a1502d76ae
based of the spl_kmem_obj_t tacked on the end of each object. This actually isn't so back because we are now allocing large chunks for the slab and partitioning it ourselves. So there's not a ton of wasted space. We may suffer a performance hit however due to alignment issues. - Remove remaining depenancies on the linux slab implementation. We're standing on our own now for better or worse. - Rework slabs to be either kmem or vmem based. If neither KMC_VMEM of KMC_KMEM are specified we make a decent guess about what will work best for their based on the object size. Additionally we provide a kmem_virt() function caller can use to see if they have a virtual or physical address. - Minor fixups in the test suite. git-svn-id: https://outreach.scidac.gov/svn/spl/trunk@141 7e1ea52c-4ff2-0310-8f11-9dd32ca42a1c
1055 lines
28 KiB
C
1055 lines
28 KiB
C
/*
|
|
* This file is part of the SPL: Solaris Porting Layer.
|
|
*
|
|
* Copyright (c) 2008 Lawrence Livermore National Security, LLC.
|
|
* Produced at Lawrence Livermore National Laboratory
|
|
* Written by:
|
|
* Brian Behlendorf <behlendorf1@llnl.gov>,
|
|
* Herb Wartens <wartens2@llnl.gov>,
|
|
* Jim Garlick <garlick@llnl.gov>
|
|
* UCRL-CODE-235197
|
|
*
|
|
* This is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along
|
|
* with this program; if not, write to the Free Software Foundation, Inc.,
|
|
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*/
|
|
|
|
#include <sys/kmem.h>
|
|
|
|
#ifdef DEBUG_SUBSYSTEM
|
|
#undef DEBUG_SUBSYSTEM
|
|
#endif
|
|
|
|
#define DEBUG_SUBSYSTEM S_KMEM
|
|
|
|
/*
|
|
* Memory allocation interfaces and debugging for basic kmem_*
|
|
* and vmem_* style memory allocation. When DEBUG_KMEM is enable
|
|
* all allocations will be tracked when they are allocated and
|
|
* freed. When the SPL module is unload a list of all leaked
|
|
* addresses and where they were allocated will be dumped to the
|
|
* console. Enabling this feature has a significant impant on
|
|
* performance but it makes finding memory leaks staight forward.
|
|
*/
|
|
#ifdef DEBUG_KMEM
|
|
/* Shim layer memory accounting */
|
|
atomic64_t kmem_alloc_used;
|
|
unsigned long kmem_alloc_max = 0;
|
|
atomic64_t vmem_alloc_used;
|
|
unsigned long vmem_alloc_max = 0;
|
|
int kmem_warning_flag = 1;
|
|
|
|
EXPORT_SYMBOL(kmem_alloc_used);
|
|
EXPORT_SYMBOL(kmem_alloc_max);
|
|
EXPORT_SYMBOL(vmem_alloc_used);
|
|
EXPORT_SYMBOL(vmem_alloc_max);
|
|
EXPORT_SYMBOL(kmem_warning_flag);
|
|
|
|
#ifdef DEBUG_KMEM_TRACKING
|
|
spinlock_t kmem_lock;
|
|
struct hlist_head kmem_table[KMEM_TABLE_SIZE];
|
|
struct list_head kmem_list;
|
|
|
|
spinlock_t vmem_lock;
|
|
struct hlist_head vmem_table[VMEM_TABLE_SIZE];
|
|
struct list_head vmem_list;
|
|
|
|
EXPORT_SYMBOL(kmem_lock);
|
|
EXPORT_SYMBOL(kmem_table);
|
|
EXPORT_SYMBOL(kmem_list);
|
|
|
|
EXPORT_SYMBOL(vmem_lock);
|
|
EXPORT_SYMBOL(vmem_table);
|
|
EXPORT_SYMBOL(vmem_list);
|
|
#endif
|
|
|
|
int kmem_set_warning(int flag) { return (kmem_warning_flag = !!flag); }
|
|
#else
|
|
int kmem_set_warning(int flag) { return 0; }
|
|
#endif
|
|
EXPORT_SYMBOL(kmem_set_warning);
|
|
|
|
/*
|
|
* Slab allocation interfaces
|
|
*
|
|
* While the Linux slab implementation was inspired by the Solaris
|
|
* implemenation I cannot use it to emulate the Solaris APIs. I
|
|
* require two features which are not provided by the Linux slab.
|
|
*
|
|
* 1) Constructors AND destructors. Recent versions of the Linux
|
|
* kernel have removed support for destructors. This is a deal
|
|
* breaker for the SPL which contains particularly expensive
|
|
* initializers for mutex's, condition variables, etc. We also
|
|
* require a minimal level of cleaner for these data types unlike
|
|
* may Linux data type which do need to be explicitly destroyed.
|
|
*
|
|
* 2) Virtual address backed slab. Callers of the Solaris slab
|
|
* expect it to work well for both small are very large allocations.
|
|
* Because of memory fragmentation the Linux slab which is backed
|
|
* by kmalloc'ed memory performs very badly when confronted with
|
|
* large numbers of large allocations. Basing the slab on the
|
|
* virtual address space removes the need for contigeous pages
|
|
* and greatly improve performance for large allocations.
|
|
*
|
|
* For these reasons, the SPL has its own slab implementation with
|
|
* the needed features. It is not as highly optimized as either the
|
|
* Solaris or Linux slabs, but it should get me most of what is
|
|
* needed until it can be optimized or obsoleted by another approach.
|
|
*
|
|
* One serious concern I do have about this method is the relatively
|
|
* small virtual address space on 32bit arches. This will seriously
|
|
* constrain the size of the slab caches and their performance.
|
|
*
|
|
* XXX: Implement work requests to keep an eye on each cache and
|
|
* shrink them via spl_slab_reclaim() when they are wasting lots
|
|
* of space. Currently this process is driven by the reapers.
