joinval, -1, "%ld", (long)joinval);
ATF_REQUIRE_EQ_MSG(global_x, num_increments * 2, "%d vs %d", global_x,
num_increments * 2);
#else
ATF_REQUIRE_EQ(global_x, 20000000);
#endif
#ifdef __NetBSD__
#if defined(__powerpc__)
/* XXX force a timeout in ppc case since an un-triggered race
otherwise looks like a "failure" */
/* We sleep for longer than the timeout to make ATF not
complain about unexpected success */
sleep(41);
#endif
#endif
}
static void *
mutex4_threadfunc(void *arg)
{
int *param;
printf("2: Second thread.\n");
param = arg;
printf("2: Locking mutex\n");
PTHREAD_REQUIRE(mutex_lock(&mutex, &ts_lengthy));
printf("2: Got mutex. *param = %d\n", *param);
(*param)++;
PTHREAD_REQUIRE(pthread_mutex_unlock(&mutex));
return param;
}
ATF_TC(mutex4);
ATF_TC_HEAD(mutex4, tc)
{
atf_tc_set_md_var(tc, "descr", "Checks mutexes");
}
ATF_TC_BODY(mutex4, tc)
{
int x;
pthread_t new;
pthread_mutexattr_t mattr;
void *joinval;
printf("1: Mutex-test 4\n");
PTHREAD_REQUIRE(pthread_mutexattr_init(&mattr));
PTHREAD_REQUIRE(pthread_mutexattr_settype(&mattr, PTHREAD_MUTEX_RECURSIVE));
PTHREAD_REQUIRE(pthread_mutex_init(&mutex, &mattr));
PTHREAD_REQUIRE(pthread_mutexattr_destroy(&mattr));
x = 1;
PTHREAD_REQUIRE(mutex_lock(&mutex, &ts_lengthy));
PTHREAD_REQUIRE(pthread_create(&new, NULL, mutex4_threadfunc, &x));
printf("1: Before recursively acquiring the mutex.\n");
PTHREAD_REQUIRE(mutex_lock(&mutex, &ts_lengthy));
printf("1: Before releasing the mutex once.\n");
sleep(2);
PTHREAD_REQUIRE(pthread_mutex_unlock(&mutex));
printf("1: After releasing the mutex once.\n");
x = 20;
printf("1: Before releasing the mutex twice.\n");
sleep(2);
PTHREAD_REQUIRE(pthread_mutex_unlock(&mutex));
printf("1: After releasing the mutex twice.\n");
PTHREAD_REQUIRE(pthread_join(new, &joinval));
PTHREAD_REQUIRE(mutex_lock(&mutex, &ts_lengthy));
printf("1: Thread joined. X was %d. Return value (int) was %d\n",
x, *(int *)joinval);
ATF_REQUIRE_EQ(x, 21);
ATF_REQUIRE_EQ(*(int *)joinval, 21);
PTHREAD_REQUIRE(pthread_mutex_unlock(&mutex));
}
#ifdef __NetBSD__
static pthread_mutexattr_t attr5;
static pthread_mutex_t mutex5;
static int min_fifo_prio, max_fifo_prio;
static void *
child_func(void* arg)
{
int res;
printf("child is waiting\n");
res = _sched_protect(-2);
ATF_REQUIRE_EQ_MSG(res, -1, "sched_protect returned %d", res);
ATF_REQUIRE_EQ(errno, ENOENT);
PTHREAD_REQUIRE(mutex_lock(&mutex5, &ts_lengthy));
printf("child is owning resource\n");
res = _sched_protect(-2);
ATF_REQUIRE_EQ(res, max_fifo_prio);
PTHREAD_REQUIRE(pthread_mutex_unlock(&mutex5));
printf("child is done\n");
return 0;
}
ATF_TC(mutex5);
ATF_TC_HEAD(mutex5, tc)
{
atf_tc_set_md_var(tc, "descr", "Checks mutexes for priority setting");
atf_tc_set_md_var(tc, "require.user", "root");
}
ATF_TC_BODY(mutex5, tc)
{
int res;
struct sched_param param;
pthread_t child;
min_fifo_prio = sched_get_priority_min(SCHED_FIFO);
max_fifo_prio = sched_get_priority_max(SCHED_FIFO);
printf("min prio for FIFO = %d\n", min_fifo_prio);
param.sched_priority = min_fifo_prio;
/* = 0 OTHER, 1 FIFO, 2 RR, -1 NONE */
res = sched_setscheduler(getpid(), SCHED_FIFO, &param);
printf("previous policy used = %d\n", res);
res = sched_getscheduler(getpid());
