a47f39da1f
at least until I can root cause what's going on. The only platform I've seen this on is the AR9220 when attached to the AR71xx CPUs. I get immediate PCIe bus errors and all subsequent accesses cause further MIPS bus exceptions. I don't have any other big-endian platforms to test this on. If I get a chance (or two), I'll try to whack this on a bus analyser and see exactly what happens. I'd rather leave this on, especially for slower, embedded platforms. But the #ifdef hell is something I'm trying to avoid.
1002 lines
28 KiB
C
1002 lines
28 KiB
C
/*
|
|
* Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
|
|
* Copyright (c) 2002-2004 Atheros Communications, Inc.
|
|
*
|
|
* Permission to use, copy, modify, and/or distribute this software for any
|
|
* purpose with or without fee is hereby granted, provided that the above
|
|
* copyright notice and this permission notice appear in all copies.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
|
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
|
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
|
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
|
*
|
|
* $FreeBSD$
|
|
*/
|
|
#include "opt_ah.h"
|
|
|
|
#include "ah.h"
|
|
#include "ah_internal.h"
|
|
|
|
#include "ar5210/ar5210.h"
|
|
#include "ar5210/ar5210reg.h"
|
|
#include "ar5210/ar5210phy.h"
|
|
|
|
#include "ah_eeprom_v1.h"
|
|
|
|
typedef struct {
|
|
uint32_t Offset;
|
|
uint32_t Value;
|
|
} REGISTER_VAL;
|
|
|
|
static const REGISTER_VAL ar5k0007_init[] = {
|
|
#include "ar5210/ar5k_0007.ini"
|
|
};
|
|
|
|
/* Default Power Settings for channels outside of EEPROM range */
|
|
static const uint8_t ar5k0007_pwrSettings[17] = {
|
|
/* gain delta pc dac */
|
|
/* 54 48 36 24 18 12 9 54 48 36 24 18 12 9 6 ob db */
|
|
9, 9, 0, 0, 0, 0, 0, 2, 2, 6, 6, 6, 6, 6, 6, 2, 2
|
|
};
|
|
|
|
/*
|
|
* The delay, in usecs, between writing AR_RC with a reset
|
|
* request and waiting for the chip to settle. If this is
|
|
* too short then the chip does not come out of sleep state.
|
|
* Note this value was empirically derived and may be dependent
|
|
* on the host machine (don't know--the problem was identified
|
|
* on an IBM 570e laptop; 10us delays worked on other systems).
|
|
*/
|
|
#define AR_RC_SETTLE_TIME 20000
|
|
|
|
static HAL_BOOL ar5210SetResetReg(struct ath_hal *,
|
|
uint32_t resetMask, u_int delay);
|
|
static HAL_BOOL ar5210SetChannel(struct ath_hal *, struct ieee80211_channel *);
|
|
static void ar5210SetOperatingMode(struct ath_hal *, int opmode);
|
|
|
|
/*
|
|
* Places the device in and out of reset and then places sane
|
|
* values in the registers based on EEPROM config, initialization
|
|
* vectors (as determined by the mode), and station configuration
|
|
*
|
|
* bChannelChange is used to preserve DMA/PCU registers across
|
|
* a HW Reset during channel change.
|
|
*/
|
|
HAL_BOOL
|
|
ar5210Reset(struct ath_hal *ah, HAL_OPMODE opmode,
|
|
struct ieee80211_channel *chan, HAL_BOOL bChannelChange,
|
|
HAL_STATUS *status)
|
|
{
|
|
#define N(a) (sizeof (a) /sizeof (a[0]))
|
|
#define FAIL(_code) do { ecode = _code; goto bad; } while (0)
|
|
struct ath_hal_5210 *ahp = AH5210(ah);
|
|
const HAL_EEPROM_v1 *ee = AH_PRIVATE(ah)->ah_eeprom;
|
|
HAL_CHANNEL_INTERNAL *ichan;
|
|
HAL_STATUS ecode;
|
|
uint32_t ledstate;
|
|
int i, q;
|
|
|
|
HALDEBUG(ah, HAL_DEBUG_RESET,
|
|
"%s: opmode %u channel %u/0x%x %s channel\n", __func__,
|
|
opmode, chan->ic_freq, chan->ic_flags,
|
|
bChannelChange ? "change" : "same");
|
|
|
|
if (!IEEE80211_IS_CHAN_5GHZ(chan)) {
|
|
/* Only 11a mode */
|
|
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: channel not 5GHz\n", __func__);
|
|
FAIL(HAL_EINVAL);
|
|
}
|
|
/*
|
|
* Map public channel to private.
