freebsd-nq/contrib/ntp/ntpd/ntp_refclock.c
2000-01-28 14:55:50 +00:00

1328 lines
34 KiB
C

/*
* ntp_refclock - processing support for reference clocks
*/
#ifdef HAVE_CONFIG_H
# include <config.h>
#endif
#include <stdio.h>
#include <sys/types.h>
#ifdef HAVE_SYS_IOCTL_H
# include <sys/ioctl.h>
#endif /* HAVE_SYS_IOCTL_H */
#include "ntpd.h"
#include "ntp_io.h"
#include "ntp_unixtime.h"
#include "ntp_refclock.h"
#include "ntp_stdlib.h"
#ifdef REFCLOCK
#ifdef TTYCLK
# ifdef HAVE_SYS_CLKDEFS_H
# include <sys/clkdefs.h>
# endif
# ifdef HAVE_SYS_SIO_H
# include <sys/sio.h>
# endif
#endif /* TTYCLK */
#ifdef HAVE_PPSCLOCK_H
#include <sys/ppsclock.h>
#endif /* HAVE_PPSCLOCK_H */
#ifdef HAVE_PPSAPI
# ifdef HAVE_TIMEPPS_H
# include <timepps.h>
# else
# ifdef HAVE_SYS_TIMEPPS_H
# include <sys/timepps.h>
# endif
# endif
#endif /* HAVE_PPSAPI */
/*
* Reference clock support is provided here by maintaining the fiction
* that the clock is actually a peer. As no packets are exchanged with a
* reference clock, however, we replace the transmit, receive and packet
* procedures with separate code to simulate them. Routines
* refclock_transmit() and refclock_receive() maintain the peer
* variables in a state analogous to an actual peer and pass reference
* clock data on through the filters. Routines refclock_peer() and
* refclock_unpeer() are called to initialize and terminate reference
* clock associations. A set of utility routines is included to open
* serial devices, process sample data, edit input lines to extract
* embedded timestamps and to peform various debugging functions.
*
* The main interface used by these routines is the refclockproc
* structure, which contains for most drivers the decimal equivalants of
* the year, day, month, hour, second and millisecond/microsecond
* decoded from the ASCII timecode. Additional information includes the
* receive timestamp, exception report, statistics tallies, etc. In
* addition, there may be a driver-specific unit structure used for
* local control of the device.
*
* The support routines are passed a pointer to the peer structure,
* which is used for all peer-specific processing and contains a pointer
* to the refclockproc structure, which in turn containes a pointer to
* the unit structure, if used. The peer structure is identified by an
* interface address in the dotted quad form 127.127.t.u, where t is the
* clock type and u the unit. Some legacy drivers derive the
* refclockproc structure pointer from the table typeunit[type][unit].
* This interface is strongly discouraged and may be abandoned in
* future.
*
* The routines include support for the 1-pps signal provided by some
* radios and connected via a level converted described in the gadget
* directory. The signal is captured using a serial port and one of
* three STREAMS modules described in the refclock_atom.c file. For the
* highest precision, the signal is captured using the carrier-detect
* line of a serial port and either the ppsclock or ppsapi streams
* module or some devilish ioctl() folks keep slipping in as a patch. Be
* advised ALL support for other than the duly standardized ppsapi
* interface will eventually be withdrawn.
*/
#define MAXUNIT 4 /* max units */
#if defined(PPS) || defined(HAVE_PPSAPI)
int fdpps; /* pps file descriptor */
#endif /* PPS HAVE_PPSAPI */
#define FUDGEFAC .1 /* fudge correction factor */
/*
* Type/unit peer index. Used to find the peer structure for control and
* debugging. When all clock drivers have been converted to new style,
* this dissapears.
*/
static struct peer *typeunit[REFCLK_MAX + 1][MAXUNIT];
/*
* Forward declarations
*/
#ifdef QSORT_USES_VOID_P
static int refclock_cmpl_fp P((const void *, const void *));
#else
static int refclock_cmpl_fp P((const double *, const double *));
#endif /* QSORT_USES_VOID_P */
static int refclock_sample P((struct refclockproc *));
#ifdef HAVE_PPSAPI
extern int pps_assert; /* capture edge 1:assert, 0:clear */
extern int pps_hardpps; /* PPS kernel 1:on, 0:off */
#endif /* HAVE_PPSAPI */
/*
* refclock_report - note the occurance of an event
*
* This routine presently just remembers the report and logs it, but
* does nothing heroic for the trap handler. It tries to be a good
* citizen and bothers the system log only if things change.
*/
void
refclock_report(
struct peer *peer,
int code
)
{
struct refclockproc *pp;
if (!(pp = peer->procptr))
return;
if (code == CEVNT_BADREPLY)
pp->badformat++;
if (code == CEVNT_BADTIME)
pp->baddata++;
if (code == CEVNT_TIMEOUT)
pp->noreply++;
if (pp->currentstatus != code) {
pp->currentstatus = code;
pp->lastevent = code;
if (code == CEVNT_FAULT)
msyslog(LOG_ERR,
"clock %s event '%s' (0x%02x)",
refnumtoa(peer->srcadr.sin_addr.s_addr),
ceventstr(code), code);
else {
NLOG(NLOG_CLOCKEVENT)
msyslog(LOG_INFO,
"clock %s event '%s' (0x%02x)",
refnumtoa(peer->srcadr.sin_addr.s_addr),
ceventstr(code), code);
}
}
#ifdef DEBUG
if (debug)
printf("clock %s event '%s' (0x%02x)\n",
refnumtoa(peer->srcadr.sin_addr.s_addr),
ceventstr(code), code);
#endif
}
/*
* init_refclock - initialize the reference clock drivers
*
* This routine calls each of the drivers in turn to initialize internal
* variables, if necessary. Most drivers have nothing to say at this
* point.