|
|
*
|
|
* XXX: Improve the partial slab list by carefully maintaining a
|
|
* strict ordering of fullest to emptiest slabs based on
|
|
* the slab reference count. This gaurentees the when freeing
|
|
* slabs back to the system we need only linearly traverse the
|
|
* last N slabs in the list to discover all the freeable slabs.
|
|
*
|
|
* XXX: NUMA awareness for optionally allocating memory close to a
|
|
* particular core. This can be adventageous if you know the slab
|
|
* object will be short lived and primarily accessed from one core.
|
|
*
|
|
* XXX: Slab coloring may also yield performance improvements and would
|
|
* be desirable to implement.
|
|
*
|
|
* XXX: Proper hardware cache alignment would be good too.
|
|
*/
|
|
|
|
struct list_head spl_kmem_cache_list; /* List of caches */
|
|
struct rw_semaphore spl_kmem_cache_sem; /* Cache list lock */
|
|
|
|
static int spl_cache_flush(spl_kmem_cache_t *skc,
|
|
spl_kmem_magazine_t *skm, int flush);
|
|
|
|
#ifdef HAVE_SET_SHRINKER
|
|
static struct shrinker *spl_kmem_cache_shrinker;
|
|
#else
|
|
static int spl_kmem_cache_generic_shrinker(int nr_to_scan,
|
|
unsigned int gfp_mask);
|
|
static struct shrinker spl_kmem_cache_shrinker = {
|
|
.shrink = spl_kmem_cache_generic_shrinker,
|
|
.seeks = KMC_DEFAULT_SEEKS,
|
|
};
|
|
#endif
|
|
|
|
static void *
|
|
kv_alloc(spl_kmem_cache_t *skc, int size, int flags)
|
|
{
|
|
void *ptr;
|
|
|
|
if (skc->skc_flags & KMC_KMEM) {
|
|
if (size > (2 * PAGE_SIZE)) {
|
|
ptr = (void *)__get_free_pages(flags, get_order(size));
|
|
} else
|
|
ptr = kmem_alloc(size, flags);
|
|
} else {
|
|
ptr = vmem_alloc(size, flags);
|
|
}
|
|
|
|
return ptr;
|
|
}
|
|
|
|
static void
|
|
kv_free(spl_kmem_cache_t *skc, void *ptr, int size)
|
|
{
|
|
if (skc->skc_flags & KMC_KMEM) {
|
|
if (size > (2 * PAGE_SIZE))
|
|
free_pages((unsigned long)ptr, get_order(size));
|
|
else
|
|
kmem_free(ptr, size);
|
|
} else {
|
|
vmem_free(ptr, size);
|
|
}
|
|
}
|
|
|
|
static spl_kmem_slab_t *
|
|
spl_slab_alloc(spl_kmem_cache_t *skc, int flags)
|
|
{
|
|
spl_kmem_slab_t *sks;
|
|
spl_kmem_obj_t *sko, *n;
|
|
void *base, *obj;
|
|
int i, size, rc = 0;
|
|
|
|
/* It's important that we pack the spl_kmem_obj_t structure
|
|
* and the actual objects in to one large address space
|
|
* to minimize the number of calls to the allocator. It
|
|
* is far better to do a few large allocations and then
|
|
* subdivide it ourselves. Now which allocator we use
|
|
* requires balancling a few trade offs.
|
|
*
|
|
* For small objects we use kmem_alloc() because as long
|
|
* as you are only requesting a small number of pages
|
|
* (ideally just one) its cheap. However, when you start
|
|
* requesting multiple pages kmem_alloc() get increasingly
|
|
* expensive since it requires contigeous pages. For this
|
|
* reason we shift to vmem_alloc() for slabs of large
|
|
* objects which removes the need for contigeous pages.
|
|
* We do not use vmem_alloc() in all cases because there
|
|
* is significant locking overhead in __get_vm_area_node().
|
|
* This function takes a single global lock when aquiring
|
|
* an available virtual address range which serialize all
|
|
* vmem_alloc()'s for all slab caches. Using slightly
|
|
* different allocation functions for small and large
|
|
* objects should give us the best of both worlds.
|
|
*
|
|
* sks struct: sizeof(spl_kmem_slab_t)
|
|
* obj data: skc->skc_obj_size
|
|
* obj struct: sizeof(spl_kmem_obj_t)
|
|
* <N obj data + obj structs>
|
|
*
|
|
* XXX: It would probably be a good idea to more carefully
|
|
* align these data structures in memory.
|
|
*/
|
|
base = kv_alloc(skc, skc->skc_slab_size, flags);
|
|
if (base == NULL)
|
|
RETURN(NULL);
|
|
|
|
sks = (spl_kmem_slab_t *)base;
|
|
sks->sks_magic = SKS_MAGIC;
|
|
sks->sks_objs = skc->skc_slab_objs;
|
|
sks->sks_age = jiffies;
|
|
sks->sks_cache = skc;
|
|
INIT_LIST_HEAD(&sks->sks_list);
|
|
INIT_LIST_HEAD(&sks->sks_free_list);
|
|
sks->sks_ref = 0;
|
|
size = sizeof(spl_kmem_obj_t) + skc->skc_obj_size;
|
|
|
|
for (i = 0; i < sks->sks_objs; i++) {
|
|
if (skc->skc_flags & KMC_OFFSLAB) {
|
|
obj = kv_alloc(skc, size, flags);
|
|
if (!obj)
|
|
GOTO(out, rc = -ENOMEM);
|
|
} else {
|
|
obj = base + sizeof(spl_kmem_slab_t) + i * size;
|
|
}
|
|
|
|
sko = obj + skc->skc_obj_size;
|
|
sko->sko_addr = obj;
|
|
sko->sko_magic = SKO_MAGIC;
|
|
sko->sko_slab = sks;
|
|
INIT_LIST_HEAD(&sko->sko_list);
|
|
list_add_tail(&sko->sko_list, &sks->sks_free_list);
|
|
}
|
|
|
|
list_for_each_entry(sko, &sks->sks_free_list, sko_list)
|
|
if (skc->skc_ctor)
|
|
skc->skc_ctor(sko->sko_addr, skc->skc_private, flags);
|
|
out:
|
|
if (rc) {
|
|
if (skc->skc_flags & KMC_OFFSLAB)
|
|
list_for_each_entry_safe(sko,n,&sks->sks_free_list,sko_list)
|
|
kv_free(skc, sko->sko_addr, size);
|
|
|
|
kv_free(skc, base, skc->skc_slab_size);
|
|
sks = NULL;
|
|
}
|
|
|
|
RETURN(sks);
|
|
}
|
|
|
|
/* Removes slab from complete or partial list, so it must
|
|
* be called with the 'skc->skc_lock' held.
