Rick Macklem b43fe9eb4b nfsd: silence rpcb_unset noise for NFSv4 only servers
An NFSv4 only configuration does not register with
rpcbind(). Without this patch a failure to rpcb_unset()
is reported when the daemon is terminated for this case.

This is harmless noise, but this patch avoids calling
rpcb_unset() for the NFSv4 only case, avoiding the noise.

When called with "-d", it still does the rpcb_unset(),
assuming that the configuration might have been
changed to NFSv4 only and unregistering with
rpcbind() might still be needed.

Reviewed by:	freqlabs
MFC after:	2 weeks
Differential Revision:	https://reviews.freebsd.org/D29449
2021-04-01 15:09:03 -07:00

1350 lines
36 KiB
C

/*-
* SPDX-License-Identifier: BSD-3-Clause
*
* Copyright (c) 1989, 1993, 1994
* The Regents of the University of California. All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* Rick Macklem at The University of Guelph.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#ifndef lint
static const char copyright[] =
"@(#) Copyright (c) 1989, 1993, 1994\n\
The Regents of the University of California. All rights reserved.\n";
#endif /* not lint */
#ifndef lint
#if 0
static char sccsid[] = "@(#)nfsd.c 8.9 (Berkeley) 3/29/95";
#endif
static const char rcsid[] =
"$FreeBSD$";
#endif /* not lint */
#include <sys/param.h>
#include <sys/syslog.h>
#include <sys/wait.h>
#include <sys/mount.h>
#include <sys/fcntl.h>
#include <sys/linker.h>
#include <sys/module.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/sysctl.h>
#include <sys/ucred.h>
#include <rpc/rpc.h>
#include <rpc/pmap_clnt.h>
#include <rpcsvc/nfs_prot.h>
#include <netdb.h>
#include <arpa/inet.h>
#include <nfs/nfssvc.h>
#include <fs/nfs/nfsproto.h>
#include <fs/nfs/nfskpiport.h>
#include <fs/nfs/nfs.h>
#include <err.h>
#include <errno.h>
#include <signal.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <sysexits.h>
#include <getopt.h>
static int debug = 0;
#define NFSD_STABLERESTART "/var/db/nfs-stablerestart"
#define NFSD_STABLEBACKUP "/var/db/nfs-stablerestart.bak"
#define MAXNFSDCNT 256
#define DEFNFSDCNT 4
#define NFS_VER2 2
#define NFS_VER3 3
#define NFS_VER4 4
static pid_t children[MAXNFSDCNT]; /* PIDs of children */
static pid_t masterpid; /* PID of master/parent */
static int nfsdcnt; /* number of children */
static int nfsdcnt_set;
static int minthreads;
static int maxthreads;
static int nfssvc_nfsd; /* Set to correct NFSSVC_xxx flag */
static int stablefd = -1; /* Fd for the stable restart file */
static int backupfd; /* Fd for the backup stable restart file */
static const char *getopt_shortopts;
static const char *getopt_usage;
static int nfs_minvers = NFS_VER2;
static int minthreads_set;
static int maxthreads_set;
static struct option longopts[] = {
{ "debug", no_argument, &debug, 1 },
{ "minthreads", required_argument, &minthreads_set, 1 },
{ "maxthreads", required_argument, &maxthreads_set, 1 },
{ "pnfs", required_argument, NULL, 'p' },
{ "mirror", required_argument, NULL, 'm' },
{ NULL, 0, NULL, 0}
};
static void cleanup(int);
static void child_cleanup(int);
static void killchildren(void);
static void nfsd_exit(int);
static void nonfs(int);
static void reapchild(int);
static int setbindhost(struct addrinfo **ia, const char *bindhost,
struct addrinfo hints);
static void start_server(int, struct nfsd_nfsd_args *, const char *vhost);
static void unregistration(void);
static void usage(void);
static void open_stable(int *, int *);
static void copy_stable(int, int);
static void backup_stable(int);
static void set_nfsdcnt(int);
static void parse_dsserver(const char *, struct nfsd_nfsd_args *);
/*
* Nfs server daemon mostly just a user context for nfssvc()
*
* 1 - do file descriptor and signal cleanup
* 2 - fork the nfsd(s)
* 3 - create server socket(s)
* 4 - register socket with rpcbind
*
* For connectionless protocols, just pass the socket into the kernel via.
* nfssvc().
* For connection based sockets, loop doing accepts. When you get a new
* socket from accept, pass the msgsock into the kernel via. nfssvc().