*/
void
init_refclock(void)
{
int i, j;
for (i = 0; i < (int)num_refclock_conf; i++) {
if (refclock_conf[i]->clock_init != noentry)
(refclock_conf[i]->clock_init)();
for (j = 0; j < MAXUNIT; j++)
typeunit[i][j] = 0;
}
}
/*
* refclock_newpeer - initialize and start a reference clock
*
* This routine allocates and initializes the interface structure which
* supports a reference clock in the form of an ordinary NTP peer. A
* driver-specific support routine completes the initialization, if
* used. Default peer variables which identify the clock and establish
* its reference ID and stratum are set here. It returns one if success
* and zero if the clock address is invalid or already running,
* insufficient resources are available or the driver declares a bum
* rap.
*/
int
refclock_newpeer(
struct peer *peer /* peer structure pointer */
)
{
struct refclockproc *pp;
u_char clktype;
int unit;
/*
* Check for valid clock address. If already running, shut it
* down first.
*/
if (!ISREFCLOCKADR(&peer->srcadr)) {
msyslog(LOG_ERR,
"refclock_newpeer: clock address %s invalid",
ntoa(&peer->srcadr));
return (0);
}
clktype = (u_char)REFCLOCKTYPE(&peer->srcadr);
unit = REFCLOCKUNIT(&peer->srcadr);
if (clktype >= num_refclock_conf || unit >= MAXUNIT ||
refclock_conf[clktype]->clock_start == noentry) {
msyslog(LOG_ERR,
"refclock_newpeer: clock type %d invalid\n",
clktype);
return (0);
}
refclock_unpeer(peer);
/*
* Allocate and initialize interface structure
*/
if (!(pp = (struct refclockproc *)emalloc(sizeof(struct refclockproc))))
return (0);
memset((char *)pp, 0, sizeof(struct refclockproc));
typeunit[clktype][unit] = peer;
peer->procptr = pp;
/*
* Initialize structures
*/
peer->refclktype = clktype;
peer->refclkunit = unit;
peer->flags |= FLAG_REFCLOCK;
peer->stratum = STRATUM_REFCLOCK;
peer->refid = peer->srcadr.sin_addr.s_addr;
peer->maxpoll = peer->minpoll;
pp->type = clktype;
pp->timestarted = current_time;
/*
* If the interface has been set to any_interface, set it to the
* loopback address if we have one. This is so that peers which
* are unreachable are easy to see in the peer display.
*/
if (peer->dstadr == any_interface && loopback_interface != 0)
peer->dstadr = loopback_interface;
/*
* Set peer.pmode based on the hmode. For appearances only.
*/
switch (peer->hmode) {
case MODE_ACTIVE:
peer->pmode = MODE_PASSIVE;
break;
default:
peer->pmode = MODE_SERVER;
break;
}
/*
* Do driver dependent initialization. The above defaults
* can be wiggled, then finish up for consistency.
*/
if (!((refclock_conf[clktype]->clock_start)(unit, peer))) {
free(pp);
return (0);
}
peer->hpoll = peer->minpoll;
peer->ppoll = peer->maxpoll;
if (peer->stratum <= 1)
peer->refid = pp->refid;
else
peer->refid = peer->srcadr.sin_addr.s_addr;
return (1);
}
/*
* refclock_unpeer - shut down a clock
*/
void
refclock_unpeer(
struct peer *peer /* peer structure pointer */
)
{
u_char clktype;
int unit;
/*
* Wiggle the driver to release its resources, then give back
* the interface structure.
*/
if (!peer->procptr)
return;
clktype = peer->refclktype;
unit = peer->refclkunit;
if (refclock_conf[clktype]->clock_shutdown != noentry)
(refclock_conf[clktype]->clock_shutdown)(unit, peer);
free(peer->procptr);
peer->procptr = 0;
}
/*
* refclock_transmit - simulate the transmit procedure
*
* This routine implements the NTP transmit procedure for a reference
* clock. This provides a mechanism to call the driver at the NTP poll
* interval, as well as provides a reachability mechanism to detect a
* broken radio or other madness.
*/
void
refclock_transmit(
struct peer *peer /* peer structure pointer */
)
{
u_char clktype;
int unit;
int hpoll;
u_long next;
clktype = peer->refclktype;
unit = peer->refclkunit;
peer->sent++;
/*
* This is a ripoff of the peer transmit routine, but
* specialized for reference clocks. We do a little less
* protocol here and call the driver-specific transmit routine.
*/
hpoll = peer->hpoll;
next = peer->outdate;
if (peer->burst == 0) {
u_char oreach;
#ifdef DEBUG
if (debug)
printf("refclock_transmit: at %ld %s\n",
current_time, ntoa(&(peer->srcadr)));
#endif
/*
* Update reachability and poll variables like the
* network code.