|
|
*/
|
|
static void
|
|
spl_slab_free(spl_kmem_slab_t *sks) {
|
|
spl_kmem_cache_t *skc;
|
|
spl_kmem_obj_t *sko, *n;
|
|
int size;
|
|
ENTRY;
|
|
|
|
ASSERT(sks->sks_magic == SKS_MAGIC);
|
|
ASSERT(sks->sks_ref == 0);
|
|
|
|
skc = sks->sks_cache;
|
|
ASSERT(skc->skc_magic == SKC_MAGIC);
|
|
ASSERT(spin_is_locked(&skc->skc_lock));
|
|
|
|
skc->skc_obj_total -= sks->sks_objs;
|
|
skc->skc_slab_total--;
|
|
list_del(&sks->sks_list);
|
|
size = sizeof(spl_kmem_obj_t) + skc->skc_obj_size;
|
|
|
|
/* Run destructors slab is being released */
|
|
list_for_each_entry_safe(sko, n, &sks->sks_free_list, sko_list) {
|
|
ASSERT(sko->sko_magic == SKO_MAGIC);
|
|
|
|
if (skc->skc_dtor)
|
|
skc->skc_dtor(sko->sko_addr, skc->skc_private);
|
|
|
|
if (skc->skc_flags & KMC_OFFSLAB)
|
|
kv_free(skc, sko->sko_addr, size);
|
|
}
|
|
|
|
kv_free(skc, sks, skc->skc_slab_size);
|
|
EXIT;
|
|
}
|
|
|
|
static int
|
|
__spl_slab_reclaim(spl_kmem_cache_t *skc)
|
|
{
|
|
spl_kmem_slab_t *sks, *m;
|
|
int rc = 0;
|
|
ENTRY;
|
|
|
|
ASSERT(spin_is_locked(&skc->skc_lock));
|
|
/*
|
|
* Free empty slabs which have not been touched in skc_delay
|
|
* seconds. This delay time is important to avoid thrashing.
|
|
* Empty slabs will be at the end of the skc_partial_list.
|
|
*/
|
|
list_for_each_entry_safe_reverse(sks, m, &skc->skc_partial_list,
|
|
sks_list) {
|
|
if (sks->sks_ref > 0)
|
|
break;
|
|
|
|
if (time_after(jiffies, sks->sks_age + skc->skc_delay * HZ)) {
|
|
spl_slab_free(sks);
|
|
rc++;
|
|
}
|
|
}
|
|
|
|
/* Returns number of slabs reclaimed */
|
|
RETURN(rc);
|
|
}
|
|
|
|
static int
|
|
spl_slab_reclaim(spl_kmem_cache_t *skc)
|
|
{
|
|
int rc;
|
|
ENTRY;
|
|
|
|
spin_lock(&skc->skc_lock);
|
|
rc = __spl_slab_reclaim(skc);
|
|
spin_unlock(&skc->skc_lock);
|
|
|
|
RETURN(rc);
|
|
}
|
|
|
|
static int
|
|
spl_magazine_size(spl_kmem_cache_t *skc)
|
|
{
|
|
int size;
|
|
ENTRY;
|
|
|
|
/* Guesses for reasonable magazine sizes, they
|
|
* should really adapt based on observed usage. */
|
|
if (skc->skc_obj_size > (PAGE_SIZE * 256))
|
|
size = 4;
|
|
else if (skc->skc_obj_size > (PAGE_SIZE * 32))
|
|
size = 16;
|
|
else if (skc->skc_obj_size > (PAGE_SIZE))
|
|
size = 64;
|
|
else if (skc->skc_obj_size > (PAGE_SIZE / 4))
|
|
size = 128;
|
|
else
|
|
size = 512;
|
|
|
|
RETURN(size);
|
|
}
|
|
|
|
static spl_kmem_magazine_t *
|
|
spl_magazine_alloc(spl_kmem_cache_t *skc, int node)
|
|
{
|
|
spl_kmem_magazine_t *skm;
|
|
int size = sizeof(spl_kmem_magazine_t) +
|
|
sizeof(void *) * skc->skc_mag_size;
|
|
ENTRY;
|
|
|
|
skm = kmalloc_node(size, GFP_KERNEL, node);
|
|
if (skm) {
|
|
skm->skm_magic = SKM_MAGIC;
|
|
skm->skm_avail = 0;
|
|
skm->skm_size = skc->skc_mag_size;
|
|
skm->skm_refill = skc->skc_mag_refill;
|
|
if (!(skc->skc_flags & KMC_NOTOUCH))
|
|
skm->skm_age = jiffies;
|
|
}
|
|
|
|
RETURN(skm);
|
|
}
|
|
|
|
static void
|
|
spl_magazine_free(spl_kmem_magazine_t *skm)
|
|
{
|
|
ENTRY;
|
|
ASSERT(skm->skm_magic == SKM_MAGIC);
|
|
ASSERT(skm->skm_avail == 0);
|
|
kfree(skm);