|
|
*/
|
|
ichan = ath_hal_checkchannel(ah, chan);
|
|
if (ichan == AH_NULL) {
|
|
HALDEBUG(ah, HAL_DEBUG_ANY,
|
|
"%s: invalid channel %u/0x%x; no mapping\n",
|
|
__func__, chan->ic_freq, chan->ic_flags);
|
|
FAIL(HAL_EINVAL);
|
|
}
|
|
switch (opmode) {
|
|
case HAL_M_STA:
|
|
case HAL_M_IBSS:
|
|
case HAL_M_HOSTAP:
|
|
case HAL_M_MONITOR:
|
|
break;
|
|
default:
|
|
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid operating mode %u\n",
|
|
__func__, opmode);
|
|
FAIL(HAL_EINVAL);
|
|
break;
|
|
}
|
|
|
|
ledstate = OS_REG_READ(ah, AR_PCICFG) &
|
|
(AR_PCICFG_LED_PEND | AR_PCICFG_LED_ACT);
|
|
|
|
if (!ar5210ChipReset(ah, chan)) {
|
|
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip reset failed\n",
|
|
__func__);
|
|
FAIL(HAL_EIO);
|
|
}
|
|
|
|
OS_REG_WRITE(ah, AR_STA_ID0, LE_READ_4(ahp->ah_macaddr));
|
|
OS_REG_WRITE(ah, AR_STA_ID1, LE_READ_2(ahp->ah_macaddr + 4));
|
|
ar5210SetOperatingMode(ah, opmode);
|
|
|
|
switch (opmode) {
|
|
case HAL_M_HOSTAP:
|
|
OS_REG_WRITE(ah, AR_BCR, INIT_BCON_CNTRL_REG);
|
|
OS_REG_WRITE(ah, AR_PCICFG,
|
|
AR_PCICFG_LED_ACT | AR_PCICFG_LED_BCTL);
|
|
break;
|
|
case HAL_M_IBSS:
|
|
OS_REG_WRITE(ah, AR_BCR, INIT_BCON_CNTRL_REG | AR_BCR_BCMD);
|
|
OS_REG_WRITE(ah, AR_PCICFG,
|
|
AR_PCICFG_CLKRUNEN | AR_PCICFG_LED_PEND | AR_PCICFG_LED_BCTL);
|
|
break;
|
|
case HAL_M_STA:
|
|
OS_REG_WRITE(ah, AR_BCR, INIT_BCON_CNTRL_REG);
|
|
OS_REG_WRITE(ah, AR_PCICFG,
|
|
AR_PCICFG_CLKRUNEN | AR_PCICFG_LED_PEND | AR_PCICFG_LED_BCTL);
|
|
break;
|
|
case HAL_M_MONITOR:
|
|
OS_REG_WRITE(ah, AR_BCR, INIT_BCON_CNTRL_REG);
|
|
OS_REG_WRITE(ah, AR_PCICFG,
|
|
AR_PCICFG_LED_ACT | AR_PCICFG_LED_BCTL);
|
|
break;
|
|
}
|
|
|
|
/* Restore previous led state */
|
|
OS_REG_WRITE(ah, AR_PCICFG, OS_REG_READ(ah, AR_PCICFG) | ledstate);
|
|
|
|
OS_REG_WRITE(ah, AR_BSS_ID0, LE_READ_4(ahp->ah_bssid));
|
|
OS_REG_WRITE(ah, AR_BSS_ID1, LE_READ_2(ahp->ah_bssid + 4));
|
|
|
|
OS_REG_WRITE(ah, AR_TXDP0, 0);
|
|
OS_REG_WRITE(ah, AR_TXDP1, 0);
|
|
OS_REG_WRITE(ah, AR_RXDP, 0);
|
|
|
|
/*
|
|
* Initialize interrupt state.
|
|
*/
|
|
(void) OS_REG_READ(ah, AR_ISR); /* cleared on read */
|
|
OS_REG_WRITE(ah, AR_IMR, 0);
|
|
OS_REG_WRITE(ah, AR_IER, AR_IER_DISABLE);
|
|
ahp->ah_maskReg = 0;
|
|
|
|
(void) OS_REG_READ(ah, AR_BSR); /* cleared on read */
|
|
OS_REG_WRITE(ah, AR_TXCFG, AR_DMASIZE_128B);
|
|
OS_REG_WRITE(ah, AR_RXCFG, AR_DMASIZE_128B);
|
|
|
|
OS_REG_WRITE(ah, AR_TOPS, 8); /* timeout prescale */
|
|
OS_REG_WRITE(ah, AR_RXNOFRM, 8); /* RX no frame timeout */
|
|
OS_REG_WRITE(ah, AR_RPGTO, 0); /* RX frame gap timeout */
|
|
OS_REG_WRITE(ah, AR_TXNOFRM, 0); /* TX no frame timeout */
|
|
|
|
OS_REG_WRITE(ah, AR_SFR, 0);
|
|
OS_REG_WRITE(ah, AR_MIBC, 0); /* unfreeze ctrs + clr state */
|
|
OS_REG_WRITE(ah, AR_RSSI_THR, ahp->ah_rssiThr);
|
|
OS_REG_WRITE(ah, AR_CFP_DUR, 0);
|
|
|
|
ar5210SetRxFilter(ah, 0); /* nothing for now */
|
|
OS_REG_WRITE(ah, AR_MCAST_FIL0, 0); /* multicast filter */
|
|
OS_REG_WRITE(ah, AR_MCAST_FIL1, 0); /* XXX was 2 */
|
|
|
|
OS_REG_WRITE(ah, AR_TX_MASK0, 0);
|
|
OS_REG_WRITE(ah, AR_TX_MASK1, 0);
|
|
OS_REG_WRITE(ah, AR_CLR_TMASK, 1);
|
|
OS_REG_WRITE(ah, AR_TRIG_LEV, 1); /* minimum */
|
|
|
|
OS_REG_WRITE(ah, AR_DIAG_SW, 0);
|
|
|
|
OS_REG_WRITE(ah, AR_CFP_PERIOD, 0);
|
|
OS_REG_WRITE(ah, AR_TIMER0, 0); /* next beacon time */
|
|
OS_REG_WRITE(ah, AR_TSF_L32, 0); /* local clock */
|
|
OS_REG_WRITE(ah, AR_TIMER1, ~0); /* next DMA beacon alert */
|
|
OS_REG_WRITE(ah, AR_TIMER2, ~0); /* next SW beacon alert */
|
|
OS_REG_WRITE(ah, AR_TIMER3, 1); /* next ATIM window */
|
|
|
|
/* Write the INI values for PHYreg initialization */
|
|
for (i = 0; i < N(ar5k0007_init); i++) {
|
|
uint32_t reg = ar5k0007_init[i].Offset;
|
|
/* On channel change, don't reset the PCU registers */
|
|
if (!(bChannelChange && (0x8000 <= reg && reg < 0x9000)))
|
|
OS_REG_WRITE(ah, reg, ar5k0007_init[i].Value);
|
|
}
|
|
|
|
/* Setup the transmit power values for cards since 0x0[0-2]05 */
|
|
if (!ar5210SetTransmitPower(ah, chan)) {
|
|
HALDEBUG(ah, HAL_DEBUG_ANY,
|
|
"%s: error init'ing transmit power\n", __func__);
|
|
FAIL(HAL_EIO);
|
|
}
|
|
|
|
