freebsd-nq/sys/dev/fxp/if_fxp.c

1037 lines
25 KiB
C

/*
* Copyright (c) 1995, David Greenman
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice unmodified, this list of conditions, and the following
* disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by David Greenman.
* 4. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $Id$
*/
/*
* Intel EtherExpress Pro/100 PCI Fast Ethernet driver
*/
#include "bpfilter.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/ioctl.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/devconf.h>
#include <sys/syslog.h>
#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_types.h>
#ifdef INET
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#include <netinet/if_ether.h>
#endif
#ifdef IPX
#include <netipx/ipx.h>
#include <netipx/ipx_if.h>
#endif
#ifdef NS
#include <netns/ns.h>
#include <netns/ns_if.h>
#endif
#if NBPFILTER > 0
#include <net/bpf.h>
#include <net/bpfdesc.h>
#endif
#include <vm/vm.h>
#include <vm/vm_param.h>
#include <machine/clock.h>
#include <machine/pmap.h>
#include <pci/pcivar.h>
#include <pci/if_fxpreg.h>
struct fxp_softc {
struct arpcom arpcom;
caddr_t bpf;
struct fxp_csr *csr;
struct fxp_cb_tx *cbl_base; /* base of TxCB list */
struct fxp_cb_tx *cbl_first; /* first active TxCB in list */
struct fxp_cb_tx *cbl_last; /* last active TxCB in list */
struct mbuf *rfa_headm; /* first mbuf in receive frame area */
struct mbuf *rfa_tailm; /* last mbuf in receive frame area */
struct fxp_stats *fxp_stats; /* Pointer to interface stats */
int tx_queued; /* # of active TxCB's */
int promisc_mode; /* promiscuous mode enabled */
};
#include "fxp.h"
static struct fxp_softc *fxp_sc[NFXP]; /* XXX Yuck */
static u_long fxp_count;
/*
* Template for default configuration parameters.
* See struct fxp_cb_config for the bit definitions.
*/
static u_char fxp_cb_config_template[] = {
0x0, 0x0, /* cb_status */
0x80, 0x2, /* cb_command */
0xff, 0xff, 0xff, 0xff, /* link_addr */
0x16, /* 0 */
0x8, /* 1 */
0x0, /* 2 */
0x0, /* 3 */
0x0, /* 4 */
0x80, /* 5 */
0xb2, /* 6 */
0x3, /* 7 */
0x1, /* 8 */
0x0, /* 9 */
0x26, /* 10 */
0x0, /* 11 */
0x60, /* 12 */
0x0, /* 13 */
0xf2, /* 14 */
0x48, /* 15 */
0x0, /* 16 */
0x40, /* 17 */
0xf3, /* 18 */
0x0, /* 19 */
0x3f, /* 20 */
0x5, /* 21 */
0x0, 0x0
};
static char *fxp_probe __P((pcici_t, pcidi_t));
static void fxp_attach __P((pcici_t, int));
static int fxp_shutdown __P((struct kern_devconf *, int));
static int fxp_intr __P((void *));
static void fxp_start __P((struct ifnet *));
static int fxp_ioctl __P((struct ifnet *, int, caddr_t));
static void fxp_init __P((int));
static void fxp_stop __P((int));
static void fxp_watchdog __P((int));
static void fxp_get_macaddr __P((struct fxp_softc *));
static int fxp_add_rfabuf __P((struct fxp_softc *, struct mbuf *));
timeout_t fxp_stats_update;
static struct pci_device fxp_device = {
"fxp",
fxp_probe,
fxp_attach,
&fxp_count,
fxp_shutdown
};
DATA_SET(pcidevice_set, fxp_device);
/*
* Number of transmit control blocks. This determines the number
* of transmit buffers that can be chained in the CB list.
* This must be a power of two.
*/
#define FXP_NTXCB 64
/*
* TxCB list index mask. This is used to do list wrap-around.
*/
#define FXP_TXCB_MASK (FXP_NTXCB - 1)
/*
* Number of DMA segments in a TxCB. Note that this is carefully
* chosen to make the total struct size an even power of two.
*/
#define FXP_NTXSEG 13
/*
* Number of receive frame area buffers. These are large so chose
* wisely.