|
|
EXIT;
|
|
}
|
|
|
|
static int
|
|
spl_magazine_create(spl_kmem_cache_t *skc)
|
|
{
|
|
int i;
|
|
ENTRY;
|
|
|
|
skc->skc_mag_size = spl_magazine_size(skc);
|
|
skc->skc_mag_refill = (skc->skc_mag_size + 1) / 2;
|
|
|
|
for_each_online_cpu(i) {
|
|
skc->skc_mag[i] = spl_magazine_alloc(skc, cpu_to_node(i));
|
|
if (!skc->skc_mag[i]) {
|
|
for (i--; i >= 0; i--)
|
|
spl_magazine_free(skc->skc_mag[i]);
|
|
|
|
RETURN(-ENOMEM);
|
|
}
|
|
}
|
|
|
|
RETURN(0);
|
|
}
|
|
|
|
static void
|
|
spl_magazine_destroy(spl_kmem_cache_t *skc)
|
|
{
|
|
spl_kmem_magazine_t *skm;
|
|
int i;
|
|
ENTRY;
|
|
|
|
for_each_online_cpu(i) {
|
|
skm = skc->skc_mag[i];
|
|
(void)spl_cache_flush(skc, skm, skm->skm_avail);
|
|
spl_magazine_free(skm);
|
|
}
|
|
|
|
EXIT;
|
|
}
|
|
|
|
spl_kmem_cache_t *
|
|
spl_kmem_cache_create(char *name, size_t size, size_t align,
|
|
spl_kmem_ctor_t ctor,
|
|
spl_kmem_dtor_t dtor,
|
|
spl_kmem_reclaim_t reclaim,
|
|
void *priv, void *vmp, int flags)
|
|
{
|
|
spl_kmem_cache_t *skc;
|
|
uint32_t slab_max, slab_size, slab_objs;
|
|
int rc, kmem_flags = KM_SLEEP;
|
|
ENTRY;
|
|
|
|
ASSERTF(!(flags & KMC_NOMAGAZINE), "Bad KMC_NOMAGAZINE (%x)\n", flags);
|
|
ASSERTF(!(flags & KMC_NOHASH), "Bad KMC_NOHASH (%x)\n", flags);
|
|
ASSERTF(!(flags & KMC_QCACHE), "Bad KMC_QCACHE (%x)\n", flags);
|
|
|
|
/* We may be called when there is a non-zero preempt_count or
|
|
* interrupts are disabled is which case we must not sleep.
|
|
*/
|
|
if (current_thread_info()->preempt_count || irqs_disabled())
|
|
kmem_flags = KM_NOSLEEP;
|
|
|
|
/* Allocate new cache memory and initialize. */
|
|
skc = (spl_kmem_cache_t *)kmem_zalloc(sizeof(*skc), kmem_flags);
|
|
if (skc == NULL)
|
|
RETURN(NULL);
|
|
|
|
skc->skc_magic = SKC_MAGIC;
|
|
skc->skc_name_size = strlen(name) + 1;
|
|
skc->skc_name = (char *)kmem_alloc(skc->skc_name_size, kmem_flags);
|
|
if (skc->skc_name == NULL) {
|
|
kmem_free(skc, sizeof(*skc));
|
|
RETURN(NULL);
|
|
}
|
|
strncpy(skc->skc_name, name, skc->skc_name_size);
|
|
|
|
skc->skc_ctor = ctor;
|
|
skc->skc_dtor = dtor;
|
|
skc->skc_reclaim = reclaim;
|
|
skc->skc_private = priv;
|
|
skc->skc_vmp = vmp;
|
|
skc->skc_flags = flags;
|
|
skc->skc_obj_size = size;
|
|
skc->skc_delay = SPL_KMEM_CACHE_DELAY;
|
|
|
|
INIT_LIST_HEAD(&skc->skc_list);
|
|
INIT_LIST_HEAD(&skc->skc_complete_list);
|
|
INIT_LIST_HEAD(&skc->skc_partial_list);
|
|
spin_lock_init(&skc->skc_lock);
|
|
skc->skc_slab_fail = 0;
|
|
skc->skc_slab_create = 0;
|
|
skc->skc_slab_destroy = 0;
|
|
skc->skc_slab_total = 0;
|
|
skc->skc_slab_alloc = 0;
|
|
skc->skc_slab_max = 0;
|
|
skc->skc_obj_total = 0;
|
|
skc->skc_obj_alloc = 0;
|
|
skc->skc_obj_max = 0;
|
|
|
|
/* If none passed select a cache type based on object size */
|
|
if (!(skc->skc_flags & (KMC_KMEM | KMC_VMEM))) {
|
|
if (skc->skc_obj_size < (PAGE_SIZE / 8)) {
|
|
skc->skc_flags |= KMC_KMEM;
|
|
} else {
|
|
skc->skc_flags |= KMC_VMEM;
|
|
}
|
|
}
|
|
|
|
/* Size slabs properly so ensure they are not too large */
|
|
