2021-09-04 15:54:17 -04:00

2168 lines
58 KiB
C

/*-
* Copyright (C) 2012 Intel Corporation
* All rights reserved.
* Copyright (C) 2018 Alexander Motin <mav@FreeBSD.org>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_ddb.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/conf.h>
#include <sys/domainset.h>
#include <sys/fail.h>
#include <sys/ioccom.h>
#include <sys/kernel.h>
#include <sys/ktr.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/module.h>
#include <sys/mutex.h>
#include <sys/rman.h>
#include <sys/sbuf.h>
#include <sys/smp.h>
#include <sys/sysctl.h>
#include <sys/taskqueue.h>
#include <sys/time.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <machine/stdarg.h>
#ifdef DDB
#include <ddb/ddb.h>
#endif
#include "ioat.h"
#include "ioat_hw.h"
#include "ioat_internal.h"
#ifndef BUS_SPACE_MAXADDR_40BIT
#define BUS_SPACE_MAXADDR_40BIT MIN(BUS_SPACE_MAXADDR, 0xFFFFFFFFFFULL)
#endif
#ifndef BUS_SPACE_MAXADDR_46BIT
#define BUS_SPACE_MAXADDR_46BIT MIN(BUS_SPACE_MAXADDR, 0x3FFFFFFFFFFFULL)
#endif
static int ioat_modevent(module_t mod, int type, void *data);
static int ioat_probe(device_t device);
static int ioat_attach(device_t device);
static int ioat_detach(device_t device);
static int ioat_setup_intr(struct ioat_softc *ioat);
static int ioat_teardown_intr(struct ioat_softc *ioat);
static int ioat3_attach(device_t device);
static int ioat_start_channel(struct ioat_softc *ioat);
static int ioat_map_pci_bar(struct ioat_softc *ioat);
static void ioat_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg,
int error);
static void ioat_interrupt_handler(void *arg);
static boolean_t ioat_model_resets_msix(struct ioat_softc *ioat);
static int chanerr_to_errno(uint32_t);
static void ioat_process_events(struct ioat_softc *ioat, boolean_t intr);
static inline uint32_t ioat_get_active(struct ioat_softc *ioat);
static inline uint32_t ioat_get_ring_space(struct ioat_softc *ioat);
static void ioat_free_ring(struct ioat_softc *, uint32_t size,
struct ioat_descriptor *);
static int ioat_reserve_space(struct ioat_softc *, uint32_t, int mflags);
static union ioat_hw_descriptor *ioat_get_descriptor(struct ioat_softc *,
uint32_t index);
static struct ioat_descriptor *ioat_get_ring_entry(struct ioat_softc *,
uint32_t index);
static void ioat_halted_debug(struct ioat_softc *, uint32_t);
static void ioat_poll_timer_callback(void *arg);
static void dump_descriptor(void *hw_desc);
static void ioat_submit_single(struct ioat_softc *ioat);
static void ioat_comp_update_map(void *arg, bus_dma_segment_t *seg, int nseg,
int error);
static int ioat_reset_hw(struct ioat_softc *ioat);
static void ioat_reset_hw_task(void *, int);
static void ioat_setup_sysctl(device_t device);
static int sysctl_handle_reset(SYSCTL_HANDLER_ARGS);
static void ioat_get(struct ioat_softc *);
static void ioat_put(struct ioat_softc *);
static void ioat_drain_locked(struct ioat_softc *);
#define ioat_log_message(v, ...) do { \
if ((v) <= g_ioat_debug_level) { \
device_printf(ioat->device, __VA_ARGS__); \
} \
} while (0)
MALLOC_DEFINE(M_IOAT, "ioat", "ioat driver memory allocations");
SYSCTL_NODE(_hw, OID_AUTO, ioat, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
"ioat node");
static int g_force_legacy_interrupts;
SYSCTL_INT(_hw_ioat, OID_AUTO, force_legacy_interrupts, CTLFLAG_RDTUN,
&g_force_legacy_interrupts, 0, "Set to non-zero to force MSI-X disabled");
int g_ioat_debug_level = 0;
SYSCTL_INT(_hw_ioat, OID_AUTO, debug_level, CTLFLAG_RWTUN, &g_ioat_debug_level,
0, "Set log level (0-3) for ioat(4). Higher is more verbose.");
unsigned g_ioat_ring_order = 13;
SYSCTL_UINT(_hw_ioat, OID_AUTO, ring_order, CTLFLAG_RDTUN, &g_ioat_ring_order,
0, "Set IOAT ring order. (1 << this) == ring size.");
/*
* OS <-> Driver interface structures
*/
static device_method_t ioat_pci_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, ioat_probe),
DEVMETHOD(device_attach, ioat_attach),
DEVMETHOD(device_detach, ioat_detach),
DEVMETHOD_END
};
static driver_t ioat_pci_driver = {
"ioat",
ioat_pci_methods,
sizeof(struct ioat_softc),
};
static devclass_t ioat_devclass;
DRIVER_MODULE(ioat, pci, ioat_pci_driver, ioat_devclass, ioat_modevent, NULL);
MODULE_VERSION(ioat, 1);
/*
* Private data structures
*/
static struct ioat_softc *ioat_channel[IOAT_MAX_CHANNELS];
static unsigned ioat_channel_index = 0;
SYSCTL_UINT(_hw_ioat, OID_AUTO, channels, CTLFLAG_RD, &ioat_channel_index, 0,
"Number of IOAT channels attached");
static struct mtx ioat_list_mtx;
MTX_SYSINIT(ioat_list_mtx, &ioat_list_mtx, "ioat list mtx", MTX_DEF);
static struct _pcsid
{
u_int32_t type;
const char *desc;
} pci_ids[] = {
{ 0x34308086, "TBG IOAT Ch0" },
{ 0x34318086, "TBG IOAT Ch1" },
{ 0x34328086, "TBG IOAT Ch2" },
{ 0x34338086, "TBG IOAT Ch3" },
{ 0x34298086, "TBG IOAT Ch4" },
{ 0x342a8086, "TBG IOAT Ch5" },
{ 0x342b8086, "TBG IOAT Ch6" },
{ 0x342c8086, "TBG IOAT Ch7" },
{ 0x37108086, "JSF IOAT Ch0" },
{ 0x37118086, "JSF IOAT Ch1" },
{ 0x37128086, "JSF IOAT Ch2" },
{ 0x37138086, "JSF IOAT Ch3" },
{ 0x37148086, "JSF IOAT Ch4" },
{ 0x37158086, "JSF IOAT Ch5" },
{ 0x37168086, "JSF IOAT Ch6" },
{ 0x37178086, "JSF IOAT Ch7" },
{ 0x37188086, "JSF IOAT Ch0 (RAID)" },
{ 0x37198086, "JSF IOAT Ch1 (RAID)" },
{ 0x3c208086, "SNB IOAT Ch0" },
{ 0x3c218086, "SNB IOAT Ch1" },
{ 0x3c228086, "SNB IOAT Ch2" },
{ 0x3c238086, "SNB IOAT Ch3" },
{ 0x3c248086, "SNB IOAT Ch4" },
{ 0x3c258086, "SNB IOAT Ch5" },
{ 0x3c268086, "SNB IOAT Ch6" },
{ 0x3c278086, "SNB IOAT Ch7" },
{ 0x3c2e8086, "SNB IOAT Ch0 (RAID)" },
{ 0x3c2f8086, "SNB IOAT Ch1 (RAID)" },
{ 0x0e208086, "IVB IOAT Ch0" },
{ 0x0e218086, "IVB IOAT Ch1" },
{ 0x0e228086, "IVB IOAT Ch2" },
{ 0x0e238086, "IVB IOAT Ch3" },
{ 0x0e248086, "IVB IOAT Ch4" },
{ 0x0e258086, "IVB IOAT Ch5" },
{ 0x0e268086, "IVB IOAT Ch6" },
{ 0x0e278086, "IVB IOAT Ch7" },
{ 0x0e2e8086, "IVB IOAT Ch0 (RAID)" },
{ 0x0e2f8086, "IVB IOAT Ch1 (RAID)" },
{ 0x2f208086, "HSW IOAT Ch0" },
{ 0x2f218086, "HSW IOAT Ch1" },
{ 0x2f228086, "HSW IOAT Ch2" },
{ 0x2f238086, "HSW IOAT Ch3" },
{ 0x2f248086, "HSW IOAT Ch4" },
{ 0x2f258086, "HSW IOAT Ch5" },
{ 0x2f268086, "HSW IOAT Ch6" },
{ 0x2f278086, "HSW IOAT Ch7" },
{ 0x2f2e8086, "HSW IOAT Ch0 (RAID)" },
{ 0x2f2f8086, "HSW IOAT Ch1 (RAID)" },
{ 0x0c508086, "BWD IOAT Ch0" },
{ 0x0c518086, "BWD IOAT Ch1" },
{ 0x0c528086, "BWD IOAT Ch2" },
{ 0x0c538086, "BWD IOAT Ch3" },
{ 0x6f508086, "BDXDE IOAT Ch0" },
{ 0x6f518086, "BDXDE IOAT Ch1" },
{ 0x6f528086, "BDXDE IOAT Ch2" },
{ 0x6f538086, "BDXDE IOAT Ch3" },
{ 0x6f208086, "BDX IOAT Ch0" },
{ 0x6f218086, "BDX IOAT Ch1" },
{ 0x6f228086, "BDX IOAT Ch2" },
{ 0x6f238086, "BDX IOAT Ch3" },
{ 0x6f248086, "BDX IOAT Ch4" },
{ 0x6f258086, "BDX IOAT Ch5" },
{ 0x6f268086, "BDX IOAT Ch6" },
{ 0x6f278086, "BDX IOAT Ch7" },
{ 0x6f2e8086, "BDX IOAT Ch0 (RAID)" },
{ 0x6f2f8086, "BDX IOAT Ch1 (RAID)" },