*/
oreach = peer->reach;
if (oreach & 0x01)
peer->valid++;
if (oreach & 0x80)
peer->valid--;
peer->reach <<= 1;
if (peer->reach == 0) {
if (oreach != 0) {
report_event(EVNT_UNREACH, peer);
peer->timereachable = current_time;
peer_clear(peer);
}
} else {
if ((oreach & 0x03) == 0) {
clock_filter(peer, 0., 0., MAXDISPERSE);
clock_select();
}
if (peer->valid <= 2) {
hpoll--;
} else if (peer->valid > NTP_SHIFT - 2)
hpoll++;
if (peer->flags & FLAG_BURST)
peer->burst = NSTAGE;
}
next = current_time;
}
get_systime(&peer->xmt);
if (refclock_conf[clktype]->clock_poll != noentry)
(refclock_conf[clktype]->clock_poll)(unit, peer);
peer->outdate = next;
poll_update(peer, hpoll);
if (peer->burst > 0)
peer->burst--;
poll_update(peer, hpoll);
}
/*
* Compare two doubles - used with qsort()
*/
#ifdef QSORT_USES_VOID_P
static int
refclock_cmpl_fp(
const void *p1,
const void *p2
)
{
const double *dp1 = (const double *)p1;
const double *dp2 = (const double *)p2;
if (*dp1 < *dp2)
return (-1);
if (*dp1 > *dp2)
return (1);
return (0);
}
#else
static int
refclock_cmpl_fp(
const double *dp1,
const double *dp2
)
{
if (*dp1 < *dp2)
return (-1);
if (*dp1 > *dp2)
return (1);
return (0);
}
#endif /* QSORT_USES_VOID_P */
/*
* refclock_process_offset - update median filter
*
* This routine uses the given offset and timestamps to construct a new entry in the median filter circular buffer. Samples that overflow the filter are quietly discarded.
*/
void
refclock_process_offset(
struct refclockproc *pp,
l_fp offset,
l_fp lastrec,
double fudge
)
{
double doffset;
pp->lastref = offset;
pp->lastrec = lastrec;
pp->variance = 0;
L_SUB(&offset, &lastrec);
LFPTOD(&offset, doffset);
SAMPLE(doffset + fudge);
}
/*
* refclock_process - process a sample from the clock
*
* This routine converts the timecode in the form days, hours, minutes,
* seconds and milliseconds/microseconds to internal timestamp format,
* then constructs a new entry in the median filter circular buffer.
* Return success (1) if the data are correct and consistent with the
* converntional calendar.
*/
int
refclock_process(
struct refclockproc *pp
)
{
l_fp offset;
/*
* Compute the timecode timestamp from the days, hours, minutes,
* seconds and milliseconds/microseconds of the timecode. Use
* clocktime() for the aggregate seconds and the msec/usec for
* the fraction, when present. Note that this code relies on the
* filesystem time for the years and does not use the years of
* the timecode.
*/
if (!clocktime(pp->day, pp->hour, pp->minute, pp->second, GMT,
pp->lastrec.l_ui, &pp->yearstart, &offset.l_ui))
return (0);
if (pp->usec) {
TVUTOTSF(pp->usec, offset.l_uf);
} else {
MSUTOTSF(pp->msec, offset.l_uf);
}
refclock_process_offset(pp, offset, pp->lastrec,
pp->fudgetime1);
return (1);
}
/*
* refclock_sample - process a pile of samples from the clock
*
* This routine implements a recursive median filter to suppress spikes
* in the data, as well as determine a performance statistic. It
* calculates the mean offset and mean-square variance. A time
* adjustment fudgetime1 can be added to the final offset to compensate
* for various systematic errors. The routine returns the number of
* samples processed, which could be 0.
*/
static int
refclock_sample(
struct refclockproc *pp
)
{
int i, j, k, n;
double offset, disp;
double off[MAXSTAGE];
/*
* Copy the raw offsets and sort into ascending order. Don't do
* anything if the buffer is empty.
*/
if (pp->codeproc == pp->coderecv)
return (0);
n = 0;
while (pp->codeproc != pp->coderecv)
off[n++] = pp->filter[pp->codeproc++ % MAXSTAGE];
if (n > 1)
qsort((char *)off, n, sizeof(double), refclock_cmpl_fp);
/*
* Reject the furthest from the median of the samples until
* approximately 60 percent of the samples remain.
*/
i = 0; j = n;
k = n - (n * 2) / NSTAGE;
while ((j - i) > k) {
offset = off[(j + i) / 2];
if (off[j - 1] - offset < offset - off[i])
i++; /* reject low end */
else
j--; /* reject high end */
}
/*
* Determine the offset and variance.
*/
offset = disp = 0;
for (; i < j; i++) {
offset += off[i];
disp += SQUARE(off[i]);
}
offset /= k;
pp->offset = offset;
pp->variance += disp / k - SQUARE(offset);
#ifdef DEBUG
if (debug)
printf(
"refclock_sample: n %d offset %.6f disp %.6f std %.6f\n",
n, pp->offset, pp->disp, SQRT(pp->variance));
#endif
return (n);
}
/*
* refclock_receive - simulate the receive and packet procedures
*
* This routine simulates the NTP receive and packet procedures for a
* reference clock. This provides a mechanism in which the ordinary NTP
* filter, selection and combining algorithms can be used to suppress
* misbehaving radios and to mitigate between them when more than one is
* available for backup.
