freebsd-nq/sys/dev/liquidio/base/lio_droq.c
Sean Bruno 3de0952fba Enable i386 build of the Cavium LiquidIO driver (lio) module.
Submitted by:	pkanneganti@cavium.com (Prasad V Kanneganti)
MFC after:	1 week
Sponsored by:	Cavium Networks
Differential Revision:	https://reviews.freebsd.org/D12415
2017-10-25 17:49:17 +00:00

869 lines
23 KiB
C

/*
* BSD LICENSE
*
* Copyright(c) 2017 Cavium, Inc.. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Cavium, Inc. nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER(S) OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*$FreeBSD$*/
#include "lio_bsd.h"
#include "lio_common.h"
#include "lio_droq.h"
#include "lio_iq.h"
#include "lio_response_manager.h"
#include "lio_device.h"
#include "lio_main.h"
#include "cn23xx_pf_device.h"
#include "lio_network.h"
struct __dispatch {
struct lio_stailq_node node;
struct lio_recv_info *rinfo;
lio_dispatch_fn_t disp_fn;
};
void *lio_get_dispatch_arg(struct octeon_device *oct,
uint16_t opcode, uint16_t subcode);
/*
* Get the argument that the user set when registering dispatch
* function for a given opcode/subcode.
* @param octeon_dev - the octeon device pointer.
* @param opcode - the opcode for which the dispatch argument
* is to be checked.
* @param subcode - the subcode for which the dispatch argument
* is to be checked.
* @return Success: void * (argument to the dispatch function)
* @return Failure: NULL
*
*/
void *
lio_get_dispatch_arg(struct octeon_device *octeon_dev,
uint16_t opcode, uint16_t subcode)
{
struct lio_stailq_node *dispatch;
void *fn_arg = NULL;
int idx;
uint16_t combined_opcode;
combined_opcode = LIO_OPCODE_SUBCODE(opcode, subcode);
idx = combined_opcode & LIO_OPCODE_MASK;
mtx_lock(&octeon_dev->dispatch.lock);
if (octeon_dev->dispatch.count == 0) {
mtx_unlock(&octeon_dev->dispatch.lock);
return (NULL);
}
if (octeon_dev->dispatch.dlist[idx].opcode == combined_opcode) {
fn_arg = octeon_dev->dispatch.dlist[idx].arg;
} else {
STAILQ_FOREACH(dispatch,
&octeon_dev->dispatch.dlist[idx].head, entries) {
if (((struct lio_dispatch *)dispatch)->opcode ==
combined_opcode) {
fn_arg = ((struct lio_dispatch *)dispatch)->arg;
break;
}
}
}
mtx_unlock(&octeon_dev->dispatch.lock);
return (fn_arg);
}
/*
* Check for packets on Droq. This function should be called with lock held.
* @param droq - Droq on which count is checked.
* @return Returns packet count.
*/
uint32_t
lio_droq_check_hw_for_pkts(struct lio_droq *droq)
{
struct octeon_device *oct = droq->oct_dev;
uint32_t last_count;
uint32_t pkt_count = 0;
pkt_count = lio_read_csr32(oct, droq->pkts_sent_reg);
last_count = pkt_count - droq->pkt_count;
droq->pkt_count = pkt_count;
/* we shall write to cnts at the end of processing */
if (last_count)
atomic_add_int(&droq->pkts_pending, last_count);
return (last_count);
}
static void
lio_droq_compute_max_packet_bufs(struct lio_droq *droq)
{
uint32_t count = 0;
/*
* max_empty_descs is the max. no. of descs that can have no buffers.
