freebsd-nq/crypto/openssl/apps/speed.c
2017-12-07 18:02:57 +00:00

2881 lines
91 KiB
C

/* apps/speed.c */
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.]
*/
/* ====================================================================
* Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
*
* Portions of the attached software ("Contribution") are developed by
* SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project.
*
* The Contribution is licensed pursuant to the OpenSSL open source
* license provided above.
*
* The ECDH and ECDSA speed test software is originally written by
* Sumit Gupta of Sun Microsystems Laboratories.
*
*/
/* most of this code has been pilfered from my libdes speed.c program */
#ifndef OPENSSL_NO_SPEED
# undef SECONDS
# define SECONDS 3
# define RSA_SECONDS 10
# define DSA_SECONDS 10
# define ECDSA_SECONDS 10
# define ECDH_SECONDS 10
/* 11-Sep-92 Andrew Daviel Support for Silicon Graphics IRIX added */
/* 06-Apr-92 Luke Brennan Support for VMS and add extra signal calls */
# undef PROG
# define PROG speed_main
# include <stdio.h>
# include <stdlib.h>
# include <string.h>
# include <math.h>
# include "apps.h"
# ifdef OPENSSL_NO_STDIO
# define APPS_WIN16
# endif
# include <openssl/crypto.h>
# include <openssl/rand.h>
# include <openssl/err.h>
# include <openssl/evp.h>
# include <openssl/objects.h>
# if !defined(OPENSSL_SYS_MSDOS)
# include OPENSSL_UNISTD
# endif
# ifndef OPENSSL_SYS_NETWARE
# include <signal.h>
# endif
# if defined(_WIN32) || defined(__CYGWIN__)
# include <windows.h>
# if defined(__CYGWIN__) && !defined(_WIN32)
/*
* <windows.h> should define _WIN32, which normally is mutually exclusive
* with __CYGWIN__, but if it didn't...
*/
# define _WIN32
/* this is done because Cygwin alarm() fails sometimes. */
# endif
# endif
# include <openssl/bn.h>
# ifndef OPENSSL_NO_DES
# include <openssl/des.h>
# endif
# ifndef OPENSSL_NO_AES
# include <openssl/aes.h>
# endif
# ifndef OPENSSL_NO_CAMELLIA
# include <openssl/camellia.h>
# endif
# ifndef OPENSSL_NO_MD2
# include <openssl/md2.h>
# endif
# ifndef OPENSSL_NO_MDC2
# include <openssl/mdc2.h>
# endif
# ifndef OPENSSL_NO_MD4
# include <openssl/md4.h>
# endif
# ifndef OPENSSL_NO_MD5
# include <openssl/md5.h>
# endif
# ifndef OPENSSL_NO_HMAC
# include <openssl/hmac.h>
# endif
# include <openssl/evp.h>
# ifndef OPENSSL_NO_SHA
# include <openssl/sha.h>
# endif
# ifndef OPENSSL_NO_RIPEMD
# include <openssl/ripemd.h>
# endif
# ifndef OPENSSL_NO_WHIRLPOOL
# include <openssl/whrlpool.h>
# endif
# ifndef OPENSSL_NO_RC4
# include <openssl/rc4.h>
# endif
# ifndef OPENSSL_NO_RC5
# include <openssl/rc5.h>
# endif
# ifndef OPENSSL_NO_RC2
# include <openssl/rc2.h>
# endif
# ifndef OPENSSL_NO_IDEA
# include <openssl/idea.h>
# endif
# ifndef OPENSSL_NO_SEED
# include <openssl/seed.h>
# endif
# ifndef OPENSSL_NO_BF
# include <openssl/blowfish.h>
# endif
# ifndef OPENSSL_NO_CAST
# include <openssl/cast.h>
# endif
# ifndef OPENSSL_NO_RSA
# include <openssl/rsa.h>
# include "./testrsa.h"
# endif
# include <openssl/x509.h>
# ifndef OPENSSL_NO_DSA
# include <openssl/dsa.h>
# include "./testdsa.h"
# endif
# ifndef OPENSSL_NO_ECDSA
# include <openssl/ecdsa.h>
# endif
# ifndef OPENSSL_NO_ECDH
# include <openssl/ecdh.h>
# endif
# include <openssl/modes.h>
# ifdef OPENSSL_FIPS
# ifdef OPENSSL_DOING_MAKEDEPEND
# undef AES_set_encrypt_key
# undef AES_set_decrypt_key
# undef DES_set_key_unchecked
# endif
# define BF_set_key private_BF_set_key
# define CAST_set_key private_CAST_set_key
# define idea_set_encrypt_key private_idea_set_encrypt_key
# define SEED_set_key private_SEED_set_key
# define RC2_set_key private_RC2_set_key
# define RC4_set_key private_RC4_set_key
# define DES_set_key_unchecked private_DES_set_key_unchecked
# define AES_set_encrypt_key private_AES_set_encrypt_key
# define AES_set_decrypt_key private_AES_set_decrypt_key
# define Camellia_set_key private_Camellia_set_key
# endif
# ifndef HAVE_FORK
# if defined(OPENSSL_SYS_VMS) || defined(OPENSSL_SYS_WINDOWS) || defined(OPENSSL_SYS_MACINTOSH_CLASSIC) || defined(OPENSSL_SYS_OS2) || defined(OPENSSL_SYS_NETWARE)
# define HAVE_FORK 0
# else
# define HAVE_FORK 1
# endif
# endif
# if HAVE_FORK
# undef NO_FORK
# else
# define NO_FORK
# endif
# undef BUFSIZE
# define BUFSIZE ((long)1024*8+1)
static volatile int run = 0;
static int mr = 0;
static int usertime = 1;
static double Time_F(int s);
static void print_message(const char *s, long num, int length);
static void pkey_print_message(const char *str, const char *str2,
long num, int bits, int sec);
static void print_result(int alg, int run_no, int count, double time_used);
# ifndef NO_FORK
static int do_multi(int multi);
# endif
# define ALGOR_NUM 30
# define SIZE_NUM 5
# define RSA_NUM 4
# define DSA_NUM 3
# define EC_NUM 16
# define MAX_ECDH_SIZE 256
static const char *names[ALGOR_NUM] = {
"md2", "mdc2", "md4", "md5", "hmac(md5)", "sha1", "rmd160", "rc4",
"des cbc", "des ede3", "idea cbc", "seed cbc",
"rc2 cbc", "rc5-32/12 cbc", "blowfish cbc", "cast cbc",
"aes-128 cbc", "aes-192 cbc", "aes-256 cbc",
"camellia-128 cbc", "camellia-192 cbc", "camellia-256 cbc",
"evp", "sha256", "sha512", "whirlpool",
"aes-128 ige", "aes-192 ige", "aes-256 ige", "ghash"
};
static double results[ALGOR_NUM][SIZE_NUM];
static int lengths[SIZE_NUM] = { 16, 64, 256, 1024, 8 * 1024 };
# ifndef OPENSSL_NO_RSA
static double rsa_results[RSA_NUM][2];
# endif
# ifndef OPENSSL_NO_DSA
static double dsa_results[DSA_NUM][2];
# endif
# ifndef OPENSSL_NO_ECDSA
static double ecdsa_results[EC_NUM][2];
# endif
# ifndef OPENSSL_NO_ECDH
static double ecdh_results[EC_NUM][1];
# endif
# if defined(OPENSSL_NO_DSA) && !(defined(OPENSSL_NO_ECDSA) && defined(OPENSSL_NO_ECDH))
static const char rnd_seed[] =
"string to make the random number generator think it has entropy";
static int rnd_fake = 0;
# endif
# ifdef SIGALRM
# if defined(__STDC__) || defined(sgi) || defined(_AIX)
# define SIGRETTYPE void
# else
# define SIGRETTYPE int
# endif
static SIGRETTYPE sig_done(int sig);
static SIGRETTYPE sig_done(int sig)
{
signal(SIGALRM, sig_done);
run = 0;
# ifdef LINT
sig = sig;
# endif
}
# endif
# define START 0
# define STOP 1
# if defined(_WIN32)
# if !defined(SIGALRM)
# define SIGALRM
# endif
static volatile unsigned int lapse;
static volatile unsigned int schlock;
static void alarm_win32(unsigned int secs)
{
lapse = secs * 1000;
}
# define alarm alarm_win32
static DWORD WINAPI sleepy(VOID * arg)
{
schlock = 1;
Sleep(lapse);
run = 0;
return 0;
}
static double Time_F(int s)
{
if (s == START) {
HANDLE thr;
schlock = 0;
thr = CreateThread(NULL, 4096, sleepy, NULL, 0, NULL);
if (thr == NULL) {
DWORD ret = GetLastError();
BIO_printf(bio_err, "unable to CreateThread (%d)", ret);
ExitProcess(ret);
}
CloseHandle(thr); /* detach the thread */
while (!schlock)
Sleep(0); /* scheduler spinlock */
}
return app_tminterval(s, usertime);
}
# else
static double Time_F(int s)
{
return app_tminterval(s, usertime);
}
# endif
# ifndef OPENSSL_NO_ECDH
static const int KDF1_SHA1_len = 20;
static void *KDF1_SHA1(const void *in, size_t inlen, void *out,
size_t *outlen)
{
# ifndef OPENSSL_NO_SHA
if (*outlen < SHA_DIGEST_LENGTH)
return NULL;
else
*outlen = SHA_DIGEST_LENGTH;
return SHA1(in, inlen, out);
# else
return NULL;
# endif /* OPENSSL_NO_SHA */
}
# endif /* OPENSSL_NO_ECDH */
static void multiblock_speed(const EVP_CIPHER *evp_cipher);
int MAIN(int, char **);
int MAIN(int argc, char **argv)
{
ENGINE *e = NULL;
unsigned char *buf = NULL, *buf2 = NULL;
int mret = 1;
long count = 0, save_count = 0;
int i, j, k;
# if !defined(OPENSSL_NO_RSA) || !defined(OPENSSL_NO_DSA)
long rsa_count;
# endif
# ifndef OPENSSL_NO_RSA
unsigned rsa_num;
# endif
unsigned char md[EVP_MAX_MD_SIZE];
# ifndef OPENSSL_NO_MD2
unsigned char md2[MD2_DIGEST_LENGTH];
# endif
# ifndef OPENSSL_NO_MDC2
unsigned char mdc2[MDC2_DIGEST_LENGTH];
# endif
# ifndef OPENSSL_NO_MD4
unsigned char md4[MD4_DIGEST_LENGTH];
# endif
# ifndef OPENSSL_NO_MD5
unsigned char md5[MD5_DIGEST_LENGTH];
unsigned char hmac[MD5_DIGEST_LENGTH];
# endif
# ifndef OPENSSL_NO_SHA
unsigned char sha[SHA_DIGEST_LENGTH];
# ifndef OPENSSL_NO_SHA256
unsigned char sha256[SHA256_DIGEST_LENGTH];
# endif
# ifndef OPENSSL_NO_SHA512
unsigned char sha512[SHA512_DIGEST_LENGTH];
# endif
# endif
# ifndef OPENSSL_NO_WHIRLPOOL
unsigned char whirlpool[WHIRLPOOL_DIGEST_LENGTH];
# endif
# ifndef OPENSSL_NO_RIPEMD
unsigned char rmd160[RIPEMD160_DIGEST_LENGTH];
# endif
# ifndef OPENSSL_NO_RC4
RC4_KEY rc4_ks;
# endif
# ifndef OPENSSL_NO_RC5
RC5_32_KEY rc5_ks;
# endif
# ifndef OPENSSL_NO_RC2
RC2_KEY rc2_ks;
# endif
# ifndef OPENSSL_NO_IDEA
IDEA_KEY_SCHEDULE idea_ks;
# endif
# ifndef OPENSSL_NO_SEED
SEED_KEY_SCHEDULE seed_ks;
# endif
# ifndef OPENSSL_NO_BF
BF_KEY bf_ks;
# endif
# ifndef OPENSSL_NO_CAST
CAST_KEY cast_ks;
# endif
static const unsigned char key16[16] = {
0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0,
0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12
};
# ifndef OPENSSL_NO_AES
static const unsigned char key24[24] = {
0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0,
0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12,
0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34
};
static const unsigned char key32[32] = {
0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0,
0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12,
0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34,
0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34, 0x56
};
# endif
# ifndef OPENSSL_NO_CAMELLIA
static const unsigned char ckey24[24] = {
0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0,
0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12,
0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34
};
static const unsigned char ckey32[32] = {
0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0,
0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12,
0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34,
0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34, 0x56
};
# endif
# ifndef OPENSSL_NO_AES
# define MAX_BLOCK_SIZE 128
# else
# define MAX_BLOCK_SIZE 64
# endif
unsigned char DES_iv[8];
unsigned char iv[2 * MAX_BLOCK_SIZE / 8];
# ifndef OPENSSL_NO_DES
static DES_cblock key =
{ 0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0 };
static DES_cblock key2 =
{ 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12 };
static DES_cblock key3 =
{ 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34 };
DES_key_schedule sch;
DES_key_schedule sch2;
DES_key_schedule sch3;
# endif
# ifndef OPENSSL_NO_AES
AES_KEY aes_ks1, aes_ks2, aes_ks3;
# endif
# ifndef OPENSSL_NO_CAMELLIA
CAMELLIA_KEY camellia_ks1, camellia_ks2, camellia_ks3;
# endif
# define D_MD2 0
# define D_MDC2 1
# define D_MD4 2
# define D_MD5 3
# define D_HMAC 4
# define D_SHA1 5
# define D_RMD160 6
# define D_RC4 7
# define D_CBC_DES 8
# define D_EDE3_DES 9
# define D_CBC_IDEA 10
# define D_CBC_SEED 11
# define D_CBC_RC2 12
# define D_CBC_RC5 13
# define D_CBC_BF 14
# define D_CBC_CAST 15
# define D_CBC_128_AES 16
# define D_CBC_192_AES 17
# define D_CBC_256_AES 18
# define D_CBC_128_CML 19
# define D_CBC_192_CML 20
# define D_CBC_256_CML 21
# define D_EVP 22
# define D_SHA256 23
# define D_SHA512 24
# define D_WHIRLPOOL 25
# define D_IGE_128_AES 26
# define D_IGE_192_AES 27
# define D_IGE_256_AES 28
# define D_GHASH 29
double d = 0.0;
long c[ALGOR_NUM][SIZE_NUM];
# define R_DSA_512 0
# define R_DSA_1024 1
# define R_DSA_2048 2
# define R_RSA_512 0
# define R_RSA_1024 1
# define R_RSA_2048 2
# define R_RSA_4096 3
# define R_EC_P160 0
# define R_EC_P192 1
# define R_EC_P224 2
# define R_EC_P256 3
# define R_EC_P384 4
# define R_EC_P521 5
# define R_EC_K163 6
# define R_EC_K233 7
# define R_EC_K283 8
# define R_EC_K409 9
# define R_EC_K571 10
# define R_EC_B163 11
# define R_EC_B233 12
# define R_EC_B283 13
# define R_EC_B409 14
# define R_EC_B571 15
# ifndef OPENSSL_NO_RSA
RSA *rsa_key[RSA_NUM];
long rsa_c[RSA_NUM][2];
static unsigned int rsa_bits[RSA_NUM] = {
512, 1024, 2048, 4096
};
static unsigned char *rsa_data[RSA_NUM] = {
test512, test1024, test2048, test4096
};
static int rsa_data_length[RSA_NUM] = {
sizeof(test512), sizeof(test1024),
sizeof(test2048), sizeof(test4096)
};
# endif
# ifndef OPENSSL_NO_DSA
DSA *dsa_key[DSA_NUM];
long dsa_c[DSA_NUM][2];
static unsigned int dsa_bits[DSA_NUM] = { 512, 1024, 2048 };
# endif
# ifndef OPENSSL_NO_EC
/*
* We only test over the following curves as they are representative, To
* add tests over more curves, simply add the curve NID and curve name to
* the following arrays and increase the EC_NUM value accordingly.
