Ruslan Ermilov ea26d58729 Replaced the misleading uses of a historical artefact M_TRYWAIT with M_WAIT.
Removed dead code that assumed that M_TRYWAIT can return NULL; it's not true
since the advent of MBUMA.

Reviewed by:	arch

There are ongoing disputes as to whether we want to switch to directly using
UMA flags M_WAITOK/M_NOWAIT for mbuf(9) allocation.
2008-03-25 09:39:02 +00:00

984 lines
24 KiB
C

/*-
* Copyright (c) 2004
* Doug Rabson
* Copyright (c) 2002-2003
* Hidetoshi Shimokawa. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
*
* This product includes software developed by Hidetoshi Shimokawa.
*
* 4. Neither the name of the author nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
#ifdef HAVE_KERNEL_OPTION_HEADERS
#include "opt_device_polling.h"
#include "opt_inet.h"
#endif
#include <sys/param.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/socket.h>
#include <sys/sockio.h>
#include <sys/sysctl.h>
#include <sys/systm.h>
#include <sys/taskqueue.h>
#include <sys/module.h>
#include <sys/bus.h>
#include <machine/bus.h>
#include <net/bpf.h>
#include <net/if.h>
#include <net/firewire.h>
#include <net/if_arp.h>
#include <net/if_types.h>
#ifdef __DragonFly__
#include <bus/firewire/firewire.h>
#include <bus/firewire/firewirereg.h>
#include "if_fwipvar.h"
#else
#include <dev/firewire/firewire.h>
#include <dev/firewire/firewirereg.h>
#include <dev/firewire/iec13213.h>
#include <dev/firewire/if_fwipvar.h>
#endif
/*
* We really need a mechanism for allocating regions in the FIFO
* address space. We pick a address in the OHCI controller's 'middle'
* address space. This means that the controller will automatically
* send responses for us, which is fine since we don't have any
* important information to put in the response anyway.
*/
#define INET_FIFO 0xfffe00000000LL
#define FWIPDEBUG if (fwipdebug) if_printf
#define TX_MAX_QUEUE (FWMAXQUEUE - 1)
/* network interface */
static void fwip_start (struct ifnet *);
static int fwip_ioctl (struct ifnet *, u_long, caddr_t);
static void fwip_init (void *);
static void fwip_post_busreset (void *);
static void fwip_output_callback (struct fw_xfer *);
static void fwip_async_output (struct fwip_softc *, struct ifnet *);
static void fwip_start_send (void *, int);
static void fwip_stream_input (struct fw_xferq *);
static void fwip_unicast_input(struct fw_xfer *);
static int fwipdebug = 0;
static int broadcast_channel = 0xc0 | 0x1f; /* tag | channel(XXX) */
static int tx_speed = 2;
static int rx_queue_len = FWMAXQUEUE;
MALLOC_DEFINE(M_FWIP, "if_fwip", "IP over FireWire interface");
SYSCTL_INT(_debug, OID_AUTO, if_fwip_debug, CTLFLAG_RW, &fwipdebug, 0, "");
SYSCTL_DECL(_hw_firewire);
SYSCTL_NODE(_hw_firewire, OID_AUTO, fwip, CTLFLAG_RD, 0,
"Firewire ip subsystem");
SYSCTL_INT(_hw_firewire_fwip, OID_AUTO, rx_queue_len, CTLFLAG_RW, &rx_queue_len,