* If the empty desc count goes beyond this value, we cannot safely
* read in a 64K packet sent by Octeon
* (64K is max pkt size from Octeon)
*/
droq->max_empty_descs = 0;
do {
droq->max_empty_descs++;
count += droq->buffer_size;
} while (count < (64 * 1024));
droq->max_empty_descs = droq->max_count - droq->max_empty_descs;
}
static void
lio_droq_reset_indices(struct lio_droq *droq)
{
droq->read_idx = 0;
droq->refill_idx = 0;
droq->refill_count = 0;
atomic_store_rel_int(&droq->pkts_pending, 0);
}
static void
lio_droq_destroy_ring_buffers(struct octeon_device *oct,
struct lio_droq *droq)
{
uint32_t i;
for (i = 0; i < droq->max_count; i++) {
if (droq->recv_buf_list[i].buffer != NULL) {
lio_recv_buffer_free(droq->recv_buf_list[i].buffer);
droq->recv_buf_list[i].buffer = NULL;
}
}
lio_droq_reset_indices(droq);
}
static int
lio_droq_setup_ring_buffers(struct octeon_device *oct,
struct lio_droq *droq)
{
struct lio_droq_desc *desc_ring = droq->desc_ring;
void *buf;
uint32_t i;
for (i = 0; i < droq->max_count; i++) {
buf = lio_recv_buffer_alloc(droq->buffer_size);
if (buf == NULL) {
lio_dev_err(oct, "%s buffer alloc failed\n",
__func__);
droq->stats.rx_alloc_failure++;
return (-ENOMEM);
}
droq->recv_buf_list[i].buffer = buf;
droq->recv_buf_list[i].data = ((struct mbuf *)buf)->m_data;
desc_ring[i].info_ptr = 0;
desc_ring[i].buffer_ptr =
lio_map_ring(oct->device, droq->recv_buf_list[i].buffer,
droq->buffer_size);
}
lio_droq_reset_indices(droq);
lio_droq_compute_max_packet_bufs(droq);
return (0);
}
int
lio_delete_droq(struct octeon_device *oct, uint32_t q_no)
{
struct lio_droq *droq = oct->droq[q_no];
lio_dev_dbg(oct, "%s[%d]\n", __func__, q_no);
while (taskqueue_cancel(droq->droq_taskqueue, &droq->droq_task, NULL))
taskqueue_drain(droq->droq_taskqueue, &droq->droq_task);
taskqueue_free(droq->droq_taskqueue);
droq->droq_taskqueue = NULL;
lio_droq_destroy_ring_buffers(oct, droq);
free(droq->recv_buf_list, M_DEVBUF);
if (droq->desc_ring != NULL)
lio_dma_free((droq->max_count * LIO_DROQ_DESC_SIZE),
droq->desc_ring);
oct->io_qmask.oq &= ~(1ULL << q_no);
bzero(oct->droq[q_no], sizeof(struct lio_droq));
oct->num_oqs--;
return (0);
}
void
lio_droq_bh(void *ptr, int pending __unused)
{
struct lio_droq *droq = ptr;
struct octeon_device *oct = droq->oct_dev;
struct lio_instr_queue *iq = oct->instr_queue[droq->q_no];
int reschedule, tx_done = 1;
reschedule = lio_droq_process_packets(oct, droq, oct->rx_budget);
if (atomic_load_acq_int(&iq->instr_pending))
tx_done = lio_flush_iq(oct, iq, oct->tx_budget);
if (reschedule || !tx_done)
taskqueue_enqueue(droq->droq_taskqueue, &droq->droq_task);
else
lio_enable_irq(droq, iq);
}
int
lio_init_droq(struct octeon_device *oct, uint32_t q_no,
uint32_t num_descs, uint32_t desc_size, void *app_ctx)
{
struct lio_droq *droq;
unsigned long size;
uint32_t c_buf_size = 0, c_num_descs = 0, c_pkts_per_intr = 0;
uint32_t c_refill_threshold = 0, desc_ring_size = 0;
lio_dev_dbg(oct, "%s[%d]\n", __func__, q_no);
droq = oct->droq[q_no];
bzero(droq, LIO_DROQ_SIZE);
droq->oct_dev = oct;
droq->q_no = q_no;
if (app_ctx != NULL)
droq->app_ctx = app_ctx;
else
droq->app_ctx = (void *)(size_t)q_no;
c_num_descs = num_descs;
c_buf_size = desc_size;
if (LIO_CN23XX_PF(oct)) {
struct lio_config *conf23 = LIO_CHIP_CONF(oct, cn23xx_pf);
c_pkts_per_intr =
(uint32_t)LIO_GET_OQ_PKTS_PER_INTR_CFG(conf23);
c_refill_threshold =
(uint32_t)LIO_GET_OQ_REFILL_THRESHOLD_CFG(conf23);
} else {
return (1);