OS_REG_WRITE(ah, AR_PHY(10),
|
|
(OS_REG_READ(ah, AR_PHY(10)) & 0xFFFF00FF) |
|
|
(ee->ee_xlnaOn << 8));
|
|
OS_REG_WRITE(ah, AR_PHY(13),
|
|
(ee->ee_xpaOff << 24) | (ee->ee_xpaOff << 16) |
|
|
(ee->ee_xpaOn << 8) | ee->ee_xpaOn);
|
|
OS_REG_WRITE(ah, AR_PHY(17),
|
|
(OS_REG_READ(ah, AR_PHY(17)) & 0xFFFFC07F) |
|
|
((ee->ee_antenna >> 1) & 0x3F80));
|
|
OS_REG_WRITE(ah, AR_PHY(18),
|
|
(OS_REG_READ(ah, AR_PHY(18)) & 0xFFFC0FFF) |
|
|
((ee->ee_antenna << 10) & 0x3F000));
|
|
OS_REG_WRITE(ah, AR_PHY(25),
|
|
(OS_REG_READ(ah, AR_PHY(25)) & 0xFFF80FFF) |
|
|
((ee->ee_thresh62 << 12) & 0x7F000));
|
|
OS_REG_WRITE(ah, AR_PHY(68),
|
|
(OS_REG_READ(ah, AR_PHY(68)) & 0xFFFFFFFC) |
|
|
(ee->ee_antenna & 0x3));
|
|
|
|
if (!ar5210SetChannel(ah, chan)) {
|
|
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unable to set channel\n",
|
|
__func__);
|
|
FAIL(HAL_EIO);
|
|
}
|
|
if (bChannelChange && !IEEE80211_IS_CHAN_DFS(chan))
|
|
chan->ic_state &= ~IEEE80211_CHANSTATE_CWINT;
|
|
|
|
/* Activate the PHY */
|
|
OS_REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ENABLE);
|
|
|
|
OS_DELAY(1000); /* Wait a bit (1 msec) */
|
|
|
|
/* calibrate the HW and poll the bit going to 0 for completion */
|
|
OS_REG_WRITE(ah, AR_PHY_AGCCTL,
|
|
OS_REG_READ(ah, AR_PHY_AGCCTL) | AR_PHY_AGC_CAL);
|
|
(void) ath_hal_wait(ah, AR_PHY_AGCCTL, AR_PHY_AGC_CAL, 0);
|
|
|
|
/* Perform noise floor calibration and set status */
|
|
if (!ar5210CalNoiseFloor(ah, ichan)) {
|
|
chan->ic_state |= IEEE80211_CHANSTATE_CWINT;
|
|
HALDEBUG(ah, HAL_DEBUG_ANY,
|
|
"%s: noise floor calibration failed\n", __func__);
|
|
FAIL(HAL_EIO);
|
|
}
|
|
|
|
for (q = 0; q < HAL_NUM_TX_QUEUES; q++)
|
|
ar5210ResetTxQueue(ah, q);
|
|
|
|
if (AH_PRIVATE(ah)->ah_rfkillEnabled)
|
|
ar5210EnableRfKill(ah);
|
|
|
|
/*
|
|
* Writing to AR_BEACON will start timers. Hence it should be
|
|
* the last register to be written. Do not reset tsf, do not
|
|
* enable beacons at this point, but preserve other values
|
|
* like beaconInterval.
|
|
*/
|
|
OS_REG_WRITE(ah, AR_BEACON,
|
|
(OS_REG_READ(ah, AR_BEACON) &
|
|
~(AR_BEACON_EN | AR_BEACON_RESET_TSF)));
|
|
|
|
/* Restore user-specified slot time and timeouts */
|
|
if (ahp->ah_sifstime != (u_int) -1)
|
|
ar5210SetSifsTime(ah, ahp->ah_sifstime);
|
|
if (ahp->ah_slottime != (u_int) -1)
|
|
ar5210SetSlotTime(ah, ahp->ah_slottime);
|
|
if (ahp->ah_acktimeout != (u_int) -1)
|
|
ar5210SetAckTimeout(ah, ahp->ah_acktimeout);
|
|
if (ahp->ah_ctstimeout != (u_int) -1)
|
|
ar5210SetCTSTimeout(ah, ahp->ah_ctstimeout);
|
|
if (AH_PRIVATE(ah)->ah_diagreg != 0)
|
|
OS_REG_WRITE(ah, AR_DIAG_SW, AH_PRIVATE(ah)->ah_diagreg);
|
|
|
|
AH_PRIVATE(ah)->ah_opmode = opmode; /* record operating mode */
|
|
|
|
HALDEBUG(ah, HAL_DEBUG_RESET, "%s: done\n", __func__);
|
|
|
|
return AH_TRUE;
|
|
bad:
|
|
if (status != AH_NULL)
|
|
*status = ecode;
|
|
return AH_FALSE;
|
|
#undef FAIL
|
|
#undef N
|
|
}
|
|
|
|
static void
|
|
ar5210SetOperatingMode(struct ath_hal *ah, int opmode)
|
|
{
|
|
struct ath_hal_5210 *ahp = AH5210(ah);
|
|
uint32_t val;
|
|
|
|
val = OS_REG_READ(ah, AR_STA_ID1) & 0xffff;
|
|
switch (opmode) {
|
|
case HAL_M_HOSTAP:
|
|
OS_REG_WRITE(ah, AR_STA_ID1, val
|
|
| AR_STA_ID1_AP
|
|
| AR_STA_ID1_NO_PSPOLL
|
|
| AR_STA_ID1_DESC_ANTENNA
|
|
| ahp->ah_staId1Defaults);
|
|
break;
|
|
case HAL_M_IBSS:
|
|
OS_REG_WRITE(ah, AR_STA_ID1, val
|
|
| AR_STA_ID1_ADHOC
|
|
| AR_STA_ID1_NO_PSPOLL
|
|
| AR_STA_ID1_DESC_ANTENNA
|
|
| ahp->ah_staId1Defaults);
|
|
break;
|
|
case HAL_M_STA:
|
|
OS_REG_WRITE(ah, AR_STA_ID1, val
|
|
| AR_STA_ID1_NO_PSPOLL
|
|
| AR_STA_ID1_PWR_SV
|
|
| ahp->ah_staId1Defaults);
|
|
break;
|
|
case HAL_M_MONITOR:
|
|
OS_REG_WRITE(ah, AR_STA_ID1, val
|
|
| AR_STA_ID1_NO_PSPOLL
|
|
| ahp->ah_staId1Defaults);
|
|
break;
|
|
}
|
|
}
|
|
|
|
void
|
|
ar5210SetPCUConfig(struct ath_hal *ah)
|
|
{
|
|
ar5210SetOperatingMode(ah, AH_PRIVATE(ah)->ah_opmode);
|
|
}
|
|
|
|
/*
|
|
* Places the PHY and Radio chips into reset. A full reset
|
|
* must be called to leave this state. The PCI/MAC/PCU are
|
|
* not placed into reset as we must receive interrupt to
|
|
* re-enable the hardware.