* The arguments are:
* -r - reregister with rpcbind
* -d - unregister with rpcbind
* -t - support tcp nfs clients
* -u - support udp nfs clients
* -e - forces it to run a server that supports nfsv4
* -p - enable a pNFS service
* -m - set the mirroring level for a pNFS service
* followed by "n" which is the number of nfsds' to fork off
*/
int
main(int argc, char **argv)
{
struct nfsd_addsock_args addsockargs;
struct addrinfo *ai_udp, *ai_tcp, *ai_udp6, *ai_tcp6, hints;
struct netconfig *nconf_udp, *nconf_tcp, *nconf_udp6, *nconf_tcp6;
struct netbuf nb_udp, nb_tcp, nb_udp6, nb_tcp6;
struct sockaddr_storage peer;
fd_set ready, sockbits;
int ch, connect_type_cnt, i, maxsock, msgsock;
socklen_t len;
int on = 1, unregister, reregister, sock;
int tcp6sock, ip6flag, tcpflag, tcpsock;
int udpflag, ecode, error, s;
int bindhostc, bindanyflag, rpcbreg, rpcbregcnt;
int nfssvc_addsock;
int longindex = 0;
size_t nfs_minvers_size;
const char *lopt;
char **bindhost = NULL;
pid_t pid;
struct nfsd_nfsd_args nfsdargs;
const char *vhostname = NULL;
nfsdargs.mirrorcnt = 1;
nfsdargs.addr = NULL;
nfsdargs.addrlen = 0;
nfsdcnt = DEFNFSDCNT;
unregister = reregister = tcpflag = maxsock = 0;
bindanyflag = udpflag = connect_type_cnt = bindhostc = 0;
getopt_shortopts = "ah:n:rdtuep:m:V:";
getopt_usage =
"usage:\n"
" nfsd [-ardtue] [-h bindip]\n"
" [-n numservers] [--minthreads #] [--maxthreads #]\n"
" [-p/--pnfs dsserver0:/dsserver0-mounted-on-dir,...,"
"dsserverN:/dsserverN-mounted-on-dir] [-m mirrorlevel]\n"
" [-V virtual_hostname]\n";
while ((ch = getopt_long(argc, argv, getopt_shortopts, longopts,
&longindex)) != -1)
switch (ch) {
case 'V':
if (strlen(optarg) <= MAXHOSTNAMELEN)
vhostname = optarg;
else
warnx("Virtual host name (%s) is too long",
optarg);
break;
case 'a':
bindanyflag = 1;
break;
case 'n':
set_nfsdcnt(atoi(optarg));
break;
case 'h':
bindhostc++;
bindhost = realloc(bindhost,sizeof(char *)*bindhostc);
if (bindhost == NULL)
errx(1, "Out of memory");
bindhost[bindhostc-1] = strdup(optarg);
if (bindhost[bindhostc-1] == NULL)
errx(1, "Out of memory");
break;
case 'r':
reregister = 1;
break;
case 'd':
unregister = 1;
break;
case 't':
tcpflag = 1;
break;
case 'u':
udpflag = 1;
break;
case 'e':
/* now a no-op, since this is the default */
break;
case 'p':
/* Parse out the DS server host names and mount pts. */
parse_dsserver(optarg, &nfsdargs);
break;
case 'm':
/* Set the mirror level for a pNFS service. */
i = atoi(optarg);
if (i < 2 || i > NFSDEV_MAXMIRRORS)
errx(1, "Mirror level out of range 2<-->%d",
NFSDEV_MAXMIRRORS);
nfsdargs.mirrorcnt = i;
break;
case 0:
lopt = longopts[longindex].name;
if (!strcmp(lopt, "minthreads")) {
minthreads = atoi(optarg);
} else if (!strcmp(lopt, "maxthreads")) {
maxthreads = atoi(optarg);
}
break;
default:
case '?':
usage();
}
if (!tcpflag && !udpflag)
udpflag = 1;
argv += optind;
argc -= optind;
if (minthreads_set && maxthreads_set && minthreads > maxthreads)
errx(EX_USAGE,
"error: minthreads(%d) can't be greater than "
"maxthreads(%d)", minthreads, maxthreads);
/*
* XXX
* Backward compatibility, trailing number is the count of daemons.
*/
if (argc > 1)
usage();
if (argc == 1)
set_nfsdcnt(atoi(argv[0]));
/*
* Unless the "-o" option was specified, try and run "nfsd".
* If "-o" was specified, try and run "nfsserver".
*/
if (modfind("nfsd") < 0) {
/* Not present in kernel, try loading it */
if (kldload("nfsd") < 0 || modfind("nfsd") < 0)
errx(1, "NFS server is not available");
}
ip6flag = 1;
s = socket(AF_INET6, SOCK_DGRAM, IPPROTO_UDP);
if (s == -1) {
if (errno != EPROTONOSUPPORT && errno != EAFNOSUPPORT)
err(1, "socket");
ip6flag = 0;
} else if (getnetconfigent("udp6") == NULL ||
getnetconfigent("tcp6") == NULL) {
ip6flag = 0;
}
if (s != -1)
close(s);
if (bindhostc == 0 || bindanyflag) {
bindhostc++;
bindhost = realloc(bindhost,sizeof(char *)*bindhostc);
if (bindhost == NULL)
errx(1, "Out of memory");
bindhost[bindhostc-1] = strdup("*");
if (bindhost[bindhostc-1] == NULL)
errx(1, "Out of memory");
}
if (unregister) {
/*
* Unregister before setting nfs_minvers, in case the
* value of vfs.nfsd.server_min_nfsvers has changed
* since registering with rpcbind.