*/
static unsigned int test_curves[EC_NUM] = {
/* Prime Curves */
NID_secp160r1,
NID_X9_62_prime192v1,
NID_secp224r1,
NID_X9_62_prime256v1,
NID_secp384r1,
NID_secp521r1,
/* Binary Curves */
NID_sect163k1,
NID_sect233k1,
NID_sect283k1,
NID_sect409k1,
NID_sect571k1,
NID_sect163r2,
NID_sect233r1,
NID_sect283r1,
NID_sect409r1,
NID_sect571r1
};
static const char *test_curves_names[EC_NUM] = {
/* Prime Curves */
"secp160r1",
"nistp192",
"nistp224",
"nistp256",
"nistp384",
"nistp521",
/* Binary Curves */
"nistk163",
"nistk233",
"nistk283",
"nistk409",
"nistk571",
"nistb163",
"nistb233",
"nistb283",
"nistb409",
"nistb571"
};
static int test_curves_bits[EC_NUM] = {
160, 192, 224, 256, 384, 521,
163, 233, 283, 409, 571,
163, 233, 283, 409, 571
};
# endif
# ifndef OPENSSL_NO_ECDSA
unsigned char ecdsasig[256];
unsigned int ecdsasiglen;
EC_KEY *ecdsa[EC_NUM];
long ecdsa_c[EC_NUM][2];
# endif
# ifndef OPENSSL_NO_ECDH
EC_KEY *ecdh_a[EC_NUM], *ecdh_b[EC_NUM];
unsigned char secret_a[MAX_ECDH_SIZE], secret_b[MAX_ECDH_SIZE];
int secret_size_a, secret_size_b;
int ecdh_checks = 0;
int secret_idx = 0;
long ecdh_c[EC_NUM][2];
# endif
int rsa_doit[RSA_NUM];
int dsa_doit[DSA_NUM];
# ifndef OPENSSL_NO_ECDSA
int ecdsa_doit[EC_NUM];
# endif
# ifndef OPENSSL_NO_ECDH
int ecdh_doit[EC_NUM];
# endif
int doit[ALGOR_NUM];
int pr_header = 0;
const EVP_CIPHER *evp_cipher = NULL;
const EVP_MD *evp_md = NULL;
int decrypt = 0;
# ifndef NO_FORK
int multi = 0;
# endif
int multiblock = 0;
# ifndef TIMES
usertime = -1;
# endif
apps_startup();
memset(results, 0, sizeof(results));
# ifndef OPENSSL_NO_DSA
memset(dsa_key, 0, sizeof(dsa_key));
# endif
# ifndef OPENSSL_NO_ECDSA
for (i = 0; i < EC_NUM; i++)
ecdsa[i] = NULL;
# endif
# ifndef OPENSSL_NO_ECDH
for (i = 0; i < EC_NUM; i++) {
ecdh_a[i] = NULL;
ecdh_b[i] = NULL;
}
# endif
# ifndef OPENSSL_NO_RSA
for (i = 0; i < RSA_NUM; i++)
rsa_key[i] = NULL;
# endif
if (bio_err == NULL)
if ((bio_err = BIO_new(BIO_s_file())) != NULL)
BIO_set_fp(bio_err, stderr, BIO_NOCLOSE | BIO_FP_TEXT);
if (!load_config(bio_err, NULL))
goto end;
if ((buf = (unsigned char *)OPENSSL_malloc((int)BUFSIZE)) == NULL) {
BIO_printf(bio_err, "out of memory\n");
goto end;
}
if ((buf2 = (unsigned char *)OPENSSL_malloc((int)BUFSIZE)) == NULL) {
BIO_printf(bio_err, "out of memory\n");
goto end;
}
memset(c, 0, sizeof(c));
memset(DES_iv, 0, sizeof(DES_iv));
memset(iv, 0, sizeof(iv));
for (i = 0; i < ALGOR_NUM; i++)
doit[i] = 0;
for (i = 0; i < RSA_NUM; i++)
rsa_doit[i] = 0;
for (i = 0; i < DSA_NUM; i++)
dsa_doit[i] = 0;
# ifndef OPENSSL_NO_ECDSA
for (i = 0; i < EC_NUM; i++)
ecdsa_doit[i] = 0;
# endif
# ifndef OPENSSL_NO_ECDH
for (i = 0; i < EC_NUM; i++)
ecdh_doit[i] = 0;
# endif
j = 0;
argc--;
argv++;
while (argc) {
if ((argc > 0) && (strcmp(*argv, "-elapsed") == 0)) {
usertime = 0;
j--; /* Otherwise, -elapsed gets confused with an
* algorithm. */
} else if ((argc > 0) && (strcmp(*argv, "-evp") == 0)) {
argc--;
argv++;
if (argc == 0) {
BIO_printf(bio_err, "no EVP given\n");
goto end;
}
evp_md = NULL;
evp_cipher = EVP_get_cipherbyname(*argv);
if (!evp_cipher) {
evp_md = EVP_get_digestbyname(*argv);
}
if (!evp_cipher && !evp_md) {
BIO_printf(bio_err, "%s is an unknown cipher or digest\n",
*argv);
goto end;
}
doit[D_EVP] = 1;
} else if (argc > 0 && !strcmp(*argv, "-decrypt")) {
decrypt = 1;
j--; /* Otherwise, -elapsed gets confused with an
* algorithm. */
}
# ifndef OPENSSL_NO_ENGINE
else if ((argc > 0) && (strcmp(*argv, "-engine") == 0)) {
argc--;
argv++;
if (argc == 0) {
BIO_printf(bio_err, "no engine given\n");
goto end;
}
e = setup_engine(bio_err, *argv, 0);
/*
* j will be increased again further down. We just don't want
* speed to confuse an engine with an algorithm, especially when
* none is given (which means all of them should be run)
*/
j--;
}
# endif
# ifndef NO_FORK
else if ((argc > 0) && (strcmp(*argv, "-multi") == 0)) {
argc--;
argv++;
if (argc == 0) {
BIO_printf(bio_err, "no multi count given\n");
goto end;
}
multi = atoi(argv[0]);
if (multi <= 0) {
BIO_printf(bio_err, "bad multi count\n");
goto end;
}
j--; /* Otherwise, -mr gets confused with an
* algorithm. */
}
# endif
else if (argc > 0 && !strcmp(*argv, "-mr")) {
mr = 1;
j--; /* Otherwise, -mr gets confused with an
* algorithm. */
} else if (argc > 0 && !strcmp(*argv, "-mb")) {
multiblock = 1;
j--;
} else
# ifndef OPENSSL_NO_MD2
if (strcmp(*argv, "md2") == 0)
doit[D_MD2] = 1;
else
# endif
# ifndef OPENSSL_NO_MDC2
if (strcmp(*argv, "mdc2") == 0)
doit[D_MDC2] = 1;
else
# endif
# ifndef OPENSSL_NO_MD4
if (strcmp(*argv, "md4") == 0)
doit[D_MD4] = 1;
else
# endif
# ifndef OPENSSL_NO_MD5
if (strcmp(*argv, "md5") == 0)
doit[D_MD5] = 1;
else
# endif
# ifndef OPENSSL_NO_MD5
if (strcmp(*argv, "hmac") == 0)
doit[D_HMAC] = 1;
else
# endif
# ifndef OPENSSL_NO_SHA
if (strcmp(*argv, "sha1") == 0)
doit[D_SHA1] = 1;
else if (strcmp(*argv, "sha") == 0)
doit[D_SHA1] = 1, doit[D_SHA256] = 1, doit[D_SHA512] = 1;
else
# ifndef OPENSSL_NO_SHA256
if (strcmp(*argv, "sha256") == 0)
doit[D_SHA256] = 1;
else
# endif
# ifndef OPENSSL_NO_SHA512
if (strcmp(*argv, "sha512") == 0)
doit[D_SHA512] = 1;
else
# endif
# endif
# ifndef OPENSSL_NO_WHIRLPOOL
if (strcmp(*argv, "whirlpool") == 0)
doit[D_WHIRLPOOL] = 1;
else
# endif
# ifndef OPENSSL_NO_RIPEMD
if (strcmp(*argv, "ripemd") == 0)
doit[D_RMD160] = 1;
else if (strcmp(*argv, "rmd160") == 0)
doit[D_RMD160] = 1;
else if (strcmp(*argv, "ripemd160") == 0)
doit[D_RMD160] = 1;
else
# endif
# ifndef OPENSSL_NO_RC4
if (strcmp(*argv, "rc4") == 0)
doit[D_RC4] = 1;
else
# endif
# ifndef OPENSSL_NO_DES
if (strcmp(*argv, "des-cbc") == 0)
doit[D_CBC_DES] = 1;
else if (strcmp(*argv, "des-ede3") == 0)
doit[D_EDE3_DES] = 1;
else
# endif
# ifndef OPENSSL_NO_AES
if (strcmp(*argv, "aes-128-cbc") == 0)
doit[D_CBC_128_AES] = 1;
else if (strcmp(*argv, "aes-192-cbc") == 0)
doit[D_CBC_192_AES] = 1;
else if (strcmp(*argv, "aes-256-cbc") == 0)
doit[D_CBC_256_AES] = 1;
else if (strcmp(*argv, "aes-128-ige") == 0)
doit[D_IGE_128_AES] = 1;
else if (strcmp(*argv, "aes-192-ige") == 0)
doit[D_IGE_192_AES] = 1;
else if (strcmp(*argv, "aes-256-ige") == 0)
doit[D_IGE_256_AES] = 1;
else
# endif
# ifndef OPENSSL_NO_CAMELLIA
if (strcmp(*argv, "camellia-128-cbc") == 0)
doit[D_CBC_128_CML] = 1;
else if (strcmp(*argv, "camellia-192-cbc") == 0)
doit[D_CBC_192_CML] = 1;
else if (strcmp(*argv, "camellia-256-cbc") == 0)
doit[D_CBC_256_CML] = 1;
else
# endif
# ifndef OPENSSL_NO_RSA
# if 0 /* was: #ifdef RSAref */
if (strcmp(*argv, "rsaref") == 0) {
RSA_set_default_openssl_method(RSA_PKCS1_RSAref());
j--;
} else
# endif
# ifndef RSA_NULL
if (strcmp(*argv, "openssl") == 0) {
RSA_set_default_method(RSA_PKCS1_SSLeay());
j--;
} else
# endif
# endif /* !OPENSSL_NO_RSA */
if (strcmp(*argv, "dsa512") == 0)
dsa_doit[R_DSA_512] = 2;
else if (strcmp(*argv, "dsa1024") == 0)
dsa_doit[R_DSA_1024] = 2;
else if (strcmp(*argv, "dsa2048") == 0)
dsa_doit[R_DSA_2048] = 2;
else if (strcmp(*argv, "rsa512") == 0)
rsa_doit[R_RSA_512] = 2;
else if (strcmp(*argv, "rsa1024") == 0)
rsa_doit[R_RSA_1024] = 2;
else if (strcmp(*argv, "rsa2048") == 0)
rsa_doit[R_RSA_2048] = 2;
else if (strcmp(*argv, "rsa4096") == 0)
rsa_doit[R_RSA_4096] = 2;
else
# ifndef OPENSSL_NO_RC2
if (strcmp(*argv, "rc2-cbc") == 0)
doit[D_CBC_RC2] = 1;
else if (strcmp(*argv, "rc2") == 0)
doit[D_CBC_RC2] = 1;
else
# endif
# ifndef OPENSSL_NO_RC5
if (strcmp(*argv, "rc5-cbc") == 0)
doit[D_CBC_RC5] = 1;
else if (strcmp(*argv, "rc5") == 0)
doit[D_CBC_RC5] = 1;
else
# endif
# ifndef OPENSSL_NO_IDEA
if (strcmp(*argv, "idea-cbc") == 0)
doit[D_CBC_IDEA] = 1;
else if (strcmp(*argv, "idea") == 0)
doit[D_CBC_IDEA] = 1;
else
# endif
# ifndef OPENSSL_NO_SEED
if (strcmp(*argv, "seed-cbc") == 0)
doit[D_CBC_SEED] = 1;
else if (strcmp(*argv, "seed") == 0)
doit[D_CBC_SEED] = 1;
else