|
|
*/
|
|
HAL_BOOL
|
|
ar5210PhyDisable(struct ath_hal *ah)
|
|
{
|
|
return ar5210SetResetReg(ah, AR_RC_RPHY, 10);
|
|
}
|
|
|
|
/*
|
|
* Places all of hardware into reset
|
|
*/
|
|
HAL_BOOL
|
|
ar5210Disable(struct ath_hal *ah)
|
|
{
|
|
#define AR_RC_HW (AR_RC_RPCU | AR_RC_RDMA | AR_RC_RPHY | AR_RC_RMAC)
|
|
if (!ar5210SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
|
|
return AH_FALSE;
|
|
|
|
/*
|
|
* Reset the HW - PCI must be reset after the rest of the
|
|
* device has been reset
|
|
*/
|
|
if (!ar5210SetResetReg(ah, AR_RC_HW, AR_RC_SETTLE_TIME))
|
|
return AH_FALSE;
|
|
OS_DELAY(1000);
|
|
(void) ar5210SetResetReg(ah, AR_RC_HW | AR_RC_RPCI, AR_RC_SETTLE_TIME);
|
|
OS_DELAY(2100); /* 8245 @ 96Mhz hangs with 2000us. */
|
|
|
|
return AH_TRUE;
|
|
#undef AR_RC_HW
|
|
}
|
|
|
|
/*
|
|
* Places the hardware into reset and then pulls it out of reset
|
|
*/
|
|
HAL_BOOL
|
|
ar5210ChipReset(struct ath_hal *ah, struct ieee80211_channel *chan)
|
|
{
|
|
#define AR_RC_HW (AR_RC_RPCU | AR_RC_RDMA | AR_RC_RPHY | AR_RC_RMAC)
|
|
|
|
HALDEBUG(ah, HAL_DEBUG_RESET, "%s turbo %s\n", __func__,
|
|
chan && IEEE80211_IS_CHAN_TURBO(chan) ?
|
|
"enabled" : "disabled");
|
|
|
|
if (!ar5210SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
|
|
return AH_FALSE;
|
|
|
|
/* Place chip in turbo before reset to cleanly reset clocks */
|
|
OS_REG_WRITE(ah, AR_PHY_FRCTL,
|
|
chan && IEEE80211_IS_CHAN_TURBO(chan) ? AR_PHY_TURBO_MODE : 0);
|
|
|
|
/*
|
|
* Reset the HW.
|
|
* PCI must be reset after the rest of the device has been reset.
|
|
*/
|
|
if (!ar5210SetResetReg(ah, AR_RC_HW, AR_RC_SETTLE_TIME))
|
|
return AH_FALSE;
|
|
OS_DELAY(1000);
|
|
if (!ar5210SetResetReg(ah, AR_RC_HW | AR_RC_RPCI, AR_RC_SETTLE_TIME))
|
|
return AH_FALSE;
|
|
OS_DELAY(2100); /* 8245 @ 96Mhz hangs with 2000us. */
|
|
|
|
/*
|
|
* Bring out of sleep mode (AGAIN)
|
|
*
|
|
* WARNING WARNING WARNING
|
|
*
|
|
* There is a problem with the chip where it doesn't always indicate
|
|
* that it's awake, so initializePowerUp() will fail.
|
|
*/
|
|
if (!ar5210SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
|
|
return AH_FALSE;
|
|
|
|
/* Clear warm reset reg */
|
|
return ar5210SetResetReg(ah, 0, 10);
|
|
#undef AR_RC_HW
|
|
}
|
|
|
|
enum {
|
|
FIRPWR_M = 0x03fc0000,
|
|
FIRPWR_S = 18,
|
|
KCOARSEHIGH_M = 0x003f8000,
|
|
KCOARSEHIGH_S = 15,
|
|
KCOARSELOW_M = 0x00007f80,
|
|
KCOARSELOW_S = 7,
|
|
ADCSAT_ICOUNT_M = 0x0001f800,
|
|
ADCSAT_ICOUNT_S = 11,
|
|
ADCSAT_THRESH_M = 0x000007e0,
|
|
ADCSAT_THRESH_S = 5
|
|
};
|
|
|
|
/*
|
|
* Recalibrate the lower PHY chips to account for temperature/environment
|
|
* changes.
|
|
*/
|
|
HAL_BOOL
|
|
ar5210PerCalibrationN(struct ath_hal *ah,
|
|
struct ieee80211_channel *chan, u_int chainMask,
|
|
HAL_BOOL longCal, HAL_BOOL *isCalDone)
|
|
{
|
|
uint32_t regBeacon;
|
|
uint32_t reg9858, reg985c, reg9868;
|
|
HAL_CHANNEL_INTERNAL *ichan;
|
|
|
|
ichan = ath_hal_checkchannel(ah, chan);
|
|
if (ichan == AH_NULL)
|
|
return AH_FALSE;
|
|
/* Disable tx and rx */
|
|
OS_REG_WRITE(ah, AR_DIAG_SW,
|
|
OS_REG_READ(ah, AR_DIAG_SW) | (AR_DIAG_SW_DIS_TX | AR_DIAG_SW_DIS_RX));
|
|
|
|
/* Disable Beacon Enable */
|
|
regBeacon = OS_REG_READ(ah, AR_BEACON);
|
|
OS_REG_WRITE(ah, AR_BEACON, regBeacon & ~AR_BEACON_EN);
|
|
|
|
/* Delay 4ms to ensure that all tx and rx activity has ceased */
|
|
OS_DELAY(4000);
|
|
|
|
/* Disable AGC to radio traffic */
|
|
OS_REG_WRITE(ah, 0x9808, OS_REG_READ(ah, 0x9808) | 0x08000000);
|
|
/* Wait for the AGC traffic to cease. */
|
|
OS_DELAY(10);
|
|
|
|
/* Change Channel to relock synth */
|
|
if (!ar5210SetChannel(ah, chan))
|
|
return AH_FALSE;
|
|
|
|
/* wait for the synthesizer lock to stabilize */
|
|
OS_DELAY(1000);
|
|
|
|
/* Re-enable AGC to radio traffic */
|
|
OS_REG_WRITE(ah, 0x9808, OS_REG_READ(ah, 0x9808) & (~0x08000000));
|
|
|
|
/*
|
|
* Configure the AGC so that it is highly unlikely (if not
|
|
* impossible) for it to send any gain changes to the analog
|
|
* chip. We store off the current values so that they can
|
|
* be rewritten below. Setting the following values:
|
|
* firpwr = -1
|
|
* Kcoursehigh = -1
|
|
* Kcourselow = -127
|
|
* ADCsat_icount = 2
|
|
* ADCsat_thresh = 12
|
|
*/
|
|
reg9858 = OS_REG_READ(ah, 0x9858);
|
|
reg985c = OS_REG_READ(ah, 0x985c);
|
|
reg9868 = OS_REG_READ(ah, 0x9868);
|
|
|
|
OS_REG_WRITE(ah, 0x9858, (reg9858 & ~FIRPWR_M) |
|
|
((-1 << FIRPWR_S) & FIRPWR_M));
|
|
OS_REG_WRITE(ah, 0x985c,
|
|
(reg985c & ~(KCOARSEHIGH_M | KCOARSELOW_M)) |
|
|
((-1 << KCOARSEHIGH_S) & KCOARSEHIGH_M) |
|
|
((-127 << KCOARSELOW_S) & KCOARSELOW_M));
|
|
OS_REG_WRITE(ah, 0x9868,
|
|
(reg9868 & ~(ADCSAT_ICOUNT_M | ADCSAT_THRESH_M)) |
|
|
((2 << ADCSAT_ICOUNT_S) & ADCSAT_ICOUNT_M) |
|
|
((12 << ADCSAT_THRESH_S) & ADCSAT_THRESH_M));
|
|
|
|
/* Wait for AGC changes to be enacted */
|
|
OS_DELAY(20);
|
|
|
|
/*
|
|
* We disable RF mix/gain stages for the PGA to avoid a
|
|
* race condition that will occur with receiving a frame
|
|
* and performing the AGC calibration. This will be
|
|
* re-enabled at the end of offset cal. We turn off AGC
|
|
* writes during this write as it will go over the analog bus.