slab_max = ((uint64_t)1 << (MAX_ORDER - 1)) * PAGE_SIZE;
|
|
if (skc->skc_flags & KMC_OFFSLAB) {
|
|
skc->skc_slab_objs = SPL_KMEM_CACHE_OBJ_PER_SLAB;
|
|
skc->skc_slab_size = sizeof(spl_kmem_slab_t);
|
|
ASSERT(skc->skc_obj_size < slab_max);
|
|
} else {
|
|
slab_objs = SPL_KMEM_CACHE_OBJ_PER_SLAB + 1;
|
|
|
|
do {
|
|
slab_objs--;
|
|
slab_size = sizeof(spl_kmem_slab_t) + slab_objs *
|
|
(skc->skc_obj_size+sizeof(spl_kmem_obj_t));
|
|
} while (slab_size > slab_max);
|
|
|
|
skc->skc_slab_objs = slab_objs;
|
|
skc->skc_slab_size = slab_size;
|
|
}
|
|
|
|
rc = spl_magazine_create(skc);
|
|
if (rc) {
|
|
kmem_free(skc->skc_name, skc->skc_name_size);
|
|
kmem_free(skc, sizeof(*skc));
|
|
RETURN(NULL);
|
|
}
|
|
|
|
down_write(&spl_kmem_cache_sem);
|
|
list_add_tail(&skc->skc_list, &spl_kmem_cache_list);
|
|
up_write(&spl_kmem_cache_sem);
|
|
|
|
RETURN(skc);
|
|
}
|
|
EXPORT_SYMBOL(spl_kmem_cache_create);
|
|
|
|
void
|
|
spl_kmem_cache_destroy(spl_kmem_cache_t *skc)
|
|
{
|
|
spl_kmem_slab_t *sks, *m;
|
|
ENTRY;
|
|
|
|
ASSERT(skc->skc_magic == SKC_MAGIC);
|
|
|
|
down_write(&spl_kmem_cache_sem);
|
|
list_del_init(&skc->skc_list);
|
|
up_write(&spl_kmem_cache_sem);
|
|
|
|
spl_magazine_destroy(skc);
|
|
spin_lock(&skc->skc_lock);
|
|
|
|
/* Validate there are no objects in use and free all the
|
|
* spl_kmem_slab_t, spl_kmem_obj_t, and object buffers. */
|
|
ASSERT(list_empty(&skc->skc_complete_list));
|
|
ASSERT(skc->skc_slab_alloc == 0);
|
|
ASSERT(skc->skc_obj_alloc == 0);
|
|
|
|
list_for_each_entry_safe(sks, m, &skc->skc_partial_list, sks_list)
|
|
spl_slab_free(sks);
|
|
|
|
ASSERT(skc->skc_slab_total == 0);
|
|
ASSERT(skc->skc_obj_total == 0);
|
|
|
|
kmem_free(skc->skc_name, skc->skc_name_size);
|
|
spin_unlock(&skc->skc_lock);
|
|
|
|
kmem_free(skc, sizeof(*skc));
|
|
|
|
EXIT;
|
|
}
|
|
EXPORT_SYMBOL(spl_kmem_cache_destroy);
|
|
|
|
static void *
|
|
spl_cache_obj(spl_kmem_cache_t *skc, spl_kmem_slab_t *sks)
|
|
{
|
|
spl_kmem_obj_t *sko;
|
|
|
|
ASSERT(skc->skc_magic == SKC_MAGIC);
|
|
ASSERT(sks->sks_magic == SKS_MAGIC);
|
|
ASSERT(spin_is_locked(&skc->skc_lock));
|
|
|
|
sko = list_entry(sks->sks_free_list.next, spl_kmem_obj_t, sko_list);
|
|
ASSERT(sko->sko_magic == SKO_MAGIC);
|
|
ASSERT(sko->sko_addr != NULL);
|
|
|
|
/* Remove from sks_free_list */
|
|
list_del_init(&sko->sko_list);
|
|
|
|
sks->sks_age = jiffies;
|
|
sks->sks_ref++;
|
|
skc->skc_obj_alloc++;
|
|
|
|
/* Track max obj usage statistics */
|
|
if (skc->skc_obj_alloc > skc->skc_obj_max)
|
|
skc->skc_obj_max = skc->skc_obj_alloc;
|
|
|
|
/* Track max slab usage statistics */
|
|
if (sks->sks_ref == 1) {
|
|
skc->skc_slab_alloc++;
|
|
|
|
if (skc->skc_slab_alloc > skc->skc_slab_max)
|
|
skc->skc_slab_max = skc->skc_slab_alloc;
|
|
}
|
|
|
|
return sko->sko_addr;
|
|
}
|
|
|
|
/* No available objects create a new slab. Since this is an
|
|
* expensive operation we do it without holding the spinlock
|
|
* and only briefly aquire it when we link in the fully
|
|
* allocated and constructed slab.
