freebsd-nq/sys/boot/i386/boot2/boot1.S
John Baldwin 66648a06a0 Revert MEM_USR back to 0xa000 for BTX clients. Instead, adjust boot2
to run at 0xc000 by changing its virtual start address from 0x1000 to
0x2000.

Tested by:	phk
2002-10-08 18:19:02 +00:00

366 lines
11 KiB
ArmAsm

//
// Copyright (c) 1998 Robert Nordier
// All rights reserved.
//
// Redistribution and use in source and binary forms are freely
// permitted provided that the above copyright notice and this
// paragraph and the following disclaimer are duplicated in all
// such forms.
//
// This software is provided "AS IS" and without any express or
// implied warranties, including, without limitation, the implied
// warranties of merchantability and fitness for a particular
// purpose.
//
// $FreeBSD$
// Memory Locations
.set MEM_REL,0x700 // Relocation address
.set MEM_ARG,0x900 // Arguments
.set MEM_ORG,0x7c00 // Origin
.set MEM_BUF,0x8c00 // Load area
.set MEM_BTX,0x9000 // BTX start
.set MEM_JMP,0x9010 // BTX entry point
.set MEM_USR,0xa000 // Client start
.set BDA_BOOT,0x472 // Boot howto flag
// Partition Constants
.set PRT_OFF,0x1be // Partition offset
.set PRT_NUM,0x4 // Partitions
.set PRT_BSD,0xa5 // Partition type
// Flag Bits
.set FL_PACKET,0x80 // Packet mode
// Misc. Constants
.set SIZ_PAG,0x1000 // Page size
.set SIZ_SEC,0x200 // Sector size
#ifdef UFS1_ONLY
.set NSECT,0x10
#else
.set NSECT,0x14
#endif
.globl start
.globl xread
.code16
start: jmp main // Start recognizably
// This is the start of a standard BIOS Parameter Block (BPB). Most bootable
// FAT disks have this at the start of their MBR. While normal BIOS's will
// work fine without this section, IBM's El Torito emulation "fixes" up the
// BPB by writing into the memory copy of the MBR. Rather than have data
// written into our xread routine, we'll define a BPB to work around it.
// The data marked with (T) indicates a field required for a ThinkPad to
// recognize the disk and (W) indicates fields written from IBM BIOS code.
// The use of the BPB is based on what OpenBSD and NetBSD implemented in
// their boot code but the required fields were determined by trial and error.
//
// Note: If additional space is needed in boot1, one solution would be to
// move the "prompt" message data (below) to replace the OEM ID.
.org 0x03, 0x00
oemid: .space 0x08, 0x00 // OEM ID
.org 0x0b, 0x00
bpb: .word 512 // sector size (T)
.byte 0 // sectors/clustor
.word 0 // reserved sectors
.byte 0 // number of FATs
.word 0 // root entries
.word 0 // small sectors
.byte 0 // media type (W)
.word 0 // sectors/fat
.word 18 // sectors per track (T)
.word 2 // number of heads (T)
.long 0 // hidden sectors (W)
.long 0 // large sectors
.org 0x24, 0x00
ebpb: .byte 0 // BIOS physical drive number (W)
.org 0x25,0x90
//
// Trampoline used by boot2 to call read to read data from the disk via
// the BIOS. Call with:
//
// %cx:%ax - long - LBA to read in
// %es:(%bx) - caddr_t - buffer to read data into
// %dl - byte - drive to read from
// %dh - byte - num sectors to read
//
xread: push %ss // Address
pop %ds // data
//
// Setup an EDD disk packet and pass it to read
//
xread.1: // Starting
pushl $0x0 // absolute
push %cx // block
push %ax // number
push %es // Address of
push %bx // transfer buffer
xor %ax,%ax // Number of
movb %dh,%al // blocks to
push %ax // transfer
push $0x10 // Size of packet
mov %sp,%bp // Packet pointer
callw read // Read from disk
lea 0x10(%bp),%sp // Clear stack
lret // To far caller
//
// Load the rest of boot2 and BTX up, copy the parts to the right locations,
// and start it all up.
//
//
// Setup the segment registers to flat addressing (segment 0) and setup the
// stack to end just below the start of our code.