|
|
*/
|
|
OS_REG_WRITE(ah, 0x9808, OS_REG_READ(ah, 0x9808) | 0x08000000);
|
|
OS_DELAY(10); /* wait for the AGC traffic to cease */
|
|
OS_REG_WRITE(ah, 0x98D4, 0x21);
|
|
OS_REG_WRITE(ah, 0x9808, OS_REG_READ(ah, 0x9808) & (~0x08000000));
|
|
|
|
/* wait to make sure that additional AGC traffic has quiesced */
|
|
OS_DELAY(1000);
|
|
|
|
/* AGC calibration (this was added to make the NF threshold check work) */
|
|
OS_REG_WRITE(ah, AR_PHY_AGCCTL,
|
|
OS_REG_READ(ah, AR_PHY_AGCCTL) | AR_PHY_AGC_CAL);
|
|
if (!ath_hal_wait(ah, AR_PHY_AGCCTL, AR_PHY_AGC_CAL, 0)) {
|
|
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: AGC calibration timeout\n",
|
|
__func__);
|
|
}
|
|
|
|
/* Rewrite our AGC values we stored off earlier (return AGC to normal operation) */
|
|
OS_REG_WRITE(ah, 0x9858, reg9858);
|
|
OS_REG_WRITE(ah, 0x985c, reg985c);
|
|
OS_REG_WRITE(ah, 0x9868, reg9868);
|
|
|
|
/* Perform noise floor and set status */
|
|
if (!ar5210CalNoiseFloor(ah, ichan)) {
|
|
/*
|
|
* Delay 5ms before retrying the noise floor -
|
|
* just to make sure. We're in an error
|
|
* condition here
|
|
*/
|
|
HALDEBUG(ah, HAL_DEBUG_NFCAL | HAL_DEBUG_PERCAL,
|
|
"%s: Performing 2nd Noise Cal\n", __func__);
|
|
OS_DELAY(5000);
|
|
if (!ar5210CalNoiseFloor(ah, ichan))
|
|
chan->ic_state |= IEEE80211_CHANSTATE_CWINT;
|
|
}
|
|
|
|
/* Clear tx and rx disable bit */
|
|
OS_REG_WRITE(ah, AR_DIAG_SW,
|
|
OS_REG_READ(ah, AR_DIAG_SW) & ~(AR_DIAG_SW_DIS_TX | AR_DIAG_SW_DIS_RX));
|
|
|
|
/* Re-enable Beacons */
|
|
OS_REG_WRITE(ah, AR_BEACON, regBeacon);
|
|
|
|
*isCalDone = AH_TRUE;
|
|
|
|
return AH_TRUE;
|
|
}
|
|
|
|
HAL_BOOL
|
|
ar5210PerCalibration(struct ath_hal *ah, struct ieee80211_channel *chan,
|
|
HAL_BOOL *isIQdone)
|
|
{
|
|
return ar5210PerCalibrationN(ah, chan, 0x1, AH_TRUE, isIQdone);
|
|
}
|
|
|
|
HAL_BOOL
|
|
ar5210ResetCalValid(struct ath_hal *ah, const struct ieee80211_channel *chan)
|
|
{
|
|
return AH_TRUE;
|
|
}
|
|
|
|
/*
|
|
* Writes the given reset bit mask into the reset register
|
|
*/
|
|
static HAL_BOOL
|
|
ar5210SetResetReg(struct ath_hal *ah, uint32_t resetMask, u_int delay)
|
|
{
|
|
uint32_t mask = resetMask ? resetMask : ~0;
|
|
HAL_BOOL rt;
|
|
|
|
OS_REG_WRITE(ah, AR_RC, resetMask);
|
|
/* need to wait at least 128 clocks when reseting PCI before read */
|
|
OS_DELAY(delay);
|
|
|
|
resetMask &= AR_RC_RPCU | AR_RC_RDMA | AR_RC_RPHY | AR_RC_RMAC;
|
|
mask &= AR_RC_RPCU | AR_RC_RDMA | AR_RC_RPHY | AR_RC_RMAC;
|
|
rt = ath_hal_wait(ah, AR_RC, mask, resetMask);
|
|
if ((resetMask & AR_RC_RMAC) == 0) {
|
|
if (isBigEndian()) {
|
|
/*
|
|
* Set CFG, little-endian for descriptor accesses.