|
|
*/
|
|
static spl_kmem_slab_t *
|
|
spl_cache_grow(spl_kmem_cache_t *skc, int flags)
|
|
{
|
|
spl_kmem_slab_t *sks;
|
|
ENTRY;
|
|
|
|
ASSERT(skc->skc_magic == SKC_MAGIC);
|
|
|
|
if (flags & __GFP_WAIT) {
|
|
flags |= __GFP_NOFAIL;
|
|
might_sleep();
|
|
local_irq_enable();
|
|
}
|
|
|
|
sks = spl_slab_alloc(skc, flags);
|
|
if (sks == NULL) {
|
|
if (flags & __GFP_WAIT)
|
|
local_irq_disable();
|
|
|
|
RETURN(NULL);
|
|
}
|
|
|
|
if (flags & __GFP_WAIT)
|
|
local_irq_disable();
|
|
|
|
/* Link the new empty slab in to the end of skc_partial_list */
|
|
spin_lock(&skc->skc_lock);
|
|
skc->skc_slab_total++;
|
|
skc->skc_obj_total += sks->sks_objs;
|
|
list_add_tail(&sks->sks_list, &skc->skc_partial_list);
|
|
spin_unlock(&skc->skc_lock);
|
|
|
|
RETURN(sks);
|
|
}
|
|
|
|
static int
|
|
spl_cache_refill(spl_kmem_cache_t *skc, spl_kmem_magazine_t *skm, int flags)
|
|
{
|
|
spl_kmem_slab_t *sks;
|
|
int rc = 0, refill;
|
|
ENTRY;
|
|
|
|
ASSERT(skc->skc_magic == SKC_MAGIC);
|
|
ASSERT(skm->skm_magic == SKM_MAGIC);
|
|
|
|
/* XXX: Check for refill bouncing by age perhaps */
|
|
refill = MIN(skm->skm_refill, skm->skm_size - skm->skm_avail);
|
|
|
|
spin_lock(&skc->skc_lock);
|
|
|
|
while (refill > 0) {
|
|
/* No slabs available we must grow the cache */
|
|
if (list_empty(&skc->skc_partial_list)) {
|
|
spin_unlock(&skc->skc_lock);
|
|
|
|
sks = spl_cache_grow(skc, flags);
|
|
if (!sks)
|
|
GOTO(out, rc);
|
|
|
|
/* Rescheduled to different CPU skm is not local */
|
|
if (skm != skc->skc_mag[smp_processor_id()])
|
|
GOTO(out, rc);
|
|
|
|
/* Potentially rescheduled to the same CPU but
|
|
* allocations may have occured from this CPU while
|
|
* we were sleeping so recalculate max refill. */
|
|
refill = MIN(refill, skm->skm_size - skm->skm_avail);
|
|
|
|
spin_lock(&skc->skc_lock);
|
|
continue;
|
|
}
|
|
|
|
/* Grab the next available slab */
|
|
sks = list_entry((&skc->skc_partial_list)->next,
|
|
spl_kmem_slab_t, sks_list);
|
|
ASSERT(sks->sks_magic == SKS_MAGIC);
|
|
ASSERT(sks->sks_ref < sks->sks_objs);
|
|
ASSERT(!list_empty(&sks->sks_free_list));
|
|
|
|
/* Consume as many objects as needed to refill the requested
|
|
* cache. We must also be careful not to overfill it. */
|
|
while (sks->sks_ref < sks->sks_objs && refill-- > 0 && ++rc) {
|
|
ASSERT(skm->skm_avail < skm->skm_size);
|
|
ASSERT(rc < skm->skm_size);
|
|
skm->skm_objs[skm->skm_avail++]=spl_cache_obj(skc,sks);
|
|
}
|
|
|
|
/* Move slab to skc_complete_list when full */
|
|
if (sks->sks_ref == sks->sks_objs) {
|
|
list_del(&sks->sks_list);
|
|
list_add(&sks->sks_list, &skc->skc_complete_list);
|
|
}
|
|
}
|
|
|
|
spin_unlock(&skc->skc_lock);
|
|
out:
|
|
/* Returns the number of entries added to cache */
|
|
RETURN(rc);
|
|
}
|
|
|
|
static void
|
|
spl_cache_shrink(spl_kmem_cache_t *skc, void *obj)
|
|
{
|
|
spl_kmem_slab_t *sks = NULL;
|
|
spl_kmem_obj_t *sko = NULL;
|
|
ENTRY;
|
|
|
|
ASSERT(skc->skc_magic == SKC_MAGIC);
|
|
ASSERT(spin_is_locked(&skc->skc_lock));
|
|
|
|
sko = obj + skc->skc_obj_size;
|
|
ASSERT(sko->sko_magic == SKO_MAGIC);
|
|
|
|
sks = sko->sko_slab;
|
|
ASSERT(sks->sks_magic == SKS_MAGIC);
|
|
ASSERT(sks->sks_cache == skc);
|
|
list_add(&sko->sko_list, &sks->sks_free_list);
|
|
|
|
sks->sks_age = jiffies;
|
|
sks->sks_ref--;
|
|
skc->skc_obj_alloc--;
|
|
|
|
/* Move slab to skc_partial_list when no longer full. Slabs
|
|
* are added to the head to keep the partial list is quasi-full
|
|
* sorted order. Fuller at the head, emptier at the tail. */
|
|
if (sks->sks_ref == (sks->sks_objs - 1)) {
|
|
list_del(&sks->sks_list);
|
|
list_add(&sks->sks_list, &skc->skc_partial_list);
|
|
}
|
|
|
|
/* Move emply slabs to the end of the partial list so
|
|
* they can be easily found and freed during reclamation. */
|
|
if (sks->sks_ref == 0) {
|
|
list_del(&sks->sks_list);
|
|