*/
#define FXP_NRFABUFS 32
static inline void
fxp_scb_wait(csr)
struct fxp_csr *csr;
{
int i = 10000;
while ((csr->scb_command & FXP_SCB_COMMAND_MASK) && --i);
}
static char *
fxp_probe(config_id, device_id)
pcici_t config_id;
pcidi_t device_id;
{
if (((device_id & 0xffff) == FXP_VENDORID_INTEL) &&
((device_id >> 16) & 0xffff) == FXP_DEVICEID_i82557)
return ("Intel EtherExpress Pro/100 Fast Ethernet");
return NULL;
}
/*
* Allocate data structures and attach the device.
*/
static void
fxp_attach(config_id, unit)
pcici_t config_id;
int unit;
{
struct fxp_softc *sc;
struct ifnet *ifp;
vm_offset_t pbase;
int s, i;
sc = malloc(sizeof(struct fxp_softc), M_DEVBUF, M_NOWAIT);
if (sc == NULL)
return;
bzero(sc, sizeof(struct fxp_softc));
s = splimp();
if (!pci_map_mem(config_id, FXP_PCI_MMBA,
(vm_offset_t *)&sc->csr, &pbase)) {
printf("fxp%d: couldn't map memory\n", unit);
goto fail;
}
/*
* Now that the CSR is mapped, issue a software reset.
*/
sc->csr->port = 0;
DELAY(10);
if (!pci_map_int(config_id, fxp_intr, sc, &net_imask)) {
printf("fxp%d: couldn't map interrupt\n", unit);
goto fail;
}
sc->cbl_base = malloc(sizeof(struct fxp_cb_tx) * FXP_NTXCB,
M_DEVBUF, M_NOWAIT);
if (sc->cbl_base == NULL)
goto malloc_fail;
sc->fxp_stats = malloc(sizeof(struct fxp_stats), M_DEVBUF, M_NOWAIT);
if (sc->fxp_stats == NULL)
goto malloc_fail;
bzero(sc->fxp_stats, sizeof(struct fxp_stats));
for (i = 0; i < FXP_NRFABUFS; i++) {
if (fxp_add_rfabuf(sc, NULL) != 0) {
goto malloc_fail;
}
}
fxp_sc[unit] = sc;
ifp = &sc->arpcom.ac_if;
ifp->if_unit = unit;
ifp->if_name = "fxp";
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = fxp_ioctl;
ifp->if_output = ether_output;
ifp->if_start = fxp_start;
ifp->if_watchdog = fxp_watchdog;
fxp_get_macaddr(sc);
printf("fxp%d: Ethernet address %s\n", unit,
ether_sprintf(sc->arpcom.ac_enaddr));
if_attach(ifp);
#if NBPFILTER > 0
bpfattach(&sc->bpf, ifp, DLT_EN10MB, sizeof(struct ether_header));
#endif
splx(s);
return;
malloc_fail:
printf("fxp%d: Failed to malloc memory\n", unit);
(void) pci_unmap_int(config_id);
if (sc && sc->cbl_base)
free(sc->cbl_base, M_DEVBUF);
if (sc && sc->fxp_stats)
free(sc->fxp_stats, M_DEVBUF);
/* frees entire chain */
if (sc && sc->rfa_headm)
m_freem(sc->rfa_headm);
fail:
if (sc)
free(sc, M_DEVBUF);
splx(s);
}
/*
* Read station (MAC) address from serial EEPROM. Basically, you
* manually shift in the read opcode (one bit at a time) and then
* shift in the address, and then you shift out the data (all of
* this one bit at a time). The word size is 16 bits, so you have
* to provide the address for every 16 bits of data. The MAC address
* is in the first 3 words (6 bytes total).
*/
static void
fxp_get_macaddr(sc)
struct fxp_softc *sc;
{
struct fxp_csr *csr;
u_short reg, *data;
int i, x;
csr = sc->csr;
data = (u_short *)sc->arpcom.ac_enaddr;
for (i = 0; i < 3; i++) {
csr->eeprom_control = FXP_EEPROM_EECS;
/*
* Shift in read opcode.
*/
for (x = 3; x > 0; x--) {
if (FXP_EEPROM_OPC_READ & (1 << (x - 1))) {
reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
} else {
reg = FXP_EEPROM_EECS;
}
csr->eeprom_control = reg;
csr->eeprom_control = reg | FXP_EEPROM_EESK;
DELAY(1);
csr->eeprom_control = reg;
DELAY(1);
}
/*
* Shift in address.