//
main: cld // String ops inc
xor %cx,%cx // Zero
mov %cx,%es // Address
mov %cx,%ds // data
mov %cx,%ss // Set up
mov $start,%sp // stack
//
// Relocate ourself to MEM_REL. Since %cx == 0, the inc %ch sets
// %cx == 0x100.
//
mov %sp,%si // Source
mov $MEM_REL,%di // Destination
incb %ch // Word count
rep // Copy
movsw // code
//
// If we are on a hard drive, then load the MBR and look for the first
// FreeBSD slice. We use the fake partition entry below that points to
// the MBR when we call nread. The first pass looks for the first active
// FreeBSD slice. The second pass looks for the first non-active FreeBSD
// slice if the first one fails.
//
mov $part4,%si // Partition
cmpb $0x80,%dl // Hard drive?
jb main.4 // No
movb $0x1,%dh // Block count
callw nread // Read MBR
mov $0x1,%cx // Two passes
main.1: mov $MEM_BUF+PRT_OFF,%si // Partition table
movb $0x1,%dh // Partition
main.2: cmpb $PRT_BSD,0x4(%si) // Our partition type?
jne main.3 // No
jcxz main.5 // If second pass
testb $0x80,(%si) // Active?
jnz main.5 // Yes
main.3: add $0x10,%si // Next entry
incb %dh // Partition
cmpb $0x1+PRT_NUM,%dh // In table?
jb main.2 // Yes
dec %cx // Do two
jcxz main.1 // passes
//
// If we get here, we didn't find any FreeBSD slices at all, so print an
// error message and die.
//
mov $msg_part,%si // Message
jmp error // Error
//
// Floppies use partition 0 of drive 0.
//
main.4: xor %dx,%dx // Partition:drive
//
// Ok, we have a slice and drive in %dx now, so use that to locate and load
// boot2. %si references the start of the slice we are looking for, so go
// ahead and load up the first 16 sectors (boot1 + boot2) from that. When
// we read it in, we conveniently use 0x8c00 as our transfer buffer. Thus,
// boot1 ends up at 0x8c00, and boot2 starts at 0x8c00 + 0x200 = 0x8e00.
// The first part of boot2 is the disklabel, which is 0x200 bytes long.
// The second part is BTX, which is thus loaded into 0x9000, which is where
// it also runs from. The boot2.bin binary starts right after the end of
// BTX, so we have to figure out where the start of it is and then move the
// binary to 0xc000. Normally, BTX clients start at MEM_USR, or 0xa000, but
// when we use btxld to create boot2, we use an entry point of 0x2000. That
// entry point is relative to MEM_USR; thus boot2.bin starts at 0xc000.
//
main.5: mov %dx,MEM_ARG // Save args
movb $NSECT,%dh // Sector count
callw nread // Read disk
mov $MEM_BTX,%bx // BTX
mov 0xa(%bx),%si // Get BTX length and set
add %bx,%si // %si to start of boot2.bin
mov $MEM_USR+SIZ_PAG*2,%di // Client page 2
mov $MEM_BTX+(NSECT-2)*SIZ_SEC,%cx // Byte
sub %si,%cx // count
rep // Relocate
movsb // client
sub %di,%cx // Byte count
xorb %al,%al // Zero assumed bss from
rep // the end of boot2.bin
stosb // up to 0x10000
callw seta20 // Enable A20
jmp start+MEM_JMP-MEM_ORG // Start BTX
//
// Enable A20 so we can access memory above 1 meg.
//
seta20: cli // Disable interrupts
seta20.1: inb $0x64,%al // Get status
testb $0x2,%al // Busy?
jnz seta20.1 // Yes
movb $0xd1,%al // Command: Write
outb %al,$0x64 // output port
seta20.2: inb $0x64,%al // Get status
testb $0x2,%al // Busy?
jnz seta20.2 // Yes
movb $0xdf,%al // Enable
outb %al,$0x60 // A20
sti // Enable interrupts
retw // To caller
//
// Trampoline used to call read from within boot1.
//
nread: mov $MEM_BUF,%bx // Transfer buffer
mov 0x8(%si),%ax // Get
mov 0xa(%si),%cx // LBA
push %cs // Read from
callw xread.1 // disk
jnc return // If success, return
mov $msg_read,%si // Otherwise, set the error
// message and fall through to
// the error routine
//
// Print out the error message pointed to by %ds:(%si) followed
// by a prompt, wait for a keypress, and then reboot the machine.