*/
unregistration();
exit (0);
}
nfs_minvers_size = sizeof(nfs_minvers);
error = sysctlbyname("vfs.nfsd.server_min_nfsvers", &nfs_minvers,
&nfs_minvers_size, NULL, 0);
if (error != 0 || nfs_minvers < NFS_VER2 || nfs_minvers > NFS_VER4) {
warnx("sysctlbyname(vfs.nfsd.server_min_nfsvers) failed,"
" defaulting to NFSv2");
nfs_minvers = NFS_VER2;
}
if (reregister) {
if (udpflag) {
memset(&hints, 0, sizeof hints);
hints.ai_flags = AI_PASSIVE;
hints.ai_family = AF_INET;
hints.ai_socktype = SOCK_DGRAM;
hints.ai_protocol = IPPROTO_UDP;
ecode = getaddrinfo(NULL, "nfs", &hints, &ai_udp);
if (ecode != 0)
err(1, "getaddrinfo udp: %s", gai_strerror(ecode));
nconf_udp = getnetconfigent("udp");
if (nconf_udp == NULL)
err(1, "getnetconfigent udp failed");
nb_udp.buf = ai_udp->ai_addr;
nb_udp.len = nb_udp.maxlen = ai_udp->ai_addrlen;
if (nfs_minvers == NFS_VER2)
if (!rpcb_set(NFS_PROGRAM, 2, nconf_udp,
&nb_udp))
err(1, "rpcb_set udp failed");
if (nfs_minvers <= NFS_VER3)
if (!rpcb_set(NFS_PROGRAM, 3, nconf_udp,
&nb_udp))
err(1, "rpcb_set udp failed");
freeaddrinfo(ai_udp);
}
if (udpflag && ip6flag) {
memset(&hints, 0, sizeof hints);
hints.ai_flags = AI_PASSIVE;
hints.ai_family = AF_INET6;
hints.ai_socktype = SOCK_DGRAM;
hints.ai_protocol = IPPROTO_UDP;
ecode = getaddrinfo(NULL, "nfs", &hints, &ai_udp6);
if (ecode != 0)
err(1, "getaddrinfo udp6: %s", gai_strerror(ecode));
nconf_udp6 = getnetconfigent("udp6");
if (nconf_udp6 == NULL)
err(1, "getnetconfigent udp6 failed");
nb_udp6.buf = ai_udp6->ai_addr;
nb_udp6.len = nb_udp6.maxlen = ai_udp6->ai_addrlen;
if (nfs_minvers == NFS_VER2)
if (!rpcb_set(NFS_PROGRAM, 2, nconf_udp6,
&nb_udp6))
err(1, "rpcb_set udp6 failed");
if (nfs_minvers <= NFS_VER3)
if (!rpcb_set(NFS_PROGRAM, 3, nconf_udp6,
&nb_udp6))
err(1, "rpcb_set udp6 failed");
freeaddrinfo(ai_udp6);
}
if (tcpflag) {
memset(&hints, 0, sizeof hints);
hints.ai_flags = AI_PASSIVE;
hints.ai_family = AF_INET;
hints.ai_socktype = SOCK_STREAM;
hints.ai_protocol = IPPROTO_TCP;
ecode = getaddrinfo(NULL, "nfs", &hints, &ai_tcp);
if (ecode != 0)
err(1, "getaddrinfo tcp: %s", gai_strerror(ecode));
nconf_tcp = getnetconfigent("tcp");
if (nconf_tcp == NULL)
err(1, "getnetconfigent tcp failed");
nb_tcp.buf = ai_tcp->ai_addr;
nb_tcp.len = nb_tcp.maxlen = ai_tcp->ai_addrlen;
if (nfs_minvers == NFS_VER2)
if (!rpcb_set(NFS_PROGRAM, 2, nconf_tcp,
&nb_tcp))
err(1, "rpcb_set tcp failed");
if (nfs_minvers <= NFS_VER3)
if (!rpcb_set(NFS_PROGRAM, 3, nconf_tcp,
&nb_tcp))
err(1, "rpcb_set tcp failed");
freeaddrinfo(ai_tcp);
}
if (tcpflag && ip6flag) {
memset(&hints, 0, sizeof hints);
hints.ai_flags = AI_PASSIVE;
hints.ai_family = AF_INET6;
hints.ai_socktype = SOCK_STREAM;
hints.ai_protocol = IPPROTO_TCP;
ecode = getaddrinfo(NULL, "nfs", &hints, &ai_tcp6);
if (ecode != 0)
err(1, "getaddrinfo tcp6: %s", gai_strerror(ecode));
nconf_tcp6 = getnetconfigent("tcp6");
if (nconf_tcp6 == NULL)
err(1, "getnetconfigent tcp6 failed");
nb_tcp6.buf = ai_tcp6->ai_addr;
nb_tcp6.len = nb_tcp6.maxlen = ai_tcp6->ai_addrlen;
if (nfs_minvers == NFS_VER2)
if (!rpcb_set(NFS_PROGRAM, 2, nconf_tcp6,
&nb_tcp6))
err(1, "rpcb_set tcp6 failed");
if (nfs_minvers <= NFS_VER3)
if (!rpcb_set(NFS_PROGRAM, 3, nconf_tcp6,
&nb_tcp6))
err(1, "rpcb_set tcp6 failed");
freeaddrinfo(ai_tcp6);
}
exit (0);
}
if (debug == 0) {
daemon(0, 0);
(void)signal(SIGHUP, SIG_IGN);
(void)signal(SIGINT, SIG_IGN);
/*
* nfsd sits in the kernel most of the time. It needs
* to ignore SIGTERM/SIGQUIT in order to stay alive as long
* as possible during a shutdown, otherwise loopback
* mounts will not be able to unmount.
*/
(void)signal(SIGTERM, SIG_IGN);
(void)signal(SIGQUIT, SIG_IGN);
}
(void)signal(SIGSYS, nonfs);
(void)signal(SIGCHLD, reapchild);
(void)signal(SIGUSR2, backup_stable);
openlog("nfsd", LOG_PID | (debug ? LOG_PERROR : 0), LOG_DAEMON);
/*
* For V4, we open the stablerestart file and call nfssvc()
* to get it loaded. This is done before the daemons do the
* regular nfssvc() call to service NFS requests.
* (This way the file remains open until the last nfsd is killed
* off.)
* It and the backup copy will be created as empty files
* the first time this nfsd is started and should never be
* deleted/replaced if at all possible. It should live on a
* local, non-volatile storage device that does not do hardware
* level write-back caching. (See SCSI doc for more information
* on how to prevent write-back caching on SCSI disks.)
*/
open_stable(&stablefd, &backupfd);
if (stablefd < 0) {
syslog(LOG_ERR, "Can't open %s: %m\n", NFSD_STABLERESTART);
exit(1);
}
/* This system call will fail for old kernels, but that's ok. */
nfssvc(NFSSVC_BACKUPSTABLE, NULL);
if (nfssvc(NFSSVC_STABLERESTART, (caddr_t)&stablefd) < 0) {
syslog(LOG_ERR, "Can't read stable storage file: %m\n");
exit(1);
}
nfssvc_addsock = NFSSVC_NFSDADDSOCK;
nfssvc_nfsd = NFSSVC_NFSDNFSD | NFSSVC_NEWSTRUCT;
if (tcpflag) {
/*
* For TCP mode, we fork once to start the first
* kernel nfsd thread. The kernel will add more
* threads as needed.