# endif
# ifndef OPENSSL_NO_BF
if (strcmp(*argv, "bf-cbc") == 0)
doit[D_CBC_BF] = 1;
else if (strcmp(*argv, "blowfish") == 0)
doit[D_CBC_BF] = 1;
else if (strcmp(*argv, "bf") == 0)
doit[D_CBC_BF] = 1;
else
# endif
# ifndef OPENSSL_NO_CAST
if (strcmp(*argv, "cast-cbc") == 0)
doit[D_CBC_CAST] = 1;
else if (strcmp(*argv, "cast") == 0)
doit[D_CBC_CAST] = 1;
else if (strcmp(*argv, "cast5") == 0)
doit[D_CBC_CAST] = 1;
else
# endif
# ifndef OPENSSL_NO_DES
if (strcmp(*argv, "des") == 0) {
doit[D_CBC_DES] = 1;
doit[D_EDE3_DES] = 1;
} else
# endif
# ifndef OPENSSL_NO_AES
if (strcmp(*argv, "aes") == 0) {
doit[D_CBC_128_AES] = 1;
doit[D_CBC_192_AES] = 1;
doit[D_CBC_256_AES] = 1;
} else if (strcmp(*argv, "ghash") == 0) {
doit[D_GHASH] = 1;
} else
# endif
# ifndef OPENSSL_NO_CAMELLIA
if (strcmp(*argv, "camellia") == 0) {
doit[D_CBC_128_CML] = 1;
doit[D_CBC_192_CML] = 1;
doit[D_CBC_256_CML] = 1;
} else
# endif
# ifndef OPENSSL_NO_RSA
if (strcmp(*argv, "rsa") == 0) {
rsa_doit[R_RSA_512] = 1;
rsa_doit[R_RSA_1024] = 1;
rsa_doit[R_RSA_2048] = 1;
rsa_doit[R_RSA_4096] = 1;
} else
# endif
# ifndef OPENSSL_NO_DSA
if (strcmp(*argv, "dsa") == 0) {
dsa_doit[R_DSA_512] = 1;
dsa_doit[R_DSA_1024] = 1;
dsa_doit[R_DSA_2048] = 1;
} else
# endif
# ifndef OPENSSL_NO_ECDSA
if (strcmp(*argv, "ecdsap160") == 0)
ecdsa_doit[R_EC_P160] = 2;
else if (strcmp(*argv, "ecdsap192") == 0)
ecdsa_doit[R_EC_P192] = 2;
else if (strcmp(*argv, "ecdsap224") == 0)
ecdsa_doit[R_EC_P224] = 2;
else if (strcmp(*argv, "ecdsap256") == 0)
ecdsa_doit[R_EC_P256] = 2;
else if (strcmp(*argv, "ecdsap384") == 0)
ecdsa_doit[R_EC_P384] = 2;
else if (strcmp(*argv, "ecdsap521") == 0)
ecdsa_doit[R_EC_P521] = 2;
else if (strcmp(*argv, "ecdsak163") == 0)
ecdsa_doit[R_EC_K163] = 2;
else if (strcmp(*argv, "ecdsak233") == 0)
ecdsa_doit[R_EC_K233] = 2;
else if (strcmp(*argv, "ecdsak283") == 0)
ecdsa_doit[R_EC_K283] = 2;
else if (strcmp(*argv, "ecdsak409") == 0)
ecdsa_doit[R_EC_K409] = 2;
else if (strcmp(*argv, "ecdsak571") == 0)
ecdsa_doit[R_EC_K571] = 2;
else if (strcmp(*argv, "ecdsab163") == 0)
ecdsa_doit[R_EC_B163] = 2;
else if (strcmp(*argv, "ecdsab233") == 0)
ecdsa_doit[R_EC_B233] = 2;
else if (strcmp(*argv, "ecdsab283") == 0)
ecdsa_doit[R_EC_B283] = 2;
else if (strcmp(*argv, "ecdsab409") == 0)
ecdsa_doit[R_EC_B409] = 2;
else if (strcmp(*argv, "ecdsab571") == 0)
ecdsa_doit[R_EC_B571] = 2;
else if (strcmp(*argv, "ecdsa") == 0) {
for (i = 0; i < EC_NUM; i++)
ecdsa_doit[i] = 1;
} else
# endif
# ifndef OPENSSL_NO_ECDH
if (strcmp(*argv, "ecdhp160") == 0)
ecdh_doit[R_EC_P160] = 2;
else if (strcmp(*argv, "ecdhp192") == 0)
ecdh_doit[R_EC_P192] = 2;
else if (strcmp(*argv, "ecdhp224") == 0)
ecdh_doit[R_EC_P224] = 2;
else if (strcmp(*argv, "ecdhp256") == 0)
ecdh_doit[R_EC_P256] = 2;
else if (strcmp(*argv, "ecdhp384") == 0)
ecdh_doit[R_EC_P384] = 2;
else if (strcmp(*argv, "ecdhp521") == 0)
ecdh_doit[R_EC_P521] = 2;
else if (strcmp(*argv, "ecdhk163") == 0)
ecdh_doit[R_EC_K163] = 2;
else if (strcmp(*argv, "ecdhk233") == 0)
ecdh_doit[R_EC_K233] = 2;
else if (strcmp(*argv, "ecdhk283") == 0)
ecdh_doit[R_EC_K283] = 2;
else if (strcmp(*argv, "ecdhk409") == 0)
ecdh_doit[R_EC_K409] = 2;
else if (strcmp(*argv, "ecdhk571") == 0)
ecdh_doit[R_EC_K571] = 2;
else if (strcmp(*argv, "ecdhb163") == 0)
ecdh_doit[R_EC_B163] = 2;
else if (strcmp(*argv, "ecdhb233") == 0)
ecdh_doit[R_EC_B233] = 2;
else if (strcmp(*argv, "ecdhb283") == 0)
ecdh_doit[R_EC_B283] = 2;
else if (strcmp(*argv, "ecdhb409") == 0)
ecdh_doit[R_EC_B409] = 2;
else if (strcmp(*argv, "ecdhb571") == 0)
ecdh_doit[R_EC_B571] = 2;
else if (strcmp(*argv, "ecdh") == 0) {
for (i = 0; i < EC_NUM; i++)
ecdh_doit[i] = 1;
} else
# endif
{
BIO_printf(bio_err, "Error: bad option or value\n");
BIO_printf(bio_err, "\n");
BIO_printf(bio_err, "Available values:\n");
# ifndef OPENSSL_NO_MD2
BIO_printf(bio_err, "md2 ");
# endif
# ifndef OPENSSL_NO_MDC2
BIO_printf(bio_err, "mdc2 ");
# endif
# ifndef OPENSSL_NO_MD4
BIO_printf(bio_err, "md4 ");
# endif
# ifndef OPENSSL_NO_MD5
BIO_printf(bio_err, "md5 ");
# ifndef OPENSSL_NO_HMAC
BIO_printf(bio_err, "hmac ");
# endif
# endif
# ifndef OPENSSL_NO_SHA1
BIO_printf(bio_err, "sha1 ");
# endif
# ifndef OPENSSL_NO_SHA256
BIO_printf(bio_err, "sha256 ");
# endif
# ifndef OPENSSL_NO_SHA512
BIO_printf(bio_err, "sha512 ");
# endif
# ifndef OPENSSL_NO_WHIRLPOOL
BIO_printf(bio_err, "whirlpool");
# endif
# ifndef OPENSSL_NO_RIPEMD160
BIO_printf(bio_err, "rmd160");
# endif
# if !defined(OPENSSL_NO_MD2) || !defined(OPENSSL_NO_MDC2) || \
!defined(OPENSSL_NO_MD4) || !defined(OPENSSL_NO_MD5) || \
!defined(OPENSSL_NO_SHA1) || !defined(OPENSSL_NO_RIPEMD160) || \
!defined(OPENSSL_NO_WHIRLPOOL)
BIO_printf(bio_err, "\n");
# endif
# ifndef OPENSSL_NO_IDEA
BIO_printf(bio_err, "idea-cbc ");
# endif
# ifndef OPENSSL_NO_SEED
BIO_printf(bio_err, "seed-cbc ");
# endif
# ifndef OPENSSL_NO_RC2
BIO_printf(bio_err, "rc2-cbc ");
# endif
# ifndef OPENSSL_NO_RC5
BIO_printf(bio_err, "rc5-cbc ");
# endif
# ifndef OPENSSL_NO_BF
BIO_printf(bio_err, "bf-cbc");
# endif
# if !defined(OPENSSL_NO_IDEA) || !defined(OPENSSL_NO_SEED) || !defined(OPENSSL_NO_RC2) || \
!defined(OPENSSL_NO_BF) || !defined(OPENSSL_NO_RC5)
BIO_printf(bio_err, "\n");
# endif
# ifndef OPENSSL_NO_DES
BIO_printf(bio_err, "des-cbc des-ede3 ");
# endif
# ifndef OPENSSL_NO_AES
BIO_printf(bio_err, "aes-128-cbc aes-192-cbc aes-256-cbc ");
BIO_printf(bio_err, "aes-128-ige aes-192-ige aes-256-ige ");
# endif
# ifndef OPENSSL_NO_CAMELLIA
BIO_printf(bio_err, "\n");
BIO_printf(bio_err,
"camellia-128-cbc camellia-192-cbc camellia-256-cbc ");
# endif
# ifndef OPENSSL_NO_RC4
BIO_printf(bio_err, "rc4");
# endif
BIO_printf(bio_err, "\n");
# ifndef OPENSSL_NO_RSA
BIO_printf(bio_err, "rsa512 rsa1024 rsa2048 rsa4096\n");
# endif
# ifndef OPENSSL_NO_DSA
BIO_printf(bio_err, "dsa512 dsa1024 dsa2048\n");
# endif
# ifndef OPENSSL_NO_ECDSA
BIO_printf(bio_err, "ecdsap160 ecdsap192 ecdsap224 "
"ecdsap256 ecdsap384 ecdsap521\n");
BIO_printf(bio_err,
"ecdsak163 ecdsak233 ecdsak283 ecdsak409 ecdsak571\n");
BIO_printf(bio_err,
"ecdsab163 ecdsab233 ecdsab283 ecdsab409 ecdsab571\n");
BIO_printf(bio_err, "ecdsa\n");
# endif
# ifndef OPENSSL_NO_ECDH
BIO_printf(bio_err, "ecdhp160 ecdhp192 ecdhp224 "
"ecdhp256 ecdhp384 ecdhp521\n");
BIO_printf(bio_err,
"ecdhk163 ecdhk233 ecdhk283 ecdhk409 ecdhk571\n");
BIO_printf(bio_err,
"ecdhb163 ecdhb233 ecdhb283 ecdhb409 ecdhb571\n");
BIO_printf(bio_err, "ecdh\n");
# endif
# ifndef OPENSSL_NO_IDEA
BIO_printf(bio_err, "idea ");
# endif
# ifndef OPENSSL_NO_SEED
BIO_printf(bio_err, "seed ");
# endif
# ifndef OPENSSL_NO_RC2
BIO_printf(bio_err, "rc2 ");
# endif
# ifndef OPENSSL_NO_DES
BIO_printf(bio_err, "des ");
# endif
# ifndef OPENSSL_NO_AES
BIO_printf(bio_err, "aes ");
# endif
# ifndef OPENSSL_NO_CAMELLIA
BIO_printf(bio_err, "camellia ");
# endif
# ifndef OPENSSL_NO_RSA
BIO_printf(bio_err, "rsa ");
# endif
# ifndef OPENSSL_NO_BF
BIO_printf(bio_err, "blowfish");
# endif
# if !defined(OPENSSL_NO_IDEA) || !defined(OPENSSL_NO_SEED) || \
!defined(OPENSSL_NO_RC2) || !defined(OPENSSL_NO_DES) || \
!defined(OPENSSL_NO_RSA) || !defined(OPENSSL_NO_BF) || \
!defined(OPENSSL_NO_AES) || !defined(OPENSSL_NO_CAMELLIA)
BIO_printf(bio_err, "\n");
# endif
BIO_printf(bio_err, "\n");
BIO_printf(bio_err, "Available options:\n");
# if defined(TIMES) || defined(USE_TOD)
BIO_printf(bio_err, "-elapsed "
"measure time in real time instead of CPU user time.\n");
# endif
# ifndef OPENSSL_NO_ENGINE
BIO_printf(bio_err,
"-engine e "
"use engine e, possibly a hardware device.\n");
# endif
BIO_printf(bio_err, "-evp e " "use EVP e.\n");
BIO_printf(bio_err,
"-decrypt "
"time decryption instead of encryption (only EVP).\n");
BIO_printf(bio_err,
"-mr "
"produce machine readable output.\n");
# ifndef NO_FORK
BIO_printf(bio_err,
