freebsd-nq/contrib/bc/gen/lib2.bc
Stefan Eßer d43fa8ef53 contrib/bc: merge version 5.1.0 from vendor branch
This version adds options and functions that allow to print numbers
in the open interval (-1 .. 1) with or without a leading 0 digit.

Additionally, an option has been added to prevent line wrap and
allows to print arbitrarily long results on a single line.

Merge commit '5d58a51571721190681c50d4bd3a1f45e6282d72'
2021-10-04 22:25:24 +02:00

565 lines
8.9 KiB
Plaintext

/*
* *****************************************************************************
*
* SPDX-License-Identifier: BSD-2-Clause
*
* Copyright (c) 2018-2021 Gavin D. Howard and contributors.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* *****************************************************************************
*
* The second bc math library.
*
*/
define p(x,y){
auto a
a=y$
if(y==a)return (x^a)@scale
return e(y*l(x))
}
define r(x,p){
auto t,n
if(x==0)return x
p=abs(p)$
n=(x<0)
x=abs(x)
t=x@p
if(p<scale(x)&&x-t>=5>>p+1)t+=1>>p
if(n)t=-t
return t
}
define ceil(x,p){
auto t,n
if(x==0)return x
p=abs(p)$
n=(x<0)
x=abs(x)
t=(x+((x@p<x)>>p))@p
if(n)t=-t
return t
}
define f(n){
auto r
n=abs(n)$
for(r=1;n>1;--n)r*=n
return r
}
define perm(n,k){
auto f,g,s
if(k>n)return 0
n=abs(n)$
k=abs(k)$
f=f(n)
g=f(n-k)
s=scale
scale=0
f/=g
scale=s
return f
}
define comb(n,r){
auto s,f,g,h
if(r>n)return 0
n=abs(n)$
r=abs(r)$
s=scale
scale=0
f=f(n)
h=f(r)
g=f(n-r)
f/=h*g
scale=s
return f
}
define log(x,b){
auto p,s
s=scale
if(scale<K)scale=K
if(scale(x)>scale)scale=scale(x)
scale*=2
p=l(x)/l(b)
scale=s
return p@s
}
define l2(x){return log(x,2)}
define l10(x){return log(x,A)}
define root(x,n){
auto s,m,r,q,p
if(n<0)sqrt(n)
n=n$
if(n==0)x/n
if(x==0||n==1)return x
if(n==2)return sqrt(x)
s=scale
scale=0
if(x<0&&n%2==0)sqrt(x)
scale=s+2
m=(x<0)
x=abs(x)
p=n-1
q=A^ceil((length(x$)/n)$,0)
while(r!=q){
r=q
q=(p*r+x/r^p)/n
}
if(m)r=-r
scale=s
return r@s
}
define cbrt(x){return root(x,3)}
define gcd(a,b){
auto g,s
if(!b)return a
s=scale
scale=0
a=abs(a)$
b=abs(b)$
if(a<b){
g=a
a=b
b=g
}
while(b){
g=a%b
a=b
b=g
}
scale=s
return a
}
define lcm(a,b){
auto r,s
if(!a&&!b)return 0
s=scale
scale=0
a=abs(a)$
b=abs(b)$
r=a*b/gcd(a,b)
scale=s
return r
}
define pi(s){
auto t,v
if(s==0)return 3
s=abs(s)$
t=scale
scale=s+1
v=4*a(1)
scale=t
return v@s
}
define t(x){
auto s,c
l=scale
scale+=2
s=s(x)
c=c(x)
scale-=2
return s/c
}
define a2(y,x){
auto a,p
if(!x&&!y)y/x
if(x<=0){
p=pi(scale+2)
if(y<0)p=-p
}
if(x==0)a=p/2
else{
scale+=2
a=a(y/x)+p
scale-=2
}
return a@scale
}
define sin(x){return s(x)}
define cos(x){return c(x)}