*/
masterpid = getpid();
pid = fork();
if (pid == -1) {
syslog(LOG_ERR, "fork: %m");
nfsd_exit(1);
}
if (pid) {
children[0] = pid;
} else {
(void)signal(SIGUSR1, child_cleanup);
setproctitle("server");
start_server(0, &nfsdargs, vhostname);
}
}
(void)signal(SIGUSR1, cleanup);
FD_ZERO(&sockbits);
rpcbregcnt = 0;
/* Set up the socket for udp and rpcb register it. */
if (udpflag) {
rpcbreg = 0;
for (i = 0; i < bindhostc; i++) {
memset(&hints, 0, sizeof hints);
hints.ai_flags = AI_PASSIVE;
hints.ai_family = AF_INET;
hints.ai_socktype = SOCK_DGRAM;
hints.ai_protocol = IPPROTO_UDP;
if (setbindhost(&ai_udp, bindhost[i], hints) == 0) {
rpcbreg = 1;
rpcbregcnt++;
if ((sock = socket(ai_udp->ai_family,
ai_udp->ai_socktype,
ai_udp->ai_protocol)) < 0) {
syslog(LOG_ERR,
"can't create udp socket");
nfsd_exit(1);
}
if (bind(sock, ai_udp->ai_addr,
ai_udp->ai_addrlen) < 0) {
syslog(LOG_ERR,
"can't bind udp addr %s: %m",
bindhost[i]);
nfsd_exit(1);
}
freeaddrinfo(ai_udp);
addsockargs.sock = sock;
addsockargs.name = NULL;
addsockargs.namelen = 0;
if (nfssvc(nfssvc_addsock, &addsockargs) < 0) {
syslog(LOG_ERR, "can't Add UDP socket");
nfsd_exit(1);
}
(void)close(sock);
}
}
if (rpcbreg == 1) {
memset(&hints, 0, sizeof hints);
hints.ai_flags = AI_PASSIVE;
hints.ai_family = AF_INET;
hints.ai_socktype = SOCK_DGRAM;
hints.ai_protocol = IPPROTO_UDP;
ecode = getaddrinfo(NULL, "nfs", &hints, &ai_udp);
if (ecode != 0) {
syslog(LOG_ERR, "getaddrinfo udp: %s",
gai_strerror(ecode));
nfsd_exit(1);
}
nconf_udp = getnetconfigent("udp");
if (nconf_udp == NULL)
err(1, "getnetconfigent udp failed");
nb_udp.buf = ai_udp->ai_addr;
nb_udp.len = nb_udp.maxlen = ai_udp->ai_addrlen;
if (nfs_minvers == NFS_VER2)
if (!rpcb_set(NFS_PROGRAM, 2, nconf_udp,
&nb_udp))
err(1, "rpcb_set udp failed");
if (nfs_minvers <= NFS_VER3)
if (!rpcb_set(NFS_PROGRAM, 3, nconf_udp,
&nb_udp))
err(1, "rpcb_set udp failed");
freeaddrinfo(ai_udp);
}
}
/* Set up the socket for udp6 and rpcb register it. */
if (udpflag && ip6flag) {
rpcbreg = 0;
for (i = 0; i < bindhostc; i++) {
memset(&hints, 0, sizeof hints);
hints.ai_flags = AI_PASSIVE;
hints.ai_family = AF_INET6;
hints.ai_socktype = SOCK_DGRAM;
hints.ai_protocol = IPPROTO_UDP;
if (setbindhost(&ai_udp6, bindhost[i], hints) == 0) {
rpcbreg = 1;
rpcbregcnt++;
if ((sock = socket(ai_udp6->ai_family,
ai_udp6->ai_socktype,
ai_udp6->ai_protocol)) < 0) {
syslog(LOG_ERR,
"can't create udp6 socket");
nfsd_exit(1);
}
if (setsockopt(sock, IPPROTO_IPV6, IPV6_V6ONLY,
&on, sizeof on) < 0) {
syslog(LOG_ERR,
"can't set v6-only binding for "
"udp6 socket: %m");
nfsd_exit(1);
}
if (bind(sock, ai_udp6->ai_addr,
ai_udp6->ai_addrlen) < 0) {
syslog(LOG_ERR,
"can't bind udp6 addr %s: %m",
bindhost[i]);
nfsd_exit(1);
}
freeaddrinfo(ai_udp6);
addsockargs.sock = sock;
addsockargs.name = NULL;
addsockargs.namelen = 0;
if (nfssvc(nfssvc_addsock, &addsockargs) < 0) {
syslog(LOG_ERR,
"can't add UDP6 socket");
nfsd_exit(1);
}
(void)close(sock);
}
}
if (rpcbreg == 1) {
memset(&hints, 0, sizeof hints);
hints.ai_flags = AI_PASSIVE;
hints.ai_family = AF_INET6;
hints.ai_socktype = SOCK_DGRAM;
hints.ai_protocol = IPPROTO_UDP;
ecode = getaddrinfo(NULL, "nfs", &hints, &ai_udp6);
if (ecode != 0) {
syslog(LOG_ERR, "getaddrinfo udp6: %s",
gai_strerror(ecode));
nfsd_exit(1);
}
nconf_udp6 = getnetconfigent("udp6");
if (nconf_udp6 == NULL)
err(1, "getnetconfigent udp6 failed");
nb_udp6.buf = ai_udp6->ai_addr;
nb_udp6.len = nb_udp6.maxlen = ai_udp6->ai_addrlen;
if (nfs_minvers == NFS_VER2)
if (!rpcb_set(NFS_PROGRAM, 2, nconf_udp6,
&nb_udp6))
err(1,
"rpcb_set udp6 failed");
if (nfs_minvers <= NFS_VER3)
if (!rpcb_set(NFS_PROGRAM, 3, nconf_udp6,
&nb_udp6))
err(1,
"rpcb_set udp6 failed");
freeaddrinfo(ai_udp6);
}
}
/* Set up the socket for tcp and rpcb register it. */
if (tcpflag) {
rpcbreg = 0;
for (i = 0; i < bindhostc; i++) {
memset(&hints, 0, sizeof hints);
hints.ai_flags = AI_PASSIVE;
hints.ai_family = AF_INET;