"-multi n " "run n benchmarks in parallel.\n");
# endif
goto end;
}
argc--;
argv++;
j++;
}
# ifndef NO_FORK
if (multi && do_multi(multi))
goto show_res;
# endif
if (j == 0) {
for (i = 0; i < ALGOR_NUM; i++) {
if (i != D_EVP)
doit[i] = 1;
}
for (i = 0; i < RSA_NUM; i++)
rsa_doit[i] = 1;
for (i = 0; i < DSA_NUM; i++)
dsa_doit[i] = 1;
# ifndef OPENSSL_NO_ECDSA
for (i = 0; i < EC_NUM; i++)
ecdsa_doit[i] = 1;
# endif
# ifndef OPENSSL_NO_ECDH
for (i = 0; i < EC_NUM; i++)
ecdh_doit[i] = 1;
# endif
}
for (i = 0; i < ALGOR_NUM; i++)
if (doit[i])
pr_header++;
if (usertime == 0 && !mr)
BIO_printf(bio_err,
"You have chosen to measure elapsed time "
"instead of user CPU time.\n");
# ifndef OPENSSL_NO_RSA
for (i = 0; i < RSA_NUM; i++) {
const unsigned char *p;
p = rsa_data[i];
rsa_key[i] = d2i_RSAPrivateKey(NULL, &p, rsa_data_length[i]);
if (rsa_key[i] == NULL) {
BIO_printf(bio_err, "internal error loading RSA key number %d\n",
i);
goto end;
}
# if 0
else {
BIO_printf(bio_err,
mr ? "+RK:%d:"
: "Loaded RSA key, %d bit modulus and e= 0x",
BN_num_bits(rsa_key[i]->n));
BN_print(bio_err, rsa_key[i]->e);
BIO_printf(bio_err, "\n");
}
# endif
}
# endif
# ifndef OPENSSL_NO_DSA
dsa_key[0] = get_dsa512();
dsa_key[1] = get_dsa1024();
dsa_key[2] = get_dsa2048();
# endif
# ifndef OPENSSL_NO_DES
DES_set_key_unchecked(&key, &sch);
DES_set_key_unchecked(&key2, &sch2);
DES_set_key_unchecked(&key3, &sch3);
# endif
# ifndef OPENSSL_NO_AES
AES_set_encrypt_key(key16, 128, &aes_ks1);
AES_set_encrypt_key(key24, 192, &aes_ks2);
AES_set_encrypt_key(key32, 256, &aes_ks3);
# endif
# ifndef OPENSSL_NO_CAMELLIA
Camellia_set_key(key16, 128, &camellia_ks1);
Camellia_set_key(ckey24, 192, &camellia_ks2);
Camellia_set_key(ckey32, 256, &camellia_ks3);
# endif
# ifndef OPENSSL_NO_IDEA
idea_set_encrypt_key(key16, &idea_ks);
# endif
# ifndef OPENSSL_NO_SEED
SEED_set_key(key16, &seed_ks);
# endif
# ifndef OPENSSL_NO_RC4
RC4_set_key(&rc4_ks, 16, key16);
# endif
# ifndef OPENSSL_NO_RC2
RC2_set_key(&rc2_ks, 16, key16, 128);
# endif
# ifndef OPENSSL_NO_RC5
RC5_32_set_key(&rc5_ks, 16, key16, 12);
# endif
# ifndef OPENSSL_NO_BF
BF_set_key(&bf_ks, 16, key16);
# endif
# ifndef OPENSSL_NO_CAST
CAST_set_key(&cast_ks, 16, key16);
# endif
# ifndef OPENSSL_NO_RSA
memset(rsa_c, 0, sizeof(rsa_c));
# endif
# ifndef SIGALRM
# ifndef OPENSSL_NO_DES
BIO_printf(bio_err, "First we calculate the approximate speed ...\n");
count = 10;
do {
long it;
count *= 2;
Time_F(START);
for (it = count; it; it--)
DES_ecb_encrypt((DES_cblock *)buf,
(DES_cblock *)buf, &sch, DES_ENCRYPT);
d = Time_F(STOP);
} while (d < 3);
save_count = count;
c[D_MD2][0] = count / 10;
c[D_MDC2][0] = count / 10;
c[D_MD4][0] = count;
c[D_MD5][0] = count;
c[D_HMAC][0] = count;
c[D_SHA1][0] = count;
c[D_RMD160][0] = count;
c[D_RC4][0] = count * 5;
c[D_CBC_DES][0] = count;
c[D_EDE3_DES][0] = count / 3;
c[D_CBC_IDEA][0] = count;
c[D_CBC_SEED][0] = count;
c[D_CBC_RC2][0] = count;
c[D_CBC_RC5][0] = count;
c[D_CBC_BF][0] = count;
c[D_CBC_CAST][0] = count;
c[D_CBC_128_AES][0] = count;
c[D_CBC_192_AES][0] = count;
c[D_CBC_256_AES][0] = count;
c[D_CBC_128_CML][0] = count;
c[D_CBC_192_CML][0] = count;
c[D_CBC_256_CML][0] = count;
c[D_SHA256][0] = count;
c[D_SHA512][0] = count;
c[D_WHIRLPOOL][0] = count;
c[D_IGE_128_AES][0] = count;
c[D_IGE_192_AES][0] = count;
c[D_IGE_256_AES][0] = count;
c[D_GHASH][0] = count;
for (i = 1; i < SIZE_NUM; i++) {
c[D_MD2][i] = c[D_MD2][0] * 4 * lengths[0] / lengths[i];
c[D_MDC2][i] = c[D_MDC2][0] * 4 * lengths[0] / lengths[i];
c[D_MD4][i] = c[D_MD4][0] * 4 * lengths[0] / lengths[i];
c[D_MD5][i] = c[D_MD5][0] * 4 * lengths[0] / lengths[i];
c[D_HMAC][i] = c[D_HMAC][0] * 4 * lengths[0] / lengths[i];
c[D_SHA1][i] = c[D_SHA1][0] * 4 * lengths[0] / lengths[i];
c[D_RMD160][i] = c[D_RMD160][0] * 4 * lengths[0] / lengths[i];
c[D_SHA256][i] = c[D_SHA256][0] * 4 * lengths[0] / lengths[i];
c[D_SHA512][i] = c[D_SHA512][0] * 4 * lengths[0] / lengths[i];
c[D_WHIRLPOOL][i] = c[D_WHIRLPOOL][0] * 4 * lengths[0] / lengths[i];
}
for (i = 1; i < SIZE_NUM; i++) {
long l0, l1;
l0 = (long)lengths[i - 1];
l1 = (long)lengths[i];
c[D_RC4][i] = c[D_RC4][i - 1] * l0 / l1;
c[D_CBC_DES][i] = c[D_CBC_DES][i - 1] * l0 / l1;
c[D_EDE3_DES][i] = c[D_EDE3_DES][i - 1] * l0 / l1;
c[D_CBC_IDEA][i] = c[D_CBC_IDEA][i - 1] * l0 / l1;
c[D_CBC_SEED][i] = c[D_CBC_SEED][i - 1] * l0 / l1;
c[D_CBC_RC2][i] = c[D_CBC_RC2][i - 1] * l0 / l1;
c[D_CBC_RC5][i] = c[D_CBC_RC5][i - 1] * l0 / l1;
c[D_CBC_BF][i] = c[D_CBC_BF][i - 1] * l0 / l1;
c[D_CBC_CAST][i] = c[D_CBC_CAST][i - 1] * l0 / l1;
c[D_CBC_128_AES][i] = c[D_CBC_128_AES][i - 1] * l0 / l1;
c[D_CBC_192_AES][i] = c[D_CBC_192_AES][i - 1] * l0 / l1;
c[D_CBC_256_AES][i] = c[D_CBC_256_AES][i - 1] * l0 / l1;
c[D_CBC_128_CML][i] = c[D_CBC_128_CML][i - 1] * l0 / l1;
c[D_CBC_192_CML][i] = c[D_CBC_192_CML][i - 1] * l0 / l1;
c[D_CBC_256_CML][i] = c[D_CBC_256_CML][i - 1] * l0 / l1;
c[D_IGE_128_AES][i] = c[D_IGE_128_AES][i - 1] * l0 / l1;
c[D_IGE_192_AES][i] = c[D_IGE_192_AES][i - 1] * l0 / l1;
c[D_IGE_256_AES][i] = c[D_IGE_256_AES][i - 1] * l0 / l1;
}
# ifndef OPENSSL_NO_RSA
rsa_c[R_RSA_512][0] = count / 2000;
rsa_c[R_RSA_512][1] = count / 400;
for (i = 1; i < RSA_NUM; i++) {
rsa_c[i][0] = rsa_c[i - 1][0] / 8;
rsa_c[i][1] = rsa_c[i - 1][1] / 4;
if ((rsa_doit[i] <= 1) && (rsa_c[i][0] == 0))
rsa_doit[i] = 0;
else {
if (rsa_c[i][0] == 0) {
rsa_c[i][0] = 1;
rsa_c[i][1] = 20;
}
}
}
# endif
# ifndef OPENSSL_NO_DSA
dsa_c[R_DSA_512][0] = count / 1000;
dsa_c[R_DSA_512][1] = count / 1000 / 2;
for (i = 1; i < DSA_NUM; i++) {
dsa_c[i][0] = dsa_c[i - 1][0] / 4;
dsa_c[i][1] = dsa_c[i - 1][1] / 4;
if ((dsa_doit[i] <= 1) && (dsa_c[i][0] == 0))
dsa_doit[i] = 0;
else {
if (dsa_c[i] == 0) {
dsa_c[i][0] = 1;
dsa_c[i][1] = 1;
}
}
}
# endif
# ifndef OPENSSL_NO_ECDSA
ecdsa_c[R_EC_P160][0] = count / 1000;
ecdsa_c[R_EC_P160][1] = count / 1000 / 2;
for (i = R_EC_P192; i <= R_EC_P521; i++) {
ecdsa_c[i][0] = ecdsa_c[i - 1][0] / 2;
ecdsa_c[i][1] = ecdsa_c[i - 1][1] / 2;
if ((ecdsa_doit[i] <= 1) && (ecdsa_c[i][0] == 0))
ecdsa_doit[i] = 0;
else {
if (ecdsa_c[i] == 0) {
ecdsa_c[i][0] = 1;
ecdsa_c[i][1] = 1;
}
}
}
ecdsa_c[R_EC_K163][0] = count / 1000;
ecdsa_c[R_EC_K163][1] = count / 1000 / 2;
for (i = R_EC_K233; i <= R_EC_K571; i++) {
ecdsa_c[i][0] = ecdsa_c[i - 1][0] / 2;
ecdsa_c[i][1] = ecdsa_c[i - 1][1] / 2;
if ((ecdsa_doit[i] <= 1) && (ecdsa_c[i][0] == 0))
ecdsa_doit[i] = 0;
else {
if (ecdsa_c[i] == 0) {
ecdsa_c[i][0] = 1;
ecdsa_c[i][1] = 1;
}
}
}
ecdsa_c[R_EC_B163][0] = count / 1000;
ecdsa_c[R_EC_B163][1] = count / 1000 / 2;
for (i = R_EC_B233; i <= R_EC_B571; i++) {
ecdsa_c[i][0] = ecdsa_c[i - 1][0] / 2;
ecdsa_c[i][1] = ecdsa_c[i - 1][1] / 2;
if ((ecdsa_doit[i] <= 1) && (ecdsa_c[i][0] == 0))
ecdsa_doit[i] = 0;
else {
if (ecdsa_c[i] == 0) {
ecdsa_c[i][0] = 1;
ecdsa_c[i][1] = 1;
}
}
}
# endif
# ifndef OPENSSL_NO_ECDH
ecdh_c[R_EC_P160][0] = count / 1000;
ecdh_c[R_EC_P160][1] = count / 1000;
for (i = R_EC_P192; i <= R_EC_P521; i++) {
ecdh_c[i][0] = ecdh_c[i - 1][0] / 2;
ecdh_c[i][1] = ecdh_c[i - 1][1] / 2;
if ((ecdh_doit[i] <= 1) && (ecdh_c[i][0] == 0))
ecdh_doit[i] = 0;
else {
if (ecdh_c[i] == 0) {
ecdh_c[i][0] = 1;
ecdh_c[i][1] = 1;
}
}
}
ecdh_c[R_EC_K163][0] = count / 1000;
ecdh_c[R_EC_K163][1] = count / 1000;
for (i = R_EC_K233; i <= R_EC_K571; i++) {
ecdh_c[i][0] = ecdh_c[i - 1][0] / 2;
ecdh_c[i][1] = ecdh_c[i - 1][1] / 2;
if ((ecdh_doit[i] <= 1) && (ecdh_c[i][0] == 0))
ecdh_doit[i] = 0;
else {
if (ecdh_c[i] == 0) {
ecdh_c[i][0] = 1;
ecdh_c[i][1] = 1;
}
}
}
ecdh_c[R_EC_B163][0] = count / 1000;
ecdh_c[R_EC_B163][1] = count / 1000;
for (i = R_EC_B233; i <= R_EC_B571; i++) {
ecdh_c[i][0] = ecdh_c[i - 1][0] / 2;
ecdh_c[i][1] = ecdh_c[i - 1][1] / 2;
if ((ecdh_doit[i] <= 1) && (ecdh_c[i][0] == 0))
ecdh_doit[i] = 0;
else {
if (ecdh_c[i] == 0) {
ecdh_c[i][0] = 1;