{ 0x20218086, "SKX IOAT" },
};
MODULE_PNP_INFO("W32:vendor/device;D:#", pci, ioat, pci_ids,
nitems(pci_ids));
/*
* OS <-> Driver linkage functions
*/
static int
ioat_modevent(module_t mod __unused, int type, void *data __unused)
{
switch(type) {
case MOD_LOAD:
break;
case MOD_UNLOAD:
ioat_test_detach();
break;
case MOD_SHUTDOWN:
break;
default:
return (EOPNOTSUPP);
}
return (0);
}
static int
ioat_probe(device_t device)
{
struct _pcsid *ep;
u_int32_t type;
type = pci_get_devid(device);
for (ep = pci_ids; ep < &pci_ids[nitems(pci_ids)]; ep++) {
if (ep->type == type) {
device_set_desc(device, ep->desc);
return (0);
}
}
return (ENXIO);
}
static int
ioat_attach(device_t device)
{
struct ioat_softc *ioat;
int error, i;
ioat = DEVICE2SOFTC(device);
ioat->device = device;
if (bus_get_domain(device, &ioat->domain) != 0)
ioat->domain = 0;
ioat->cpu = CPU_FFS(&cpuset_domain[ioat->domain]) - 1;
if (ioat->cpu < 0)
ioat->cpu = CPU_FIRST();
error = ioat_map_pci_bar(ioat);
if (error != 0)
goto err;
ioat->version = ioat_read_cbver(ioat);
if (ioat->version < IOAT_VER_3_0) {
error = ENODEV;
goto err;
}
error = ioat3_attach(device);
if (error != 0)
goto err;
error = pci_enable_busmaster(device);
if (error != 0)
goto err;
error = ioat_setup_intr(ioat);
if (error != 0)
goto err;
error = ioat_reset_hw(ioat);
if (error != 0)
goto err;
ioat_process_events(ioat, FALSE);
ioat_setup_sysctl(device);
mtx_lock(&ioat_list_mtx);
for (i = 0; i < IOAT_MAX_CHANNELS; i++) {
if (ioat_channel[i] == NULL)
break;
}
if (i >= IOAT_MAX_CHANNELS) {
mtx_unlock(&ioat_list_mtx);
device_printf(device, "Too many I/OAT devices in system\n");
error = ENXIO;
goto err;
}
ioat->chan_idx = i;
ioat_channel[i] = ioat;
if (i >= ioat_channel_index)
ioat_channel_index = i + 1;
mtx_unlock(&ioat_list_mtx);
ioat_test_attach();
err:
if (error != 0)
ioat_detach(device);
return (error);
}
static inline int
ioat_bus_dmamap_destroy(struct ioat_softc *ioat, const char *func,
bus_dma_tag_t dmat, bus_dmamap_t map)
{
int error;
error = bus_dmamap_destroy(dmat, map);
if (error != 0) {
ioat_log_message(0,
"%s: bus_dmamap_destroy failed %d\n", func, error);
}
return (error);
}
static int
ioat_detach(device_t device)
{
struct ioat_softc *ioat;
int i, error;
ioat = DEVICE2SOFTC(device);
mtx_lock(&ioat_list_mtx);
ioat_channel[ioat->chan_idx] = NULL;
while (ioat_channel_index > 0 &&
ioat_channel[ioat_channel_index - 1] == NULL)
ioat_channel_index--;
mtx_unlock(&ioat_list_mtx);
taskqueue_drain(taskqueue_thread, &ioat->reset_task);
mtx_lock(&ioat->submit_lock);
ioat->quiescing = TRUE;
ioat->destroying = TRUE;
wakeup(&ioat->quiescing);
wakeup(&ioat->resetting);
ioat_drain_locked(ioat);
mtx_unlock(&ioat->submit_lock);
mtx_lock(&ioat->cleanup_lock);
while (ioat_get_active(ioat) > 0)
msleep(&ioat->tail, &ioat->cleanup_lock, 0, "ioat_drain", 1);
mtx_unlock(&ioat->cleanup_lock);
ioat_teardown_intr(ioat);
callout_drain(&ioat->poll_timer);
pci_disable_busmaster(device);
if (ioat->pci_resource != NULL)
bus_release_resource(device, SYS_RES_MEMORY,
ioat->pci_resource_id, ioat->pci_resource);
if (ioat->data_tag != NULL) {
for (i = 0; i < 1 << ioat->ring_size_order; i++) {
error = ioat_bus_dmamap_destroy(ioat, __func__,
ioat->data_tag, ioat->ring[i].src_dmamap);
if (error != 0)
return (error);
}
for (i = 0; i < 1 << ioat->ring_size_order; i++) {
error = ioat_bus_dmamap_destroy(ioat, __func__,
ioat->data_tag, ioat->ring[i].dst_dmamap);
if (error != 0)
return (error);
}
for (i = 0; i < 1 << ioat->ring_size_order; i++) {
error = ioat_bus_dmamap_destroy(ioat, __func__,
ioat->data_tag, ioat->ring[i].src2_dmamap);
if (error != 0)
return (error);
}
for (i = 0; i < 1 << ioat->ring_size_order; i++) {
error = ioat_bus_dmamap_destroy(ioat, __func__,
ioat->data_tag, ioat->ring[i].dst2_dmamap);
if (error != 0)
return (error);
}
bus_dma_tag_destroy(ioat->data_tag);
}
if (ioat->ring != NULL)
ioat_free_ring(ioat, 1 << ioat->ring_size_order, ioat->ring);
if (ioat->comp_update != NULL) {
bus_dmamap_unload(ioat->comp_update_tag, ioat->comp_update_map);
bus_dmamem_free(ioat->comp_update_tag, ioat->comp_update,
ioat->comp_update_map);
bus_dma_tag_destroy(ioat->comp_update_tag);
}
if (ioat->hw_desc_ring != NULL) {
bus_dmamap_unload(ioat->hw_desc_tag, ioat->hw_desc_map);
bus_dmamem_free(ioat->hw_desc_tag, ioat->hw_desc_ring,
ioat->hw_desc_map);
bus_dma_tag_destroy(ioat->hw_desc_tag);
}
return (0);
}
static int
ioat_teardown_intr(struct ioat_softc *ioat)
{
if (ioat->tag != NULL)
bus_teardown_intr(ioat->device, ioat->res, ioat->tag);
if (ioat->res != NULL)
bus_release_resource(ioat->device, SYS_RES_IRQ,
rman_get_rid(ioat->res), ioat->res);
pci_release_msi(ioat->device);
return (0);
}
static int
ioat_start_channel(struct ioat_softc *ioat)
{
struct ioat_dma_hw_descriptor *hw_desc;
struct ioat_descriptor *desc;
struct bus_dmadesc *dmadesc;
uint64_t status;
uint32_t chanerr;
int i;
ioat_acquire(&ioat->dmaengine);
/* Submit 'NULL' operation manually to avoid quiescing flag */
desc = ioat_get_ring_entry(ioat, ioat->head);
hw_desc = &ioat_get_descriptor(ioat, ioat->head)->dma;
dmadesc = &desc->bus_dmadesc;
dmadesc->callback_fn = NULL;
dmadesc->callback_arg = NULL;
hw_desc->u.control_raw = 0;
hw_desc->u.control_generic.op = IOAT_OP_COPY;
hw_desc->u.control_generic.completion_update = 1;
hw_desc->size = 8;
hw_desc->src_addr = 0;
hw_desc->dest_addr = 0;
hw_desc->u.control.null = 1;
ioat_submit_single(ioat);
ioat_release(&ioat->dmaengine);
for (i = 0; i < 100; i++) {
DELAY(1);
status = ioat_get_chansts(ioat);
if (is_ioat_idle(status))
return (0);
}
chanerr = ioat_read_4(ioat, IOAT_CHANERR_OFFSET);
ioat_log_message(0, "could not start channel: "
"status = %#jx error = %b\n", (uintmax_t)status, (int)chanerr,
IOAT_CHANERR_STR);
return (ENXIO);
}
/*
* Initialize Hardware
*/
static int
ioat3_attach(device_t device)
{
struct ioat_softc *ioat;
struct ioat_descriptor *ring;
struct ioat_dma_hw_descriptor *dma_hw_desc;
void *hw_desc;
bus_addr_t lowaddr;
size_t ringsz;
int i, num_descriptors;
int error;
uint8_t xfercap;
error = 0;
ioat = DEVICE2SOFTC(device);
ioat->capabilities = ioat_read_dmacapability(ioat);
ioat_log_message(0, "Capabilities: %b\n", (int)ioat->capabilities,
IOAT_DMACAP_STR);
xfercap = ioat_read_xfercap(ioat);
ioat->max_xfer_size = 1 << xfercap;
ioat->intrdelay_supported = (ioat_read_2(ioat, IOAT_INTRDELAY_OFFSET) &
IOAT_INTRDELAY_SUPPORTED) != 0;
if (ioat->intrdelay_supported)
ioat->intrdelay_max = IOAT_INTRDELAY_US_MASK;
/* TODO: need to check DCA here if we ever do XOR/PQ */
mtx_init(&ioat->submit_lock, "ioat_submit", NULL, MTX_DEF);
mtx_init(&ioat->cleanup_lock, "ioat_cleanup", NULL, MTX_DEF);
callout_init(&ioat->poll_timer, 1);
TASK_INIT(&ioat->reset_task, 0, ioat_reset_hw_task, ioat);
/* Establish lock order for Witness */
mtx_lock(&ioat->cleanup_lock);
mtx_lock(&ioat->submit_lock);