|
|
*/
|
|
mask = INIT_CONFIG_STATUS | AR_CFG_SWTD | AR_CFG_SWRD;
|
|
OS_REG_WRITE(ah, AR_CFG, mask);
|
|
} else
|
|
OS_REG_WRITE(ah, AR_CFG, INIT_CONFIG_STATUS);
|
|
}
|
|
return rt;
|
|
}
|
|
|
|
|
|
/*
|
|
* Returns: the pcdac value
|
|
*/
|
|
static uint8_t
|
|
getPcdac(struct ath_hal *ah, const struct tpcMap *pRD, uint8_t dBm)
|
|
{
|
|
int32_t i;
|
|
int useNextEntry = AH_FALSE;
|
|
uint32_t interp;
|
|
|
|
for (i = AR_TP_SCALING_ENTRIES - 1; i >= 0; i--) {
|
|
/* Check for exact entry */
|
|
if (dBm == AR_I2DBM(i)) {
|
|
if (pRD->pcdac[i] != 63)
|
|
return pRD->pcdac[i];
|
|
useNextEntry = AH_TRUE;
|
|
} else if (dBm + 1 == AR_I2DBM(i) && i > 0) {
|
|
/* Interpolate for between entry with a logish scale */
|
|
if (pRD->pcdac[i] != 63 && pRD->pcdac[i-1] != 63) {
|
|
interp = (350 * (pRD->pcdac[i] - pRD->pcdac[i-1])) + 999;
|
|
interp = (interp / 1000) + pRD->pcdac[i-1];
|
|
return interp;
|
|
}
|
|
useNextEntry = AH_TRUE;
|
|
} else if (useNextEntry == AH_TRUE) {
|
|
/* Grab the next lowest */
|
|
if (pRD->pcdac[i] != 63)
|
|
return pRD->pcdac[i];
|
|
}
|
|
}
|
|
|
|
/* Return the lowest Entry if we haven't returned */
|
|
for (i = 0; i < AR_TP_SCALING_ENTRIES; i++)
|
|
if (pRD->pcdac[i] != 63)
|
|
return pRD->pcdac[i];
|
|
|
|
/* No value to return from table */
|
|
#ifdef AH_DEBUG
|
|
ath_hal_printf(ah, "%s: empty transmit power table?\n", __func__);
|
|
#endif
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Find or interpolates the gainF value from the table ptr.
|
|
*/
|
|
static uint8_t
|
|
getGainF(struct ath_hal *ah, const struct tpcMap *pRD,
|
|
uint8_t pcdac, uint8_t *dBm)
|
|
{
|
|
uint32_t interp;
|
|
int low, high, i;
|
|
|
|
low = high = -1;
|
|
|
|
for (i = 0; i < AR_TP_SCALING_ENTRIES; i++) {
|
|
if(pRD->pcdac[i] == 63)
|
|
continue;
|
|
if (pcdac == pRD->pcdac[i]) {
|
|
*dBm = AR_I2DBM(i);
|
|
return pRD->gainF[i]; /* Exact Match */
|
|
}
|
|
if (pcdac > pRD->pcdac[i])
|
|
low = i;
|
|
if (pcdac < pRD->pcdac[i]) {
|
|
high = i;
|
|
if (low == -1) {
|
|
*dBm = AR_I2DBM(i);
|
|
/* PCDAC is lower than lowest setting */
|
|
return pRD->gainF[i];
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
if (i >= AR_TP_SCALING_ENTRIES && low == -1) {
|
|
/* No settings were found */
|
|
#ifdef AH_DEBUG
|
|
ath_hal_printf(ah,
|
|
"%s: no valid entries in the pcdac table: %d\n",
|
|
__func__, pcdac);
|
|
#endif
|
|
return 63;
|
|
}
|
|
if (i >= AR_TP_SCALING_ENTRIES) {
|
|
/* PCDAC setting was above the max setting in the table */
|
|
*dBm = AR_I2DBM(low);
|
|
return pRD->gainF[low];
|
|
}
|
|
/* Only exact if table has no missing entries */
|
|
*dBm = (low + high) + 3;
|
|
|
|
/*
|
|
* Perform interpolation between low and high values to find gainF
|
|
* linearly scale the pcdac between low and high
|
|
*/
|
|
interp = ((pcdac - pRD->pcdac[low]) * 1000) /
|
|
(pRD->pcdac[high] - pRD->pcdac[low]);
|
|
/*
|
|
* Multiply the scale ratio by the gainF difference
|
|
* (plus a rnd up factor)
|
|
*/
|
|
interp = ((interp * (pRD->gainF[high] - pRD->gainF[low])) + 999) / 1000;
|
|
|
|
/* Add ratioed gain_f to low gain_f value */
|
|
return interp + pRD->gainF[low];
|
|
}
|
|
|
|
HAL_BOOL
|
|
ar5210SetTxPowerLimit(struct ath_hal *ah, uint32_t limit)
|
|
{
|
|
AH_PRIVATE(ah)->ah_powerLimit = AH_MIN(limit, AR5210_MAX_RATE_POWER);
|
|
/* XXX flush to h/w */
|
|
return AH_TRUE;
|
|
}
|
|
|
|
/*
|
|
* Get TXPower values and set them in the radio
|
|
*/
|
|
static HAL_BOOL
|
|
setupPowerSettings(struct ath_hal *ah, const struct ieee80211_channel *chan,
|
|
uint8_t cp[17])
|
|
{
|
|
uint16_t freq = ath_hal_gethwchannel(ah, chan);
|
|
const HAL_EEPROM_v1 *ee = AH_PRIVATE(ah)->ah_eeprom;
|
|
uint8_t gainFRD, gainF36, gainF48, gainF54;
|
|
uint8_t dBmRD, dBm36, dBm48, dBm54, dontcare;
|
|
uint32_t rd, group;
|
|
const struct tpcMap *pRD;
|
|
|
|
/* Set OB/DB Values regardless of channel */
|
|
cp[15] = (ee->ee_biasCurrents >> 4) & 0x7;
|
|
cp[16] = ee->ee_biasCurrents & 0x7;
|
|
|
|
if (freq < 5170 || freq > 5320) {
|
|
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel %u\n",
|
|