ecdh_c[i][1] = 1;
}
}
}
# endif
# define COND(d) (count < (d))
# define COUNT(d) (d)
# else
/* not worth fixing */
# error "You cannot disable DES on systems without SIGALRM."
# endif /* OPENSSL_NO_DES */
# else
# define COND(c) (run && count<0x7fffffff)
# define COUNT(d) (count)
# ifndef _WIN32
signal(SIGALRM, sig_done);
# endif
# endif /* SIGALRM */
# ifndef OPENSSL_NO_MD2
if (doit[D_MD2]) {
for (j = 0; j < SIZE_NUM; j++) {
print_message(names[D_MD2], c[D_MD2][j], lengths[j]);
Time_F(START);
for (count = 0, run = 1; COND(c[D_MD2][j]); count++)
EVP_Digest(buf, (unsigned long)lengths[j], &(md2[0]), NULL,
EVP_md2(), NULL);
d = Time_F(STOP);
print_result(D_MD2, j, count, d);
}
}
# endif
# ifndef OPENSSL_NO_MDC2
if (doit[D_MDC2]) {
for (j = 0; j < SIZE_NUM; j++) {
print_message(names[D_MDC2], c[D_MDC2][j], lengths[j]);
Time_F(START);
for (count = 0, run = 1; COND(c[D_MDC2][j]); count++)
EVP_Digest(buf, (unsigned long)lengths[j], &(mdc2[0]), NULL,
EVP_mdc2(), NULL);
d = Time_F(STOP);
print_result(D_MDC2, j, count, d);
}
}
# endif
# ifndef OPENSSL_NO_MD4
if (doit[D_MD4]) {
for (j = 0; j < SIZE_NUM; j++) {
print_message(names[D_MD4], c[D_MD4][j], lengths[j]);
Time_F(START);
for (count = 0, run = 1; COND(c[D_MD4][j]); count++)
EVP_Digest(&(buf[0]), (unsigned long)lengths[j], &(md4[0]),
NULL, EVP_md4(), NULL);
d = Time_F(STOP);
print_result(D_MD4, j, count, d);
}
}
# endif
# ifndef OPENSSL_NO_MD5
if (doit[D_MD5]) {
for (j = 0; j < SIZE_NUM; j++) {
print_message(names[D_MD5], c[D_MD5][j], lengths[j]);
Time_F(START);
for (count = 0, run = 1; COND(c[D_MD5][j]); count++)
EVP_Digest(&(buf[0]), (unsigned long)lengths[j], &(md5[0]),
NULL, EVP_get_digestbyname("md5"), NULL);
d = Time_F(STOP);
print_result(D_MD5, j, count, d);
}
}
# endif
# if !defined(OPENSSL_NO_MD5) && !defined(OPENSSL_NO_HMAC)
if (doit[D_HMAC]) {
HMAC_CTX hctx;
HMAC_CTX_init(&hctx);
HMAC_Init_ex(&hctx, (unsigned char *)"This is a key...",
16, EVP_md5(), NULL);
for (j = 0; j < SIZE_NUM; j++) {
print_message(names[D_HMAC], c[D_HMAC][j], lengths[j]);
Time_F(START);
for (count = 0, run = 1; COND(c[D_HMAC][j]); count++) {
HMAC_Init_ex(&hctx, NULL, 0, NULL, NULL);
HMAC_Update(&hctx, buf, lengths[j]);
HMAC_Final(&hctx, &(hmac[0]), NULL);
}
d = Time_F(STOP);
print_result(D_HMAC, j, count, d);
}
HMAC_CTX_cleanup(&hctx);
}
# endif
# ifndef OPENSSL_NO_SHA
if (doit[D_SHA1]) {
for (j = 0; j < SIZE_NUM; j++) {
print_message(names[D_SHA1], c[D_SHA1][j], lengths[j]);
Time_F(START);
for (count = 0, run = 1; COND(c[D_SHA1][j]); count++)
EVP_Digest(buf, (unsigned long)lengths[j], &(sha[0]), NULL,
EVP_sha1(), NULL);
d = Time_F(STOP);
print_result(D_SHA1, j, count, d);
}
}
# ifndef OPENSSL_NO_SHA256
if (doit[D_SHA256]) {
for (j = 0; j < SIZE_NUM; j++) {
print_message(names[D_SHA256], c[D_SHA256][j], lengths[j]);
Time_F(START);
for (count = 0, run = 1; COND(c[D_SHA256][j]); count++)
SHA256(buf, lengths[j], sha256);
d = Time_F(STOP);
print_result(D_SHA256, j, count, d);
}
}
# endif
# ifndef OPENSSL_NO_SHA512
if (doit[D_SHA512]) {
for (j = 0; j < SIZE_NUM; j++) {
print_message(names[D_SHA512], c[D_SHA512][j], lengths[j]);
Time_F(START);
for (count = 0, run = 1; COND(c[D_SHA512][j]); count++)
SHA512(buf, lengths[j], sha512);
d = Time_F(STOP);
print_result(D_SHA512, j, count, d);
}
}
# endif
# endif
# ifndef OPENSSL_NO_WHIRLPOOL
if (doit[D_WHIRLPOOL]) {
for (j = 0; j < SIZE_NUM; j++) {
print_message(names[D_WHIRLPOOL], c[D_WHIRLPOOL][j], lengths[j]);
Time_F(START);
for (count = 0, run = 1; COND(c[D_WHIRLPOOL][j]); count++)
WHIRLPOOL(buf, lengths[j], whirlpool);
d = Time_F(STOP);
print_result(D_WHIRLPOOL, j, count, d);
}
}
# endif
# ifndef OPENSSL_NO_RIPEMD
if (doit[D_RMD160]) {
for (j = 0; j < SIZE_NUM; j++) {
print_message(names[D_RMD160], c[D_RMD160][j], lengths[j]);
Time_F(START);
for (count = 0, run = 1; COND(c[D_RMD160][j]); count++)
EVP_Digest(buf, (unsigned long)lengths[j], &(rmd160[0]), NULL,
EVP_ripemd160(), NULL);
d = Time_F(STOP);
print_result(D_RMD160, j, count, d);
}
}
# endif
# ifndef OPENSSL_NO_RC4
if (doit[D_RC4]) {
for (j = 0; j < SIZE_NUM; j++) {
print_message(names[D_RC4], c[D_RC4][j], lengths[j]);
Time_F(START);
for (count = 0, run = 1; COND(c[D_RC4][j]); count++)
RC4(&rc4_ks, (unsigned int)lengths[j], buf, buf);
d = Time_F(STOP);
print_result(D_RC4, j, count, d);
}
}
# endif
# ifndef OPENSSL_NO_DES
if (doit[D_CBC_DES]) {
for (j = 0; j < SIZE_NUM; j++) {
print_message(names[D_CBC_DES], c[D_CBC_DES][j], lengths[j]);
Time_F(START);
for (count = 0, run = 1; COND(c[D_CBC_DES][j]); count++)
DES_ncbc_encrypt(buf, buf, lengths[j], &sch,
&DES_iv, DES_ENCRYPT);
d = Time_F(STOP);
print_result(D_CBC_DES, j, count, d);
}
}
if (doit[D_EDE3_DES]) {
for (j = 0; j < SIZE_NUM; j++) {
print_message(names[D_EDE3_DES], c[D_EDE3_DES][j], lengths[j]);
Time_F(START);
for (count = 0, run = 1; COND(c[D_EDE3_DES][j]); count++)
DES_ede3_cbc_encrypt(buf, buf, lengths[j],
&sch, &sch2, &sch3,
&DES_iv, DES_ENCRYPT);
d = Time_F(STOP);
print_result(D_EDE3_DES, j, count, d);
}
}
# endif
# ifndef OPENSSL_NO_AES
if (doit[D_CBC_128_AES]) {
for (j = 0; j < SIZE_NUM; j++) {
print_message(names[D_CBC_128_AES], c[D_CBC_128_AES][j],
lengths[j]);
Time_F(START);
for (count = 0, run = 1; COND(c[D_CBC_128_AES][j]); count++)
AES_cbc_encrypt(buf, buf,
(unsigned long)lengths[j], &aes_ks1,
iv, AES_ENCRYPT);
d = Time_F(STOP);
print_result(D_CBC_128_AES, j, count, d);
}
}
if (doit[D_CBC_192_AES]) {
for (j = 0; j < SIZE_NUM; j++) {
print_message(names[D_CBC_192_AES], c[D_CBC_192_AES][j],
lengths[j]);
Time_F(START);
for (count = 0, run = 1; COND(c[D_CBC_192_AES][j]); count++)
AES_cbc_encrypt(buf, buf,
(unsigned long)lengths[j], &aes_ks2,
iv, AES_ENCRYPT);
d = Time_F(STOP);
print_result(D_CBC_192_AES, j, count, d);
}
}
if (doit[D_CBC_256_AES]) {
for (j = 0; j < SIZE_NUM; j++) {
print_message(names[D_CBC_256_AES], c[D_CBC_256_AES][j],
lengths[j]);
Time_F(START);
for (count = 0, run = 1; COND(c[D_CBC_256_AES][j]); count++)
AES_cbc_encrypt(buf, buf,
(unsigned long)lengths[j], &aes_ks3,
iv, AES_ENCRYPT);
d = Time_F(STOP);
print_result(D_CBC_256_AES, j, count, d);
}
}
if (doit[D_IGE_128_AES]) {
for (j = 0; j < SIZE_NUM; j++) {
print_message(names[D_IGE_128_AES], c[D_IGE_128_AES][j],
lengths[j]);
Time_F(START);
for (count = 0, run = 1; COND(c[D_IGE_128_AES][j]); count++)
AES_ige_encrypt(buf, buf2,
(unsigned long)lengths[j], &aes_ks1,
iv, AES_ENCRYPT);
d = Time_F(STOP);
print_result(D_IGE_128_AES, j, count, d);
}
}
if (doit[D_IGE_192_AES]) {
for (j = 0; j < SIZE_NUM; j++) {
print_message(names[D_IGE_192_AES], c[D_IGE_192_AES][j],
lengths[j]);
Time_F(START);
for (count = 0, run = 1; COND(c[D_IGE_192_AES][j]); count++)
AES_ige_encrypt(buf, buf2,
(unsigned long)lengths[j], &aes_ks2,
iv, AES_ENCRYPT);
d = Time_F(STOP);
print_result(D_IGE_192_AES, j, count, d);
}
}
if (doit[D_IGE_256_AES]) {
for (j = 0; j < SIZE_NUM; j++) {
print_message(names[D_IGE_256_AES], c[D_IGE_256_AES][j],
lengths[j]);
Time_F(START);
for (count = 0, run = 1; COND(c[D_IGE_256_AES][j]); count++)
AES_ige_encrypt(buf, buf2,
(unsigned long)lengths[j], &aes_ks3,
iv, AES_ENCRYPT);
d = Time_F(STOP);
print_result(D_IGE_256_AES, j, count, d);
}
}
if (doit[D_GHASH]) {
GCM128_CONTEXT *ctx =
CRYPTO_gcm128_new(&aes_ks1, (block128_f) AES_encrypt);
CRYPTO_gcm128_setiv(ctx, (unsigned char *)"0123456789ab", 12);
for (j = 0; j < SIZE_NUM; j++) {
print_message(names[D_GHASH], c[D_GHASH][j], lengths[j]);
Time_F(START);
for (count = 0, run = 1; COND(c[D_GHASH][j]); count++)
CRYPTO_gcm128_aad(ctx, buf, lengths[j]);
d = Time_F(STOP);
print_result(D_GHASH, j, count, d);
}
CRYPTO_gcm128_release(ctx);
}
# endif
# ifndef OPENSSL_NO_CAMELLIA
if (doit[D_CBC_128_CML]) {
for (j = 0; j < SIZE_NUM; j++) {
print_message(names[D_CBC_128_CML], c[D_CBC_128_CML][j],
lengths[j]);