ATF_REQUIRE_EQ_MSG(res, SCHED_FIFO, "sched %d != FIFO %d", res,
SCHED_FIFO);
PTHREAD_REQUIRE(pthread_mutexattr_init(&attr5));
PTHREAD_REQUIRE(pthread_mutexattr_setprotocol(&attr5,
PTHREAD_PRIO_PROTECT));
PTHREAD_REQUIRE(pthread_mutexattr_setprioceiling(&attr5,
max_fifo_prio));
PTHREAD_REQUIRE(pthread_mutex_init(&mutex5, &attr5));
PTHREAD_REQUIRE(mutex_lock(&mutex5, &ts_lengthy));
printf("enter critical section for main\n");
PTHREAD_REQUIRE(pthread_create(&child, NULL, child_func, NULL));
printf("main starts to sleep\n");
sleep(10);
printf("main completes\n");
PTHREAD_REQUIRE(pthread_mutex_unlock(&mutex5));
PTHREAD_REQUIRE(pthread_join(child, NULL));
}
static pthread_mutex_t mutex6;
static int start = 0;
static uintmax_t high_cnt = 0, low_cnt = 0, MAX_LOOP = 100000000;
static void *
high_prio(void* arg)
{
struct sched_param param;
int policy;
param.sched_priority = min_fifo_prio + 10;
pthread_t childid = pthread_self();
PTHREAD_REQUIRE(pthread_setschedparam(childid, 1, &param));
PTHREAD_REQUIRE(pthread_getschedparam(childid, &policy, &param));
printf("high protect = %d, prio = %d\n",
_sched_protect(-2), param.sched_priority);
ATF_REQUIRE_EQ(policy, 1);
printf("high prio = %d\n", param.sched_priority);
sleep(1);
long tmp = 0;
for (int i = 0; i < 20; i++) {
while (high_cnt < MAX_LOOP) {
tmp += (123456789 % 1234) * (987654321 % 54321);
high_cnt += 1;
}
high_cnt = 0;
sleep(1);
}
PTHREAD_REQUIRE(mutex_lock(&mutex6, &ts_lengthy));
if (start == 0) start = 2;
PTHREAD_REQUIRE(pthread_mutex_unlock(&mutex6));
return 0;
}
static void *
low_prio(void* arg)
{
struct sched_param param;
int policy;
param.sched_priority = min_fifo_prio;
pthread_t childid = pthread_self();
int res = _sched_protect(max_fifo_prio);
ATF_REQUIRE_EQ(res, 0);
PTHREAD_REQUIRE(pthread_setschedparam(childid, 1, &param));
PTHREAD_REQUIRE(pthread_getschedparam(childid, &policy, &param));
printf("low protect = %d, prio = %d\n", _sched_protect(-2),
param.sched_priority);
ATF_REQUIRE_EQ(policy, 1);
printf("low prio = %d\n", param.sched_priority);
sleep(1);
long tmp = 0;
for (int i = 0; i < 20; i++) {
while (low_cnt < MAX_LOOP) {
tmp += (123456789 % 1234) * (987654321 % 54321);
low_cnt += 1;
}
low_cnt = 0;
sleep(1);
}
PTHREAD_REQUIRE(mutex_lock(&mutex6, &ts_lengthy));
if (start == 0)
start = 1;
PTHREAD_REQUIRE(pthread_mutex_unlock(&mutex6));
return 0;
}
ATF_TC(mutex6);
ATF_TC_HEAD(mutex6, tc)
{
atf_tc_set_md_var(tc, "descr",
"Checks scheduling for priority ceiling");
atf_tc_set_md_var(tc, "require.user", "root");
}
/*
* 1. main thread sets itself to be a realtime task and launched two tasks,
* one has higher priority and the other has lower priority.
* 2. each child thread(low and high priority thread) sets its scheduler and
* priority.
* 3. each child thread did several rounds of computation, after each round it
* sleep 1 second.
* 4. the child thread with low priority will call _sched_protect to increase
* its protect priority.
* 5. We verify the thread with low priority runs first.
*
* Why does it work? From the main thread, we launched the high
* priority thread first. This gives this thread the benefit of
* starting first. The low priority thread did not call _sched_protect(2).