mtx_unlock(&ioat->submit_lock);
mtx_unlock(&ioat->cleanup_lock);
ioat->is_submitter_processing = FALSE;
if (ioat->version >= IOAT_VER_3_3)
lowaddr = BUS_SPACE_MAXADDR_48BIT;
else if (ioat->version >= IOAT_VER_3_2)
lowaddr = BUS_SPACE_MAXADDR_46BIT;
else
lowaddr = BUS_SPACE_MAXADDR_40BIT;
error = bus_dma_tag_create(bus_get_dma_tag(ioat->device),
sizeof(uint64_t), 0x0, lowaddr, BUS_SPACE_MAXADDR, NULL, NULL,
sizeof(uint64_t), 1, sizeof(uint64_t), 0, NULL, NULL,
&ioat->comp_update_tag);
if (error != 0)
return (error);
error = bus_dmamem_alloc(ioat->comp_update_tag,
(void **)&ioat->comp_update, BUS_DMA_ZERO | BUS_DMA_WAITOK,
&ioat->comp_update_map);
if (error != 0)
return (error);
error = bus_dmamap_load(ioat->comp_update_tag, ioat->comp_update_map,
ioat->comp_update, sizeof(uint64_t), ioat_comp_update_map, ioat,
BUS_DMA_NOWAIT);
if (error != 0)
return (error);
ioat->ring_size_order = g_ioat_ring_order;
num_descriptors = 1 << ioat->ring_size_order;
ringsz = sizeof(struct ioat_dma_hw_descriptor) * num_descriptors;
error = bus_dma_tag_create(bus_get_dma_tag(ioat->device),
2 * 1024 * 1024, 0x0, lowaddr, BUS_SPACE_MAXADDR, NULL, NULL,
ringsz, 1, ringsz, 0, NULL, NULL, &ioat->hw_desc_tag);
if (error != 0)
return (error);
error = bus_dmamem_alloc(ioat->hw_desc_tag, &hw_desc,
BUS_DMA_ZERO | BUS_DMA_WAITOK, &ioat->hw_desc_map);
if (error != 0)
return (error);
error = bus_dmamap_load(ioat->hw_desc_tag, ioat->hw_desc_map, hw_desc,
ringsz, ioat_dmamap_cb, &ioat->hw_desc_bus_addr, BUS_DMA_NOWAIT);
if (error)
return (error);
ioat->hw_desc_ring = hw_desc;
error = bus_dma_tag_create(bus_get_dma_tag(ioat->device),
1, 0, lowaddr, BUS_SPACE_MAXADDR, NULL, NULL,
ioat->max_xfer_size, 1, ioat->max_xfer_size, 0, NULL, NULL,
&ioat->data_tag);
if (error != 0)
return (error);
ioat->ring = malloc_domainset(num_descriptors * sizeof(*ring), M_IOAT,
DOMAINSET_PREF(ioat->domain), M_ZERO | M_WAITOK);
ring = ioat->ring;
for (i = 0; i < num_descriptors; i++) {
memset(&ring[i].bus_dmadesc, 0, sizeof(ring[i].bus_dmadesc));
ring[i].id = i;
error = bus_dmamap_create(ioat->data_tag, 0,
&ring[i].src_dmamap);
if (error != 0) {
ioat_log_message(0,
"%s: bus_dmamap_create failed %d\n", __func__,
error);
return (error);
}
error = bus_dmamap_create(ioat->data_tag, 0,
&ring[i].dst_dmamap);
if (error != 0) {
ioat_log_message(0,
"%s: bus_dmamap_create failed %d\n", __func__,
error);
return (error);
}
error = bus_dmamap_create(ioat->data_tag, 0,
&ring[i].src2_dmamap);
if (error != 0) {
ioat_log_message(0,
"%s: bus_dmamap_create failed %d\n", __func__,
error);
return (error);
}
error = bus_dmamap_create(ioat->data_tag, 0,
&ring[i].dst2_dmamap);
if (error != 0) {
ioat_log_message(0,
"%s: bus_dmamap_create failed %d\n", __func__,
error);
return (error);
}
}
for (i = 0; i < num_descriptors; i++) {
dma_hw_desc = &ioat->hw_desc_ring[i].dma;
dma_hw_desc->next = RING_PHYS_ADDR(ioat, i + 1);
}
ioat->tail = ioat->head = 0;
*ioat->comp_update = ioat->last_seen =
RING_PHYS_ADDR(ioat, ioat->tail - 1);
return (0);
}
static int
ioat_map_pci_bar(struct ioat_softc *ioat)
{
ioat->pci_resource_id = PCIR_BAR(0);
ioat->pci_resource = bus_alloc_resource_any(ioat->device,
SYS_RES_MEMORY, &ioat->pci_resource_id, RF_ACTIVE);
if (ioat->pci_resource == NULL) {
ioat_log_message(0, "unable to allocate pci resource\n");
return (ENODEV);
}
ioat->pci_bus_tag = rman_get_bustag(ioat->pci_resource);
ioat->pci_bus_handle = rman_get_bushandle(ioat->pci_resource);
return (0);
}
static void
ioat_comp_update_map(void *arg, bus_dma_segment_t *seg, int nseg, int error)
{
struct ioat_softc *ioat = arg;
KASSERT(error == 0, ("%s: error:%d", __func__, error));
ioat->comp_update_bus_addr = seg[0].ds_addr;
}
static void
ioat_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
{
bus_addr_t *baddr;
KASSERT(error == 0, ("%s: error:%d", __func__, error));
baddr = arg;
*baddr = segs->ds_addr;
}
/*
* Interrupt setup and handlers
*/
static int
ioat_setup_intr(struct ioat_softc *ioat)
{
uint32_t num_vectors;
int error;
boolean_t use_msix;
boolean_t force_legacy_interrupts;
use_msix = FALSE;
force_legacy_interrupts = FALSE;
if (!g_force_legacy_interrupts && pci_msix_count(ioat->device) >= 1) {
num_vectors = 1;
pci_alloc_msix(ioat->device, &num_vectors);
if (num_vectors == 1)
use_msix = TRUE;
}
if (use_msix) {
ioat->rid = 1;
ioat->res = bus_alloc_resource_any(ioat->device, SYS_RES_IRQ,
&ioat->rid, RF_ACTIVE);
} else {
ioat->rid = 0;
ioat->res = bus_alloc_resource_any(ioat->device, SYS_RES_IRQ,
&ioat->rid, RF_SHAREABLE | RF_ACTIVE);
}
if (ioat->res == NULL) {
ioat_log_message(0, "bus_alloc_resource failed\n");
return (ENOMEM);
}
ioat->tag = NULL;
error = bus_setup_intr(ioat->device, ioat->res, INTR_MPSAFE |
INTR_TYPE_MISC, NULL, ioat_interrupt_handler, ioat, &ioat->tag);
if (error != 0) {
ioat_log_message(0, "bus_setup_intr failed\n");
return (error);
}
ioat_write_intrctrl(ioat, IOAT_INTRCTRL_MASTER_INT_EN);
return (0);
}
static boolean_t
ioat_model_resets_msix(struct ioat_softc *ioat)
{
u_int32_t pciid;
pciid = pci_get_devid(ioat->device);
switch (pciid) {
/* BWD: */
case 0x0c508086:
case 0x0c518086:
case 0x0c528086:
case 0x0c538086:
/* BDXDE: */
case 0x6f508086:
case 0x6f518086:
case 0x6f528086:
case 0x6f538086:
return (TRUE);
}
return (FALSE);
}
static void
ioat_interrupt_handler(void *arg)
{
struct ioat_softc *ioat = arg;
ioat->stats.interrupts++;
ioat_process_events(ioat, TRUE);
}
static int
chanerr_to_errno(uint32_t chanerr)
{
if (chanerr == 0)
return (0);
if ((chanerr & (IOAT_CHANERR_XSADDERR | IOAT_CHANERR_XDADDERR)) != 0)
return (EFAULT);
if ((chanerr & (IOAT_CHANERR_RDERR | IOAT_CHANERR_WDERR)) != 0)
return (EIO);
/* This one is probably our fault: */
if ((chanerr & IOAT_CHANERR_NDADDERR) != 0)
return (EIO);
return (EIO);
}
static void
ioat_process_events(struct ioat_softc *ioat, boolean_t intr)
{
struct ioat_descriptor *desc;
struct bus_dmadesc *dmadesc;
uint64_t comp_update, status;
uint32_t completed, chanerr;
int error;
if (intr) {
mtx_lock(&ioat->cleanup_lock);
} else {
if (!mtx_trylock(&ioat->cleanup_lock))
return;
}
/*
* Don't run while the hardware is being reset. Reset is responsible
* for blocking new work and draining & completing existing work, so
* there is nothing to do until new work is queued after reset anyway.
*/
if (ioat->resetting_cleanup) {
mtx_unlock(&ioat->cleanup_lock);
return;
}
completed = 0;
comp_update = *ioat->comp_update;
status = comp_update & IOAT_CHANSTS_COMPLETED_DESCRIPTOR_MASK;
if (status < ioat->hw_desc_bus_addr ||
status >= ioat->hw_desc_bus_addr + (1 << ioat->ring_size_order) *
sizeof(struct ioat_generic_hw_descriptor))
panic("Bogus completion address %jx (channel %u)",
(uintmax_t)status, ioat->chan_idx);
if (status == ioat->last_seen) {
/*
* If we landed in process_events and nothing has been
* completed, check for a timeout due to channel halt.