hints.ai_socktype = SOCK_STREAM;
hints.ai_protocol = IPPROTO_TCP;
if (setbindhost(&ai_tcp, bindhost[i], hints) == 0) {
rpcbreg = 1;
rpcbregcnt++;
if ((tcpsock = socket(AF_INET, SOCK_STREAM,
0)) < 0) {
syslog(LOG_ERR,
"can't create tcp socket");
nfsd_exit(1);
}
if (setsockopt(tcpsock, SOL_SOCKET,
SO_REUSEADDR,
(char *)&on, sizeof(on)) < 0)
syslog(LOG_ERR,
"setsockopt SO_REUSEADDR: %m");
if (bind(tcpsock, ai_tcp->ai_addr,
ai_tcp->ai_addrlen) < 0) {
syslog(LOG_ERR,
"can't bind tcp addr %s: %m",
bindhost[i]);
nfsd_exit(1);
}
if (listen(tcpsock, -1) < 0) {
syslog(LOG_ERR, "listen failed");
nfsd_exit(1);
}
freeaddrinfo(ai_tcp);
FD_SET(tcpsock, &sockbits);
maxsock = tcpsock;
connect_type_cnt++;
}
}
if (rpcbreg == 1) {
memset(&hints, 0, sizeof hints);
hints.ai_flags = AI_PASSIVE;
hints.ai_family = AF_INET;
hints.ai_socktype = SOCK_STREAM;
hints.ai_protocol = IPPROTO_TCP;
ecode = getaddrinfo(NULL, "nfs", &hints,
&ai_tcp);
if (ecode != 0) {
syslog(LOG_ERR, "getaddrinfo tcp: %s",
gai_strerror(ecode));
nfsd_exit(1);
}
nconf_tcp = getnetconfigent("tcp");
if (nconf_tcp == NULL)
err(1, "getnetconfigent tcp failed");
nb_tcp.buf = ai_tcp->ai_addr;
nb_tcp.len = nb_tcp.maxlen = ai_tcp->ai_addrlen;
if (nfs_minvers == NFS_VER2)
if (!rpcb_set(NFS_PROGRAM, 2, nconf_tcp,
&nb_tcp))
err(1, "rpcb_set tcp failed");
if (nfs_minvers <= NFS_VER3)
if (!rpcb_set(NFS_PROGRAM, 3, nconf_tcp,
&nb_tcp))
err(1, "rpcb_set tcp failed");
freeaddrinfo(ai_tcp);
}
}
/* Set up the socket for tcp6 and rpcb register it. */
if (tcpflag && ip6flag) {
rpcbreg = 0;
for (i = 0; i < bindhostc; i++) {
memset(&hints, 0, sizeof hints);
hints.ai_flags = AI_PASSIVE;
hints.ai_family = AF_INET6;
hints.ai_socktype = SOCK_STREAM;
hints.ai_protocol = IPPROTO_TCP;
if (setbindhost(&ai_tcp6, bindhost[i], hints) == 0) {
rpcbreg = 1;
rpcbregcnt++;
if ((tcp6sock = socket(ai_tcp6->ai_family,
ai_tcp6->ai_socktype,
ai_tcp6->ai_protocol)) < 0) {
syslog(LOG_ERR,
"can't create tcp6 socket");
nfsd_exit(1);
}
if (setsockopt(tcp6sock, SOL_SOCKET,
SO_REUSEADDR,
(char *)&on, sizeof(on)) < 0)
syslog(LOG_ERR,
"setsockopt SO_REUSEADDR: %m");
if (setsockopt(tcp6sock, IPPROTO_IPV6,
IPV6_V6ONLY, &on, sizeof on) < 0) {
syslog(LOG_ERR,
"can't set v6-only binding for tcp6 "
"socket: %m");
nfsd_exit(1);
}
if (bind(tcp6sock, ai_tcp6->ai_addr,
ai_tcp6->ai_addrlen) < 0) {
syslog(LOG_ERR,
"can't bind tcp6 addr %s: %m",
bindhost[i]);
nfsd_exit(1);
}
if (listen(tcp6sock, -1) < 0) {
syslog(LOG_ERR, "listen failed");
nfsd_exit(1);
}
freeaddrinfo(ai_tcp6);
FD_SET(tcp6sock, &sockbits);
if (maxsock < tcp6sock)
maxsock = tcp6sock;
connect_type_cnt++;
}
}
if (rpcbreg == 1) {
memset(&hints, 0, sizeof hints);
hints.ai_flags = AI_PASSIVE;
hints.ai_family = AF_INET6;
hints.ai_socktype = SOCK_STREAM;
hints.ai_protocol = IPPROTO_TCP;
ecode = getaddrinfo(NULL, "nfs", &hints, &ai_tcp6);
if (ecode != 0) {
syslog(LOG_ERR, "getaddrinfo tcp6: %s",
gai_strerror(ecode));
nfsd_exit(1);
}
nconf_tcp6 = getnetconfigent("tcp6");
if (nconf_tcp6 == NULL)
err(1, "getnetconfigent tcp6 failed");
nb_tcp6.buf = ai_tcp6->ai_addr;
nb_tcp6.len = nb_tcp6.maxlen = ai_tcp6->ai_addrlen;
if (nfs_minvers == NFS_VER2)
if (!rpcb_set(NFS_PROGRAM, 2, nconf_tcp6,
&nb_tcp6))
err(1, "rpcb_set tcp6 failed");
if (nfs_minvers <= NFS_VER3)
if (!rpcb_set(NFS_PROGRAM, 3, nconf_tcp6,
&nb_tcp6))
err(1, "rpcb_set tcp6 failed");
freeaddrinfo(ai_tcp6);
}
}
if (rpcbregcnt == 0) {
syslog(LOG_ERR, "rpcb_set() failed, nothing to do: %m");
nfsd_exit(1);
}
if (tcpflag && connect_type_cnt == 0) {
syslog(LOG_ERR, "tcp connects == 0, nothing to do: %m");
nfsd_exit(1);
}
setproctitle("master");
/*
* We always want a master to have a clean way to shut nfsd down
* (with unregistration): if the master is killed, it unregisters and
* kills all children. If we run for UDP only (and so do not have to
* loop waiting for accept), we instead make the parent
* a "server" too. start_server will not return.