__func__, freq);
|
|
return AH_FALSE;
|
|
}
|
|
|
|
HALASSERT(ee->ee_version >= AR_EEPROM_VER1 &&
|
|
ee->ee_version < AR_EEPROM_VER3);
|
|
|
|
/* Match regulatory domain */
|
|
for (rd = 0; rd < AR_REG_DOMAINS_MAX; rd++)
|
|
if (AH_PRIVATE(ah)->ah_currentRD == ee->ee_regDomain[rd])
|
|
break;
|
|
if (rd == AR_REG_DOMAINS_MAX) {
|
|
#ifdef AH_DEBUG
|
|
ath_hal_printf(ah,
|
|
"%s: no calibrated regulatory domain matches the "
|
|
"current regularly domain (0x%0x)\n", __func__,
|
|
AH_PRIVATE(ah)->ah_currentRD);
|
|
#endif
|
|
return AH_FALSE;
|
|
}
|
|
group = ((freq - 5170) / 10);
|
|
|
|
if (group > 11) {
|
|
/* Pull 5.29 into the 5.27 group */
|
|
group--;
|
|
}
|
|
|
|
/* Integer divide will set group from 0 to 4 */
|
|
group = group / 3;
|
|
pRD = &ee->ee_tpc[group];
|
|
|
|
/* Set PC DAC Values */
|
|
cp[14] = pRD->regdmn[rd];
|
|
cp[9] = AH_MIN(pRD->regdmn[rd], pRD->rate36);
|
|
cp[8] = AH_MIN(pRD->regdmn[rd], pRD->rate48);
|
|
cp[7] = AH_MIN(pRD->regdmn[rd], pRD->rate54);
|
|
|
|
/* Find Corresponding gainF values for RD, 36, 48, 54 */
|
|
gainFRD = getGainF(ah, pRD, pRD->regdmn[rd], &dBmRD);
|
|
gainF36 = getGainF(ah, pRD, cp[9], &dBm36);
|
|
gainF48 = getGainF(ah, pRD, cp[8], &dBm48);
|
|
gainF54 = getGainF(ah, pRD, cp[7], &dBm54);
|
|
|
|
/* Power Scale if requested */
|
|
if (AH_PRIVATE(ah)->ah_tpScale != HAL_TP_SCALE_MAX) {
|
|
static const uint16_t tpcScaleReductionTable[5] =
|
|
{ 0, 3, 6, 9, AR5210_MAX_RATE_POWER };
|
|
uint16_t tpScale;
|
|
|
|
tpScale = tpcScaleReductionTable[AH_PRIVATE(ah)->ah_tpScale];
|
|
if (dBmRD < tpScale+3)
|
|
dBmRD = 3; /* min */
|
|
else
|
|
dBmRD -= tpScale;
|
|
cp[14] = getPcdac(ah, pRD, dBmRD);
|
|
gainFRD = getGainF(ah, pRD, cp[14], &dontcare);
|
|
dBm36 = AH_MIN(dBm36, dBmRD);
|
|
cp[9] = getPcdac(ah, pRD, dBm36);
|
|
gainF36 = getGainF(ah, pRD, cp[9], &dontcare);
|
|
dBm48 = AH_MIN(dBm48, dBmRD);
|
|
cp[8] = getPcdac(ah, pRD, dBm48);
|
|
gainF48 = getGainF(ah, pRD, cp[8], &dontcare);
|
|
dBm54 = AH_MIN(dBm54, dBmRD);
|
|
cp[7] = getPcdac(ah, pRD, dBm54);
|
|
gainF54 = getGainF(ah, pRD, cp[7], &dontcare);
|
|
}
|
|
/* Record current dBm at rate 6 */
|
|
AH_PRIVATE(ah)->ah_maxPowerLevel = 2*dBmRD;
|
|
|
|
cp[13] = cp[12] = cp[11] = cp[10] = cp[14];
|
|
|
|
/* Set GainF Values */
|
|
cp[0] = gainFRD - gainF54;
|
|
cp[1] = gainFRD - gainF48;
|
|
cp[2] = gainFRD - gainF36;
|
|
/* 9, 12, 18, 24 have no gain_delta from 6 */
|
|
cp[3] = cp[4] = cp[5] = cp[6] = 0;
|
|
return AH_TRUE;
|
|
}
|
|
|
|
/*
|
|
* Places the device in and out of reset and then places sane
|
|
* values in the registers based on EEPROM config, initialization
|
|
* vectors (as determined by the mode), and station configuration
|
|
*/
|
|
HAL_BOOL
|
|
ar5210SetTransmitPower(struct ath_hal *ah, const struct ieee80211_channel *chan)
|
|
{
|
|
#define N(a) (sizeof (a) / sizeof (a[0]))
|
|
static const uint32_t pwr_regs_start[17] = {
|
|
0x00000000, 0x00000000, 0x00000000,
|
|
0x00000000, 0x00000000, 0xf0000000,
|
|
0xcc000000, 0x00000000, 0x00000000,
|
|
0x00000000, 0x0a000000, 0x000000e2,
|
|
0x0a000020, 0x01000002, 0x01000018,
|
|
0x40000000, 0x00000418
|
|
};
|
|
uint16_t i;
|
|
uint8_t cp[sizeof(ar5k0007_pwrSettings)];
|
|
uint32_t pwr_regs[17];
|
|
|
|
OS_MEMCPY(pwr_regs, pwr_regs_start, sizeof(pwr_regs));
|
|
OS_MEMCPY(cp, ar5k0007_pwrSettings, sizeof(cp));
|
|
|
|
/* Check the EEPROM tx power calibration settings */
|
|
if (!setupPowerSettings(ah, chan, cp)) {
|
|
#ifdef AH_DEBUG
|
|
ath_hal_printf(ah, "%s: unable to setup power settings\n",
|
|
__func__);
|
|
#endif
|
|
return AH_FALSE;
|
|
}
|
|
if (cp[15] < 1 || cp[15] > 5) {
|
|
#ifdef AH_DEBUG
|
|
ath_hal_printf(ah, "%s: OB out of range (%u)\n",
|
|
__func__, cp[15]);
|
|
#endif
|
|
return AH_FALSE;
|
|
}
|
|
if (cp[16] < 1 || cp[16] > 5) {
|
|
#ifdef AH_DEBUG
|
|
ath_hal_printf(ah, "%s: DB out of range (%u)\n",
|
|
__func__, cp[16]);
|
|
#endif
|
|
return AH_FALSE;
|
|
}
|
|
|
|
/* reverse bits of the transmit power array */
|
|
for (i = 0; i < 7; i++)
|
|
cp[i] = ath_hal_reverseBits(cp[i], 5);
|
|
for (i = 7; i < 15; i++)