* The high priority thread should finish the task first. After each
* round of computation, we call sleep, to put the task into the
* sleep queue, and wake up again after the timer expires. This
* gives the scheduler the chance to decide which task to run. So,
* the thread with real high priority will always block the thread
* with real low priority.
*
*/
ATF_TC_BODY(mutex6, tc)
{
struct sched_param param;
int res;
pthread_t high, low;
min_fifo_prio = sched_get_priority_min(SCHED_FIFO);
max_fifo_prio = sched_get_priority_max(SCHED_FIFO);
PTHREAD_REQUIRE(pthread_mutex_init(&mutex, NULL));
printf("min_fifo_prio = %d, max_fifo_info = %d\n", min_fifo_prio,
max_fifo_prio);
param.sched_priority = min_fifo_prio;
res = sched_setscheduler(getpid(), SCHED_FIFO, &param);
printf("previous policy used = %d\n", res);
res = sched_getscheduler(getpid());
ATF_REQUIRE_EQ(res, 1);
PTHREAD_REQUIRE(pthread_create(&high, NULL, high_prio, NULL));
PTHREAD_REQUIRE(pthread_create(&low, NULL, low_prio, NULL));
sleep(5);
PTHREAD_REQUIRE(pthread_join(low, NULL));
PTHREAD_REQUIRE(pthread_join(high, NULL));
ATF_REQUIRE_EQ(start, 1);
}
#endif
ATF_TC(mutexattr1);
ATF_TC_HEAD(mutexattr1, tc)
{
atf_tc_set_md_var(tc, "descr", "Checks mutexattr");
}
ATF_TC_BODY(mutexattr1, tc)
{
pthread_mutexattr_t mattr;
int protocol, target;
PTHREAD_REQUIRE(pthread_mutexattr_init(&mattr));
target = PTHREAD_PRIO_NONE;
PTHREAD_REQUIRE(pthread_mutexattr_setprotocol(&mattr, target));
PTHREAD_REQUIRE(pthread_mutexattr_getprotocol(&mattr, &protocol));
ATF_REQUIRE_EQ(protocol, target);
/*
target = PTHREAD_PRIO_INHERIT;
PTHREAD_REQUIRE(pthread_mutexattr_setprotocol(&mattr, target));
PTHREAD_REQUIRE(pthread_mutexattr_getprotocol(&mattr, &protocol));
ATF_REQUIRE_EQ(protocol, target);
*/
target = PTHREAD_PRIO_PROTECT;
PTHREAD_REQUIRE(pthread_mutexattr_setprotocol(&mattr, target));
PTHREAD_REQUIRE(pthread_mutexattr_getprotocol(&mattr, &protocol));
ATF_REQUIRE_EQ(protocol, target);
}
ATF_TC(mutexattr2);
ATF_TC_HEAD(mutexattr2, tc)
{
atf_tc_set_md_var(tc, "descr", "Checks mutexattr");
}
ATF_TC_BODY(mutexattr2, tc)
{
pthread_mutexattr_t mattr;
#ifdef __FreeBSD__
atf_tc_expect_fail("fails on i == 0 with: "
"pthread_mutexattr_setprioceiling(&mattr, i): Invalid argument "
"-- PR # 211802");
#endif
PTHREAD_REQUIRE(pthread_mutexattr_init(&mattr));
int max_prio = sched_get_priority_max(SCHED_FIFO);
int min_prio = sched_get_priority_min(SCHED_FIFO);
for (int i = min_prio; i <= max_prio; i++) {
int prioceiling;
int protocol;
PTHREAD_REQUIRE(pthread_mutexattr_getprotocol(&mattr,
&protocol));
printf("priority: %d\nprotocol: %d\n", i, protocol);
PTHREAD_REQUIRE(pthread_mutexattr_setprioceiling(&mattr, i));
PTHREAD_REQUIRE(pthread_mutexattr_getprioceiling(&mattr,
&prioceiling));
printf("prioceiling: %d\n", prioceiling);
ATF_REQUIRE_EQ(i, prioceiling);
}
}
#ifdef TIMEDMUTEX
ATF_TC(timedmutex1);
ATF_TC_HEAD(timedmutex1, tc)
{
atf_tc_set_md_var(tc, "descr", "Checks timeout on selflock");