0, "Length of the receive queue");
TUNABLE_INT("hw.firewire.fwip.rx_queue_len", &rx_queue_len);
#ifdef DEVICE_POLLING
static poll_handler_t fwip_poll;
static void
fwip_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
{
struct fwip_softc *fwip;
struct firewire_comm *fc;
if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
return;
fwip = ((struct fwip_eth_softc *)ifp->if_softc)->fwip;
fc = fwip->fd.fc;
fc->poll(fc, (cmd == POLL_AND_CHECK_STATUS)?0:1, count);
}
#endif /* DEVICE_POLLING */
static void
fwip_identify(driver_t *driver, device_t parent)
{
BUS_ADD_CHILD(parent, 0, "fwip", device_get_unit(parent));
}
static int
fwip_probe(device_t dev)
{
device_t pa;
pa = device_get_parent(dev);
if(device_get_unit(dev) != device_get_unit(pa)){
return(ENXIO);
}
device_set_desc(dev, "IP over FireWire");
return (0);
}
static int
fwip_attach(device_t dev)
{
struct fwip_softc *fwip;
struct ifnet *ifp;
int unit, s;
struct fw_hwaddr *hwaddr;
fwip = ((struct fwip_softc *)device_get_softc(dev));
unit = device_get_unit(dev);
ifp = fwip->fw_softc.fwip_ifp = if_alloc(IFT_IEEE1394);
if (ifp == NULL)
return (ENOSPC);
mtx_init(&fwip->mtx, "fwip", NULL, MTX_DEF);
/* XXX */
fwip->dma_ch = -1;
fwip->fd.fc = device_get_ivars(dev);
if (tx_speed < 0)
tx_speed = fwip->fd.fc->speed;
fwip->fd.dev = dev;
fwip->fd.post_explore = NULL;
fwip->fd.post_busreset = fwip_post_busreset;
fwip->fw_softc.fwip = fwip;
TASK_INIT(&fwip->start_send, 0, fwip_start_send, fwip);
/*
* Encode our hardware the way that arp likes it.
*/
hwaddr = &IFP2FWC(fwip->fw_softc.fwip_ifp)->fc_hwaddr;
hwaddr->sender_unique_ID_hi = htonl(fwip->fd.fc->eui.hi);
hwaddr->sender_unique_ID_lo = htonl(fwip->fd.fc->eui.lo);
hwaddr->sender_max_rec = fwip->fd.fc->maxrec;
hwaddr->sspd = fwip->fd.fc->speed;
hwaddr->sender_unicast_FIFO_hi = htons((uint16_t)(INET_FIFO >> 32));
hwaddr->sender_unicast_FIFO_lo = htonl((uint32_t)INET_FIFO);
/* fill the rest and attach interface */
ifp->if_softc = &fwip->fw_softc;
#if __FreeBSD_version >= 501113 || defined(__DragonFly__)
if_initname(ifp, device_get_name(dev), unit);
#else
ifp->if_unit = unit;
ifp->if_name = "fwip";
#endif
ifp->if_init = fwip_init;
ifp->if_start = fwip_start;
ifp->if_ioctl = fwip_ioctl;
ifp->if_flags = (IFF_BROADCAST|IFF_SIMPLEX|IFF_MULTICAST);
ifp->if_snd.ifq_maxlen = TX_MAX_QUEUE;
#ifdef DEVICE_POLLING
ifp->if_capabilities |= IFCAP_POLLING;
#endif
s = splimp();
firewire_ifattach(ifp, hwaddr);
splx(s);
FWIPDEBUG(ifp, "interface created\n");
return 0;
}
static void
fwip_stop(struct fwip_softc *fwip)
{
struct firewire_comm *fc;
struct fw_xferq *xferq;
struct ifnet *ifp = fwip->fw_softc.fwip_ifp;
struct fw_xfer *xfer, *next;
int i;
fc = fwip->fd.fc;
if (fwip->dma_ch >= 0) {
xferq = fc->ir[fwip->dma_ch];
if (xferq->flag & FWXFERQ_RUNNING)