*/
goto out;
}
CTR4(KTR_IOAT, "%s channel=%u hw_status=0x%lx last_seen=0x%lx",
__func__, ioat->chan_idx, comp_update, ioat->last_seen);
while (RING_PHYS_ADDR(ioat, ioat->tail - 1) != status) {
desc = ioat_get_ring_entry(ioat, ioat->tail);
dmadesc = &desc->bus_dmadesc;
CTR5(KTR_IOAT, "channel=%u completing desc idx %u (%p) ok cb %p(%p)",
ioat->chan_idx, ioat->tail, dmadesc, dmadesc->callback_fn,
dmadesc->callback_arg);
bus_dmamap_unload(ioat->data_tag, desc->src_dmamap);
bus_dmamap_unload(ioat->data_tag, desc->dst_dmamap);
bus_dmamap_unload(ioat->data_tag, desc->src2_dmamap);
bus_dmamap_unload(ioat->data_tag, desc->dst2_dmamap);
if (dmadesc->callback_fn != NULL)
dmadesc->callback_fn(dmadesc->callback_arg, 0);
completed++;
ioat->tail++;
}
CTR5(KTR_IOAT, "%s channel=%u head=%u tail=%u active=%u", __func__,
ioat->chan_idx, ioat->head, ioat->tail, ioat_get_active(ioat));
if (completed != 0) {
ioat->last_seen = RING_PHYS_ADDR(ioat, ioat->tail - 1);
ioat->stats.descriptors_processed += completed;
wakeup(&ioat->tail);
}
out:
ioat_write_chanctrl(ioat, IOAT_CHANCTRL_RUN);
mtx_unlock(&ioat->cleanup_lock);
/*
* The device doesn't seem to reliably push suspend/halt statuses to
* the channel completion memory address, so poll the device register
* here. For performance reasons skip it on interrupts, do it only
* on much more rare polling events.
*/
if (!intr)
comp_update = ioat_get_chansts(ioat) & IOAT_CHANSTS_STATUS;
if (!is_ioat_halted(comp_update) && !is_ioat_suspended(comp_update))
return;
ioat->stats.channel_halts++;
/*
* Fatal programming error on this DMA channel. Flush any outstanding
* work with error status and restart the engine.
*/
mtx_lock(&ioat->submit_lock);
ioat->quiescing = TRUE;
mtx_unlock(&ioat->submit_lock);
/*
* This is safe to do here because the submit queue is quiesced. We
* know that we will drain all outstanding events, so ioat_reset_hw
* can't deadlock. It is necessary to protect other ioat_process_event
* threads from racing ioat_reset_hw, reading an indeterminate hw
* state, and attempting to continue issuing completions.
*/
mtx_lock(&ioat->cleanup_lock);
ioat->resetting_cleanup = TRUE;
chanerr = ioat_read_4(ioat, IOAT_CHANERR_OFFSET);
if (1 <= g_ioat_debug_level)
ioat_halted_debug(ioat, chanerr);
ioat->stats.last_halt_chanerr = chanerr;
while (ioat_get_active(ioat) > 0) {
desc = ioat_get_ring_entry(ioat, ioat->tail);
dmadesc = &desc->bus_dmadesc;
CTR5(KTR_IOAT, "channel=%u completing desc idx %u (%p) err cb %p(%p)",
ioat->chan_idx, ioat->tail, dmadesc, dmadesc->callback_fn,
dmadesc->callback_arg);
if (dmadesc->callback_fn != NULL)
dmadesc->callback_fn(dmadesc->callback_arg,
chanerr_to_errno(chanerr));
ioat->tail++;
ioat->stats.descriptors_processed++;
ioat->stats.descriptors_error++;
}
CTR5(KTR_IOAT, "%s channel=%u head=%u tail=%u active=%u", __func__,
ioat->chan_idx, ioat->head, ioat->tail, ioat_get_active(ioat));
/* Clear error status */
ioat_write_4(ioat, IOAT_CHANERR_OFFSET, chanerr);
mtx_unlock(&ioat->cleanup_lock);
ioat_log_message(0, "Resetting channel to recover from error\n");
error = taskqueue_enqueue(taskqueue_thread, &ioat->reset_task);
KASSERT(error == 0,
("%s: taskqueue_enqueue failed: %d", __func__, error));
}
static void
ioat_reset_hw_task(void *ctx, int pending __unused)
{
struct ioat_softc *ioat;
int error;
ioat = ctx;
ioat_log_message(1, "%s: Resetting channel\n", __func__);
error = ioat_reset_hw(ioat);
KASSERT(error == 0, ("%s: reset failed: %d", __func__, error));
(void)error;
}
/*
* User API functions
*/
unsigned
ioat_get_nchannels(void)
{
return (ioat_channel_index);
}
bus_dmaengine_t
ioat_get_dmaengine(uint32_t index, int flags)
{
struct ioat_softc *ioat;
KASSERT((flags & ~(M_NOWAIT | M_WAITOK)) == 0,
("invalid flags: 0x%08x", flags));
KASSERT((flags & (M_NOWAIT | M_WAITOK)) != (M_NOWAIT | M_WAITOK),
("invalid wait | nowait"));
mtx_lock(&ioat_list_mtx);
if (index >= ioat_channel_index ||
(ioat = ioat_channel[index]) == NULL) {
mtx_unlock(&ioat_list_mtx);
return (NULL);
}
mtx_lock(&ioat->submit_lock);
mtx_unlock(&ioat_list_mtx);
if (ioat->destroying) {
mtx_unlock(&ioat->submit_lock);
return (NULL);
}
ioat_get(ioat);
if (ioat->quiescing) {
if ((flags & M_NOWAIT) != 0) {
ioat_put(ioat);
mtx_unlock(&ioat->submit_lock);
return (NULL);
}
while (ioat->quiescing && !ioat->destroying)
msleep(&ioat->quiescing, &ioat->submit_lock, 0, "getdma", 0);
if (ioat->destroying) {
ioat_put(ioat);
mtx_unlock(&ioat->submit_lock);
return (NULL);
}
}
mtx_unlock(&ioat->submit_lock);
return (&ioat->dmaengine);
}
void
ioat_put_dmaengine(bus_dmaengine_t dmaengine)
{
struct ioat_softc *ioat;
ioat = to_ioat_softc(dmaengine);
mtx_lock(&ioat->submit_lock);
ioat_put(ioat);
mtx_unlock(&ioat->submit_lock);
}
int
ioat_get_hwversion(bus_dmaengine_t dmaengine)
{
struct ioat_softc *ioat;
ioat = to_ioat_softc(dmaengine);
return (ioat->version);
}
size_t
ioat_get_max_io_size(bus_dmaengine_t dmaengine)
{
struct ioat_softc *ioat;
ioat = to_ioat_softc(dmaengine);
return (ioat->max_xfer_size);
}
uint32_t
ioat_get_capabilities(bus_dmaengine_t dmaengine)
{
struct ioat_softc *ioat;
ioat = to_ioat_softc(dmaengine);
return (ioat->capabilities);
}
int
ioat_get_domain(bus_dmaengine_t dmaengine, int *domain)
{
struct ioat_softc *ioat;
ioat = to_ioat_softc(dmaengine);
return (bus_get_domain(ioat->device, domain));
}
int
ioat_set_interrupt_coalesce(bus_dmaengine_t dmaengine, uint16_t delay)
{
struct ioat_softc *ioat;
ioat = to_ioat_softc(dmaengine);
if (!ioat->intrdelay_supported)
return (ENODEV);
if (delay > ioat->intrdelay_max)
return (ERANGE);
ioat_write_2(ioat, IOAT_INTRDELAY_OFFSET, delay);
ioat->cached_intrdelay =
ioat_read_2(ioat, IOAT_INTRDELAY_OFFSET) & IOAT_INTRDELAY_US_MASK;
return (0);
}
uint16_t
ioat_get_max_coalesce_period(bus_dmaengine_t dmaengine)
{
struct ioat_softc *ioat;
ioat = to_ioat_softc(dmaengine);
return (ioat->intrdelay_max);
}
void
ioat_acquire(bus_dmaengine_t dmaengine)
{
struct ioat_softc *ioat;
ioat = to_ioat_softc(dmaengine);
mtx_lock(&ioat->submit_lock);
CTR2(KTR_IOAT, "%s channel=%u", __func__, ioat->chan_idx);
ioat->acq_head = ioat->head;
}
int
ioat_acquire_reserve(bus_dmaengine_t dmaengine, unsigned n, int mflags)
{
struct ioat_softc *ioat;
int error;
ioat = to_ioat_softc(dmaengine);
ioat_acquire(dmaengine);
error = ioat_reserve_space(ioat, n, mflags);
if (error != 0)
ioat_release(dmaengine);
return (error);
}
void
ioat_release(bus_dmaengine_t dmaengine)
{
struct ioat_softc *ioat;
ioat = to_ioat_softc(dmaengine);
CTR3(KTR_IOAT, "%s channel=%u dispatch1 head=%u", __func__,
ioat->chan_idx, ioat->head);
KFAIL_POINT_CODE(DEBUG_FP, ioat_release, /* do nothing */);
CTR3(KTR_IOAT, "%s channel=%u dispatch2 head=%u", __func__,
ioat->chan_idx, ioat->head);
if (ioat->acq_head != ioat->head) {
ioat_write_2(ioat, IOAT_DMACOUNT_OFFSET,
(uint16_t)ioat->head);
if (!callout_pending(&ioat->poll_timer)) {
callout_reset_on(&ioat->poll_timer, 1,
ioat_poll_timer_callback, ioat, ioat->cpu);
}
}
mtx_unlock(&ioat->submit_lock);