*/
if (!tcpflag)
start_server(1, &nfsdargs, vhostname);
/*
* Loop forever accepting connections and passing the sockets
* into the kernel for the mounts.
*/
for (;;) {
ready = sockbits;
if (connect_type_cnt > 1) {
if (select(maxsock + 1,
&ready, NULL, NULL, NULL) < 1) {
error = errno;
if (error == EINTR)
continue;
syslog(LOG_ERR, "select failed: %m");
nfsd_exit(1);
}
}
for (tcpsock = 0; tcpsock <= maxsock; tcpsock++) {
if (FD_ISSET(tcpsock, &ready)) {
len = sizeof(peer);
if ((msgsock = accept(tcpsock,
(struct sockaddr *)&peer, &len)) < 0) {
error = errno;
syslog(LOG_ERR, "accept failed: %m");
if (error == ECONNABORTED ||
error == EINTR)
continue;
nfsd_exit(1);
}
if (setsockopt(msgsock, SOL_SOCKET,
SO_KEEPALIVE, (char *)&on, sizeof(on)) < 0)
syslog(LOG_ERR,
"setsockopt SO_KEEPALIVE: %m");
addsockargs.sock = msgsock;
addsockargs.name = (caddr_t)&peer;
addsockargs.namelen = len;
nfssvc(nfssvc_addsock, &addsockargs);
(void)close(msgsock);
}
}
}
}
static int
setbindhost(struct addrinfo **ai, const char *bindhost, struct addrinfo hints)
{
int ecode;
u_int32_t host_addr[4]; /* IPv4 or IPv6 */
const char *hostptr;
if (bindhost == NULL || strcmp("*", bindhost) == 0)
hostptr = NULL;
else
hostptr = bindhost;
if (hostptr != NULL) {
switch (hints.ai_family) {
case AF_INET:
if (inet_pton(AF_INET, hostptr, host_addr) == 1) {
hints.ai_flags = AI_NUMERICHOST;
} else {
if (inet_pton(AF_INET6, hostptr,
host_addr) == 1)
return (1);
}
break;
case AF_INET6:
if (inet_pton(AF_INET6, hostptr, host_addr) == 1) {
hints.ai_flags = AI_NUMERICHOST;
} else {
if (inet_pton(AF_INET, hostptr,
host_addr) == 1)
return (1);
}
break;
default:
break;
}
}
ecode = getaddrinfo(hostptr, "nfs", &hints, ai);
if (ecode != 0) {
syslog(LOG_ERR, "getaddrinfo %s: %s", bindhost,
gai_strerror(ecode));
return (1);
}
return (0);
}
static void
set_nfsdcnt(int proposed)
{
if (proposed < 1) {
warnx("nfsd count too low %d; reset to %d", proposed,
DEFNFSDCNT);
nfsdcnt = DEFNFSDCNT;
} else if (proposed > MAXNFSDCNT) {
warnx("nfsd count too high %d; truncated to %d", proposed,
MAXNFSDCNT);
nfsdcnt = MAXNFSDCNT;
} else
nfsdcnt = proposed;
nfsdcnt_set = 1;
}
static void
usage(void)
{
(void)fprintf(stderr, "%s", getopt_usage);
exit(1);
}
static void
nonfs(__unused int signo)
{
syslog(LOG_ERR, "missing system call: NFS not available");
}
static void
reapchild(__unused int signo)
{
pid_t pid;
int i;
while ((pid = wait3(NULL, WNOHANG, NULL)) > 0) {
for (i = 0; i < nfsdcnt; i++)
if (pid == children[i])
children[i] = -1;
}
}
static void
unregistration(void)
{
if ((nfs_minvers == NFS_VER2 && !rpcb_unset(NFS_PROGRAM, 2, NULL)) ||
(nfs_minvers <= NFS_VER3 && !rpcb_unset(NFS_PROGRAM, 3, NULL)))
syslog(LOG_ERR, "rpcb_unset failed");
}
static void
killchildren(void)
{
int i;
for (i = 0; i < nfsdcnt; i++) {
if (children[i] > 0)
kill(children[i], SIGKILL);
}
}
/*
* Cleanup master after SIGUSR1.
*/
static void
cleanup(__unused int signo)
{
nfsd_exit(0);
}
/*
* Cleanup child after SIGUSR1.