define atan(x){return a(x)}
define tan(x){return t(x)}
define atan2(y,x){return a2(y,x)}
define r2d(x){
auto r,i,s
s=scale
scale+=5
i=ibase
ibase=A
r=x*180/pi(scale)
ibase=i
scale=s
return r@s
}
define d2r(x){
auto r,i,s
s=scale
scale+=5
i=ibase
ibase=A
r=x*pi(scale)/180
ibase=i
scale=s
return r@s
}
define frand(p){
p=abs(p)$
return irand(A^p)>>p
}
define ifrand(i,p){return irand(abs(i)$)+frand(p)}
define srand(x){
if(irand(2))return -x
return x
}
define brand(){return irand(2)}
define void output(x,b){
auto c
c=obase
obase=b
x
obase=c
}
define void hex(x){output(x,G)}
define void binary(x){output(x,2)}
define ubytes(x){
auto p,i
x=abs(x)$
i=2^8
for(p=1;i-1<x;p*=2){i*=i}
return p
}
define sbytes(x){
auto p,n,z
z=(x<0)
x=abs(x)
x=x$
n=ubytes(x)
p=2^(n*8-1)
if(x>p||(!z&&x==p))n*=2
return n
}
define s2un(x,n){
auto t,u,s
x=x$
if(x<0){
x=abs(x)
s=scale
scale=0
t=n*8
u=2^(t-1)
if(x==u)return x
else if(x>u)x%=u
scale=s
return 2^(t)-x
}
return x
}
define s2u(x){return s2un(x,sbytes(x))}
define void plz(x){
if(leading_zero())print x
else{
if(x>-1&&x<1&&x!=0){
if(x<0)print"-"
print 0,abs(x)
}
else print x
}
}
define void plznl(x){
plz(x)
print"\n"
}
define void pnlz(x){
auto s,i
if(leading_zero()){
if(x>-1&&x<1&&x!=0){
s=scale(x)
if(x<0)print"-"
print"."
x=abs(x)
for(i=0;i<s;++i){
x<<=1
print x$
x-=x$
}
return
}
}
print x
}
define void pnlznl(x){
pnlz(x)
print"\n"
}
define void output_byte(x,i){
auto j,p,y,b
j=ibase
ibase=A
s=scale
scale=0
x=abs(x)$
b=x/(2^(i*8))
b%=256
y=log(256,obase)
if(b>1)p=log(b,obase)+1
else p=b
for(i=y-p;i>0;--i)print 0
if(b)print b
scale=s
ibase=j
}
define void output_uint(x,n){
auto i
for(i=n-1;i>=0;--i){
output_byte(x,i)
if(i)print" "
else print"\n"
}
}
define void hex_uint(x,n){
auto o
o=obase
obase=G
output_uint(x,n)
obase=o
}
define void binary_uint(x,n){
auto o
o=obase
obase=2
output_uint(x,n)
obase=o
}
define void uintn(x,n){
if(scale(x)){
print"Error: ",x," is not an integer.\n"
return
}
if(x<0){
print"Error: ",x," is negative.\n"
return
}
if(x>=2^(n*8)){
print"Error: ",x," cannot fit into ",n," unsigned byte(s).\n"
return
}
binary_uint(x,n)
hex_uint(x,n)
}
define void intn(x,n){
auto t
if(scale(x)){
print"Error: ",x," is not an integer.\n"
return
}
t=2^(n*8-1)
if(abs(x)>=t&&(x>0||x!=-t)){
print "Error: ",x," cannot fit into ",n," signed byte(s).\n"
return
}
x=s2un(x,n)
binary_uint(x,n)
hex_uint(x,n)
}
define void uint8(x){uintn(x,1)}
define void int8(x){intn(x,1)}
define void uint16(x){uintn(x,2)}
define void int16(x){intn(x,2)}
define void uint32(x){uintn(x,4)}
define void int32(x){intn(x,4)}
define void uint64(x){uintn(x,8)}