*/
for (x = 6; x > 0; x--) {
if (i & (1 << (x - 1))) {
reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
} else {
reg = FXP_EEPROM_EECS;
}
csr->eeprom_control = reg;
csr->eeprom_control = reg | FXP_EEPROM_EESK;
DELAY(1);
csr->eeprom_control = reg;
DELAY(1);
}
reg = FXP_EEPROM_EECS;
data[i] = 0;
/*
* Shift out data.
*/
for (x = 16; x > 0; x--) {
csr->eeprom_control = reg | FXP_EEPROM_EESK;
DELAY(1);
if (csr->eeprom_control & FXP_EEPROM_EEDO)
data[i] |= (1 << (x - 1));
csr->eeprom_control = reg;
DELAY(1);
}
csr->eeprom_control = 0;
DELAY(1);
}
}
/*
* Device shutdown routine. Usually called at system shutdown. The
* main purpose of this routine is to shut off receiver DMA so that
* kernel memory doesn't get clobbered during warmboot.
*/
static int
fxp_shutdown(kdc, force)
struct kern_devconf *kdc;
int force;
{
struct fxp_softc *sc = fxp_sc[kdc->kdc_unit];
/*
* Cancel stats updater.
*/
untimeout(fxp_stats_update, sc);
/*
* Issue software reset.
*/
sc->csr->port = 0;
(void) dev_detach(kdc);
return 0;
}
/*
* Start packet transmission on the interface.
*/
static void
fxp_start(ifp)
struct ifnet *ifp;
{
struct fxp_softc *sc = fxp_sc[ifp->if_unit];
struct fxp_csr *csr = sc->csr;
struct fxp_cb_tx *txp;
struct mbuf *m, *mb_head;
int segment;
txloop:
/*
* See if a TxCB is available. If not, indicate this to the
* outside world and exit.
*/
if (sc->tx_queued >= FXP_NTXCB) {
ifp->if_flags |= IFF_OACTIVE;
return;
}
IF_DEQUEUE(&sc->arpcom.ac_if.if_snd, mb_head);
if (mb_head == NULL) {
/*
* No more packets to send.
*/
return;
}
txp = sc->cbl_last->next;
/*
* Go through each of the mbufs in the chain and initialize
* the transmit buffers descriptors with the physical address
* and size of the mbuf.
*/
for (m = mb_head, segment = 0; m != NULL; m = m->m_next) {
if (m->m_len != 0) {
if (segment == FXP_NTXSEG)
break;
txp->tbd[segment].tb_addr =
vtophys(mtod(m, vm_offset_t));
txp->tbd[segment].tb_size = m->m_len;
segment++;
}
}
if (m != NULL && segment == FXP_NTXSEG) {
/*
* We ran out of segments. We have to recopy this mbuf
* chain first.
*/
panic("fxp%d: ran out of segments", ifp->if_unit);
} else {
txp->tbd_number = segment;
}
/*
* Finish the initialization of this TxCB.
*/
txp->cb_status = 0;
txp->cb_command =
FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF | FXP_CB_COMMAND_S;
txp->tx_threshold = 16; /* bytes*8 */
txp->mb_head = mb_head;
/*
* Advance the end-of-list forward.
*/
sc->cbl_last->cb_command &= ~FXP_CB_COMMAND_S;
sc->cbl_last = txp;
/*
* If no packets were previously queued then advance the first
* pointer to this TxCB.
*/
if (sc->tx_queued++ == 0) {
sc->cbl_first = txp;
}
/*
* Resume transmission if suspended.
*/
fxp_scb_wait(csr);
csr->scb_command = FXP_SCB_COMMAND_CU_RESUME;
#if NBPFILTER > 0
/*
* Pass packet to bpf if there is a listener.
*/
if (sc->bpf != NULL)
bpf_mtap(sc->bpf, mb_head);
#endif
/*
* Set a 5 second timer just in case we don't hear from the
* card again.
*/
ifp->if_timer = 5;
goto txloop;
}
/*
* Process interface interrupts. Returns 1 if the interrupt
* was handled, 0 if it wasn't.