*/
static void
child_cleanup(__unused int signo)
{
exit(0);
}
static void
nfsd_exit(int status)
{
killchildren();
unregistration();
exit(status);
}
static int
get_tuned_nfsdcount(void)
{
int ncpu, error, tuned_nfsdcnt;
size_t ncpu_size;
ncpu_size = sizeof(ncpu);
error = sysctlbyname("hw.ncpu", &ncpu, &ncpu_size, NULL, 0);
if (error) {
warnx("sysctlbyname(hw.ncpu) failed defaulting to %d nfs servers",
DEFNFSDCNT);
tuned_nfsdcnt = DEFNFSDCNT;
} else {
tuned_nfsdcnt = ncpu * 8;
}
return tuned_nfsdcnt;
}
static void
start_server(int master, struct nfsd_nfsd_args *nfsdargp, const char *vhost)
{
char principal[MAXHOSTNAMELEN + 5];
int status, error;
char hostname[MAXHOSTNAMELEN + 1], *cp;
struct addrinfo *aip, hints;
status = 0;
if (vhost == NULL)
gethostname(hostname, sizeof (hostname));
else
strlcpy(hostname, vhost, sizeof (hostname));
snprintf(principal, sizeof (principal), "nfs@%s", hostname);
if ((cp = strchr(hostname, '.')) == NULL ||
*(cp + 1) == '\0') {
/* If not fully qualified, try getaddrinfo() */
memset((void *)&hints, 0, sizeof (hints));
hints.ai_flags = AI_CANONNAME;
error = getaddrinfo(hostname, NULL, &hints, &aip);
if (error == 0) {
if (aip->ai_canonname != NULL &&
(cp = strchr(aip->ai_canonname, '.')) !=
NULL && *(cp + 1) != '\0')
snprintf(principal, sizeof (principal),
"nfs@%s", aip->ai_canonname);
freeaddrinfo(aip);
}
}
nfsdargp->principal = principal;
if (nfsdcnt_set)
nfsdargp->minthreads = nfsdargp->maxthreads = nfsdcnt;
else {
nfsdargp->minthreads = minthreads_set ? minthreads : get_tuned_nfsdcount();
nfsdargp->maxthreads = maxthreads_set ? maxthreads : nfsdargp->minthreads;
if (nfsdargp->maxthreads < nfsdargp->minthreads)
nfsdargp->maxthreads = nfsdargp->minthreads;
}
error = nfssvc(nfssvc_nfsd, nfsdargp);
if (error < 0 && errno == EAUTH) {
/*
* This indicates that it could not register the
* rpcsec_gss credentials, usually because the
* gssd daemon isn't running.
* (only the experimental server with nfsv4)
*/
syslog(LOG_ERR, "No gssd, using AUTH_SYS only");
principal[0] = '\0';
error = nfssvc(nfssvc_nfsd, nfsdargp);
}
if (error < 0) {
if (errno == ENXIO) {
syslog(LOG_ERR, "Bad -p option, cannot run");
if (masterpid != 0 && master == 0)
kill(masterpid, SIGUSR1);
} else
syslog(LOG_ERR, "nfssvc: %m");
status = 1;
}
if (master)
nfsd_exit(status);
else
exit(status);
}
/*
* Open the stable restart file and return the file descriptor for it.
*/
static void
open_stable(int *stable_fdp, int *backup_fdp)
{
int stable_fd, backup_fd = -1, ret;
struct stat st, backup_st;
/* Open and stat the stable restart file. */
stable_fd = open(NFSD_STABLERESTART, O_RDWR, 0);
if (stable_fd < 0)
stable_fd = open(NFSD_STABLERESTART, O_RDWR | O_CREAT, 0600);
if (stable_fd >= 0) {
ret = fstat(stable_fd, &st);
if (ret < 0) {
close(stable_fd);
stable_fd = -1;
}
}
/* Open and stat the backup stable restart file. */
if (stable_fd >= 0) {
backup_fd = open(NFSD_STABLEBACKUP, O_RDWR, 0);
if (backup_fd < 0)
backup_fd = open(NFSD_STABLEBACKUP, O_RDWR | O_CREAT,
0600);
if (backup_fd >= 0) {
ret = fstat(backup_fd, &backup_st);
if (ret < 0) {
close(backup_fd);
backup_fd = -1;
}
}
if (backup_fd < 0) {
close(stable_fd);
stable_fd = -1;
}
}
*stable_fdp = stable_fd;
*backup_fdp = backup_fd;
if (stable_fd < 0)
return;
/* Sync up the 2 files, as required. */
if (st.st_size > 0)
copy_stable(stable_fd, backup_fd);
else if (backup_st.st_size > 0)
copy_stable(backup_fd, stable_fd);
}
/*
* Copy the stable restart file to the backup or vice versa.
*/
static void
copy_stable(int from_fd, int to_fd)
{
int cnt, ret;
static char buf[1024];
ret = lseek(from_fd, (off_t)0, SEEK_SET);
if (ret >= 0)
ret = lseek(to_fd, (off_t)0, SEEK_SET);
if (ret >= 0)
ret = ftruncate(to_fd, (off_t)0);
if (ret >= 0)
do {
cnt = read(from_fd, buf, 1024);
if (cnt > 0)
ret = write(to_fd, buf, cnt);
else if (cnt < 0)
ret = cnt;
} while (cnt > 0 && ret >= 0);
if (ret >= 0)
ret = fsync(to_fd);
if (ret < 0)
syslog(LOG_ERR, "stable restart copy failure: %m");
}
/*
* Back up the stable restart file when indicated by the kernel.
*/
static void
backup_stable(__unused int signo)
{
if (stablefd >= 0)
copy_stable(stablefd, backupfd);
}
/*
* Parse the pNFS string and extract the DS servers and ports numbers.