define void int64(x){intn(x,8)}
define void uint(x){uintn(x,ubytes(x))}
define void int(x){intn(x,sbytes(x))}
define bunrev(t){
auto a,s,m[]
s=scale
scale=0
t=abs(t)$
while(t!=1){
t=divmod(t,2,m[])
a*=2
a+=m[0]
}
scale=s
return a
}
define band(a,b){
auto s,t,m[],n[]
a=abs(a)$
b=abs(b)$
if(b>a){
t=b
b=a
a=t
}
s=scale
scale=0
t=1
while(b){
a=divmod(a,2,m[])
b=divmod(b,2,n[])
t*=2
t+=(m[0]&&n[0])
}
scale=s
return bunrev(t)
}
define bor(a,b){
auto s,t,m[],n[]
a=abs(a)$
b=abs(b)$
if(b>a){
t=b
b=a
a=t
}
s=scale
scale=0
t=1
while(b){
a=divmod(a,2,m[])
b=divmod(b,2,n[])
t*=2
t+=(m[0]||n[0])
}
while(a){
a=divmod(a,2,m[])
t*=2
t+=m[0]
}
scale=s
return bunrev(t)
}
define bxor(a,b){
auto s,t,m[],n[]
a=abs(a)$
b=abs(b)$
if(b>a){
t=b
b=a
a=t
}
s=scale
scale=0
t=1
while(b){
a=divmod(a,2,m[])
b=divmod(b,2,n[])
t*=2
t+=(m[0]+n[0]==1)
}
while(a){
a=divmod(a,2,m[])
t*=2
t+=m[0]
}
scale=s
return bunrev(t)
}
define bshl(a,b){return abs(a)$*2^abs(b)$}
define bshr(a,b){return (abs(a)$/2^abs(b)$)$}
define bnotn(x,n){
auto s,t,m[]
s=scale
scale=0
t=2^(abs(n)$*8)
x=abs(x)$%t+t
t=1
while(x!=1){
x=divmod(x,2,m[])
t*=2
t+=!m[0]
}
scale=s
return bunrev(t)
}
define bnot8(x){return bnotn(x,1)}
define bnot16(x){return bnotn(x,2)}
define bnot32(x){return bnotn(x,4)}
define bnot64(x){return bnotn(x,8)}
define bnot(x){return bnotn(x,ubytes(x))}
define brevn(x,n){
auto s,t,m[]
s=scale
scale=0
t=2^(abs(n)$*8)
x=abs(x)$%t+t
scale=s
return bunrev(x)
}
define brev8(x){return brevn(x,1)}
define brev16(x){return brevn(x,2)}
define brev32(x){return brevn(x,4)}
define brev64(x){return brevn(x,8)}
define brev(x){return brevn(x,ubytes(x))}
define broln(x,p,n){
auto s,t,m[]
s=scale
scale=0
n=abs(n)$*8
p=abs(p)$%n
t=2^n
x=abs(x)$%t
if(!p)return x
x=divmod(x,2^(n-p),m[])
x+=m[0]*2^p%t
scale=s
return x
}
define brol8(x,p){return broln(x,p,1)}
define brol16(x,p){return broln(x,p,2)}
define brol32(x,p){return broln(x,p,4)}
define brol64(x,p){return broln(x,p,8)}
define brol(x,p){return broln(x,p,ubytes(x))}
define brorn(x,p,n){
auto s,t,m[]
s=scale
scale=0
n=abs(n)$*8
p=abs(p)$%n
t=2^n
x=abs(x)$%t
if(!p)return x
x=divmod(x,2^p,m[])
x+=m[0]*2^(n-p)%t
scale=s
return x
}
define bror8(x,p){return brorn(x,p,1)}
define bror16(x,p){return brorn(x,p,2)}
define bror32(x,p){return brorn(x,p,4)}
define bror64(x,p){return brorn(x,p,8)}
define brol(x,p){return brorn(x,p,ubytes(x))}
define bmodn(x,n){
auto s
s=scale
scale=0
x=abs(x)$%2^(abs(n)$*8)
scale=s
return x
}
define bmod8(x){return bmodn(x,1)}
define bmod16(x){return bmodn(x,2)}
define bmod32(x){return bmodn(x,4)}
define bmod64(x){return bmodn(x,8)}