*/
static int
fxp_intr(arg)
void *arg;
{
struct fxp_softc *sc = arg;
struct fxp_csr *csr = sc->csr;
struct ifnet *ifp = &sc->arpcom.ac_if;
int found = 0;
u_char statack;
while ((statack = csr->scb_statack) != 0) {
found = 1;
/*
* First ACK all the interrupts in this pass.
*/
csr->scb_statack = statack;
/*
* Free any finished transmit mbuf chains.
*/
if (statack & FXP_SCB_STATACK_CNA) {
struct fxp_cb_tx *txp;
for (txp = sc->cbl_first;
(txp->cb_status & FXP_CB_STATUS_C) &&
txp->mb_head != NULL;
txp = txp->next) {
m_freem(txp->mb_head);
txp->mb_head = NULL;
sc->tx_queued--;
}
sc->cbl_first = txp;
/*
* We unconditionally clear IFF_OACTIVE since it
* doesn't hurt to do so even if the tx queue is
* still full - it will just get set again in
* fxp_start(). If we get a CNA interrupt, it is
* (almost?) certain that we've freed up space for
* at least one more packet.
*/
ifp->if_flags &= ~IFF_OACTIVE;
/*
* Clear watchdog timer. It may or may not be set
* again in fxp_start().
*/
ifp->if_timer = 0;
fxp_start(ifp);
}
/*
* Process receiver interrupts. If a no-resource (RNR)
* condition exists, get whatever packets we can and
* re-start the receiver.
*/
if (statack & (FXP_SCB_STATACK_FR | FXP_SCB_STATACK_RNR)) {
struct mbuf *m;
struct fxp_rfa *rfa;
rcvloop:
m = sc->rfa_headm;
rfa = (struct fxp_rfa *)(mtod(m, u_long) & ~(MCLBYTES - 1));
if (rfa->rfa_status & FXP_RFA_STATUS_C) {
sc->rfa_headm = m->m_next;
m->m_next = NULL;
if (fxp_add_rfabuf(sc, m) == 0) {
struct ether_header *eh;
u_short total_len;
total_len = rfa->actual_size & (MCLBYTES - 1);
m->m_pkthdr.rcvif = ifp;
m->m_pkthdr.len = m->m_len = total_len -
sizeof(struct ether_header);
eh = mtod(m, struct ether_header *);
#if NBPFILTER > 0
if (sc->bpf != NULL) {
bpf_tap(sc->bpf, mtod(m, caddr_t), total_len);
/*
* Only pass this packet up if it is for us.
*/
if ((ifp->if_flags & IFF_PROMISC) &&
(rfa->rfa_status & FXP_RFA_STATUS_IAMATCH) &&
(eh->ether_dhost[0] & 1) == 0) {
m_freem(m);
goto rcvloop;
}
}
#endif
m->m_data += sizeof(struct ether_header);
ether_input(ifp, eh, m);
}
goto rcvloop;
}
if (statack & FXP_SCB_STATACK_RNR) {
struct fxp_csr *csr = sc->csr;
ifp->if_ierrors++;
fxp_scb_wait(csr);
csr->scb_general = vtophys(mtod(sc->rfa_headm, u_long) &
~(MCLBYTES - 1));
csr->scb_command = FXP_SCB_COMMAND_RU_START;
}
}
}
return found;
}
void
fxp_stats_update(arg)
void *arg;
{
struct fxp_softc *sc = arg;
struct ifnet *ifp = &sc->arpcom.ac_if;
struct fxp_stats *sp = sc->fxp_stats;
ifp->if_opackets += sp->tx_good;
ifp->if_collisions += sp->tx_total_collisions;
ifp->if_ipackets += sp->rx_good;
/*
* If there is a pending command, don't wait for it to
* be accepted - we'll pick up the stats the next time
* around. Make sure we don't count the stats twice
* however.
*/
if (sc->csr->scb_command & FXP_SCB_COMMAND_MASK) {
sp->tx_good = 0;
sp->tx_total_collisions = 0;
sp->rx_good = 0;
return;
}
/*
* Start another stats dump. By waiting for it to be accepted,
* we avoid having to do splhigh locking when writing scb_command
* in other parts of the driver.
*/
sc->csr->scb_command = FXP_SCB_COMMAND_CU_DUMPRESET;
fxp_scb_wait(sc);
/*
* Schedule another timeout one second from now.