*/
void
refclock_receive(
struct peer *peer /* peer structure pointer */
)
{
struct refclockproc *pp;
#ifdef DEBUG
if (debug)
printf("refclock_receive: at %lu %s\n",
current_time, ntoa(&peer->srcadr));
#endif
/*
* Do a little sanity dance and update the peer structure. Groom
* the median filter samples and give the data to the clock
* filter.
*/
peer->received++;
pp = peer->procptr;
peer->processed++;
peer->timereceived = current_time;
peer->leap = pp->leap;
if (peer->leap == LEAP_NOTINSYNC) {
refclock_report(peer, CEVNT_FAULT);
return;
}
if (peer->reach == 0)
report_event(EVNT_REACH, peer);
peer->reach |= 1;
peer->reftime = peer->org = pp->lastrec;
peer->rootdispersion = pp->disp + SQRT(pp->variance);
get_systime(&peer->rec);
if (!refclock_sample(pp))
return;
clock_filter(peer, pp->offset, 0., 0.);
clock_select();
record_peer_stats(&peer->srcadr, ctlpeerstatus(peer),
peer->offset, peer->delay, CLOCK_PHI * (current_time -
peer->epoch), SQRT(peer->variance));
if (pps_control && pp->sloppyclockflag & CLK_FLAG1)
pp->fudgetime1 -= pp->offset * FUDGEFAC;
}
/*
* refclock_gtlin - groom next input line and extract timestamp
*
* This routine processes the timecode received from the clock and
* removes the parity bit and control characters. If a timestamp is
* present in the timecode, as produced by the tty_clk STREAMS module,
* it returns that as the timestamp; otherwise, it returns the buffer
* timestamp. The routine return code is the number of characters in
* the line.
*/
int
refclock_gtlin(
struct recvbuf *rbufp, /* receive buffer pointer */
char *lineptr, /* current line pointer */
int bmax, /* remaining characters in line */
l_fp *tsptr /* pointer to timestamp returned */
)
{
char *dpt, *dpend, *dp;
int i;
l_fp trtmp, tstmp;
char c;
#ifdef TIOCDCDTIMESTAMP
struct timeval dcd_time;
#endif /* TIOCDCDTIMESTAMP */
#ifdef HAVE_PPSAPI
pps_info_t pi;
struct timespec timeout, *tsp;
double a;
#endif /* HAVE_PPSAPI */
/*
* Check for the presence of a timestamp left by the tty_clock
* module and, if present, use that instead of the buffer
* timestamp captured by the I/O routines. We recognize a
* timestamp by noting its value is earlier than the buffer
* timestamp, but not more than one second earlier.
*/
dpt = (char *)&rbufp->recv_space;
dpend = dpt + rbufp->recv_length;
trtmp = rbufp->recv_time;
#ifdef HAVE_PPSAPI
timeout.tv_sec = 0;
timeout.tv_nsec = 0;
if ((rbufp->fd == fdpps) &&
(time_pps_fetch(fdpps, PPS_TSFMT_TSPEC, &pi, &timeout) >= 0)) {
if(pps_assert)
tsp = &pi.assert_timestamp;
else
tsp = &pi.clear_timestamp;
a = tsp->tv_nsec;
a /= 1e9;
tstmp.l_uf = a * 4294967296.0;
tstmp.l_ui = tsp->tv_sec;
tstmp.l_ui += JAN_1970;
L_SUB(&trtmp, &tstmp);
if (trtmp.l_ui == 0) {
#ifdef DEBUG
if (debug > 1) {
printf(
"refclock_gtlin: fd %d time_pps_fetch %s",
fdpps, lfptoa(&tstmp, 6));
printf(" sigio %s\n", lfptoa(&trtmp, 6));
}
#endif
trtmp = tstmp;
goto gotit;
} else
trtmp = rbufp->recv_time;
}
#endif /* HAVE_PPSAPI */
#ifdef TIOCDCDTIMESTAMP
if(ioctl(rbufp->fd, TIOCDCDTIMESTAMP, &dcd_time) != -1) {
TVTOTS(&dcd_time, &tstmp);
tstmp.l_ui += JAN_1970;
L_SUB(&trtmp, &tstmp);
if (trtmp.l_ui == 0) {
#ifdef DEBUG
if (debug > 1) {
printf(
"refclock_gtlin: fd %d DCDTIMESTAMP %s",
rbufp->fd, lfptoa(&tstmp, 6));
printf(" sigio %s\n", lfptoa(&trtmp, 6));
}
#endif
trtmp = tstmp;
goto gotit;
} else
trtmp = rbufp->recv_time;
}
else
/* XXX fallback to old method if kernel refuses TIOCDCDTIMESTAMP */
#endif /* TIOCDCDTIMESTAMP */
if (dpend >= dpt + 8) {
if (buftvtots(dpend - 8, &tstmp)) {
L_SUB(&trtmp, &tstmp);
if (trtmp.l_ui == 0) {
#ifdef DEBUG
if (debug > 1) {
printf(
"refclock_gtlin: fd %d ldisc %s",
rbufp->fd, lfptoa(&trtmp, 6));
get_systime(&trtmp);
L_SUB(&trtmp, &tstmp);
printf(" sigio %s\n", lfptoa(&trtmp, 6));
}
#endif
dpend -= 8;
trtmp = tstmp;
} else
trtmp = rbufp->recv_time;
}
}
#if defined(HAVE_PPSAPI) || defined(TIOCDCDTIMESTAMP)
gotit:
#endif
/*
* Edit timecode to remove control chars. Don't monkey with the
* line buffer if the input buffer contains no ASCII printing
* characters.