|
|
cp[i] = ath_hal_reverseBits(cp[i], 6);
|
|
|
|
/* merge transmit power values into the register - quite gross */
|
|
pwr_regs[0] |= ((cp[1] << 5) & 0xE0) | (cp[0] & 0x1F);
|
|
pwr_regs[1] |= ((cp[3] << 7) & 0x80) | ((cp[2] << 2) & 0x7C) |
|
|
((cp[1] >> 3) & 0x03);
|
|
pwr_regs[2] |= ((cp[4] << 4) & 0xF0) | ((cp[3] >> 1) & 0x0F);
|
|
pwr_regs[3] |= ((cp[6] << 6) & 0xC0) | ((cp[5] << 1) & 0x3E) |
|
|
((cp[4] >> 4) & 0x01);
|
|
pwr_regs[4] |= ((cp[7] << 3) & 0xF8) | ((cp[6] >> 2) & 0x07);
|
|
pwr_regs[5] |= ((cp[9] << 7) & 0x80) | ((cp[8] << 1) & 0x7E) |
|
|
((cp[7] >> 5) & 0x01);
|
|
pwr_regs[6] |= ((cp[10] << 5) & 0xE0) | ((cp[9] >> 1) & 0x1F);
|
|
pwr_regs[7] |= ((cp[11] << 3) & 0xF8) | ((cp[10] >> 3) & 0x07);
|
|
pwr_regs[8] |= ((cp[12] << 1) & 0x7E) | ((cp[11] >> 5) & 0x01);
|
|
pwr_regs[9] |= ((cp[13] << 5) & 0xE0);
|
|
pwr_regs[10] |= ((cp[14] << 3) & 0xF8) | ((cp[13] >> 3) & 0x07);
|
|
pwr_regs[11] |= ((cp[14] >> 5) & 0x01);
|
|
|
|
/* Set OB */
|
|
pwr_regs[8] |= (ath_hal_reverseBits(cp[15], 3) << 7) & 0x80;
|
|
pwr_regs[9] |= (ath_hal_reverseBits(cp[15], 3) >> 1) & 0x03;
|
|
|
|
/* Set DB */
|
|
pwr_regs[9] |= (ath_hal_reverseBits(cp[16], 3) << 2) & 0x1C;
|
|
|
|
/* Write the registers */
|
|
for (i = 0; i < N(pwr_regs)-1; i++)
|
|
OS_REG_WRITE(ah, 0x0000989c, pwr_regs[i]);
|
|
/* last write is a flush */
|
|
OS_REG_WRITE(ah, 0x000098d4, pwr_regs[i]);
|
|
|
|
return AH_TRUE;
|
|
#undef N
|
|
}
|
|
|
|
/*
|
|
* Takes the MHz channel value and sets the Channel value
|
|
*
|
|
* ASSUMES: Writes enabled to analog bus before AGC is active
|
|
* or by disabling the AGC.
|
|
*/
|
|
static HAL_BOOL
|
|
ar5210SetChannel(struct ath_hal *ah, struct ieee80211_channel *chan)
|
|
{
|
|
uint16_t freq = ath_hal_gethwchannel(ah, chan);
|
|
uint32_t data;
|
|
|
|
/* Set the Channel */
|
|
data = ath_hal_reverseBits((freq - 5120)/10, 5);
|
|
data = (data << 1) | 0x41;
|
|
OS_REG_WRITE(ah, AR_PHY(0x27), data);
|
|
OS_REG_WRITE(ah, AR_PHY(0x30), 0);
|
|
AH_PRIVATE(ah)->ah_curchan = chan;
|
|
return AH_TRUE;
|
|
}
|
|
|
|
int16_t
|
|
ar5210GetNoiseFloor(struct ath_hal *ah)
|
|
{
|
|
int16_t nf;
|
|
|
|
nf = (OS_REG_READ(ah, AR_PHY(25)) >> 19) & 0x1ff;
|
|
if (nf & 0x100)
|
|
nf = 0 - ((nf ^ 0x1ff) + 1);
|
|
return nf;
|
|
}
|
|
|
|
#define NORMAL_NF_THRESH (-72)
|
|
/*
|
|
* Peform the noisefloor calibration and check for
|
|
* any constant channel interference
|
|
*
|
|
* Returns: TRUE for a successful noise floor calibration; else FALSE
|
|
*/
|
|
HAL_BOOL
|
|
ar5210CalNoiseFloor(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *ichan)
|
|
{
|
|
int32_t nf, nfLoops;
|
|
|
|
/* Calibrate the noise floor */
|
|
OS_REG_WRITE(ah, AR_PHY_AGCCTL,
|
|
OS_REG_READ(ah, AR_PHY_AGCCTL) | AR_PHY_AGC_NF);
|
|
|
|
/* Do not read noise floor until it has done the first update */
|
|
if (!ath_hal_wait(ah, AR_PHY_AGCCTL, AR_PHY_AGC_NF, 0)) {
|
|
#ifdef ATH_HAL_DEBUG
|
|
ath_hal_printf(ah, " -PHY NF Reg state: 0x%x\n",
|
|
OS_REG_READ(ah, AR_PHY_AGCCTL));
|
|
ath_hal_printf(ah, " -MAC Reset Reg state: 0x%x\n",
|
|
OS_REG_READ(ah, AR_RC));
|
|
ath_hal_printf(ah, " -PHY Active Reg state: 0x%x\n",
|
|
OS_REG_READ(ah, AR_PHY_ACTIVE));
|
|
#endif /* ATH_HAL_DEBUG */
|
|
return AH_FALSE;
|
|
}
|
|
|
|
nf = 0;
|
|
/* Keep checking until the floor is below the threshold or the nf is done */
|
|
for (nfLoops = 0; ((nfLoops < 21) && (nf > NORMAL_NF_THRESH)); nfLoops++) {
|
|
OS_DELAY(1000); /* Sleep for 1 ms */
|
|
nf = ar5210GetNoiseFloor(ah);
|
|
}
|
|
|
|
if (nf > NORMAL_NF_THRESH) {
|
|
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: Bad noise cal %d\n",
|
|
__func__, nf);
|
|
ichan->rawNoiseFloor = 0;
|
|
return AH_FALSE;
|
|
}
|
|
ichan->rawNoiseFloor = nf;
|
|
return AH_TRUE;
|
|
}
|
|
|
|
/*
|
|
* Adjust NF based on statistical values for 5GHz frequencies.
|
|
*/
|
|
int16_t
|
|
ar5210GetNfAdjust(struct ath_hal *ah, const HAL_CHANNEL_INTERNAL *c)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
HAL_RFGAIN
|
|
ar5210GetRfgain(struct ath_hal *ah)
|
|
{
|
|
return HAL_RFGAIN_INACTIVE;
|
|
}
|