*/
timeout(fxp_stats_update, sc, hz);
}
/*
* Stop the interface. Cancels the statistics updater and resets
* the interface.
*/
static void
fxp_stop(unit)
int unit;
{
struct fxp_softc *sc = fxp_sc[unit];
struct ifnet *ifp = &sc->arpcom.ac_if;
/*
* Cancel stats updater.
*/
untimeout(fxp_stats_update, sc);
sc->csr->port = 0;
DELAY(10);
ifp->if_flags &= ~IFF_RUNNING;
}
/*
* Watchdog/transmission transmit timeout handler. Called when a
* transmission is started on the interface, but no interrupt is
* received before the timeout. This usually indicates that the
* card has wedged for some reason.
*/
static void
fxp_watchdog(unit)
int unit;
{
struct fxp_softc *sc = fxp_sc[unit];
struct ifnet *ifp = &sc->arpcom.ac_if;
log(LOG_ERR, "fxp%d: device timeout\n", unit);
++sc->arpcom.ac_if.if_oerrors;
fxp_stop(unit);
fxp_init(unit);
}
static void
fxp_init(unit)
int unit;
{
struct fxp_softc *sc = fxp_sc[unit];
struct ifnet *ifp = &sc->arpcom.ac_if;
struct fxp_cb_config *cbp;
struct fxp_cb_ias *cb_ias;
struct fxp_cb_tx *txp;
struct fxp_csr *csr = sc->csr;
int i, s, mcast, prm;
/*
* Cancel stats updater.
*/
untimeout(fxp_stats_update, sc);
s = splimp();
/*
* Issue software reset and wait 10us for the card to recover.
*/
csr->port = 0;
DELAY(10);
prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
sc->promisc_mode = prm;
/*
* Sleeze out here and enable reception of all multicasts if
* multicasts are enabled. Ideally, we'd program the multicast
* address filter to only accept specific multicasts.
*/
mcast = (ifp->if_flags & (IFF_MULTICAST|IFF_ALLMULTI)) ? 1 : 0;
/*
* Initialize base of CBL and RFA memory. Loading with zero
* sets it up for regular linear addressing.
*/
csr->scb_general = 0;
csr->scb_command = FXP_SCB_COMMAND_CU_BASE;
fxp_scb_wait(csr);
csr->scb_command = FXP_SCB_COMMAND_RU_BASE;
/*
* Initialize base of dump-stats buffer.
*/
fxp_scb_wait(csr);
csr->scb_general = vtophys(sc->fxp_stats);
csr->scb_command = FXP_SCB_COMMAND_CU_DUMP_ADR;
/*
* We temporarily use memory that contains the TxCB list to
* construct the config CB. The TxCB list memory is rebuilt
* later.
*/
cbp = (struct fxp_cb_config *) sc->cbl_base;
/*
* This bcopy is kind of disgusting, but there are a bunch of must be
* zero and must be one bits in this structure and this is the easiest
* way to initialize them all to proper values.
*/
bcopy(fxp_cb_config_template, cbp, sizeof(struct fxp_cb_config));
cbp->cb_status = 0;
cbp->cb_command = FXP_CB_COMMAND_CONFIG | FXP_CB_COMMAND_EL;
cbp->link_addr = -1; /* (no) next command */
cbp->byte_count = 22; /* (22) bytes to config */
cbp->rx_fifo_limit = 8; /* rx fifo threshold */
cbp->tx_fifo_limit = 0; /* tx fifo threshold */
cbp->adaptive_ifs = 0; /* (no) adaptive interframe spacing */
cbp->rx_dma_bytecount = 0; /* (no) rx DMA max */
cbp->tx_dma_bytecount = 0; /* (no) tx DMA max */
cbp->dma_bce = 1; /* (enable) dma max counters */
cbp->late_scb = 0; /* (don't) defer SCB update */
cbp->tno_int = 0; /* (disable) tx not okay interrupt */
cbp->ci_int = 0; /* (do) interrupt on CU not active */
cbp->save_bf = prm; /* save bad frames */
cbp->disc_short_rx = !prm; /* discard short packets */
cbp->underrun_retry = 1; /* retry mode (1) on DMA underrun */
cbp->mediatype = 1; /* (MII) interface mode */
cbp->nsai = 1; /* (don't) disable source addr insert */
cbp->preamble_length = 2; /* (7 byte) preamble */
cbp->loopback = 0; /* (don't) loopback */
cbp->linear_priority = 0; /* (normal CSMA/CD operation) */
cbp->linear_pri_mode = 0; /* (wait after xmit only) */
cbp->interfrm_spacing = 6; /* (96 bits of) interframe spacing */
cbp->promiscuous = prm; /* promiscuous mode */
cbp->bcast_disable = 0; /* (don't) disable broadcasts */
cbp->crscdt = 0; /* (CRS only) */
cbp->stripping = !prm; /* truncate rx packet to byte count */
cbp->padding = 1; /* (do) pad short tx packets */
cbp->rcv_crc_xfer = 0; /* (don't) xfer CRC to host */
cbp->force_fdx = 0; /* (don't) force full duplex */
cbp->fdx_pin_en = 0; /* (ignore) FDX# pin */
cbp->multi_ia = 0; /* (don't) accept multiple IAs */
cbp->mc_all = mcast; /* accept all multicasts */
/*
* Start the config command/DMA.