fc->irx_disable(fc, fwip->dma_ch);
xferq->flag &=
~(FWXFERQ_MODEMASK | FWXFERQ_OPEN | FWXFERQ_STREAM |
FWXFERQ_EXTBUF | FWXFERQ_HANDLER | FWXFERQ_CHTAGMASK);
xferq->hand = NULL;
for (i = 0; i < xferq->bnchunk; i ++)
m_freem(xferq->bulkxfer[i].mbuf);
free(xferq->bulkxfer, M_FWIP);
fw_bindremove(fc, &fwip->fwb);
for (xfer = STAILQ_FIRST(&fwip->fwb.xferlist); xfer != NULL;
xfer = next) {
next = STAILQ_NEXT(xfer, link);
fw_xfer_free(xfer);
}
for (xfer = STAILQ_FIRST(&fwip->xferlist); xfer != NULL;
xfer = next) {
next = STAILQ_NEXT(xfer, link);
fw_xfer_free(xfer);
}
STAILQ_INIT(&fwip->xferlist);
xferq->bulkxfer = NULL;
fwip->dma_ch = -1;
}
#if defined(__FreeBSD__)
ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
#else
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
#endif
}
static int
fwip_detach(device_t dev)
{
struct fwip_softc *fwip;
struct ifnet *ifp;
int s;
fwip = (struct fwip_softc *)device_get_softc(dev);
ifp = fwip->fw_softc.fwip_ifp;
#ifdef DEVICE_POLLING
if (ifp->if_capenable & IFCAP_POLLING)
ether_poll_deregister(ifp);
#endif
s = splimp();
fwip_stop(fwip);
firewire_ifdetach(ifp);
if_free(ifp);
mtx_destroy(&fwip->mtx);
splx(s);
return 0;
}
static void
fwip_init(void *arg)
{
struct fwip_softc *fwip = ((struct fwip_eth_softc *)arg)->fwip;
struct firewire_comm *fc;
struct ifnet *ifp = fwip->fw_softc.fwip_ifp;
struct fw_xferq *xferq;
struct fw_xfer *xfer;
struct mbuf *m;
int i;
FWIPDEBUG(ifp, "initializing\n");
fc = fwip->fd.fc;
#define START 0
if (fwip->dma_ch < 0) {
fwip->dma_ch = fw_open_isodma(fc, /* tx */0);
if (fwip->dma_ch < 0)
return;
xferq = fc->ir[fwip->dma_ch];
xferq->flag |= FWXFERQ_EXTBUF |
FWXFERQ_HANDLER | FWXFERQ_STREAM;
xferq->flag &= ~0xff;
xferq->flag |= broadcast_channel & 0xff;
/* register fwip_input handler */
xferq->sc = (caddr_t) fwip;
xferq->hand = fwip_stream_input;
xferq->bnchunk = rx_queue_len;
xferq->bnpacket = 1;
xferq->psize = MCLBYTES;
xferq->queued = 0;
xferq->buf = NULL;
xferq->bulkxfer = (struct fw_bulkxfer *) malloc(
sizeof(struct fw_bulkxfer) * xferq->bnchunk,
M_FWIP, M_WAITOK);
if (xferq->bulkxfer == NULL) {
printf("if_fwip: malloc failed\n");
return;
}
STAILQ_INIT(&xferq->stvalid);
STAILQ_INIT(&xferq->stfree);
STAILQ_INIT(&xferq->stdma);
xferq->stproc = NULL;
for (i = 0; i < xferq->bnchunk; i ++) {
m = m_getcl(M_WAIT, MT_DATA, M_PKTHDR);
xferq->bulkxfer[i].mbuf = m;
m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
STAILQ_INSERT_TAIL(&xferq->stfree,
&xferq->bulkxfer[i], link);
}
fwip->fwb.start = INET_FIFO;
fwip->fwb.end = INET_FIFO + 16384; /* S3200 packet size */
/* pre-allocate xfer */
STAILQ_INIT(&fwip->fwb.xferlist);
for (i = 0; i < rx_queue_len; i ++) {
xfer = fw_xfer_alloc(M_FWIP);
if (xfer == NULL)
break;
m = m_getcl(M_WAIT, MT_DATA, M_PKTHDR);
xfer->recv.payload = mtod(m, uint32_t *);
xfer->recv.pay_len = MCLBYTES;