//
error: callw putstr // Display message
mov $prompt,%si // Display
callw putstr // prompt
xorb %ah,%ah // BIOS: Get
int $0x16 // keypress
movw $0x1234, BDA_BOOT // Do a warm boot
ljmp $0xffff,$0x0 // reboot the machine
//
// Display a null-terminated string using the BIOS output.
//
putstr.0: mov $0x7,%bx // Page:attribute
movb $0xe,%ah // BIOS: Display
int $0x10 // character
putstr: lodsb // Get char
testb %al,%al // End of string?
jne putstr.0 // No
//
// Overused return code. ereturn is used to return an error from the
// read function. Since we assume putstr succeeds, we (ab)use the
// same code when we return from putstr.
//
ereturn: movb $0x1,%ah // Invalid
stc // argument
return: retw // To caller
//
// Reads sectors from the disk. If EDD is enabled, then check if it is
// installed and use it if it is. If it is not installed or not enabled, then
// fall back to using CHS. Since we use a LBA, if we are using CHS, we have to
// fetch the drive parameters from the BIOS and divide it out ourselves.
// Call with:
//
// %dl - byte - drive number
// stack - 10 bytes - EDD Packet
//
read: push %dx // Save
movb $0x8,%ah // BIOS: Get drive
int $0x13 // parameters
movb %dh,%ch // Max head number
pop %dx // Restore
jc return // If error
andb $0x3f,%cl // Sectors per track
jz ereturn // If zero
cli // Disable interrupts
mov 0x8(%bp),%eax // Get LBA
push %dx // Save
movzbl %cl,%ebx // Divide by
xor %edx,%edx // sectors
div %ebx // per track
movb %ch,%bl // Max head number
movb %dl,%ch // Sector number
inc %bx // Divide by
xorb %dl,%dl // number
div %ebx // of heads
movb %dl,%bh // Head number
pop %dx // Restore
cmpl $0x3ff,%eax // Cylinder number supportable?
sti // Enable interrupts
ja read.7 // No, try EDD
xchgb %al,%ah // Set up cylinder
rorb $0x2,%al // number
orb %ch,%al // Merge
inc %ax // sector
xchg %ax,%cx // number
movb %bh,%dh // Head number
subb %ah,%al // Sectors this track
mov 0x2(%bp),%ah // Blocks to read
cmpb %ah,%al // To read
jb read.2 // this
movb %ah,%al // track
read.2: mov $0x5,%di // Try count
read.3: les 0x4(%bp),%bx // Transfer buffer
push %ax // Save
movb $0x2,%ah // BIOS: Read
int $0x13 // from disk
pop %bx // Restore
jnc read.4 // If success
dec %di // Retry?
jz read.6 // No
xorb %ah,%ah // BIOS: Reset
int $0x13 // disk system
xchg %bx,%ax // Block count
jmp read.3 // Continue
read.4: movzbw %bl,%ax // Sectors read
add %ax,0x8(%bp) // Adjust
jnc read.5 // LBA,
incw 0xa(%bp) // transfer
read.5: shlb %bl // buffer
add %bl,0x5(%bp) // pointer,
sub %al,0x2(%bp) // block count
ja read // If not done
read.6: retw // To caller
read.7: testb $FL_PACKET,%cs:MEM_REL+flags-start // LBA support enabled?
jz ereturn // No, so return an error
mov $0x55aa,%bx // Magic
push %dx // Save
movb $0x41,%ah // BIOS: Check
int $0x13 // extensions present
pop %dx // Restore
jc return // If error, return an error
cmp $0xaa55,%bx // Magic?
jne ereturn // No, so return an error
testb $0x1,%cl // Packet interface?
jz ereturn // No, so return an error
mov %bp,%si // Disk packet
movb $0x42,%ah // BIOS: Extended
int $0x13 // read
retw // To caller
// Messages
msg_read: .asciz "Read"
msg_part: .asciz "Boot"
prompt: .asciz " error\r\n"
flags: .byte FLAGS // Flags
.org PRT_OFF,0x90
// Partition table
.fill 0x30,0x1,0x0
part4: .byte 0x80, 0x00, 0x01, 0x00
.byte 0xa5, 0xfe, 0xff, 0xff
.byte 0x00, 0x00, 0x00, 0x00
.byte 0x50, 0xc3, 0x00, 0x00 // 50000 sectors long, bleh
.word 0xaa55 // Magic number