}
static struct ioat_descriptor *
ioat_op_generic(struct ioat_softc *ioat, uint8_t op,
uint32_t size, uint64_t src, uint64_t dst,
bus_dmaengine_callback_t callback_fn, void *callback_arg,
uint32_t flags)
{
struct ioat_generic_hw_descriptor *hw_desc;
struct ioat_descriptor *desc;
bus_dma_segment_t seg;
int mflags, nseg, error;
mtx_assert(&ioat->submit_lock, MA_OWNED);
KASSERT((flags & ~_DMA_GENERIC_FLAGS) == 0,
("Unrecognized flag(s): %#x", flags & ~_DMA_GENERIC_FLAGS));
KASSERT(size <= ioat->max_xfer_size, ("%s: size too big (%u > %u)",
__func__, (unsigned)size, ioat->max_xfer_size));
if ((flags & DMA_NO_WAIT) != 0)
mflags = M_NOWAIT;
else
mflags = M_WAITOK;
if (ioat_reserve_space(ioat, 1, mflags) != 0)
return (NULL);
desc = ioat_get_ring_entry(ioat, ioat->head);
hw_desc = &ioat_get_descriptor(ioat, ioat->head)->generic;
hw_desc->u.control_raw = 0;
hw_desc->u.control_generic.op = op;
hw_desc->u.control_generic.completion_update = 1;
if ((flags & DMA_INT_EN) != 0)
hw_desc->u.control_generic.int_enable = 1;
if ((flags & DMA_FENCE) != 0)
hw_desc->u.control_generic.fence = 1;
hw_desc->size = size;
if (src != 0) {
nseg = -1;
error = _bus_dmamap_load_phys(ioat->data_tag, desc->src_dmamap,
src, size, 0, &seg, &nseg);
if (error != 0) {
ioat_log_message(0, "%s: _bus_dmamap_load_phys"
" failed %d\n", __func__, error);
return (NULL);
}
hw_desc->src_addr = seg.ds_addr;
}
if (dst != 0) {
nseg = -1;
error = _bus_dmamap_load_phys(ioat->data_tag, desc->dst_dmamap,
dst, size, 0, &seg, &nseg);
if (error != 0) {
ioat_log_message(0, "%s: _bus_dmamap_load_phys"
" failed %d\n", __func__, error);
return (NULL);
}
hw_desc->dest_addr = seg.ds_addr;
}
desc->bus_dmadesc.callback_fn = callback_fn;
desc->bus_dmadesc.callback_arg = callback_arg;
return (desc);
}
struct bus_dmadesc *
ioat_null(bus_dmaengine_t dmaengine, bus_dmaengine_callback_t callback_fn,
void *callback_arg, uint32_t flags)
{
struct ioat_dma_hw_descriptor *hw_desc;
struct ioat_descriptor *desc;
struct ioat_softc *ioat;
ioat = to_ioat_softc(dmaengine);
CTR2(KTR_IOAT, "%s channel=%u", __func__, ioat->chan_idx);
desc = ioat_op_generic(ioat, IOAT_OP_COPY, 8, 0, 0, callback_fn,
callback_arg, flags);
if (desc == NULL)
return (NULL);
hw_desc = &ioat_get_descriptor(ioat, desc->id)->dma;
hw_desc->u.control.null = 1;
ioat_submit_single(ioat);
return (&desc->bus_dmadesc);
}
struct bus_dmadesc *
ioat_copy(bus_dmaengine_t dmaengine, bus_addr_t dst,
bus_addr_t src, bus_size_t len, bus_dmaengine_callback_t callback_fn,
void *callback_arg, uint32_t flags)
{
struct ioat_dma_hw_descriptor *hw_desc;
struct ioat_descriptor *desc;
struct ioat_softc *ioat;
ioat = to_ioat_softc(dmaengine);
desc = ioat_op_generic(ioat, IOAT_OP_COPY, len, src, dst, callback_fn,
callback_arg, flags);
if (desc == NULL)
return (NULL);
hw_desc = &ioat_get_descriptor(ioat, desc->id)->dma;
if (g_ioat_debug_level >= 3)
dump_descriptor(hw_desc);
ioat_submit_single(ioat);
CTR6(KTR_IOAT, "%s channel=%u desc=%p dest=%lx src=%lx len=%lx",
__func__, ioat->chan_idx, &desc->bus_dmadesc, dst, src, len);
return (&desc->bus_dmadesc);
}
struct bus_dmadesc *
ioat_copy_8k_aligned(bus_dmaengine_t dmaengine, bus_addr_t dst1,
bus_addr_t dst2, bus_addr_t src1, bus_addr_t src2,
bus_dmaengine_callback_t callback_fn, void *callback_arg, uint32_t flags)
{
struct ioat_dma_hw_descriptor *hw_desc;
struct ioat_descriptor *desc;
struct ioat_softc *ioat;
bus_size_t src1_len, dst1_len;
bus_dma_segment_t seg;
int nseg, error;
ioat = to_ioat_softc(dmaengine);
CTR2(KTR_IOAT, "%s channel=%u", __func__, ioat->chan_idx);
KASSERT(((src1 | src2 | dst1 | dst2) & PAGE_MASK) == 0,
("%s: addresses are not page-aligned", __func__));
desc = ioat_op_generic(ioat, IOAT_OP_COPY, 2 * PAGE_SIZE, 0, 0,
callback_fn, callback_arg, flags);
if (desc == NULL)
return (NULL);
hw_desc = &ioat_get_descriptor(ioat, desc->id)->dma;
src1_len = (src2 != src1 + PAGE_SIZE) ? PAGE_SIZE : 2 * PAGE_SIZE;
nseg = -1;
error = _bus_dmamap_load_phys(ioat->data_tag,
desc->src_dmamap, src1, src1_len, 0, &seg, &nseg);
if (error != 0) {
ioat_log_message(0, "%s: _bus_dmamap_load_phys"
" failed %d\n", __func__, error);
return (NULL);
}
hw_desc->src_addr = seg.ds_addr;
if (src1_len != 2 * PAGE_SIZE) {
hw_desc->u.control.src_page_break = 1;
nseg = -1;
error = _bus_dmamap_load_phys(ioat->data_tag,
desc->src2_dmamap, src2, PAGE_SIZE, 0, &seg, &nseg);
if (error != 0) {
ioat_log_message(0, "%s: _bus_dmamap_load_phys"
" failed %d\n", __func__, error);
return (NULL);
}
hw_desc->next_src_addr = seg.ds_addr;
}
dst1_len = (dst2 != dst1 + PAGE_SIZE) ? PAGE_SIZE : 2 * PAGE_SIZE;
nseg = -1;
error = _bus_dmamap_load_phys(ioat->data_tag,
desc->dst_dmamap, dst1, dst1_len, 0, &seg, &nseg);
if (error != 0) {
ioat_log_message(0, "%s: _bus_dmamap_load_phys"
" failed %d\n", __func__, error);
return (NULL);
}
hw_desc->dest_addr = seg.ds_addr;
if (dst1_len != 2 * PAGE_SIZE) {
hw_desc->u.control.dest_page_break = 1;
nseg = -1;
error = _bus_dmamap_load_phys(ioat->data_tag,
desc->dst2_dmamap, dst2, PAGE_SIZE, 0, &seg, &nseg);
if (error != 0) {
ioat_log_message(0, "%s: _bus_dmamap_load_phys"
" failed %d\n", __func__, error);
return (NULL);
}
hw_desc->next_dest_addr = seg.ds_addr;
}
if (g_ioat_debug_level >= 3)
dump_descriptor(hw_desc);
ioat_submit_single(ioat);
return (&desc->bus_dmadesc);
}
struct bus_dmadesc *
ioat_copy_crc(bus_dmaengine_t dmaengine, bus_addr_t dst, bus_addr_t src,
bus_size_t len, uint32_t *initialseed, bus_addr_t crcptr,
bus_dmaengine_callback_t callback_fn, void *callback_arg, uint32_t flags)
{
struct ioat_crc32_hw_descriptor *hw_desc;
struct ioat_descriptor *desc;
struct ioat_softc *ioat;
uint32_t teststore;
uint8_t op;
bus_dma_segment_t seg;
int nseg, error;
ioat = to_ioat_softc(dmaengine);
CTR2(KTR_IOAT, "%s channel=%u", __func__, ioat->chan_idx);
KASSERT((ioat->capabilities & IOAT_DMACAP_MOVECRC) != 0,
("%s: device lacks MOVECRC capability", __func__));
teststore = (flags & _DMA_CRC_TESTSTORE);
KASSERT(teststore != _DMA_CRC_TESTSTORE,
("%s: TEST and STORE invalid", __func__));
KASSERT(teststore != 0 || (flags & DMA_CRC_INLINE) == 0,
("%s: INLINE invalid without TEST or STORE", __func__));
switch (teststore) {
case DMA_CRC_STORE:
op = IOAT_OP_MOVECRC_STORE;
break;
case DMA_CRC_TEST:
op = IOAT_OP_MOVECRC_TEST;
break;
default:
KASSERT(teststore == 0, ("bogus"));
op = IOAT_OP_MOVECRC;
break;
}
desc = ioat_op_generic(ioat, op, len, src, dst, callback_fn,
callback_arg, flags & ~_DMA_CRC_FLAGS);
if (desc == NULL)
return (NULL);
hw_desc = &ioat_get_descriptor(ioat, desc->id)->crc32;
if ((flags & DMA_CRC_INLINE) == 0) {
nseg = -1;
error = _bus_dmamap_load_phys(ioat->data_tag,
desc->dst2_dmamap, crcptr, sizeof(uint32_t), 0,
&seg, &nseg);
if (error != 0) {
ioat_log_message(0, "%s: _bus_dmamap_load_phys"
" failed %d\n", __func__, error);
return (NULL);
}
hw_desc->crc_address = seg.ds_addr;
} else
hw_desc->u.control.crc_location = 1;
if (initialseed != NULL) {
hw_desc->u.control.use_seed = 1;
hw_desc->seed = *initialseed;