xfer->hand = fwip_unicast_input;
xfer->fc = fc;
xfer->sc = (caddr_t)fwip;
xfer->mbuf = m;
STAILQ_INSERT_TAIL(&fwip->fwb.xferlist, xfer, link);
}
fw_bindadd(fc, &fwip->fwb);
STAILQ_INIT(&fwip->xferlist);
for (i = 0; i < TX_MAX_QUEUE; i++) {
xfer = fw_xfer_alloc(M_FWIP);
if (xfer == NULL)
break;
xfer->send.spd = tx_speed;
xfer->fc = fwip->fd.fc;
xfer->sc = (caddr_t)fwip;
xfer->hand = fwip_output_callback;
STAILQ_INSERT_TAIL(&fwip->xferlist, xfer, link);
}
} else
xferq = fc->ir[fwip->dma_ch];
fwip->last_dest.hi = 0;
fwip->last_dest.lo = 0;
/* start dma */
if ((xferq->flag & FWXFERQ_RUNNING) == 0)
fc->irx_enable(fc, fwip->dma_ch);
#if defined(__FreeBSD__)
ifp->if_drv_flags |= IFF_DRV_RUNNING;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
#else
ifp->if_flags |= IFF_RUNNING;
ifp->if_flags &= ~IFF_OACTIVE;
#endif
#if 0
/* attempt to start output */
fwip_start(ifp);
#endif
}
static int
fwip_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
{
struct fwip_softc *fwip = ((struct fwip_eth_softc *)ifp->if_softc)->fwip;
int s, error;
switch (cmd) {
case SIOCSIFFLAGS:
s = splimp();
if (ifp->if_flags & IFF_UP) {
#if defined(__FreeBSD__)
if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
#else
if (!(ifp->if_flags & IFF_RUNNING))
#endif
fwip_init(&fwip->fw_softc);
} else {
#if defined(__FreeBSD__)
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
#else
if (ifp->if_flags & IFF_RUNNING)
#endif
fwip_stop(fwip);
}
splx(s);
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
break;
case SIOCSIFCAP:
#ifdef DEVICE_POLLING
{
struct ifreq *ifr = (struct ifreq *) data;
struct firewire_comm *fc = fc = fwip->fd.fc;
if (ifr->ifr_reqcap & IFCAP_POLLING &&
!(ifp->if_capenable & IFCAP_POLLING)) {
error = ether_poll_register(fwip_poll, ifp);
if (error)
return(error);
/* Disable interrupts */
fc->set_intr(fc, 0);
ifp->if_capenable |= IFCAP_POLLING;
return (error);
}
if (!(ifr->ifr_reqcap & IFCAP_POLLING) &&
ifp->if_capenable & IFCAP_POLLING) {
error = ether_poll_deregister(ifp);
/* Enable interrupts. */
fc->set_intr(fc, 1);
ifp->if_capenable &= ~IFCAP_POLLING;
return (error);
}
}
#endif /* DEVICE_POLLING */
break;
#if defined(__FreeBSD__) && __FreeBSD_version >= 500000
default:
#else
case SIOCSIFADDR:
case SIOCGIFADDR:
case SIOCSIFMTU:
#endif
s = splimp();
error = firewire_ioctl(ifp, cmd, data);
splx(s);
return (error);
#if defined(__DragonFly__) || __FreeBSD_version < 500000
default:
return (EINVAL);
#endif
}
return (0);
}
static void
fwip_post_busreset(void *arg)
{
struct fwip_softc *fwip = arg;
struct crom_src *src;
struct crom_chunk *root;
src = fwip->fd.fc->crom_src;
root = fwip->fd.fc->crom_root;
/* RFC2734 IPv4 over IEEE1394 */
bzero(&fwip->unit4, sizeof(struct crom_chunk));
crom_add_chunk(src, root, &fwip->unit4, CROM_UDIR);
crom_add_entry(&fwip->unit4, CSRKEY_SPEC, CSRVAL_IETF);