*/
fxp_scb_wait(csr);
csr->scb_general = vtophys(cbp);
csr->scb_command = FXP_SCB_COMMAND_CU_START;
/* ...and wait for it to complete. */
while (!(cbp->cb_status & FXP_CB_STATUS_C));
/*
* Now initialize the station address. Temporarily use the TxCB
* memory area like we did above for the config CB.
*/
cb_ias = (struct fxp_cb_ias *) sc->cbl_base;
cb_ias->cb_status = 0;
cb_ias->cb_command = FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL;
cb_ias->link_addr = -1;
bcopy(sc->arpcom.ac_enaddr, (void *)cb_ias->macaddr,
sizeof(sc->arpcom.ac_enaddr));
/*
* Start the IAS (Individual Address Setup) command/DMA.
*/
fxp_scb_wait(csr);
csr->scb_command = FXP_SCB_COMMAND_CU_START;
/* ...and wait for it to complete. */
while (!(cb_ias->cb_status & FXP_CB_STATUS_C));
/*
* Initialize transmit control block (TxCB) list.
*/
txp = sc->cbl_base;
bzero(txp, sizeof(struct fxp_cb_tx) * FXP_NTXCB);
for (i = 0; i < FXP_NTXCB; i++) {
txp[i].cb_status = FXP_CB_STATUS_C | FXP_CB_STATUS_OK;
txp[i].cb_command = FXP_CB_COMMAND_NOP;
txp[i].link_addr = vtophys(&txp[(i + 1) & FXP_TXCB_MASK]);
txp[i].tbd_array_addr = vtophys(&txp[i].tbd[0]);
txp[i].next = &txp[(i + 1) & FXP_TXCB_MASK];
}
/*
* Set the stop flag on the first TxCB and start the control
* unit. It will execute the NOP and then suspend.
*/
txp->cb_command = FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S;
sc->cbl_first = sc->cbl_last = txp;
sc->tx_queued = 0;
fxp_scb_wait(csr);
csr->scb_command = FXP_SCB_COMMAND_CU_START;
/*
* Initialize receiver buffer area - RFA.
*/
fxp_scb_wait(csr);
csr->scb_general = vtophys(mtod(sc->rfa_headm, u_long) & ~(MCLBYTES - 1));
csr->scb_command = FXP_SCB_COMMAND_RU_START;
ifp->if_flags |= IFF_RUNNING;
ifp->if_flags &= ~IFF_OACTIVE;
splx(s);
/*
* Start stats updater.
*/
timeout(fxp_stats_update, sc, hz);
}
/*
* Add a buffer to the end of the RFA buffer list.
* Return 0 if successful, 1 for failure. A failure results in
* adding the 'oldm' (if non-NULL) on to the end of the list -
* tossing out it's old contents and recycling it.
* The RFA struct is stuck at the beginning of mbuf cluster and the
* data pointer is fixed up to point just past it.