*/
if (dpend - dpt > bmax - 1)
dpend = dpt + bmax - 1;
for (dp = lineptr; dpt < dpend; dpt++) {
c = *dpt & 0x7f;
if (c >= ' ')
*dp++ = c;
}
i = dp - lineptr;
if (i > 0)
*dp = '\0';
#ifdef DEBUG
if (debug > 1 && i > 0)
printf("refclock_gtlin: fd %d time %s timecode %d %s\n",
rbufp->fd, ulfptoa(&trtmp, 6), i, lineptr);
#endif
*tsptr = trtmp;
return (i);
}
/*
* The following code does not apply to WINNT & VMS ...
*/
#if !defined SYS_VXWORKS && !defined SYS_WINNT
#if defined(HAVE_TERMIOS) || defined(HAVE_SYSV_TTYS) || defined(HAVE_BSD_TTYS)
/*
* refclock_open - open serial port for reference clock
*
* This routine opens a serial port for I/O and sets default options. It
* returns the file descriptor if success and zero if failure.
*/
int
refclock_open(
char *dev, /* device name pointer */
int speed, /* serial port speed (code) */
int lflags /* line discipline flags */
)
{
int fd, i;
int flags;
#ifdef HAVE_TERMIOS
struct termios ttyb, *ttyp;
#endif /* HAVE_TERMIOS */
#ifdef HAVE_SYSV_TTYS
struct termio ttyb, *ttyp;
#endif /* HAVE_SYSV_TTYS */
#ifdef HAVE_BSD_TTYS
struct sgttyb ttyb, *ttyp;
#endif /* HAVE_BSD_TTYS */
#ifdef TIOCMGET
u_long ltemp;
#endif /* TIOCMGET */
/*
* Open serial port and set default options
*/
flags = lflags;
if (strcmp(dev, pps_device) == 0)
flags |= LDISC_PPS;
#ifdef O_NONBLOCK
fd = open(dev, O_RDWR | O_NONBLOCK, 0777);
#else
fd = open(dev, O_RDWR, 0777);
#endif /* O_NONBLOCK */
if (fd == -1) {
msyslog(LOG_ERR, "refclock_open: %s: %m", dev);
return (0);
}
/*
* The following sections initialize the serial line port in
* canonical (line-oriented) mode and set the specified line
* speed, 8 bits and no parity. The modem control, break, erase
* and kill functions are normally disabled. There is a
* different section for each terminal interface, as selected at
* compile time.
*/
ttyp = &ttyb;
#ifdef HAVE_TERMIOS
/*
* POSIX serial line parameters (termios interface)
*/
if (tcgetattr(fd, ttyp) < 0) {
msyslog(LOG_ERR,
"refclock_open: fd %d tcgetattr: %m", fd);
return (0);
}
/*
* Set canonical mode and local connection; set specified speed,
* 8 bits and no parity; map CR to NL; ignore break.
*/
ttyp->c_iflag = IGNBRK | IGNPAR | ICRNL;
ttyp->c_oflag = 0;
ttyp->c_cflag = CS8 | CLOCAL | CREAD;
(void)cfsetispeed(&ttyb, (u_int)speed);
(void)cfsetospeed(&ttyb, (u_int)speed);
ttyp->c_lflag = ICANON;
for (i = 0; i < NCCS; ++i)
{
ttyp->c_cc[i] = '\0';
}
/*
* Some special cases
*/
if (flags & LDISC_RAW) {
ttyp->c_iflag = 0;
ttyp->c_lflag = 0;
ttyp->c_cc[VMIN] = 1;
}
#if defined(TIOCMGET) && !defined(SCO5_CLOCK)
/*
* If we have modem control, check to see if modem leads are
* active; if so, set remote connection. This is necessary for
* the kernel pps mods to work.
*/
ltemp = 0;
if (ioctl(fd, TIOCMGET, (char *)&ltemp) < 0)
msyslog(LOG_ERR,
"refclock_open: fd %d TIOCMGET failed: %m", fd);
#ifdef DEBUG
if (debug)
printf("refclock_open: fd %d modem status 0x%lx\n",
fd, ltemp);
#endif
if (ltemp & TIOCM_DSR)
ttyp->c_cflag &= ~CLOCAL;
#endif /* TIOCMGET */
if (tcsetattr(fd, TCSANOW, ttyp) < 0) {
msyslog(LOG_ERR,
"refclock_open: fd %d TCSANOW failed: %m", fd);
return (0);
}
if (tcflush(fd, TCIOFLUSH) < 0) {
msyslog(LOG_ERR,
"refclock_open: fd %d TCIOFLUSH failed: %m", fd);
return (0);
}
#endif /* HAVE_TERMIOS */
#ifdef HAVE_SYSV_TTYS
/*
* System V serial line parameters (termio interface)
*
*/
if (ioctl(fd, TCGETA, ttyp) < 0) {
msyslog(LOG_ERR,
"refclock_open: fd %d TCGETA failed: %m", fd);
return (0);
}
/*
* Set canonical mode and local connection; set specified speed,
* 8 bits and no parity; map CR to NL; ignore break.