*/
static void
parse_dsserver(const char *optionarg, struct nfsd_nfsd_args *nfsdargp)
{
char *cp, *cp2, *dsaddr, *dshost, *dspath, *dsvol, nfsprt[9];
char *mdspath, *mdsp, ip6[INET6_ADDRSTRLEN];
const char *ad;
int ecode;
u_int adsiz, dsaddrcnt, dshostcnt, dspathcnt, hostsiz, pathsiz;
u_int mdspathcnt;
size_t dsaddrsiz, dshostsiz, dspathsiz, nfsprtsiz, mdspathsiz;
struct addrinfo hints, *ai_tcp, *res;
struct sockaddr_in sin;
struct sockaddr_in6 sin6;
cp = strdup(optionarg);
if (cp == NULL)
errx(1, "Out of memory");
/* Now, do the host names. */
dspathsiz = 1024;
dspathcnt = 0;
dspath = malloc(dspathsiz);
if (dspath == NULL)
errx(1, "Out of memory");
dshostsiz = 1024;
dshostcnt = 0;
dshost = malloc(dshostsiz);
if (dshost == NULL)
errx(1, "Out of memory");
dsaddrsiz = 1024;
dsaddrcnt = 0;
dsaddr = malloc(dsaddrsiz);
if (dsaddr == NULL)
errx(1, "Out of memory");
mdspathsiz = 1024;
mdspathcnt = 0;
mdspath = malloc(mdspathsiz);
if (mdspath == NULL)
errx(1, "Out of memory");
/* Put the NFS port# in "." form. */
snprintf(nfsprt, 9, ".%d.%d", 2049 >> 8, 2049 & 0xff);
nfsprtsiz = strlen(nfsprt);
ai_tcp = NULL;
/* Loop around for each DS server name. */
do {
cp2 = strchr(cp, ',');
if (cp2 != NULL) {
/* Not the last DS in the list. */
*cp2++ = '\0';
if (*cp2 == '\0')
usage();
}
dsvol = strchr(cp, ':');
if (dsvol == NULL || *(dsvol + 1) == '\0')
usage();
*dsvol++ = '\0';
/* Optional path for MDS file system to be stored on DS. */
mdsp = strchr(dsvol, '#');
if (mdsp != NULL) {
if (*(mdsp + 1) == '\0' || mdsp <= dsvol)
usage();
*mdsp++ = '\0';
}
/* Append this pathname to dspath. */
pathsiz = strlen(dsvol);
if (dspathcnt + pathsiz + 1 > dspathsiz) {
dspathsiz *= 2;
dspath = realloc(dspath, dspathsiz);
if (dspath == NULL)
errx(1, "Out of memory");
}
strcpy(&dspath[dspathcnt], dsvol);
dspathcnt += pathsiz + 1;
/* Append this pathname to mdspath. */
if (mdsp != NULL)
pathsiz = strlen(mdsp);
else
pathsiz = 0;
if (mdspathcnt + pathsiz + 1 > mdspathsiz) {
mdspathsiz *= 2;
mdspath = realloc(mdspath, mdspathsiz);
if (mdspath == NULL)
errx(1, "Out of memory");
}
if (mdsp != NULL)
strcpy(&mdspath[mdspathcnt], mdsp);
else
mdspath[mdspathcnt] = '\0';
mdspathcnt += pathsiz + 1;
if (ai_tcp != NULL)
freeaddrinfo(ai_tcp);
/* Get the fully qualified domain name and IP address. */
memset(&hints, 0, sizeof(hints));
hints.ai_flags = AI_CANONNAME | AI_ADDRCONFIG;
hints.ai_family = PF_UNSPEC;
hints.ai_socktype = SOCK_STREAM;
hints.ai_protocol = IPPROTO_TCP;
ecode = getaddrinfo(cp, NULL, &hints, &ai_tcp);
if (ecode != 0)
err(1, "getaddrinfo pnfs: %s %s", cp,
gai_strerror(ecode));
ad = NULL;
for (res = ai_tcp; res != NULL; res = res->ai_next) {
if (res->ai_addr->sa_family == AF_INET) {
if (res->ai_addrlen < sizeof(sin))
err(1, "getaddrinfo() returned "
"undersized IPv4 address");
/*
* Mips cares about sockaddr_in alignment,
* so copy the address.
*/
memcpy(&sin, res->ai_addr, sizeof(sin));
ad = inet_ntoa(sin.sin_addr);
break;
} else if (res->ai_family == AF_INET6) {
if (res->ai_addrlen < sizeof(sin6))
err(1, "getaddrinfo() returned "
"undersized IPv6 address");
/*
* Mips cares about sockaddr_in6 alignment,
* so copy the address.
*/
memcpy(&sin6, res->ai_addr, sizeof(sin6));
ad = inet_ntop(AF_INET6, &sin6.sin6_addr, ip6,
sizeof(ip6));
/*
* XXX
* Since a link local address will only
* work if the client and DS are in the
* same scope zone, only use it if it is
* the only address.
*/
if (ad != NULL &&
!IN6_IS_ADDR_LINKLOCAL(&sin6.sin6_addr))
break;
}
}
if (ad == NULL)
err(1, "No IP address for %s", cp);
/* Append this address to dsaddr. */
adsiz = strlen(ad);
if (dsaddrcnt + adsiz + nfsprtsiz + 1 > dsaddrsiz) {
dsaddrsiz *= 2;
dsaddr = realloc(dsaddr, dsaddrsiz);
if (dsaddr == NULL)
errx(1, "Out of memory");
}
strcpy(&dsaddr[dsaddrcnt], ad);
strcat(&dsaddr[dsaddrcnt], nfsprt);
dsaddrcnt += adsiz + nfsprtsiz + 1;
/* Append this hostname to dshost. */
hostsiz = strlen(ai_tcp->ai_canonname);
if (dshostcnt + hostsiz + 1 > dshostsiz) {
dshostsiz *= 2;
dshost = realloc(dshost, dshostsiz);
if (dshost == NULL)
errx(1, "Out of memory");
}
strcpy(&dshost[dshostcnt], ai_tcp->ai_canonname);
dshostcnt += hostsiz + 1;
cp = cp2;
} while (cp != NULL);
nfsdargp->addr = dsaddr;
nfsdargp->addrlen = dsaddrcnt;
nfsdargp->dnshost = dshost;
nfsdargp->dnshostlen = dshostcnt;
nfsdargp->dspath = dspath;
nfsdargp->dspathlen = dspathcnt;
nfsdargp->mdspath = mdspath;
nfsdargp->mdspathlen = mdspathcnt;
freeaddrinfo(ai_tcp);
}