}
if (g_ioat_debug_level >= 3)
dump_descriptor(hw_desc);
ioat_submit_single(ioat);
return (&desc->bus_dmadesc);
}
struct bus_dmadesc *
ioat_crc(bus_dmaengine_t dmaengine, bus_addr_t src, bus_size_t len,
uint32_t *initialseed, bus_addr_t crcptr,
bus_dmaengine_callback_t callback_fn, void *callback_arg, uint32_t flags)
{
struct ioat_crc32_hw_descriptor *hw_desc;
struct ioat_descriptor *desc;
struct ioat_softc *ioat;
uint32_t teststore;
uint8_t op;
bus_dma_segment_t seg;
int nseg, error;
ioat = to_ioat_softc(dmaengine);
CTR2(KTR_IOAT, "%s channel=%u", __func__, ioat->chan_idx);
KASSERT((ioat->capabilities & IOAT_DMACAP_CRC) != 0,
("%s: device lacks CRC capability", __func__));
teststore = (flags & _DMA_CRC_TESTSTORE);
KASSERT(teststore != _DMA_CRC_TESTSTORE,
("%s: TEST and STORE invalid", __func__));
KASSERT(teststore != 0 || (flags & DMA_CRC_INLINE) == 0,
("%s: INLINE invalid without TEST or STORE", __func__));
switch (teststore) {
case DMA_CRC_STORE:
op = IOAT_OP_CRC_STORE;
break;
case DMA_CRC_TEST:
op = IOAT_OP_CRC_TEST;
break;
default:
KASSERT(teststore == 0, ("bogus"));
op = IOAT_OP_CRC;
break;
}
desc = ioat_op_generic(ioat, op, len, src, 0, callback_fn,
callback_arg, flags & ~_DMA_CRC_FLAGS);
if (desc == NULL)
return (NULL);
hw_desc = &ioat_get_descriptor(ioat, desc->id)->crc32;
if ((flags & DMA_CRC_INLINE) == 0) {
nseg = -1;
error = _bus_dmamap_load_phys(ioat->data_tag,
desc->dst2_dmamap, crcptr, sizeof(uint32_t), 0,
&seg, &nseg);
if (error != 0) {
ioat_log_message(0, "%s: _bus_dmamap_load_phys"
" failed %d\n", __func__, error);
return (NULL);
}
hw_desc->crc_address = seg.ds_addr;
} else
hw_desc->u.control.crc_location = 1;
if (initialseed != NULL) {
hw_desc->u.control.use_seed = 1;
hw_desc->seed = *initialseed;
}
if (g_ioat_debug_level >= 3)
dump_descriptor(hw_desc);
ioat_submit_single(ioat);
return (&desc->bus_dmadesc);
}
struct bus_dmadesc *
ioat_blockfill(bus_dmaengine_t dmaengine, bus_addr_t dst, uint64_t fillpattern,
bus_size_t len, bus_dmaengine_callback_t callback_fn, void *callback_arg,
uint32_t flags)
{
struct ioat_fill_hw_descriptor *hw_desc;
struct ioat_descriptor *desc;
struct ioat_softc *ioat;
ioat = to_ioat_softc(dmaengine);
CTR2(KTR_IOAT, "%s channel=%u", __func__, ioat->chan_idx);
KASSERT((ioat->capabilities & IOAT_DMACAP_BFILL) != 0,
("%s: device lacks BFILL capability", __func__));
desc = ioat_op_generic(ioat, IOAT_OP_FILL, len, 0, dst,
callback_fn, callback_arg, flags);
if (desc == NULL)
return (NULL);
hw_desc = &ioat_get_descriptor(ioat, desc->id)->fill;
hw_desc->src_data = fillpattern;
if (g_ioat_debug_level >= 3)
dump_descriptor(hw_desc);
ioat_submit_single(ioat);
return (&desc->bus_dmadesc);
}
/*
* Ring Management
*/
static inline uint32_t
ioat_get_active(struct ioat_softc *ioat)
{
return ((ioat->head - ioat->tail) & ((1 << ioat->ring_size_order) - 1));
}
static inline uint32_t
ioat_get_ring_space(struct ioat_softc *ioat)
{
return ((1 << ioat->ring_size_order) - ioat_get_active(ioat) - 1);
}
/*
* Reserves space in this IOAT descriptor ring by ensuring enough slots remain
* for 'num_descs'.
*
* If mflags contains M_WAITOK, blocks until enough space is available.
*
* Returns zero on success, or an errno on error. If num_descs is beyond the
* maximum ring size, returns EINVAl; if allocation would block and mflags
* contains M_NOWAIT, returns EAGAIN.
*
* Must be called with the submit_lock held; returns with the lock held. The
* lock may be dropped to allocate the ring.
*
* (The submit_lock is needed to add any entries to the ring, so callers are
* assured enough room is available.)
*/
static int
ioat_reserve_space(struct ioat_softc *ioat, uint32_t num_descs, int mflags)
{
boolean_t dug;
int error;
mtx_assert(&ioat->submit_lock, MA_OWNED);
error = 0;
dug = FALSE;
if (num_descs < 1 || num_descs >= (1 << ioat->ring_size_order)) {
error = EINVAL;
goto out;
}
for (;;) {
if (ioat->quiescing) {
error = ENXIO;
goto out;
}
if (ioat_get_ring_space(ioat) >= num_descs)
goto out;
CTR3(KTR_IOAT, "%s channel=%u starved (%u)", __func__,
ioat->chan_idx, num_descs);
if (!dug && !ioat->is_submitter_processing) {
ioat->is_submitter_processing = TRUE;
mtx_unlock(&ioat->submit_lock);
CTR2(KTR_IOAT, "%s channel=%u attempting to process events",
__func__, ioat->chan_idx);
ioat_process_events(ioat, FALSE);
mtx_lock(&ioat->submit_lock);
dug = TRUE;
KASSERT(ioat->is_submitter_processing == TRUE,
("is_submitter_processing"));
ioat->is_submitter_processing = FALSE;
wakeup(&ioat->tail);
continue;
}
if ((mflags & M_WAITOK) == 0) {
error = EAGAIN;
break;
}
CTR2(KTR_IOAT, "%s channel=%u blocking on completions",
__func__, ioat->chan_idx);
msleep(&ioat->tail, &ioat->submit_lock, 0,
"ioat_full", 0);
continue;
}
out:
mtx_assert(&ioat->submit_lock, MA_OWNED);
KASSERT(!ioat->quiescing || error == ENXIO,
("reserved during quiesce"));
return (error);
}
static void
ioat_free_ring(struct ioat_softc *ioat, uint32_t size,
struct ioat_descriptor *ring)
{
free(ring, M_IOAT);
}
static struct ioat_descriptor *
ioat_get_ring_entry(struct ioat_softc *ioat, uint32_t index)
{
return (&ioat->ring[index % (1 << ioat->ring_size_order)]);
}
static union ioat_hw_descriptor *
ioat_get_descriptor(struct ioat_softc *ioat, uint32_t index)
{
return (&ioat->hw_desc_ring[index % (1 << ioat->ring_size_order)]);
}
static void
ioat_halted_debug(struct ioat_softc *ioat, uint32_t chanerr)
{
union ioat_hw_descriptor *desc;
ioat_log_message(0, "Channel halted (%b)\n", (int)chanerr,
IOAT_CHANERR_STR);
if (chanerr == 0)
return;
mtx_assert(&ioat->cleanup_lock, MA_OWNED);
desc = ioat_get_descriptor(ioat, ioat->tail + 0);
dump_descriptor(desc);
desc = ioat_get_descriptor(ioat, ioat->tail + 1);
dump_descriptor(desc);
}
static void
ioat_poll_timer_callback(void *arg)
{
struct ioat_softc *ioat;
ioat = arg;
CTR1(KTR_IOAT, "%s", __func__);
ioat_process_events(ioat, FALSE);
mtx_lock(&ioat->submit_lock);
if (ioat_get_active(ioat) > 0)
callout_schedule(&ioat->poll_timer, 1);
mtx_unlock(&ioat->submit_lock);
}
/*
* Support Functions
*/
static void
ioat_submit_single(struct ioat_softc *ioat)
{
mtx_assert(&ioat->submit_lock, MA_OWNED);
ioat->head++;
CTR4(KTR_IOAT, "%s channel=%u head=%u tail=%u", __func__,
ioat->chan_idx, ioat->head, ioat->tail);
ioat->stats.descriptors_submitted++;
}
static int
ioat_reset_hw(struct ioat_softc *ioat)
{
uint64_t status;
uint32_t chanerr;
unsigned timeout;
int error;
CTR2(KTR_IOAT, "%s channel=%u", __func__, ioat->chan_idx);
mtx_lock(&ioat->submit_lock);
while (ioat->resetting && !ioat->destroying)
msleep(&ioat->resetting, &ioat->submit_lock, 0, "IRH_drain", 0);
if (ioat->destroying) {
mtx_unlock(&ioat->submit_lock);
return (ENXIO);
}
ioat->resetting = TRUE;
ioat->quiescing = TRUE;
mtx_unlock(&ioat->submit_lock);
mtx_lock(&ioat->cleanup_lock);
while (ioat_get_active(ioat) > 0)
msleep(&ioat->tail, &ioat->cleanup_lock, 0, "ioat_drain", 1);
/*
* Suspend ioat_process_events while the hardware and softc are in an
* indeterminate state.