*/
ttyp->c_iflag = IGNBRK | IGNPAR | ICRNL;
ttyp->c_oflag = 0;
ttyp->c_cflag = speed | CS8 | CLOCAL | CREAD;
ttyp->c_lflag = ICANON;
ttyp->c_cc[VERASE] = ttyp->c_cc[VKILL] = '\0';
/*
* Some special cases
*/
if (flags & LDISC_RAW) {
ttyp->c_iflag = 0;
ttyp->c_lflag = 0;
}
#ifdef TIOCMGET
/*
* If we have modem control, check to see if modem leads are
* active; if so, set remote connection. This is necessary for
* the kernel pps mods to work.
*/
ltemp = 0;
if (ioctl(fd, TIOCMGET, (char *)&ltemp) < 0)
msyslog(LOG_ERR,
"refclock_open: fd %d TIOCMGET failed: %m", fd);
#ifdef DEBUG
if (debug)
printf("refclock_open: fd %d modem status %lx\n",
fd, ltemp);
#endif
if (ltemp & TIOCM_DSR)
ttyp->c_cflag &= ~CLOCAL;
#endif /* TIOCMGET */
if (ioctl(fd, TCSETA, ttyp) < 0) {
msyslog(LOG_ERR,
"refclock_open: fd %d TCSETA failed: %m", fd);
return (0);
}
#endif /* HAVE_SYSV_TTYS */
#ifdef HAVE_BSD_TTYS
/*
* 4.3bsd serial line parameters (sgttyb interface)
*/
if (ioctl(fd, TIOCGETP, (char *)ttyp) < 0) {
msyslog(LOG_ERR,
"refclock_open: fd %d TIOCGETP %m", fd);
return (0);
}
ttyp->sg_ispeed = ttyp->sg_ospeed = speed;
ttyp->sg_flags = EVENP | ODDP | CRMOD;
if (ioctl(fd, TIOCSETP, (char *)ttyp) < 0) {
msyslog(LOG_ERR,
"refclock_open: TIOCSETP failed: %m");
return (0);
}
#endif /* HAVE_BSD_TTYS */
if (!refclock_ioctl(fd, flags)) {
(void)close(fd);
msyslog(LOG_ERR,
"refclock_open: fd %d ioctl failed: %m", fd);
return (0);
}
return (fd);
}
#endif /* HAVE_TERMIOS || HAVE_SYSV_TTYS || HAVE_BSD_TTYS */
#endif /* SYS_VXWORKS SYS_WINNT */
/*
* refclock_ioctl - set serial port control functions
*
* This routine attempts to hide the internal, system-specific details
* of serial ports. It can handle POSIX (termios), SYSV (termio) and BSD
* (sgtty) interfaces with varying degrees of success. The routine sets
* up optional features such as tty_clk, ppsclock and ppsapi, as well as
* their many other variants. The routine returns 1 if success and 0 if
* failure.
*/
int
refclock_ioctl(
int fd, /* file descriptor */
int flags /* line discipline flags */
)
{
/* simply return 1 if no UNIX line discipline is supported */
#if !defined SYS_VXWORKS && !defined SYS_WINNT
#if defined(HAVE_TERMIOS) || defined(HAVE_SYSV_TTYS) || defined(HAVE_BSD_TTYS)
#ifdef TTYCLK
#ifdef HAVE_TERMIOS
struct termios ttyb, *ttyp;
#endif /* HAVE_TERMIOS */
#ifdef HAVE_SYSV_TTYS
struct termio ttyb, *ttyp;
#endif /* HAVE_SYSV_TTYS */
#ifdef HAVE_BSD_TTYS
struct sgttyb ttyb, *ttyp;
#endif /* HAVE_BSD_TTYS */
#endif /* TTYCLK */
#ifdef DEBUG
if (debug)
printf("refclock_ioctl: fd %d flags 0x%x\n", fd, flags);
#endif
/*
* The following sections select optional features, such as
* modem control, PPS capture and so forth. Some require
* specific operating system support in the form of STREAMS
* modules, which can be loaded and unloaded at run time without
* rebooting the kernel. The STREAMS modules require System
* V STREAMS support. The checking frenzy is attenuated here,
* since the device is already open.
*
* Note that the tty_clk and ppsclock modules are optional; if
* configured and unavailable, the dang thing still works, but
* the accuracy improvement using them will not be available.
* The only known implmentations of these moldules are specific
* to SunOS 4.x. Use the ppsclock module ONLY with Sun baseboard
* ttya or ttyb. Using it with the SPIF multipexor crashes the
* kernel.
*
* The preferred way to capture PPS timestamps is using the
* ppsapi interface, which is machine independent. The SunOS 4.x
* and Digital Unix 4.x interfaces use STREAMS modules and
* support both the ppsapi specification and ppsclock
* functionality, but other systems may vary widely.