Time_F(START);
for (count = 0, run = 1; COND(c[D_CBC_128_CML][j]); count++)
Camellia_cbc_encrypt(buf, buf,
(unsigned long)lengths[j], &camellia_ks1,
iv, CAMELLIA_ENCRYPT);
d = Time_F(STOP);
print_result(D_CBC_128_CML, j, count, d);
}
}
if (doit[D_CBC_192_CML]) {
for (j = 0; j < SIZE_NUM; j++) {
print_message(names[D_CBC_192_CML], c[D_CBC_192_CML][j],
lengths[j]);
Time_F(START);
for (count = 0, run = 1; COND(c[D_CBC_192_CML][j]); count++)
Camellia_cbc_encrypt(buf, buf,
(unsigned long)lengths[j], &camellia_ks2,
iv, CAMELLIA_ENCRYPT);
d = Time_F(STOP);
print_result(D_CBC_192_CML, j, count, d);
}
}
if (doit[D_CBC_256_CML]) {
for (j = 0; j < SIZE_NUM; j++) {
print_message(names[D_CBC_256_CML], c[D_CBC_256_CML][j],
lengths[j]);
Time_F(START);
for (count = 0, run = 1; COND(c[D_CBC_256_CML][j]); count++)
Camellia_cbc_encrypt(buf, buf,
(unsigned long)lengths[j], &camellia_ks3,
iv, CAMELLIA_ENCRYPT);
d = Time_F(STOP);
print_result(D_CBC_256_CML, j, count, d);
}
}
# endif
# ifndef OPENSSL_NO_IDEA
if (doit[D_CBC_IDEA]) {
for (j = 0; j < SIZE_NUM; j++) {
print_message(names[D_CBC_IDEA], c[D_CBC_IDEA][j], lengths[j]);
Time_F(START);
for (count = 0, run = 1; COND(c[D_CBC_IDEA][j]); count++)
idea_cbc_encrypt(buf, buf,
(unsigned long)lengths[j], &idea_ks,
iv, IDEA_ENCRYPT);
d = Time_F(STOP);
print_result(D_CBC_IDEA, j, count, d);
}
}
# endif
# ifndef OPENSSL_NO_SEED
if (doit[D_CBC_SEED]) {
for (j = 0; j < SIZE_NUM; j++) {
print_message(names[D_CBC_SEED], c[D_CBC_SEED][j], lengths[j]);
Time_F(START);
for (count = 0, run = 1; COND(c[D_CBC_SEED][j]); count++)
SEED_cbc_encrypt(buf, buf,
(unsigned long)lengths[j], &seed_ks, iv, 1);
d = Time_F(STOP);
print_result(D_CBC_SEED, j, count, d);
}
}
# endif
# ifndef OPENSSL_NO_RC2
if (doit[D_CBC_RC2]) {
for (j = 0; j < SIZE_NUM; j++) {
print_message(names[D_CBC_RC2], c[D_CBC_RC2][j], lengths[j]);
Time_F(START);
for (count = 0, run = 1; COND(c[D_CBC_RC2][j]); count++)
RC2_cbc_encrypt(buf, buf,
(unsigned long)lengths[j], &rc2_ks,
iv, RC2_ENCRYPT);
d = Time_F(STOP);
print_result(D_CBC_RC2, j, count, d);
}
}
# endif
# ifndef OPENSSL_NO_RC5
if (doit[D_CBC_RC5]) {
for (j = 0; j < SIZE_NUM; j++) {
print_message(names[D_CBC_RC5], c[D_CBC_RC5][j], lengths[j]);
Time_F(START);
for (count = 0, run = 1; COND(c[D_CBC_RC5][j]); count++)
RC5_32_cbc_encrypt(buf, buf,
(unsigned long)lengths[j], &rc5_ks,
iv, RC5_ENCRYPT);
d = Time_F(STOP);
print_result(D_CBC_RC5, j, count, d);
}
}
# endif
# ifndef OPENSSL_NO_BF
if (doit[D_CBC_BF]) {
for (j = 0; j < SIZE_NUM; j++) {
print_message(names[D_CBC_BF], c[D_CBC_BF][j], lengths[j]);
Time_F(START);
for (count = 0, run = 1; COND(c[D_CBC_BF][j]); count++)
BF_cbc_encrypt(buf, buf,
(unsigned long)lengths[j], &bf_ks,
iv, BF_ENCRYPT);
d = Time_F(STOP);
print_result(D_CBC_BF, j, count, d);
}
}
# endif
# ifndef OPENSSL_NO_CAST
if (doit[D_CBC_CAST]) {
for (j = 0; j < SIZE_NUM; j++) {
print_message(names[D_CBC_CAST], c[D_CBC_CAST][j], lengths[j]);
Time_F(START);
for (count = 0, run = 1; COND(c[D_CBC_CAST][j]); count++)
CAST_cbc_encrypt(buf, buf,
(unsigned long)lengths[j], &cast_ks,
iv, CAST_ENCRYPT);
d = Time_F(STOP);
print_result(D_CBC_CAST, j, count, d);
}
}
# endif
if (doit[D_EVP]) {
# ifdef EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK
if (multiblock && evp_cipher) {
if (!
(EVP_CIPHER_flags(evp_cipher) &
EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK)) {
fprintf(stderr, "%s is not multi-block capable\n",
OBJ_nid2ln(evp_cipher->nid));
goto end;
}
multiblock_speed(evp_cipher);
mret = 0;
goto end;
}
# endif
for (j = 0; j < SIZE_NUM; j++) {
if (evp_cipher) {
EVP_CIPHER_CTX ctx;
int outl;
names[D_EVP] = OBJ_nid2ln(evp_cipher->nid);
/*
* -O3 -fschedule-insns messes up an optimization here!
* names[D_EVP] somehow becomes NULL
*/
print_message(names[D_EVP], save_count, lengths[j]);
EVP_CIPHER_CTX_init(&ctx);
if (decrypt)
EVP_DecryptInit_ex(&ctx, evp_cipher, NULL, key16, iv);
else
EVP_EncryptInit_ex(&ctx, evp_cipher, NULL, key16, iv);
EVP_CIPHER_CTX_set_padding(&ctx, 0);
Time_F(START);
if (decrypt)
for (count = 0, run = 1;
COND(save_count * 4 * lengths[0] / lengths[j]);
count++)
EVP_DecryptUpdate(&ctx, buf, &outl, buf, lengths[j]);
else
for (count = 0, run = 1;
COND(save_count * 4 * lengths[0] / lengths[j]);
count++)
EVP_EncryptUpdate(&ctx, buf, &outl, buf, lengths[j]);
if (decrypt)
EVP_DecryptFinal_ex(&ctx, buf, &outl);
else
EVP_EncryptFinal_ex(&ctx, buf, &outl);
d = Time_F(STOP);
EVP_CIPHER_CTX_cleanup(&ctx);
}
if (evp_md) {
names[D_EVP] = OBJ_nid2ln(evp_md->type);
print_message(names[D_EVP], save_count, lengths[j]);
Time_F(START);
for (count = 0, run = 1;
COND(save_count * 4 * lengths[0] / lengths[j]); count++)
EVP_Digest(buf, lengths[j], &(md[0]), NULL, evp_md, NULL);
d = Time_F(STOP);
}
print_result(D_EVP, j, count, d);
}
}
RAND_pseudo_bytes(buf, 36);
# ifndef OPENSSL_NO_RSA
for (j = 0; j < RSA_NUM; j++) {
int ret;
if (!rsa_doit[j])
continue;
ret = RSA_sign(NID_md5_sha1, buf, 36, buf2, &rsa_num, rsa_key[j]);
if (ret == 0) {
BIO_printf(bio_err,
"RSA sign failure. No RSA sign will be done.\n");
ERR_print_errors(bio_err);
rsa_count = 1;
} else {
pkey_print_message("private", "rsa",
rsa_c[j][0], rsa_bits[j], RSA_SECONDS);
/* RSA_blinding_on(rsa_key[j],NULL); */
Time_F(START);
for (count = 0, run = 1; COND(rsa_c[j][0]); count++) {
ret = RSA_sign(NID_md5_sha1, buf, 36, buf2,
&rsa_num, rsa_key[j]);
if (ret == 0) {
BIO_printf(bio_err, "RSA sign failure\n");
ERR_print_errors(bio_err);
count = 1;
break;
}
}
d = Time_F(STOP);
BIO_printf(bio_err,
mr ? "+R1:%ld:%d:%.2f\n"
: "%ld %d bit private RSA's in %.2fs\n",
count, rsa_bits[j], d);
rsa_results[j][0] = d / (double)count;
rsa_count = count;
}
# if 1
ret = RSA_verify(NID_md5_sha1, buf, 36, buf2, rsa_num, rsa_key[j]);
if (ret <= 0) {
BIO_printf(bio_err,
"RSA verify failure. No RSA verify will be done.\n");
ERR_print_errors(bio_err);
rsa_doit[j] = 0;
} else {
pkey_print_message("public", "rsa",
rsa_c[j][1], rsa_bits[j], RSA_SECONDS);
Time_F(START);
for (count = 0, run = 1; COND(rsa_c[j][1]); count++) {
ret = RSA_verify(NID_md5_sha1, buf, 36, buf2,
rsa_num, rsa_key[j]);
if (ret <= 0) {
BIO_printf(bio_err, "RSA verify failure\n");
ERR_print_errors(bio_err);
count = 1;
break;
}
}
d = Time_F(STOP);
BIO_printf(bio_err,
mr ? "+R2:%ld:%d:%.2f\n"
: "%ld %d bit public RSA's in %.2fs\n",
count, rsa_bits[j], d);
rsa_results[j][1] = d / (double)count;
}
# endif
if (rsa_count <= 1) {
/* if longer than 10s, don't do any more */
for (j++; j < RSA_NUM; j++)
rsa_doit[j] = 0;
}
}
# endif
RAND_pseudo_bytes(buf, 20);
# ifndef OPENSSL_NO_DSA
if (RAND_status() != 1) {
RAND_seed(rnd_seed, sizeof rnd_seed);
rnd_fake = 1;
}
for (j = 0; j < DSA_NUM; j++) {
unsigned int kk;
int ret;
if (!dsa_doit[j])
continue;
/* DSA_generate_key(dsa_key[j]); */
/* DSA_sign_setup(dsa_key[j],NULL); */
ret = DSA_sign(EVP_PKEY_DSA, buf, 20, buf2, &kk, dsa_key[j]);
if (ret == 0) {
BIO_printf(bio_err,
"DSA sign failure. No DSA sign will be done.\n");
ERR_print_errors(bio_err);
rsa_count = 1;
} else {
pkey_print_message("sign", "dsa",
dsa_c[j][0], dsa_bits[j], DSA_SECONDS);
Time_F(START);
for (count = 0, run = 1; COND(dsa_c[j][0]); count++) {
ret = DSA_sign(EVP_PKEY_DSA, buf, 20, buf2, &kk, dsa_key[j]);
if (ret == 0) {
BIO_printf(bio_err, "DSA sign failure\n");
ERR_print_errors(bio_err);
count = 1;
break;
}
}
d = Time_F(STOP);
BIO_printf(bio_err,
mr ? "+R3:%ld:%d:%.2f\n"
: "%ld %d bit DSA signs in %.2fs\n",
count, dsa_bits[j], d);
dsa_results[j][0] = d / (double)count;
rsa_count = count;
}
ret = DSA_verify(EVP_PKEY_DSA, buf, 20, buf2, kk, dsa_key[j]);
if (ret <= 0) {
BIO_printf(bio_err,
"DSA verify failure. No DSA verify will be done.\n");
ERR_print_errors(bio_err);
dsa_doit[j] = 0;
} else {
pkey_print_message("verify", "dsa",
dsa_c[j][1], dsa_bits[j], DSA_SECONDS);
Time_F(START);