*/
ioat->resetting_cleanup = TRUE;
mtx_unlock(&ioat->cleanup_lock);
CTR2(KTR_IOAT, "%s channel=%u quiesced and drained", __func__,
ioat->chan_idx);
status = ioat_get_chansts(ioat);
if (is_ioat_active(status) || is_ioat_idle(status))
ioat_suspend(ioat);
/* Wait at most 20 ms */
for (timeout = 0; (is_ioat_active(status) || is_ioat_idle(status)) &&
timeout < 20; timeout++) {
DELAY(1000);
status = ioat_get_chansts(ioat);
}
if (timeout == 20) {
error = ETIMEDOUT;
goto out;
}
KASSERT(ioat_get_active(ioat) == 0, ("active after quiesce"));
chanerr = ioat_read_4(ioat, IOAT_CHANERR_OFFSET);
ioat_write_4(ioat, IOAT_CHANERR_OFFSET, chanerr);
CTR2(KTR_IOAT, "%s channel=%u hardware suspended", __func__,
ioat->chan_idx);
/*
* IOAT v3 workaround - CHANERRMSK_INT with 3E07h to masks out errors
* that can cause stability issues for IOAT v3.
*/
pci_write_config(ioat->device, IOAT_CFG_CHANERRMASK_INT_OFFSET, 0x3e07,
4);
chanerr = pci_read_config(ioat->device, IOAT_CFG_CHANERR_INT_OFFSET, 4);
pci_write_config(ioat->device, IOAT_CFG_CHANERR_INT_OFFSET, chanerr, 4);
/*
* BDXDE and BWD models reset MSI-X registers on device reset.
* Save/restore their contents manually.
*/
if (ioat_model_resets_msix(ioat)) {
ioat_log_message(1, "device resets MSI-X registers; saving\n");
pci_save_state(ioat->device);
}
ioat_reset(ioat);
CTR2(KTR_IOAT, "%s channel=%u hardware reset", __func__,
ioat->chan_idx);
/* Wait at most 20 ms */
for (timeout = 0; ioat_reset_pending(ioat) && timeout < 20; timeout++)
DELAY(1000);
if (timeout == 20) {
error = ETIMEDOUT;
goto out;
}
if (ioat_model_resets_msix(ioat)) {
ioat_log_message(1, "device resets registers; restored\n");
pci_restore_state(ioat->device);
}
/* Reset attempts to return the hardware to "halted." */
status = ioat_get_chansts(ioat);
if (is_ioat_active(status) || is_ioat_idle(status)) {
/* So this really shouldn't happen... */
ioat_log_message(0, "Device is active after a reset?\n");
ioat_write_chanctrl(ioat, IOAT_CHANCTRL_RUN);
error = 0;
goto out;
}
chanerr = ioat_read_4(ioat, IOAT_CHANERR_OFFSET);
if (chanerr != 0) {
mtx_lock(&ioat->cleanup_lock);
ioat_halted_debug(ioat, chanerr);
mtx_unlock(&ioat->cleanup_lock);
error = EIO;
goto out;
}
/*
* Bring device back online after reset. Writing CHAINADDR brings the
* device back to active.
*
* The internal ring counter resets to zero, so we have to start over
* at zero as well.
*/
ioat->tail = ioat->head = 0;
*ioat->comp_update = ioat->last_seen =
RING_PHYS_ADDR(ioat, ioat->tail - 1);
ioat_write_chanctrl(ioat, IOAT_CHANCTRL_RUN);
ioat_write_chancmp(ioat, ioat->comp_update_bus_addr);
ioat_write_chainaddr(ioat, RING_PHYS_ADDR(ioat, 0));
error = 0;
CTR2(KTR_IOAT, "%s channel=%u configured channel", __func__,
ioat->chan_idx);
out:
/* Enqueues a null operation and ensures it completes. */
if (error == 0) {
error = ioat_start_channel(ioat);
CTR2(KTR_IOAT, "%s channel=%u started channel", __func__,
ioat->chan_idx);
}
/*
* Resume completions now that ring state is consistent.
*/
mtx_lock(&ioat->cleanup_lock);
ioat->resetting_cleanup = FALSE;
mtx_unlock(&ioat->cleanup_lock);
/* Unblock submission of new work */
mtx_lock(&ioat->submit_lock);
ioat->quiescing = FALSE;
wakeup(&ioat->quiescing);
ioat->resetting = FALSE;
wakeup(&ioat->resetting);
CTR2(KTR_IOAT, "%s channel=%u reset done", __func__, ioat->chan_idx);
mtx_unlock(&ioat->submit_lock);
return (error);
}
static int
sysctl_handle_chansts(SYSCTL_HANDLER_ARGS)
{
struct ioat_softc *ioat;
struct sbuf sb;
uint64_t status;
int error;
ioat = arg1;
status = ioat_get_chansts(ioat) & IOAT_CHANSTS_STATUS;
sbuf_new_for_sysctl(&sb, NULL, 256, req);
switch (status) {
case IOAT_CHANSTS_ACTIVE:
sbuf_printf(&sb, "ACTIVE");
break;
case IOAT_CHANSTS_IDLE:
sbuf_printf(&sb, "IDLE");
break;
case IOAT_CHANSTS_SUSPENDED:
sbuf_printf(&sb, "SUSPENDED");
break;
case IOAT_CHANSTS_HALTED:
sbuf_printf(&sb, "HALTED");
break;
case IOAT_CHANSTS_ARMED:
sbuf_printf(&sb, "ARMED");
break;
default:
sbuf_printf(&sb, "UNKNOWN");
break;
}
error = sbuf_finish(&sb);
sbuf_delete(&sb);
if (error != 0 || req->newptr == NULL)
return (error);
return (EINVAL);
}
static int
sysctl_handle_dpi(SYSCTL_HANDLER_ARGS)
{
struct ioat_softc *ioat;
struct sbuf sb;
#define PRECISION "1"
const uintmax_t factor = 10;
uintmax_t rate;
int error;
ioat = arg1;
sbuf_new_for_sysctl(&sb, NULL, 16, req);
if (ioat->stats.interrupts == 0) {
sbuf_printf(&sb, "NaN");
goto out;
}
rate = ioat->stats.descriptors_processed * factor /
ioat->stats.interrupts;
sbuf_printf(&sb, "%ju.%." PRECISION "ju", rate / factor,
rate % factor);
#undef PRECISION
out:
error = sbuf_finish(&sb);
sbuf_delete(&sb);
if (error != 0 || req->newptr == NULL)
return (error);
return (EINVAL);
}
static int
sysctl_handle_reset(SYSCTL_HANDLER_ARGS)
{
struct ioat_softc *ioat;
int error, arg;
ioat = arg1;
arg = 0;
error = SYSCTL_OUT(req, &arg, sizeof(arg));
if (error != 0 || req->newptr == NULL)
return (error);
error = SYSCTL_IN(req, &arg, sizeof(arg));
if (error != 0)
return (error);
if (arg != 0)
error = ioat_reset_hw(ioat);
return (error);
}
static void
dump_descriptor(void *hw_desc)
{
int i, j;
for (i = 0; i < 2; i++) {
for (j = 0; j < 8; j++)
printf("%08x ", ((uint32_t *)hw_desc)[i * 8 + j]);
printf("\n");
}
}
static void
ioat_setup_sysctl(device_t device)
{
struct sysctl_oid_list *par, *statpar, *state, *hammer;
struct sysctl_ctx_list *ctx;
struct sysctl_oid *tree, *tmp;
struct ioat_softc *ioat;
ioat = DEVICE2SOFTC(device);
ctx = device_get_sysctl_ctx(device);
tree = device_get_sysctl_tree(device);
par = SYSCTL_CHILDREN(tree);
SYSCTL_ADD_INT(ctx, par, OID_AUTO, "version", CTLFLAG_RD,
&ioat->version, 0, "HW version (0xMM form)");
SYSCTL_ADD_UINT(ctx, par, OID_AUTO, "max_xfer_size", CTLFLAG_RD,
&ioat->max_xfer_size, 0, "HW maximum transfer size");
SYSCTL_ADD_INT(ctx, par, OID_AUTO, "intrdelay_supported", CTLFLAG_RD,
&ioat->intrdelay_supported, 0, "Is INTRDELAY supported");
SYSCTL_ADD_U16(ctx, par, OID_AUTO, "intrdelay_max", CTLFLAG_RD,
&ioat->intrdelay_max, 0,
"Maximum configurable INTRDELAY on this channel (microseconds)");
tmp = SYSCTL_ADD_NODE(ctx, par, OID_AUTO, "state",
CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "IOAT channel internal state");
state = SYSCTL_CHILDREN(tmp);
SYSCTL_ADD_UINT(ctx, state, OID_AUTO, "ring_size_order", CTLFLAG_RD,
&ioat->ring_size_order, 0, "SW descriptor ring size order");
SYSCTL_ADD_UINT(ctx, state, OID_AUTO, "head", CTLFLAG_RD, &ioat->head,
0, "SW descriptor head pointer index");
SYSCTL_ADD_UINT(ctx, state, OID_AUTO, "tail", CTLFLAG_RD, &ioat->tail,
0, "SW descriptor tail pointer index");
SYSCTL_ADD_UQUAD(ctx, state, OID_AUTO, "last_completion", CTLFLAG_RD,
ioat->comp_update, "HW addr of last completion");