list_add_tail(&sks->sks_list, &skc->skc_partial_list);
|
|
skc->skc_slab_alloc--;
|
|
}
|
|
|
|
EXIT;
|
|
}
|
|
|
|
static int
|
|
spl_cache_flush(spl_kmem_cache_t *skc, spl_kmem_magazine_t *skm, int flush)
|
|
{
|
|
int i, count = MIN(flush, skm->skm_avail);
|
|
ENTRY;
|
|
|
|
ASSERT(skc->skc_magic == SKC_MAGIC);
|
|
ASSERT(skm->skm_magic == SKM_MAGIC);
|
|
|
|
spin_lock(&skc->skc_lock);
|
|
|
|
for (i = 0; i < count; i++)
|
|
spl_cache_shrink(skc, skm->skm_objs[i]);
|
|
|
|
// __spl_slab_reclaim(skc);
|
|
skm->skm_avail -= count;
|
|
memmove(skm->skm_objs, &(skm->skm_objs[count]),
|
|
sizeof(void *) * skm->skm_avail);
|
|
|
|
spin_unlock(&skc->skc_lock);
|
|
|
|
RETURN(count);
|
|
}
|
|
|
|
void *
|
|
spl_kmem_cache_alloc(spl_kmem_cache_t *skc, int flags)
|
|
{
|
|
spl_kmem_magazine_t *skm;
|
|
unsigned long irq_flags;
|
|
void *obj = NULL;
|
|
int id;
|
|
ENTRY;
|
|
|
|
ASSERT(skc->skc_magic == SKC_MAGIC);
|
|
ASSERT(flags & KM_SLEEP); /* XXX: KM_NOSLEEP not yet supported */
|
|
local_irq_save(irq_flags);
|
|
|
|
restart:
|
|
/* Safe to update per-cpu structure without lock, but
|
|
* in the restart case we must be careful to reaquire
|
|
* the local magazine since this may have changed
|
|
* when we need to grow the cache. */
|
|
id = smp_processor_id();
|
|
ASSERTF(id < 4, "cache=%p smp_processor_id=%d\n", skc, id);
|
|
skm = skc->skc_mag[smp_processor_id()];
|
|
ASSERTF(skm->skm_magic == SKM_MAGIC, "%x != %x: %s/%p/%p %x/%x/%x\n",
|
|
skm->skm_magic, SKM_MAGIC, skc->skc_name, skc, skm,
|
|
skm->skm_size, skm->skm_refill, skm->skm_avail);
|
|
|
|
if (likely(skm->skm_avail)) {
|
|
/* Object available in CPU cache, use it */
|
|
obj = skm->skm_objs[--skm->skm_avail];
|
|
if (!(skc->skc_flags & KMC_NOTOUCH))
|
|
skm->skm_age = jiffies;
|
|
} else {
|
|
/* Per-CPU cache empty, directly allocate from
|
|
* the slab and refill the per-CPU cache. */
|
|
(void)spl_cache_refill(skc, skm, flags);
|
|
GOTO(restart, obj = NULL);
|
|
}
|
|
|
|
local_irq_restore(irq_flags);
|
|
ASSERT(obj);
|
|
|
|
/* Pre-emptively migrate object to CPU L1 cache */
|
|
prefetchw(obj);
|
|
|
|
RETURN(obj);
|
|
}
|
|
EXPORT_SYMBOL(spl_kmem_cache_alloc);
|
|
|
|
void
|
|
spl_kmem_cache_free(spl_kmem_cache_t *skc, void *obj)
|
|
{
|
|
spl_kmem_magazine_t *skm;
|
|
unsigned long flags;
|
|
ENTRY;
|
|
|
|
ASSERT(skc->skc_magic == SKC_MAGIC);
|
|
local_irq_save(flags);
|
|
|
|
/* Safe to update per-cpu structure without lock, but
|
|
* no remote memory allocation tracking is being performed
|
|
* it is entirely possible to allocate an object from one
|
|
* CPU cache and return it to another. */
|
|
skm = skc->skc_mag[smp_processor_id()];
|
|
ASSERT(skm->skm_magic == SKM_MAGIC);
|
|
|
|
/* Per-CPU cache full, flush it to make space */
|
|
if (unlikely(skm->skm_avail >= skm->skm_size))
|
|
(void)spl_cache_flush(skc, skm, skm->skm_refill);
|
|
|
|
/* Available space in cache, use it */
|
|
skm->skm_objs[skm->skm_avail++] = obj;
|
|
|
|
local_irq_restore(flags);
|
|
|
|
EXIT;
|
|
}
|
|
EXPORT_SYMBOL(spl_kmem_cache_free);
|
|
|
|
static int
|
|
spl_kmem_cache_generic_shrinker(int nr_to_scan, unsigned int gfp_mask)
|
|
{
|
|
spl_kmem_cache_t *skc;
|
|
|
|
/* Under linux a shrinker is not tightly coupled with a slab
|
|
* cache. In fact linux always systematically trys calling all
|
|
* registered shrinker callbacks until its target reclamation level
|
|
* is reached. Because of this we only register one shrinker
|
|
* function in the shim layer for all slab caches. And we always
|
|
* attempt to shrink all caches when this generic shrinker is called.
|
|
*/
|
|
down_read(&spl_kmem_cache_sem);
|
|
|
|
list_for_each_entry(skc, &spl_kmem_cache_list, skc_list)
|
|
spl_kmem_cache_reap_now(skc);
|
|
|
|
up_read(&spl_kmem_cache_sem);
|
|
|
|
/* XXX: Under linux we should return the remaining number of
|
|
* entries in the cache. We should do this as well.