for (count = 0, run = 1; COND(dsa_c[j][1]); count++) {
ret = DSA_verify(EVP_PKEY_DSA, buf, 20, buf2, kk, dsa_key[j]);
if (ret <= 0) {
BIO_printf(bio_err, "DSA verify failure\n");
ERR_print_errors(bio_err);
count = 1;
break;
}
}
d = Time_F(STOP);
BIO_printf(bio_err,
mr ? "+R4:%ld:%d:%.2f\n"
: "%ld %d bit DSA verify in %.2fs\n",
count, dsa_bits[j], d);
dsa_results[j][1] = d / (double)count;
}
if (rsa_count <= 1) {
/* if longer than 10s, don't do any more */
for (j++; j < DSA_NUM; j++)
dsa_doit[j] = 0;
}
}
if (rnd_fake)
RAND_cleanup();
# endif
# ifndef OPENSSL_NO_ECDSA
if (RAND_status() != 1) {
RAND_seed(rnd_seed, sizeof rnd_seed);
rnd_fake = 1;
}
for (j = 0; j < EC_NUM; j++) {
int ret;
if (!ecdsa_doit[j])
continue; /* Ignore Curve */
ecdsa[j] = EC_KEY_new_by_curve_name(test_curves[j]);
if (ecdsa[j] == NULL) {
BIO_printf(bio_err, "ECDSA failure.\n");
ERR_print_errors(bio_err);
rsa_count = 1;
} else {
# if 1
EC_KEY_precompute_mult(ecdsa[j], NULL);
# endif
/* Perform ECDSA signature test */
EC_KEY_generate_key(ecdsa[j]);
ret = ECDSA_sign(0, buf, 20, ecdsasig, &ecdsasiglen, ecdsa[j]);
if (ret == 0) {
BIO_printf(bio_err,
"ECDSA sign failure. No ECDSA sign will be done.\n");
ERR_print_errors(bio_err);
rsa_count = 1;
} else {
pkey_print_message("sign", "ecdsa",
ecdsa_c[j][0],
test_curves_bits[j], ECDSA_SECONDS);
Time_F(START);
for (count = 0, run = 1; COND(ecdsa_c[j][0]); count++) {
ret = ECDSA_sign(0, buf, 20,
ecdsasig, &ecdsasiglen, ecdsa[j]);
if (ret == 0) {
BIO_printf(bio_err, "ECDSA sign failure\n");
ERR_print_errors(bio_err);
count = 1;
break;
}
}
d = Time_F(STOP);
BIO_printf(bio_err,
mr ? "+R5:%ld:%d:%.2f\n" :
"%ld %d bit ECDSA signs in %.2fs \n",
count, test_curves_bits[j], d);
ecdsa_results[j][0] = d / (double)count;
rsa_count = count;
}
/* Perform ECDSA verification test */
ret = ECDSA_verify(0, buf, 20, ecdsasig, ecdsasiglen, ecdsa[j]);
if (ret != 1) {
BIO_printf(bio_err,
"ECDSA verify failure. No ECDSA verify will be done.\n");
ERR_print_errors(bio_err);
ecdsa_doit[j] = 0;
} else {
pkey_print_message("verify", "ecdsa",
ecdsa_c[j][1],
test_curves_bits[j], ECDSA_SECONDS);
Time_F(START);
for (count = 0, run = 1; COND(ecdsa_c[j][1]); count++) {
ret =
ECDSA_verify(0, buf, 20, ecdsasig, ecdsasiglen,
ecdsa[j]);
if (ret != 1) {
BIO_printf(bio_err, "ECDSA verify failure\n");
ERR_print_errors(bio_err);
count = 1;
break;
}
}
d = Time_F(STOP);
BIO_printf(bio_err,
mr ? "+R6:%ld:%d:%.2f\n"
: "%ld %d bit ECDSA verify in %.2fs\n",
count, test_curves_bits[j], d);
ecdsa_results[j][1] = d / (double)count;
}
if (rsa_count <= 1) {
/* if longer than 10s, don't do any more */
for (j++; j < EC_NUM; j++)
ecdsa_doit[j] = 0;
}
}
}
if (rnd_fake)
RAND_cleanup();
# endif
# ifndef OPENSSL_NO_ECDH
if (RAND_status() != 1) {
RAND_seed(rnd_seed, sizeof rnd_seed);
rnd_fake = 1;
}
for (j = 0; j < EC_NUM; j++) {
if (!ecdh_doit[j])
continue;
ecdh_a[j] = EC_KEY_new_by_curve_name(test_curves[j]);
ecdh_b[j] = EC_KEY_new_by_curve_name(test_curves[j]);
if ((ecdh_a[j] == NULL) || (ecdh_b[j] == NULL)) {
BIO_printf(bio_err, "ECDH failure.\n");
ERR_print_errors(bio_err);
rsa_count = 1;
} else {
/* generate two ECDH key pairs */
if (!EC_KEY_generate_key(ecdh_a[j]) ||
!EC_KEY_generate_key(ecdh_b[j])) {
BIO_printf(bio_err, "ECDH key generation failure.\n");
ERR_print_errors(bio_err);
rsa_count = 1;
} else {
/*
* If field size is not more than 24 octets, then use SHA-1
* hash of result; otherwise, use result (see section 4.8 of
* draft-ietf-tls-ecc-03.txt).
*/
int field_size, outlen;
void *(*kdf) (const void *in, size_t inlen, void *out,
size_t *xoutlen);
field_size =
EC_GROUP_get_degree(EC_KEY_get0_group(ecdh_a[j]));
if (field_size <= 24 * 8) {
outlen = KDF1_SHA1_len;
kdf = KDF1_SHA1;
} else {
outlen = (field_size + 7) / 8;
kdf = NULL;
}
secret_size_a =
ECDH_compute_key(secret_a, outlen,
EC_KEY_get0_public_key(ecdh_b[j]),
ecdh_a[j], kdf);
secret_size_b =
ECDH_compute_key(secret_b, outlen,
EC_KEY_get0_public_key(ecdh_a[j]),
ecdh_b[j], kdf);
if (secret_size_a != secret_size_b)
ecdh_checks = 0;
else
ecdh_checks = 1;
for (secret_idx = 0; (secret_idx < secret_size_a)
&& (ecdh_checks == 1); secret_idx++) {
if (secret_a[secret_idx] != secret_b[secret_idx])
ecdh_checks = 0;
}
if (ecdh_checks == 0) {
BIO_printf(bio_err, "ECDH computations don't match.\n");
ERR_print_errors(bio_err);
rsa_count = 1;
}
pkey_print_message("", "ecdh",
ecdh_c[j][0],
test_curves_bits[j], ECDH_SECONDS);
Time_F(START);
for (count = 0, run = 1; COND(ecdh_c[j][0]); count++) {
ECDH_compute_key(secret_a, outlen,
EC_KEY_get0_public_key(ecdh_b[j]),
ecdh_a[j], kdf);
}
d = Time_F(STOP);
BIO_printf(bio_err,
mr ? "+R7:%ld:%d:%.2f\n" :
"%ld %d-bit ECDH ops in %.2fs\n", count,
test_curves_bits[j], d);
ecdh_results[j][0] = d / (double)count;
rsa_count = count;
}
}
if (rsa_count <= 1) {
/* if longer than 10s, don't do any more */
for (j++; j < EC_NUM; j++)
ecdh_doit[j] = 0;
}
}
if (rnd_fake)
RAND_cleanup();
# endif
# ifndef NO_FORK
show_res:
# endif
if (!mr) {
fprintf(stdout, "%s\n", SSLeay_version(SSLEAY_VERSION));
fprintf(stdout, "%s\n", SSLeay_version(SSLEAY_BUILT_ON));
printf("options:");
printf("%s ", BN_options());
# ifndef OPENSSL_NO_MD2
printf("%s ", MD2_options());
# endif
# ifndef OPENSSL_NO_RC4
printf("%s ", RC4_options());
# endif
# ifndef OPENSSL_NO_DES
printf("%s ", DES_options());
# endif
# ifndef OPENSSL_NO_AES
printf("%s ", AES_options());
# endif
# ifndef OPENSSL_NO_IDEA
printf("%s ", idea_options());
# endif
# ifndef OPENSSL_NO_BF
printf("%s ", BF_options());
# endif
fprintf(stdout, "\n%s\n", SSLeay_version(SSLEAY_CFLAGS));
}
if (pr_header) {
if (mr)
fprintf(stdout, "+H");
else {
fprintf(stdout,
"The 'numbers' are in 1000s of bytes per second processed.\n");
fprintf(stdout, "type ");
}
for (j = 0; j < SIZE_NUM; j++)
fprintf(stdout, mr ? ":%d" : "%7d bytes", lengths[j]);
fprintf(stdout, "\n");
}
for (k = 0; k < ALGOR_NUM; k++) {
if (!doit[k])
continue;
if (mr)
fprintf(stdout, "+F:%d:%s", k, names[k]);
else
fprintf(stdout, "%-13s", names[k]);
for (j = 0; j < SIZE_NUM; j++) {
if (results[k][j] > 10000 && !mr)
fprintf(stdout, " %11.2fk", results[k][j] / 1e3);
else
fprintf(stdout, mr ? ":%.2f" : " %11.2f ", results[k][j]);
}
fprintf(stdout, "\n");
}
# ifndef OPENSSL_NO_RSA
j = 1;
for (k = 0; k < RSA_NUM; k++) {
if (!rsa_doit[k])
continue;
if (j && !mr) {
printf("%18ssign verify sign/s verify/s\n", " ");
j = 0;
}
if (mr)
fprintf(stdout, "+F2:%u:%u:%f:%f\n",
k, rsa_bits[k], rsa_results[k][0], rsa_results[k][1]);
else
fprintf(stdout, "rsa %4u bits %8.6fs %8.6fs %8.1f %8.1f\n",
rsa_bits[k], rsa_results[k][0], rsa_results[k][1],
1.0 / rsa_results[k][0], 1.0 / rsa_results[k][1]);
}
# endif
# ifndef OPENSSL_NO_DSA
j = 1;
for (k = 0; k < DSA_NUM; k++) {
if (!dsa_doit[k])
continue;
if (j && !mr) {
printf("%18ssign verify sign/s verify/s\n", " ");
j = 0;
}
if (mr)
fprintf(stdout, "+F3:%u:%u:%f:%f\n",
k, dsa_bits[k], dsa_results[k][0], dsa_results[k][1]);
else
fprintf(stdout, "dsa %4u bits %8.6fs %8.6fs %8.1f %8.1f\n",
dsa_bits[k], dsa_results[k][0], dsa_results[k][1],
1.0 / dsa_results[k][0], 1.0 / dsa_results[k][1]);
}
# endif
# ifndef OPENSSL_NO_ECDSA
j = 1;
for (k = 0; k < EC_NUM; k++) {
if (!ecdsa_doit[k])
continue;
if (j && !mr) {
printf("%30ssign verify sign/s verify/s\n", " ");
j = 0;
}
if (mr)
fprintf(stdout, "+F4:%u:%u:%f:%f\n",
k, test_curves_bits[k],
ecdsa_results[k][0], ecdsa_results[k][1]);
else
fprintf(stdout,
"%4u bit ecdsa (%s) %8.4fs %8.4fs %8.1f %8.1f\n",
test_curves_bits[k],
test_curves_names[k],
ecdsa_results[k][0], ecdsa_results[k][1],
1.0 / ecdsa_results[k][0], 1.0 / ecdsa_results[k][1]);
}
# endif
# ifndef OPENSSL_NO_ECDH
j = 1;
for (k = 0; k < EC_NUM; k++) {
if (!ecdh_doit[k])
continue;
if (j && !mr) {
printf("%30sop op/s\n", " ");
j = 0;
}
if (mr)
fprintf(stdout, "+F5:%u:%u:%f:%f\n",