*/
if (flags == 0)
return (1);
#if !(defined(HAVE_TERMIOS) || defined(HAVE_BSD_TTYS))
if (flags & (LDISC_CLK | LDISC_PPS | LDISC_ACTS)) {
msyslog(LOG_ERR,
"refclock_ioctl: unsupported terminal interface");
return (0);
}
#endif /* HAVE_TERMIOS HAVE_BSD_TTYS */
#ifdef TTYCLK
ttyp = &ttyb;
#endif /* TTYCLK */
/*
* The following features may or may not require System V
* STREAMS support, depending on the particular implementation.
*/
#if defined(TTYCLK)
/*
* The TTYCLK option provides timestamping at the driver level.
* It requires the tty_clk streams module and System V STREAMS
* support. If not available, don't complain.
*/
if (flags & (LDISC_CLK | LDISC_CLKPPS | LDISC_ACTS)) {
int rval = 0;
if (ioctl(fd, I_PUSH, "clk") < 0) {
msyslog(LOG_NOTICE,
"refclock_ioctl: I_PUSH clk failed: %m");
} else {
char *str;
if (flags & LDISC_CLKPPS)
str = "\377";
else if (flags & LDISC_ACTS)
str = "*";
else
str = "\n";
#ifdef CLK_SETSTR
if ((rval = ioctl(fd, CLK_SETSTR, str)) < 0)
msyslog(LOG_ERR,
"refclock_ioctl: CLK_SETSTR failed: %m");
if (debug)
printf("refclock_ioctl: fd %d CLK_SETSTR %d str %s\n",
fd, rval, str);
#endif
}
}
#endif /* TTYCLK */
#if defined(PPS) && !defined(HAVE_PPSAPI)
/*
* The PPS option provides timestamping at the driver level.
* It uses a 1-pps signal and level converter (gadget box) and
* requires the ppsclock streams module and System V STREAMS
* support. This option has been superseded by the ppsapi
* option and may be withdrawn in future.
*/
if (flags & LDISC_PPS) {
int rval = 0;
#ifdef HAVE_TIOCSPPS /* Solaris */
int one = 1;
#endif /* HAVE_TIOCSPPS */
if (fdpps > 0) {
msyslog(LOG_ERR,
"refclock_ioctl: PPS already configured");
return (0);
}
#ifdef HAVE_TIOCSPPS /* Solaris */
if (ioctl(fd, TIOCSPPS, &one) < 0) {
msyslog(LOG_NOTICE,
"refclock_ioctl: TIOCSPPS failed: %m");
return (0);
}
if (debug)
printf("refclock_ioctl: fd %d TIOCSPPS %d\n",
fd, rval);
#else
if (ioctl(fd, I_PUSH, "ppsclock") < 0) {
msyslog(LOG_NOTICE,
"refclock_ioctl: I_PUSH ppsclock failed: %m");
return (0);
}
if (debug)
printf("refclock_ioctl: fd %d ppsclock %d\n",
fd, rval);
#endif /* not HAVE_TIOCSPPS */
fdpps = fd;
}
#endif /* PPS HAVE_PPSAPI */
#ifdef HAVE_PPSAPI
/*
* The PPSAPI option provides timestamping at the driver level.
* It uses a 1-pps signal and level converter (gadget box) and
* requires ppsapi compiled into the kernel on non STREAMS
* systems. This is the preferred way to capture PPS timestamps
* and is expected to become an IETF cross-platform standard.
*/
if (flags & (LDISC_PPS | LDISC_CLKPPS)) {
pps_params_t pp;
int mode, temp;
pps_handle_t handle;
memset((char *)&pp, 0, sizeof(pp));
if (fdpps > 0) {
msyslog(LOG_ERR,
"refclock_ioctl: ppsapi already configured");
return (0);
}
if (time_pps_create(fd, &handle) < 0) {
msyslog(LOG_ERR,
"refclock_ioctl: time_pps_create failed: %m");
return (0);
}
if (time_pps_getcap(handle, &mode) < 0) {
msyslog(LOG_ERR,
"refclock_ioctl: time_pps_getcap failed: %m");
return (0);
}
pp.mode = mode & PPS_CAPTUREBOTH;
if (time_pps_setparams(handle, &pp) < 0) {
msyslog(LOG_ERR,
"refclock_ioctl: time_pps_setparams failed: %m");
return (0);
}
if (!pps_hardpps)
temp = 0;
else if (pps_assert)
temp = mode & PPS_CAPTUREASSERT;
else
temp = mode & PPS_CAPTURECLEAR;
if (time_pps_kcbind(handle, PPS_KC_HARDPPS, temp,
PPS_TSFMT_TSPEC) < 0) {
msyslog(LOG_ERR,
"refclock_ioctl: time_pps_kcbind failed: %m");
return (0);
}
(void)time_pps_getparams(handle, &pp);
fdpps = (int)handle;
if (debug)
printf(
"refclock_ioctl: fd %d ppsapi vers %d mode 0x%x cap 0x%x\n",
fdpps, pp.api_version, pp.mode, mode);
}
#endif /* HAVE_PPSAPI */
#endif /* HAVE_TERMIOS || HAVE_SYSV_TTYS || HAVE_BSD_TTYS */
#endif /* SYS_VXWORKS SYS_WINNT */
return (1);
}
/*
* refclock_control - set and/or return clock values
*
* This routine is used mainly for debugging. It returns designated
* values from the interface structure that can be displayed using
* ntpdc and the clockstat command. It can also be used to initialize
* configuration variables, such as fudgetimes, fudgevalues, reference
* ID and stratum.