SYSCTL_ADD_INT(ctx, state, OID_AUTO, "is_submitter_processing",
CTLFLAG_RD, &ioat->is_submitter_processing, 0,
"submitter processing");
SYSCTL_ADD_PROC(ctx, state, OID_AUTO, "chansts",
CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, ioat, 0,
sysctl_handle_chansts, "A", "String of the channel status");
SYSCTL_ADD_U16(ctx, state, OID_AUTO, "intrdelay", CTLFLAG_RD,
&ioat->cached_intrdelay, 0,
"Current INTRDELAY on this channel (cached, microseconds)");
tmp = SYSCTL_ADD_NODE(ctx, par, OID_AUTO, "hammer",
CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
"Big hammers (mostly for testing)");
hammer = SYSCTL_CHILDREN(tmp);
SYSCTL_ADD_PROC(ctx, hammer, OID_AUTO, "force_hw_reset",
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, ioat, 0,
sysctl_handle_reset, "I", "Set to non-zero to reset the hardware");
tmp = SYSCTL_ADD_NODE(ctx, par, OID_AUTO, "stats",
CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "IOAT channel statistics");
statpar = SYSCTL_CHILDREN(tmp);
SYSCTL_ADD_UQUAD(ctx, statpar, OID_AUTO, "interrupts",
CTLFLAG_RW | CTLFLAG_STATS, &ioat->stats.interrupts,
"Number of interrupts processed on this channel");
SYSCTL_ADD_UQUAD(ctx, statpar, OID_AUTO, "descriptors",
CTLFLAG_RW | CTLFLAG_STATS, &ioat->stats.descriptors_processed,
"Number of descriptors processed on this channel");
SYSCTL_ADD_UQUAD(ctx, statpar, OID_AUTO, "submitted",
CTLFLAG_RW | CTLFLAG_STATS, &ioat->stats.descriptors_submitted,
"Number of descriptors submitted to this channel");
SYSCTL_ADD_UQUAD(ctx, statpar, OID_AUTO, "errored",
CTLFLAG_RW | CTLFLAG_STATS, &ioat->stats.descriptors_error,
"Number of descriptors failed by channel errors");
SYSCTL_ADD_U32(ctx, statpar, OID_AUTO, "halts",
CTLFLAG_RW | CTLFLAG_STATS, &ioat->stats.channel_halts, 0,
"Number of times the channel has halted");
SYSCTL_ADD_U32(ctx, statpar, OID_AUTO, "last_halt_chanerr",
CTLFLAG_RW | CTLFLAG_STATS, &ioat->stats.last_halt_chanerr, 0,
"The raw CHANERR when the channel was last halted");
SYSCTL_ADD_PROC(ctx, statpar, OID_AUTO, "desc_per_interrupt",
CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, ioat, 0,
sysctl_handle_dpi, "A", "Descriptors per interrupt");
}
static void
ioat_get(struct ioat_softc *ioat)
{
mtx_assert(&ioat->submit_lock, MA_OWNED);
KASSERT(ioat->refcnt < UINT32_MAX, ("refcnt overflow"));
ioat->refcnt++;
}
static void
ioat_put(struct ioat_softc *ioat)
{
mtx_assert(&ioat->submit_lock, MA_OWNED);
KASSERT(ioat->refcnt >= 1, ("refcnt error"));
if (--ioat->refcnt == 0)
wakeup(&ioat->refcnt);
}
static void
ioat_drain_locked(struct ioat_softc *ioat)
{
mtx_assert(&ioat->submit_lock, MA_OWNED);
while (ioat->refcnt > 0)
msleep(&ioat->refcnt, &ioat->submit_lock, 0, "ioat_drain", 0);
}
#ifdef DDB
#define _db_show_lock(lo) LOCK_CLASS(lo)->lc_ddb_show(lo)
#define db_show_lock(lk) _db_show_lock(&(lk)->lock_object)
DB_SHOW_COMMAND(ioat, db_show_ioat)
{
struct ioat_softc *sc;
unsigned idx;
if (!have_addr)
goto usage;
idx = (unsigned)addr;
if (idx >= ioat_channel_index)
goto usage;
sc = ioat_channel[idx];
db_printf("ioat softc at %p\n", sc);
if (sc == NULL)
return;
db_printf(" version: %d\n", sc->version);
db_printf(" chan_idx: %u\n", sc->chan_idx);
db_printf(" submit_lock: ");
db_show_lock(&sc->submit_lock);
db_printf(" capabilities: %b\n", (int)sc->capabilities,
IOAT_DMACAP_STR);
db_printf(" cached_intrdelay: %u\n", sc->cached_intrdelay);
db_printf(" *comp_update: 0x%jx\n", (uintmax_t)*sc->comp_update);
db_printf(" poll_timer:\n");
db_printf(" c_time: %ju\n", (uintmax_t)sc->poll_timer.c_time);
db_printf(" c_arg: %p\n", sc->poll_timer.c_arg);
db_printf(" c_func: %p\n", sc->poll_timer.c_func);
db_printf(" c_lock: %p\n", sc->poll_timer.c_lock);
db_printf(" c_flags: 0x%x\n", (unsigned)sc->poll_timer.c_flags);
db_printf(" quiescing: %d\n", (int)sc->quiescing);
db_printf(" destroying: %d\n", (int)sc->destroying);
db_printf(" is_submitter_processing: %d\n",
(int)sc->is_submitter_processing);
db_printf(" intrdelay_supported: %d\n", (int)sc->intrdelay_supported);
db_printf(" resetting: %d\n", (int)sc->resetting);
db_printf(" head: %u\n", sc->head);
db_printf(" tail: %u\n", sc->tail);
db_printf(" ring_size_order: %u\n", sc->ring_size_order);
db_printf(" last_seen: 0x%lx\n", sc->last_seen);
db_printf(" ring: %p\n", sc->ring);
db_printf(" descriptors: %p\n", sc->hw_desc_ring);
db_printf(" descriptors (phys): 0x%jx\n",
(uintmax_t)sc->hw_desc_bus_addr);
db_printf(" ring[%u] (tail):\n", sc->tail %
(1 << sc->ring_size_order));
db_printf(" id: %u\n", ioat_get_ring_entry(sc, sc->tail)->id);
db_printf(" addr: 0x%lx\n",
RING_PHYS_ADDR(sc, sc->tail));
db_printf(" next: 0x%lx\n",
ioat_get_descriptor(sc, sc->tail)->generic.next);
db_printf(" ring[%u] (head - 1):\n", (sc->head - 1) %
(1 << sc->ring_size_order));
db_printf(" id: %u\n", ioat_get_ring_entry(sc, sc->head - 1)->id);
db_printf(" addr: 0x%lx\n",
RING_PHYS_ADDR(sc, sc->head - 1));
db_printf(" next: 0x%lx\n",
ioat_get_descriptor(sc, sc->head - 1)->generic.next);
db_printf(" ring[%u] (head):\n", (sc->head) %
(1 << sc->ring_size_order));
db_printf(" id: %u\n", ioat_get_ring_entry(sc, sc->head)->id);
db_printf(" addr: 0x%lx\n",
RING_PHYS_ADDR(sc, sc->head));
db_printf(" next: 0x%lx\n",
ioat_get_descriptor(sc, sc->head)->generic.next);
for (idx = 0; idx < (1 << sc->ring_size_order); idx++)
if ((*sc->comp_update & IOAT_CHANSTS_COMPLETED_DESCRIPTOR_MASK)
== RING_PHYS_ADDR(sc, idx))
db_printf(" ring[%u] == hardware tail\n", idx);
db_printf(" cleanup_lock: ");
db_show_lock(&sc->cleanup_lock);
db_printf(" refcnt: %u\n", sc->refcnt);
db_printf(" stats:\n");
db_printf(" interrupts: %lu\n", sc->stats.interrupts);
db_printf(" descriptors_processed: %lu\n", sc->stats.descriptors_processed);
db_printf(" descriptors_error: %lu\n", sc->stats.descriptors_error);
db_printf(" descriptors_submitted: %lu\n", sc->stats.descriptors_submitted);
db_printf(" channel_halts: %u\n", sc->stats.channel_halts);
db_printf(" last_halt_chanerr: %u\n", sc->stats.last_halt_chanerr);
if (db_pager_quit)
return;
db_printf(" hw status:\n");
db_printf(" status: 0x%lx\n", ioat_get_chansts(sc));
db_printf(" chanctrl: 0x%x\n",
(unsigned)ioat_read_2(sc, IOAT_CHANCTRL_OFFSET));
db_printf(" chancmd: 0x%x\n",
(unsigned)ioat_read_1(sc, IOAT_CHANCMD_OFFSET));
db_printf(" dmacount: 0x%x\n",
(unsigned)ioat_read_2(sc, IOAT_DMACOUNT_OFFSET));
db_printf(" chainaddr: 0x%lx\n",
ioat_read_double_4(sc, IOAT_CHAINADDR_OFFSET_LOW));
db_printf(" chancmp: 0x%lx\n",
ioat_read_double_4(sc, IOAT_CHANCMP_OFFSET_LOW));
db_printf(" chanerr: %b\n",
(int)ioat_read_4(sc, IOAT_CHANERR_OFFSET), IOAT_CHANERR_STR);
return;
usage:
db_printf("usage: show ioat <0-%u>\n", ioat_channel_index);
return;
}
#endif /* DDB */