crom_add_simple_text(src, &fwip->unit4, &fwip->spec4, "IANA");
crom_add_entry(&fwip->unit4, CSRKEY_VER, 1);
crom_add_simple_text(src, &fwip->unit4, &fwip->ver4, "IPv4");
/* RFC3146 IPv6 over IEEE1394 */
bzero(&fwip->unit6, sizeof(struct crom_chunk));
crom_add_chunk(src, root, &fwip->unit6, CROM_UDIR);
crom_add_entry(&fwip->unit6, CSRKEY_SPEC, CSRVAL_IETF);
crom_add_simple_text(src, &fwip->unit6, &fwip->spec6, "IANA");
crom_add_entry(&fwip->unit6, CSRKEY_VER, 2);
crom_add_simple_text(src, &fwip->unit6, &fwip->ver6, "IPv6");
fwip->last_dest.hi = 0;
fwip->last_dest.lo = 0;
firewire_busreset(fwip->fw_softc.fwip_ifp);
}
static void
fwip_output_callback(struct fw_xfer *xfer)
{
struct fwip_softc *fwip;
struct ifnet *ifp;
int s;
fwip = (struct fwip_softc *)xfer->sc;
ifp = fwip->fw_softc.fwip_ifp;
/* XXX error check */
FWIPDEBUG(ifp, "resp = %d\n", xfer->resp);
if (xfer->resp != 0)
ifp->if_oerrors ++;
m_freem(xfer->mbuf);
fw_xfer_unload(xfer);
s = splimp();
FWIP_LOCK(fwip);
STAILQ_INSERT_TAIL(&fwip->xferlist, xfer, link);
FWIP_UNLOCK(fwip);
splx(s);
/* for queue full */
if (ifp->if_snd.ifq_head != NULL) {
fwip_start(ifp);
}
}
static void
fwip_start(struct ifnet *ifp)
{
struct fwip_softc *fwip = ((struct fwip_eth_softc *)ifp->if_softc)->fwip;
int s;
FWIPDEBUG(ifp, "starting\n");
if (fwip->dma_ch < 0) {
struct mbuf *m = NULL;
FWIPDEBUG(ifp, "not ready\n");
s = splimp();
do {
IF_DEQUEUE(&ifp->if_snd, m);
if (m != NULL)
m_freem(m);
ifp->if_oerrors ++;
} while (m != NULL);
splx(s);
return;
}
s = splimp();
#if defined(__FreeBSD__)
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
#else
ifp->if_flags |= IFF_OACTIVE;
#endif
if (ifp->if_snd.ifq_len != 0)
fwip_async_output(fwip, ifp);
#if defined(__FreeBSD__)
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
#else
ifp->if_flags &= ~IFF_OACTIVE;
#endif
splx(s);
}
/* Async. stream output */
static void
fwip_async_output(struct fwip_softc *fwip, struct ifnet *ifp)
{
struct firewire_comm *fc = fwip->fd.fc;
struct mbuf *m;
struct m_tag *mtag;
struct fw_hwaddr *destfw;
struct fw_xfer *xfer;
struct fw_xferq *xferq;
struct fw_pkt *fp;
uint16_t nodeid;
int error;
int i = 0;
xfer = NULL;
xferq = fc->atq;
while ((xferq->queued < xferq->maxq - 1) &&
(ifp->if_snd.ifq_head != NULL)) {
FWIP_LOCK(fwip);
xfer = STAILQ_FIRST(&fwip->xferlist);
if (xfer == NULL) {
FWIP_UNLOCK(fwip);
#if 0
printf("if_fwip: lack of xfer\n");
#endif
break;
}
STAILQ_REMOVE_HEAD(&fwip->xferlist, link);
FWIP_UNLOCK(fwip);
IF_DEQUEUE(&ifp->if_snd, m);
if (m == NULL) {
FWIP_LOCK(fwip);
STAILQ_INSERT_HEAD(&fwip->xferlist, xfer, link);
FWIP_UNLOCK(fwip);
break;
}
/*
* Dig out the link-level address which
* firewire_output got via arp or neighbour
* discovery. If we don't have a link-level address,
* just stick the thing on the broadcast channel.