*/
static int
fxp_add_rfabuf(sc, oldm)
struct fxp_softc *sc;
struct mbuf *oldm;
{
struct mbuf *m;
struct fxp_rfa *rfa, *p_rfa;
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m != NULL) {
MCLGET(m, M_DONTWAIT);
if ((m->m_flags & M_EXT) == 0) {
m_freem(m);
m = oldm;
}
} else {
m = oldm;
}
if (m == NULL)
return 1;
rfa = mtod(m, struct fxp_rfa *);
rfa->rfa_status = 0;
rfa->rfa_control = FXP_RFA_CONTROL_EL;
rfa->link_addr = -1;
rfa->rbd_addr = -1;
rfa->actual_size = 0;
rfa->size = MCLBYTES - sizeof(struct fxp_rfa);
m->m_data += sizeof(struct fxp_rfa);
if (sc->rfa_headm != NULL) {
p_rfa = (struct fxp_rfa *) (mtod(sc->rfa_tailm, u_long) & ~(MCLBYTES - 1));
sc->rfa_tailm->m_next = m;
p_rfa->link_addr = vtophys(rfa);
p_rfa->rfa_control &= ~FXP_RFA_CONTROL_EL;
} else {
sc->rfa_headm = m;
}
sc->rfa_tailm = m;
return m == oldm ? 1 : 0;
}
static int
fxp_ioctl(ifp, command, data)
struct ifnet *ifp;
int command;
caddr_t data;
{
struct ifaddr *ifa = (struct ifaddr *) data;
struct fxp_softc *sc = fxp_sc[ifp->if_unit];
struct ifreq *ifr = (struct ifreq *) data;
int s, error = 0;
s = splimp();
switch (command) {
case SIOCSIFADDR:
ifp->if_flags |= IFF_UP;
switch (ifa->ifa_addr->sa_family) {
#ifdef INET
case AF_INET:
fxp_init(ifp->if_unit); /* before arpwhohas */
arp_ifinit((struct arpcom *)ifp, ifa);
break;
#endif
#ifdef IPX
/*
* XXX - This code is probably wrong
*/
case AF_IPX:
{
register struct ipx_addr *ina = &(IA_SIPX(ifa)->sipx_addr);
if (ipx_nullhost(*ina))
ina->x_host =
*(union ipx_host *) (sc->arpcom.ac_enaddr);
else {
bcopy((caddr_t) ina->x_host.c_host,
(caddr_t) sc->arpcom.ac_enaddr,
sizeof(sc->arpcom.ac_enaddr));
}
/*
* Set new address
*/
fxp_init(ifp->if_unit);
break;
}
#endif
#ifdef NS
/*
* XXX - This code is probably wrong
*/
case AF_NS:
{
register struct ns_addr *ina = &(IA_SNS(ifa)->sns_addr);
if (ns_nullhost(*ina))
ina->x_host =
*(union ns_host *) (sc->arpcom.ac_enaddr);
else {
bcopy((caddr_t) ina->x_host.c_host,
(caddr_t) sc->arpcom.ac_enaddr,
sizeof(sc->arpcom.ac_enaddr));
}
/*
* Set new address
*/
fxp_init(ifp->if_unit);
break;
}
#endif
default:
fxp_init(ifp->if_unit);
break;
}
break;
case SIOCGIFADDR:
{
struct sockaddr *sa;
sa = (struct sockaddr *) & ifr->ifr_data;
bcopy((caddr_t) sc->arpcom.ac_enaddr,
(caddr_t) sa->sa_data, sizeof(sc->arpcom.ac_enaddr));
}
break;
case SIOCSIFFLAGS:
/*
* If interface is marked up and not running, then start it.
* If it is marked down and running, stop it.
* XXX If it's up then re-initialize it. This is so flags
* such as IFF_PROMISC are handled.
*/
if (ifp->if_flags & IFF_UP) {
fxp_init(ifp->if_unit);
} else {
if (ifp->if_flags & IFF_RUNNING)
fxp_stop(ifp->if_unit);
}
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
/*
* Update out multicast list.
*/
error = (command == SIOCADDMULTI) ?
ether_addmulti(ifr, &sc->arpcom) :
ether_delmulti(ifr, &sc->arpcom);
if (error == ENETRESET) {
/*
* Multicast list has changed; set the hardware filter
* accordingly.
*/
fxp_init(ifp->if_unit);
error = 0;
}
break;
case SIOCSIFMTU:
/*
* Set the interface MTU.
*/
if (ifr->ifr_mtu > ETHERMTU) {
error = EINVAL;
} else {
ifp->if_mtu = ifr->ifr_mtu;
}
break;
default:
error = EINVAL;
}
(void) splx(s);
return (error);
}