*/
void
refclock_control(
struct sockaddr_in *srcadr,
struct refclockstat *in,
struct refclockstat *out
)
{
struct peer *peer;
struct refclockproc *pp;
u_char clktype;
int unit;
/*
* Check for valid address and running peer
*/
if (!ISREFCLOCKADR(srcadr))
return;
clktype = (u_char)REFCLOCKTYPE(srcadr);
unit = REFCLOCKUNIT(srcadr);
if (clktype >= num_refclock_conf || unit >= MAXUNIT)
return;
if (!(peer = typeunit[clktype][unit]))
return;
pp = peer->procptr;
/*
* Initialize requested data
*/
if (in != 0) {
if (in->haveflags & CLK_HAVETIME1)
pp->fudgetime1 = in->fudgetime1;
if (in->haveflags & CLK_HAVETIME2)
pp->fudgetime2 = in->fudgetime2;
if (in->haveflags & CLK_HAVEVAL1)
peer->stratum = (u_char) in->fudgeval1;
if (in->haveflags & CLK_HAVEVAL2)
pp->refid = in->fudgeval2;
if (peer->stratum <= 1)
peer->refid = pp->refid;
else
peer->refid = peer->srcadr.sin_addr.s_addr;
if (in->haveflags & CLK_HAVEFLAG1) {
pp->sloppyclockflag &= ~CLK_FLAG1;
pp->sloppyclockflag |= in->flags & CLK_FLAG1;
}
if (in->haveflags & CLK_HAVEFLAG2) {
pp->sloppyclockflag &= ~CLK_FLAG2;
pp->sloppyclockflag |= in->flags & CLK_FLAG2;
}
if (in->haveflags & CLK_HAVEFLAG3) {
pp->sloppyclockflag &= ~CLK_FLAG3;
pp->sloppyclockflag |= in->flags & CLK_FLAG3;
}
if (in->haveflags & CLK_HAVEFLAG4) {
pp->sloppyclockflag &= ~CLK_FLAG4;
pp->sloppyclockflag |= in->flags & CLK_FLAG4;
}
}
/*
* Readback requested data
*/
if (out != 0) {
out->haveflags = CLK_HAVETIME1 | CLK_HAVEVAL1 |
CLK_HAVEVAL2 | CLK_HAVEFLAG4;
out->fudgetime1 = pp->fudgetime1;
out->fudgetime2 = pp->fudgetime2;
out->fudgeval1 = peer->stratum;
out->fudgeval2 = pp->refid;
out->flags = (u_char) pp->sloppyclockflag;
out->timereset = current_time - pp->timestarted;
out->polls = pp->polls;
out->noresponse = pp->noreply;
out->badformat = pp->badformat;
out->baddata = pp->baddata;
out->lastevent = pp->lastevent;
out->currentstatus = pp->currentstatus;
out->type = pp->type;
out->clockdesc = pp->clockdesc;
out->lencode = pp->lencode;
out->p_lastcode = pp->a_lastcode;
}
/*
* Give the stuff to the clock
*/
if (refclock_conf[clktype]->clock_control != noentry)
(refclock_conf[clktype]->clock_control)(unit, in, out, peer);
}
/*
* refclock_buginfo - return debugging info
*
* This routine is used mainly for debugging. It returns designated
* values from the interface structure that can be displayed using
* ntpdc and the clkbug command.
*/
void
refclock_buginfo(
struct sockaddr_in *srcadr, /* clock address */
struct refclockbug *bug /* output structure */
)
{
struct peer *peer;
struct refclockproc *pp;
u_char clktype;
int unit;
int i;
/*
* Check for valid address and peer structure
*/
if (!ISREFCLOCKADR(srcadr))
return;
clktype = (u_char) REFCLOCKTYPE(srcadr);
unit = REFCLOCKUNIT(srcadr);
if (clktype >= num_refclock_conf || unit >= MAXUNIT)
return;
if (!(peer = typeunit[clktype][unit]))
return;
pp = peer->procptr;
/*
* Copy structure values
*/
bug->nvalues = 8;
bug->svalues = 0x0000003f;
bug->values[0] = pp->year;
bug->values[1] = pp->day;
bug->values[2] = pp->hour;
bug->values[3] = pp->minute;
bug->values[4] = pp->second;
bug->values[5] = pp->msec;
bug->values[6] = pp->yearstart;
bug->values[7] = pp->coderecv;
bug->stimes = 0xfffffffc;
bug->times[0] = pp->lastref;
bug->times[1] = pp->lastrec;
for (i = 2; i < (int)bug->ntimes; i++)
DTOLFP(pp->filter[i - 2], &bug->times[i]);
/*
* Give the stuff to the clock
*/
if (refclock_conf[clktype]->clock_buginfo != noentry)
(refclock_conf[clktype]->clock_buginfo)(unit, bug, peer);
}
#endif /* REFCLOCK */