*/
mtag = m_tag_locate(m, MTAG_FIREWIRE, MTAG_FIREWIRE_HWADDR, 0);
if (mtag == NULL)
destfw = 0;
else
destfw = (struct fw_hwaddr *) (mtag + 1);
/*
* We don't do any bpf stuff here - the generic code
* in firewire_output gives the packet to bpf before
* it adds the link-level encapsulation.
*/
/*
* Put the mbuf in the xfer early in case we hit an
* error case below - fwip_output_callback will free
* the mbuf.
*/
xfer->mbuf = m;
/*
* We use the arp result (if any) to add a suitable firewire
* packet header before handing off to the bus.
*/
fp = &xfer->send.hdr;
nodeid = FWLOCALBUS | fc->nodeid;
if ((m->m_flags & M_BCAST) || !destfw) {
/*
* Broadcast packets are sent as GASP packets with
* specifier ID 0x00005e, version 1 on the broadcast
* channel. To be conservative, we send at the
* slowest possible speed.
*/
uint32_t *p;
M_PREPEND(m, 2*sizeof(uint32_t), M_DONTWAIT);
p = mtod(m, uint32_t *);
fp->mode.stream.len = m->m_pkthdr.len;
fp->mode.stream.chtag = broadcast_channel;
fp->mode.stream.tcode = FWTCODE_STREAM;
fp->mode.stream.sy = 0;
xfer->send.spd = 0;
p[0] = htonl(nodeid << 16);
p[1] = htonl((0x5e << 24) | 1);
} else {
/*
* Unicast packets are sent as block writes to the
* target's unicast fifo address. If we can't
* find the node address, we just give up. We
* could broadcast it but that might overflow
* the packet size limitations due to the
* extra GASP header. Note: the hardware
* address is stored in network byte order to
* make life easier for ARP.
*/
struct fw_device *fd;
struct fw_eui64 eui;
eui.hi = ntohl(destfw->sender_unique_ID_hi);
eui.lo = ntohl(destfw->sender_unique_ID_lo);
if (fwip->last_dest.hi != eui.hi ||
fwip->last_dest.lo != eui.lo) {
fd = fw_noderesolve_eui64(fc, &eui);
if (!fd) {
/* error */
ifp->if_oerrors ++;
/* XXX set error code */
fwip_output_callback(xfer);
continue;
}
fwip->last_hdr.mode.wreqb.dst = FWLOCALBUS | fd->dst;
fwip->last_hdr.mode.wreqb.tlrt = 0;
fwip->last_hdr.mode.wreqb.tcode = FWTCODE_WREQB;
fwip->last_hdr.mode.wreqb.pri = 0;
fwip->last_hdr.mode.wreqb.src = nodeid;
fwip->last_hdr.mode.wreqb.dest_hi =
ntohs(destfw->sender_unicast_FIFO_hi);
fwip->last_hdr.mode.wreqb.dest_lo =
ntohl(destfw->sender_unicast_FIFO_lo);
fwip->last_hdr.mode.wreqb.extcode = 0;
fwip->last_dest = eui;
}
fp->mode.wreqb = fwip->last_hdr.mode.wreqb;
fp->mode.wreqb.len = m->m_pkthdr.len;
xfer->send.spd = min(destfw->sspd, fc->speed);
}
xfer->send.pay_len = m->m_pkthdr.len;
error = fw_asyreq(fc, -1, xfer);
if (error == EAGAIN) {
/*
* We ran out of tlabels - requeue the packet
* for later transmission.