|
|
*/
|
|
return 1;
|
|
}
|
|
|
|
void
|
|
spl_kmem_cache_reap_now(spl_kmem_cache_t *skc)
|
|
{
|
|
spl_kmem_magazine_t *skm;
|
|
int i;
|
|
ENTRY;
|
|
|
|
ASSERT(skc->skc_magic == SKC_MAGIC);
|
|
|
|
if (skc->skc_reclaim)
|
|
skc->skc_reclaim(skc->skc_private);
|
|
|
|
/* Ensure per-CPU caches which are idle gradually flush */
|
|
for_each_online_cpu(i) {
|
|
skm = skc->skc_mag[i];
|
|
|
|
if (time_after(jiffies, skm->skm_age + skc->skc_delay * HZ))
|
|
(void)spl_cache_flush(skc, skm, skm->skm_refill);
|
|
}
|
|
|
|
spl_slab_reclaim(skc);
|
|
|
|
EXIT;
|
|
}
|
|
EXPORT_SYMBOL(spl_kmem_cache_reap_now);
|
|
|
|
void
|
|
spl_kmem_reap(void)
|
|
{
|
|
spl_kmem_cache_generic_shrinker(KMC_REAP_CHUNK, GFP_KERNEL);
|
|
}
|
|
EXPORT_SYMBOL(spl_kmem_reap);
|
|
|
|
#if defined(DEBUG_KMEM) && defined(DEBUG_KMEM_TRACKING)
|
|
static char *
|
|
spl_sprintf_addr(kmem_debug_t *kd, char *str, int len, int min)
|
|
{
|
|
int size = ((len - 1) < kd->kd_size) ? (len - 1) : kd->kd_size;
|
|
int i, flag = 1;
|
|
|
|
ASSERT(str != NULL && len >= 17);
|
|
memset(str, 0, len);
|
|
|
|
/* Check for a fully printable string, and while we are at
|
|
* it place the printable characters in the passed buffer. */
|
|
for (i = 0; i < size; i++) {
|
|
str[i] = ((char *)(kd->kd_addr))[i];
|
|
if (isprint(str[i])) {
|
|
continue;
|
|
} else {
|
|
/* Minimum number of printable characters found
|
|
* to make it worthwhile to print this as ascii. */
|
|
if (i > min)
|
|
break;
|
|
|
|
flag = 0;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!flag) {
|
|
sprintf(str, "%02x%02x%02x%02x%02x%02x%02x%02x",
|
|
*((uint8_t *)kd->kd_addr),
|
|
*((uint8_t *)kd->kd_addr + 2),
|
|
*((uint8_t *)kd->kd_addr + 4),
|
|
*((uint8_t *)kd->kd_addr + 6),
|
|
*((uint8_t *)kd->kd_addr + 8),
|
|
*((uint8_t *)kd->kd_addr + 10),
|
|
*((uint8_t *)kd->kd_addr + 12),
|
|
*((uint8_t *)kd->kd_addr + 14));
|
|
}
|
|
|
|
return str;
|
|
}
|
|
|
|
static int
|
|
spl_kmem_init_tracking(struct list_head *list, spinlock_t *lock, int size)
|
|
{
|
|
int i;
|
|
ENTRY;
|
|
|
|
spin_lock_init(lock);
|
|
INIT_LIST_HEAD(list);
|
|
|
|
for (i = 0; i < size; i++)
|
|
INIT_HLIST_HEAD(&kmem_table[i]);
|
|
|
|
RETURN(0);
|
|
}
|
|
|
|
static void
|
|
spl_kmem_fini_tracking(struct list_head *list, spinlock_t *lock)
|
|
{
|
|
unsigned long flags;
|
|
kmem_debug_t *kd;
|
|
char str[17];
|
|
ENTRY;
|
|
|
|
spin_lock_irqsave(lock, flags);
|
|
if (!list_empty(list))
|
|
CDEBUG(D_WARNING, "%-16s %-5s %-16s %s:%s\n",
|
|
"address", "size", "data", "func", "line");
|
|
|
|
list_for_each_entry(kd, list, kd_list)
|
|
CDEBUG(D_WARNING, "%p %-5d %-16s %s:%d\n",
|
|
kd->kd_addr, kd->kd_size,
|
|
spl_sprintf_addr(kd, str, 17, 8),
|
|
kd->kd_func, kd->kd_line);
|
|
|
|
spin_unlock_irqrestore(lock, flags);
|
|
EXIT;
|
|
}
|
|
#else /* DEBUG_KMEM && DEBUG_KMEM_TRACKING */
|
|
#define spl_kmem_init_tracking(list, lock, size)
|
|
#define spl_kmem_fini_tracking(list, lock)
|
|
#endif /* DEBUG_KMEM && DEBUG_KMEM_TRACKING */
|
|
|
|
int
|
|
spl_kmem_init(void)
|
|
{
|
|
int rc = 0;
|
|
ENTRY;
|
|
|
|
init_rwsem(&spl_kmem_cache_sem);
|
|
INIT_LIST_HEAD(&spl_kmem_cache_list);
|
|
|
|
#ifdef HAVE_SET_SHRINKER
|
|
spl_kmem_cache_shrinker = set_shrinker(KMC_DEFAULT_SEEKS,
|
|
spl_kmem_cache_generic_shrinker);
|
|
if (spl_kmem_cache_shrinker == NULL)
|
|
GOTO(out, rc = -ENOMEM);
|
|
#else
|
|
register_shrinker(&spl_kmem_cache_shrinker);
|
|
#endif
|
|
|
|
#ifdef DEBUG_KMEM
|
|
atomic64_set(&kmem_alloc_used, 0);
|
|
atomic64_set(&vmem_alloc_used, 0);
|
|
|
|
spl_kmem_init_tracking(&kmem_list, &kmem_lock, KMEM_TABLE_SIZE);
|
|
spl_kmem_init_tracking(&vmem_list, &vmem_lock, VMEM_TABLE_SIZE);
|
|
#endif
|
|
out:
|
|
RETURN(rc);
|
|
}
|
|
|
|
void
|
|
spl_kmem_fini(void)
|
|
{
|
|
#ifdef DEBUG_KMEM
|
|
/* Display all unreclaimed memory addresses, including the
|
|
* allocation size and the first few bytes of what's located
|
|
* at that address to aid in debugging. Performance is not
|
|
* a serious concern here since it is module unload time. */
|
|
if (atomic64_read(&kmem_alloc_used) != 0)
|
|
CWARN("kmem leaked %ld/%ld bytes\n",
|
|
atomic_read(&kmem_alloc_used), kmem_alloc_max);
|
|
|
|
|
|
if (atomic64_read(&vmem_alloc_used) != 0)
|
|
CWARN("vmem leaked %ld/%ld bytes\n",
|
|
atomic_read(&vmem_alloc_used), vmem_alloc_max);
|
|
|
|
spl_kmem_fini_tracking(&kmem_list, &kmem_lock);
|
|
spl_kmem_fini_tracking(&vmem_list, &vmem_lock);
|
|
#endif /* DEBUG_KMEM */
|
|
ENTRY;
|
|
|
|
#ifdef HAVE_SET_SHRINKER
|
|
remove_shrinker(spl_kmem_cache_shrinker);
|
|
#else
|
|
unregister_shrinker(&spl_kmem_cache_shrinker);
|
|
#endif
|
|
|
|
EXIT;
|
|
}
|