k, test_curves_bits[k],
ecdh_results[k][0], 1.0 / ecdh_results[k][0]);
else
fprintf(stdout, "%4u bit ecdh (%s) %8.4fs %8.1f\n",
test_curves_bits[k],
test_curves_names[k],
ecdh_results[k][0], 1.0 / ecdh_results[k][0]);
}
# endif
mret = 0;
end:
ERR_print_errors(bio_err);
if (buf != NULL)
OPENSSL_free(buf);
if (buf2 != NULL)
OPENSSL_free(buf2);
# ifndef OPENSSL_NO_RSA
for (i = 0; i < RSA_NUM; i++)
if (rsa_key[i] != NULL)
RSA_free(rsa_key[i]);
# endif
# ifndef OPENSSL_NO_DSA
for (i = 0; i < DSA_NUM; i++)
if (dsa_key[i] != NULL)
DSA_free(dsa_key[i]);
# endif
# ifndef OPENSSL_NO_ECDSA
for (i = 0; i < EC_NUM; i++)
if (ecdsa[i] != NULL)
EC_KEY_free(ecdsa[i]);
# endif
# ifndef OPENSSL_NO_ECDH
for (i = 0; i < EC_NUM; i++) {
if (ecdh_a[i] != NULL)
EC_KEY_free(ecdh_a[i]);
if (ecdh_b[i] != NULL)
EC_KEY_free(ecdh_b[i]);
}
# endif
release_engine(e);
apps_shutdown();
OPENSSL_EXIT(mret);
}
static void print_message(const char *s, long num, int length)
{
# ifdef SIGALRM
BIO_printf(bio_err,
mr ? "+DT:%s:%d:%d\n"
: "Doing %s for %ds on %d size blocks: ", s, SECONDS, length);
(void)BIO_flush(bio_err);
alarm(SECONDS);
# else
BIO_printf(bio_err,
mr ? "+DN:%s:%ld:%d\n"
: "Doing %s %ld times on %d size blocks: ", s, num, length);
(void)BIO_flush(bio_err);
# endif
# ifdef LINT
num = num;
# endif
}
static void pkey_print_message(const char *str, const char *str2, long num,
int bits, int tm)
{
# ifdef SIGALRM
BIO_printf(bio_err,
mr ? "+DTP:%d:%s:%s:%d\n"
: "Doing %d bit %s %s's for %ds: ", bits, str, str2, tm);
(void)BIO_flush(bio_err);
alarm(tm);
# else
BIO_printf(bio_err,
mr ? "+DNP:%ld:%d:%s:%s\n"
: "Doing %ld %d bit %s %s's: ", num, bits, str, str2);
(void)BIO_flush(bio_err);
# endif
# ifdef LINT
num = num;
# endif
}
static void print_result(int alg, int run_no, int count, double time_used)
{
BIO_printf(bio_err,
mr ? "+R:%d:%s:%f\n"
: "%d %s's in %.2fs\n", count, names[alg], time_used);
results[alg][run_no] = ((double)count) / time_used * lengths[run_no];
}
# ifndef NO_FORK
static char *sstrsep(char **string, const char *delim)
{
char isdelim[256];
char *token = *string;
if (**string == 0)
return NULL;
memset(isdelim, 0, sizeof isdelim);
isdelim[0] = 1;
while (*delim) {
isdelim[(unsigned char)(*delim)] = 1;
delim++;
}
while (!isdelim[(unsigned char)(**string)]) {
(*string)++;
}
if (**string) {
**string = 0;
(*string)++;
}
return token;
}
static int do_multi(int multi)
{
int n;
int fd[2];
int *fds;
static char sep[] = ":";
fds = malloc(multi * sizeof *fds);
if (fds == NULL) {
fprintf(stderr, "Out of memory in speed (do_multi)\n");
exit(1);
}
for (n = 0; n < multi; ++n) {
if (pipe(fd) == -1) {
fprintf(stderr, "pipe failure\n");
exit(1);
}
fflush(stdout);
fflush(stderr);
if (fork()) {
close(fd[1]);
fds[n] = fd[0];
} else {
close(fd[0]);
close(1);
if (dup(fd[1]) == -1) {
fprintf(stderr, "dup failed\n");
exit(1);
}
close(fd[1]);
mr = 1;
usertime = 0;
free(fds);
return 0;
}
printf("Forked child %d\n", n);
}
/* for now, assume the pipe is long enough to take all the output */
for (n = 0; n < multi; ++n) {
FILE *f;
char buf[1024];
char *p;
f = fdopen(fds[n], "r");
while (fgets(buf, sizeof buf, f)) {
p = strchr(buf, '\n');
if (p)
*p = '\0';
if (buf[0] != '+') {
fprintf(stderr, "Don't understand line '%s' from child %d\n",
buf, n);
continue;
}
printf("Got: %s from %d\n", buf, n);
if (!strncmp(buf, "+F:", 3)) {
int alg;
int j;
p = buf + 3;
alg = atoi(sstrsep(&p, sep));
sstrsep(&p, sep);
for (j = 0; j < SIZE_NUM; ++j)
results[alg][j] += atof(sstrsep(&p, sep));
} else if (!strncmp(buf, "+F2:", 4)) {
int k;
double d;
p = buf + 4;
k = atoi(sstrsep(&p, sep));
sstrsep(&p, sep);
d = atof(sstrsep(&p, sep));
if (n)
rsa_results[k][0] = 1 / (1 / rsa_results[k][0] + 1 / d);
else
rsa_results[k][0] = d;
d = atof(sstrsep(&p, sep));
if (n)
rsa_results[k][1] = 1 / (1 / rsa_results[k][1] + 1 / d);
else
rsa_results[k][1] = d;
}
# ifndef OPENSSL_NO_DSA
else if (!strncmp(buf, "+F3:", 4)) {
int k;
double d;
p = buf + 4;
k = atoi(sstrsep(&p, sep));
sstrsep(&p, sep);
d = atof(sstrsep(&p, sep));
if (n)
dsa_results[k][0] = 1 / (1 / dsa_results[k][0] + 1 / d);
else
dsa_results[k][0] = d;
d = atof(sstrsep(&p, sep));
if (n)
dsa_results[k][1] = 1 / (1 / dsa_results[k][1] + 1 / d);
else
dsa_results[k][1] = d;
}
# endif
# ifndef OPENSSL_NO_ECDSA
else if (!strncmp(buf, "+F4:", 4)) {
int k;
double d;
p = buf + 4;
k = atoi(sstrsep(&p, sep));
sstrsep(&p, sep);
d = atof(sstrsep(&p, sep));
if (n)
ecdsa_results[k][0] =
1 / (1 / ecdsa_results[k][0] + 1 / d);
else
ecdsa_results[k][0] = d;
d = atof(sstrsep(&p, sep));
if (n)
ecdsa_results[k][1] =
1 / (1 / ecdsa_results[k][1] + 1 / d);
else
ecdsa_results[k][1] = d;
}
# endif
# ifndef OPENSSL_NO_ECDH
else if (!strncmp(buf, "+F5:", 4)) {
int k;
double d;
p = buf + 4;
k = atoi(sstrsep(&p, sep));
sstrsep(&p, sep);
d = atof(sstrsep(&p, sep));
if (n)
ecdh_results[k][0] = 1 / (1 / ecdh_results[k][0] + 1 / d);
else
ecdh_results[k][0] = d;
}
# endif
else if (!strncmp(buf, "+H:", 3)) {
} else
fprintf(stderr, "Unknown type '%s' from child %d\n", buf, n);
}
fclose(f);
}
free(fds);
return 1;
}
# endif
static void multiblock_speed(const EVP_CIPHER *evp_cipher)
{
static int mblengths[] =
{ 8 * 1024, 2 * 8 * 1024, 4 * 8 * 1024, 8 * 8 * 1024, 8 * 16 * 1024 };
int j, count, num = sizeof(lengths) / sizeof(lengths[0]);
const char *alg_name;
unsigned char *inp, *out, no_key[32], no_iv[16];
EVP_CIPHER_CTX ctx;
double d = 0.0;
inp = OPENSSL_malloc(mblengths[num - 1]);
out = OPENSSL_malloc(mblengths[num - 1] + 1024);
if (!inp || !out) {
BIO_printf(bio_err,"Out of memory\n");
goto end;
}
EVP_CIPHER_CTX_init(&ctx);
EVP_EncryptInit_ex(&ctx, evp_cipher, NULL, no_key, no_iv);
EVP_CIPHER_CTX_ctrl(&ctx, EVP_CTRL_AEAD_SET_MAC_KEY, sizeof(no_key),
no_key);
alg_name = OBJ_nid2ln(evp_cipher->nid);
for (j = 0; j < num; j++) {
print_message(alg_name, 0, mblengths[j]);
Time_F(START);
for (count = 0, run = 1; run && count < 0x7fffffff; count++) {
unsigned char aad[EVP_AEAD_TLS1_AAD_LEN];
EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM mb_param;
size_t len = mblengths[j];
int packlen;
memset(aad, 0, 8); /* avoid uninitialized values */
aad[8] = 23; /* SSL3_RT_APPLICATION_DATA */
aad[9] = 3; /* version */
aad[10] = 2;
aad[11] = 0; /* length */
aad[12] = 0;
mb_param.out = NULL;
mb_param.inp = aad;
mb_param.len = len;
mb_param.interleave = 8;
packlen = EVP_CIPHER_CTX_ctrl(&ctx,
EVP_CTRL_TLS1_1_MULTIBLOCK_AAD,
sizeof(mb_param), &mb_param);
if (packlen > 0) {
mb_param.out = out;
mb_param.inp = inp;
mb_param.len = len;
EVP_CIPHER_CTX_ctrl(&ctx,
EVP_CTRL_TLS1_1_MULTIBLOCK_ENCRYPT,
sizeof(mb_param), &mb_param);
} else {
int pad;
RAND_bytes(out, 16);
len += 16;
aad[11] = (unsigned char)(len >> 8);
aad[12] = (unsigned char)(len);
pad = EVP_CIPHER_CTX_ctrl(&ctx,
EVP_CTRL_AEAD_TLS1_AAD,
EVP_AEAD_TLS1_AAD_LEN, aad);
EVP_Cipher(&ctx, out, inp, len + pad);
}
}
d = Time_F(STOP);
BIO_printf(bio_err,
mr ? "+R:%d:%s:%f\n"
: "%d %s's in %.2fs\n", count, "evp", d);
results[D_EVP][j] = ((double)count) / d * mblengths[j];
}
if (mr) {
fprintf(stdout, "+H");
for (j = 0; j < num; j++)
fprintf(stdout, ":%d", mblengths[j]);
fprintf(stdout, "\n");
fprintf(stdout, "+F:%d:%s", D_EVP, alg_name);
for (j = 0; j < num; j++)
fprintf(stdout, ":%.2f", results[D_EVP][j]);
fprintf(stdout, "\n");
} else {
fprintf(stdout,
"The 'numbers' are in 1000s of bytes per second processed.\n");
fprintf(stdout, "type ");
for (j = 0; j < num; j++)
fprintf(stdout, "%7d bytes", mblengths[j]);
fprintf(stdout, "\n");
fprintf(stdout, "%-24s", alg_name);
for (j = 0; j < num; j++) {
if (results[D_EVP][j] > 10000)
fprintf(stdout, " %11.2fk", results[D_EVP][j] / 1e3);
else
fprintf(stdout, " %11.2f ", results[D_EVP][j]);
}
fprintf(stdout, "\n");
}
end:
if (inp)
OPENSSL_free(inp);
if (out)
OPENSSL_free(out);
}
#endif