*/
xfer->mbuf = 0;
FWIP_LOCK(fwip);
STAILQ_INSERT_TAIL(&fwip->xferlist, xfer, link);
FWIP_UNLOCK(fwip);
IF_PREPEND(&ifp->if_snd, m);
break;
}
if (error) {
/* error */
ifp->if_oerrors ++;
/* XXX set error code */
fwip_output_callback(xfer);
continue;
} else {
ifp->if_opackets ++;
i++;
}
}
#if 0
if (i > 1)
printf("%d queued\n", i);
#endif
if (i > 0)
xferq->start(fc);
}
static void
fwip_start_send (void *arg, int count)
{
struct fwip_softc *fwip = arg;
fwip->fd.fc->atq->start(fwip->fd.fc);
}
/* Async. stream output */
static void
fwip_stream_input(struct fw_xferq *xferq)
{
struct mbuf *m, *m0;
struct m_tag *mtag;
struct ifnet *ifp;
struct fwip_softc *fwip;
struct fw_bulkxfer *sxfer;
struct fw_pkt *fp;
uint16_t src;
uint32_t *p;
fwip = (struct fwip_softc *)xferq->sc;
ifp = fwip->fw_softc.fwip_ifp;
while ((sxfer = STAILQ_FIRST(&xferq->stvalid)) != NULL) {
STAILQ_REMOVE_HEAD(&xferq->stvalid, link);
fp = mtod(sxfer->mbuf, struct fw_pkt *);
if (fwip->fd.fc->irx_post != NULL)
fwip->fd.fc->irx_post(fwip->fd.fc, fp->mode.ld);
m = sxfer->mbuf;
/* insert new rbuf */
sxfer->mbuf = m0 = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
if (m0 != NULL) {
m0->m_len = m0->m_pkthdr.len = m0->m_ext.ext_size;
STAILQ_INSERT_TAIL(&xferq->stfree, sxfer, link);
} else
printf("fwip_as_input: m_getcl failed\n");
/*
* We must have a GASP header - leave the
* encapsulation sanity checks to the generic
* code. Remeber that we also have the firewire async
* stream header even though that isn't accounted for
* in mode.stream.len.
*/
if (sxfer->resp != 0 || fp->mode.stream.len <
2*sizeof(uint32_t)) {
m_freem(m);
ifp->if_ierrors ++;
continue;
}
m->m_len = m->m_pkthdr.len = fp->mode.stream.len
+ sizeof(fp->mode.stream);
/*
* If we received the packet on the broadcast channel,
* mark it as broadcast, otherwise we assume it must
* be multicast.
*/
if (fp->mode.stream.chtag == broadcast_channel)
m->m_flags |= M_BCAST;
else
m->m_flags |= M_MCAST;
/*
* Make sure we recognise the GASP specifier and
* version.
*/
p = mtod(m, uint32_t *);
if ((((ntohl(p[1]) & 0xffff) << 8) | ntohl(p[2]) >> 24) != 0x00005e
|| (ntohl(p[2]) & 0xffffff) != 1) {
FWIPDEBUG(ifp, "Unrecognised GASP header %#08x %#08x\n",
ntohl(p[1]), ntohl(p[2]));
m_freem(m);
ifp->if_ierrors ++;
continue;
}
/*
* Record the sender ID for possible BPF usage.
*/
src = ntohl(p[1]) >> 16;
if (bpf_peers_present(ifp->if_bpf)) {
mtag = m_tag_alloc(MTAG_FIREWIRE,
MTAG_FIREWIRE_SENDER_EUID,
2*sizeof(uint32_t), M_NOWAIT);
if (mtag) {
/* bpf wants it in network byte order */
struct fw_device *fd;
uint32_t *p = (uint32_t *) (mtag + 1);
fd = fw_noderesolve_nodeid(fwip->fd.fc,
src & 0x3f);
if (fd) {
p[0] = htonl(fd->eui.hi);
p[1] = htonl(fd->eui.lo);
} else {
p[0] = 0;
p[1] = 0;
}
m_tag_prepend(m, mtag);
}
}
/*
* Trim off the GASP header
*/
m_adj(m, 3*sizeof(uint32_t));
m->m_pkthdr.rcvif = ifp;
firewire_input(ifp, m, src);
ifp->if_ipackets ++;
}
if (STAILQ_FIRST(&xferq->stfree) != NULL)
fwip->fd.fc->irx_enable(fwip->fd.fc, fwip->dma_ch);
}
static __inline void
fwip_unicast_input_recycle(struct fwip_softc *fwip, struct fw_xfer *xfer)
{
struct mbuf *m;
/*
* We have finished with a unicast xfer. Allocate a new
* cluster and stick it on the back of the input queue.