}
ATF_TC_BODY(timedmutex1, tc)
{
printf("Timed mutex-test 1\n");
PTHREAD_REQUIRE(pthread_mutex_init(&mutex, NULL));
printf("Before acquiring mutex\n");
PTHREAD_REQUIRE(pthread_mutex_lock(&mutex));
printf("Before endeavor to reacquire timed-mutex (timeout expected)\n");
PTHREAD_REQUIRE_STATUS(mutex_lock(&mutex, &ts_shortlived),
ETIMEDOUT);
printf("Unlocking mutex\n");
PTHREAD_REQUIRE(pthread_mutex_unlock(&mutex));
}
ATF_TC(timedmutex2);
ATF_TC_HEAD(timedmutex2, tc)
{
atf_tc_set_md_var(tc, "descr",
"Checks timeout on selflock with timedlock");
}
ATF_TC_BODY(timedmutex2, tc)
{
printf("Timed mutex-test 2\n");
PTHREAD_REQUIRE(pthread_mutex_init(&mutex, NULL));
printf("Before acquiring mutex with timedlock\n");
PTHREAD_REQUIRE(mutex_lock(&mutex, &ts_lengthy));
printf("Before endeavor to reacquire timed-mutex (timeout expected)\n");
PTHREAD_REQUIRE_STATUS(mutex_lock(&mutex, &ts_shortlived),
ETIMEDOUT);
printf("Unlocking mutex\n");
PTHREAD_REQUIRE(pthread_mutex_unlock(&mutex));
}
ATF_TC(timedmutex3);
ATF_TC_HEAD(timedmutex3, tc)
{
atf_tc_set_md_var(tc, "descr",
"Checks timeout on selflock in a new thread");
}
static void *
timedmtx_thrdfunc(void *arg)
{
printf("Before endeavor to reacquire timed-mutex (timeout expected)\n");
PTHREAD_REQUIRE_STATUS(mutex_lock(&mutex, &ts_shortlived),
ETIMEDOUT);
return NULL;
}
ATF_TC_BODY(timedmutex3, tc)
{
pthread_t new;
printf("Timed mutex-test 3\n");
PTHREAD_REQUIRE(pthread_mutex_init(&mutex, NULL));
printf("Before acquiring mutex with timedlock\n");
PTHREAD_REQUIRE(pthread_mutex_lock(&mutex));
printf("Before creating new thread\n");
PTHREAD_REQUIRE(pthread_create(&new, NULL, timedmtx_thrdfunc, NULL));
printf("Before joining the mutex\n");
PTHREAD_REQUIRE(pthread_join(new, NULL));
printf("Unlocking mutex\n");
PTHREAD_REQUIRE(pthread_mutex_unlock(&mutex));
}
ATF_TC(timedmutex4);
ATF_TC_HEAD(timedmutex4, tc)
{
atf_tc_set_md_var(tc, "descr",
"Checks timeout on selflock with timedlock in a new thread");
}
ATF_TC_BODY(timedmutex4, tc)
{
pthread_t new;
printf("Timed mutex-test 4\n");
PTHREAD_REQUIRE(pthread_mutex_init(&mutex, NULL));
printf("Before acquiring mutex with timedlock\n");
PTHREAD_REQUIRE(mutex_lock(&mutex, &ts_lengthy));
printf("Before creating new thread\n");
PTHREAD_REQUIRE(pthread_create(&new, NULL, timedmtx_thrdfunc, NULL));
printf("Before joining the mutex\n");
PTHREAD_REQUIRE(pthread_join(new, NULL));
printf("Unlocking mutex\n");
PTHREAD_REQUIRE(pthread_mutex_unlock(&mutex));
}
#endif
ATF_TP_ADD_TCS(tp)
{
ATF_TP_ADD_TC(tp, mutex1);
ATF_TP_ADD_TC(tp, mutex2);
ATF_TP_ADD_TC(tp, mutex3);
ATF_TP_ADD_TC(tp, mutex4);
#ifdef __NetBSD__
ATF_TP_ADD_TC(tp, mutex5);
ATF_TP_ADD_TC(tp, mutex6);
#endif
ATF_TP_ADD_TC(tp, mutexattr1);
ATF_TP_ADD_TC(tp, mutexattr2);
#ifdef TIMEDMUTEX
ATF_TP_ADD_TC(tp, timedmutex1);
ATF_TP_ADD_TC(tp, timedmutex2);
ATF_TP_ADD_TC(tp, timedmutex3);
ATF_TP_ADD_TC(tp, timedmutex4);
#endif
return atf_no_error();
}