*/
m = m_getcl(M_WAIT, MT_DATA, M_PKTHDR);
xfer->mbuf = m;
xfer->recv.payload = mtod(m, uint32_t *);
xfer->recv.pay_len = MCLBYTES;
xfer->mbuf = m;
STAILQ_INSERT_TAIL(&fwip->fwb.xferlist, xfer, link);
}
static void
fwip_unicast_input(struct fw_xfer *xfer)
{
uint64_t address;
struct mbuf *m;
struct m_tag *mtag;
struct ifnet *ifp;
struct fwip_softc *fwip;
struct fw_pkt *fp;
//struct fw_pkt *sfp;
int rtcode;
fwip = (struct fwip_softc *)xfer->sc;
ifp = fwip->fw_softc.fwip_ifp;
m = xfer->mbuf;
xfer->mbuf = 0;
fp = &xfer->recv.hdr;
/*
* Check the fifo address - we only accept addresses of
* exactly INET_FIFO.
*/
address = ((uint64_t)fp->mode.wreqb.dest_hi << 32)
| fp->mode.wreqb.dest_lo;
if (fp->mode.wreqb.tcode != FWTCODE_WREQB) {
rtcode = FWRCODE_ER_TYPE;
} else if (address != INET_FIFO) {
rtcode = FWRCODE_ER_ADDR;
} else {
rtcode = FWRCODE_COMPLETE;
}
/*
* Pick up a new mbuf and stick it on the back of the receive
* queue.
*/
fwip_unicast_input_recycle(fwip, xfer);
/*
* If we've already rejected the packet, give up now.
*/
if (rtcode != FWRCODE_COMPLETE) {
m_freem(m);
ifp->if_ierrors ++;
return;
}
if (bpf_peers_present(ifp->if_bpf)) {
/*
* Record the sender ID for possible BPF usage.
*/
mtag = m_tag_alloc(MTAG_FIREWIRE, MTAG_FIREWIRE_SENDER_EUID,
2*sizeof(uint32_t), M_NOWAIT);
if (mtag) {
/* bpf wants it in network byte order */
struct fw_device *fd;
uint32_t *p = (uint32_t *) (mtag + 1);
fd = fw_noderesolve_nodeid(fwip->fd.fc,
fp->mode.wreqb.src & 0x3f);
if (fd) {
p[0] = htonl(fd->eui.hi);
p[1] = htonl(fd->eui.lo);
} else {
p[0] = 0;
p[1] = 0;
}
m_tag_prepend(m, mtag);
}
}
/*
* Hand off to the generic encapsulation code. We don't use
* ifp->if_input so that we can pass the source nodeid as an
* argument to facilitate link-level fragment reassembly.
*/
m->m_len = m->m_pkthdr.len = fp->mode.wreqb.len;
m->m_pkthdr.rcvif = ifp;
firewire_input(ifp, m, fp->mode.wreqb.src);
ifp->if_ipackets ++;
}
static devclass_t fwip_devclass;
static device_method_t fwip_methods[] = {
/* device interface */
DEVMETHOD(device_identify, fwip_identify),
DEVMETHOD(device_probe, fwip_probe),
DEVMETHOD(device_attach, fwip_attach),
DEVMETHOD(device_detach, fwip_detach),
{ 0, 0 }
};
static driver_t fwip_driver = {
"fwip",
fwip_methods,
sizeof(struct fwip_softc),
};
#ifdef __DragonFly__
DECLARE_DUMMY_MODULE(fwip);
#endif
DRIVER_MODULE(fwip, firewire, fwip_driver, fwip_devclass, 0, 0);
MODULE_VERSION(fwip, 1);
MODULE_DEPEND(fwip, firewire, 1, 1, 1);