}
droq->max_count = c_num_descs;
droq->buffer_size = c_buf_size;
desc_ring_size = droq->max_count * LIO_DROQ_DESC_SIZE;
droq->desc_ring = lio_dma_alloc(desc_ring_size, &droq->desc_ring_dma);
if (droq->desc_ring == NULL) {
lio_dev_err(oct, "Output queue %d ring alloc failed\n", q_no);
return (1);
}
lio_dev_dbg(oct, "droq[%d]: desc_ring: virt: 0x%p, dma: %llx\n", q_no,
droq->desc_ring, LIO_CAST64(droq->desc_ring_dma));
lio_dev_dbg(oct, "droq[%d]: num_desc: %d\n", q_no, droq->max_count);
size = droq->max_count * LIO_DROQ_RECVBUF_SIZE;
droq->recv_buf_list =
(struct lio_recv_buffer *)malloc(size, M_DEVBUF,
M_NOWAIT | M_ZERO);
if (droq->recv_buf_list == NULL) {
lio_dev_err(oct, "Output queue recv buf list alloc failed\n");
goto init_droq_fail;
}
if (lio_droq_setup_ring_buffers(oct, droq))
goto init_droq_fail;
droq->pkts_per_intr = c_pkts_per_intr;
droq->refill_threshold = c_refill_threshold;
lio_dev_dbg(oct, "DROQ INIT: max_empty_descs: %d\n",
droq->max_empty_descs);
mtx_init(&droq->lock, "droq_lock", NULL, MTX_DEF);
STAILQ_INIT(&droq->dispatch_stq_head);
oct->fn_list.setup_oq_regs(oct, q_no);
oct->io_qmask.oq |= BIT_ULL(q_no);
/*
* Initialize the taskqueue that handles
* output queue packet processing.
*/
lio_dev_dbg(oct, "Initializing droq%d taskqueue\n", q_no);
TASK_INIT(&droq->droq_task, 0, lio_droq_bh, (void *)droq);
droq->droq_taskqueue = taskqueue_create_fast("lio_droq_task", M_NOWAIT,
taskqueue_thread_enqueue,
&droq->droq_taskqueue);
taskqueue_start_threads_cpuset(&droq->droq_taskqueue, 1, PI_NET,
&oct->ioq_vector[q_no].affinity_mask,
"lio%d_droq%d_task", oct->octeon_id,
q_no);
return (0);
init_droq_fail:
lio_delete_droq(oct, q_no);
return (1);
}
/*
* lio_create_recv_info
* Parameters:
* octeon_dev - pointer to the octeon device structure
* droq - droq in which the packet arrived.
* buf_cnt - no. of buffers used by the packet.
* idx - index in the descriptor for the first buffer in the packet.
* Description:
* Allocates a recv_info_t and copies the buffer addresses for packet data
* into the recv_pkt space which starts at an 8B offset from recv_info_t.
* Flags the descriptors for refill later. If available descriptors go
* below the threshold to receive a 64K pkt, new buffers are first allocated
* before the recv_pkt_t is created.
* This routine will be called in interrupt context.
* Returns:
* Success: Pointer to recv_info_t
* Failure: NULL.
* Locks:
* The droq->lock is held when this routine is called.
*/
static inline struct lio_recv_info *
lio_create_recv_info(struct octeon_device *octeon_dev, struct lio_droq *droq,
uint32_t buf_cnt, uint32_t idx)
{
struct lio_droq_info *info;
struct lio_recv_pkt *recv_pkt;
struct lio_recv_info *recv_info;
uint32_t bytes_left, i;
info = (struct lio_droq_info *)droq->recv_buf_list[idx].data;
recv_info = lio_alloc_recv_info(sizeof(struct __dispatch));
if (recv_info == NULL)
return (NULL);
recv_pkt = recv_info->recv_pkt;
recv_pkt->rh = info->rh;
recv_pkt->length = (uint32_t)info->length;
recv_pkt->buffer_count = (uint16_t)buf_cnt;
recv_pkt->octeon_id = (uint16_t)octeon_dev->octeon_id;
i = 0;
bytes_left = (uint32_t)info->length;
while (buf_cnt) {
recv_pkt->buffer_size[i] = (bytes_left >= droq->buffer_size) ?
droq->buffer_size : bytes_left;
recv_pkt->buffer_ptr[i] = droq->recv_buf_list[idx].buffer;
droq->recv_buf_list[idx].buffer = NULL;
idx = lio_incr_index(idx, 1, droq->max_count);
bytes_left -= droq->buffer_size;
i++;
buf_cnt--;
}
return (recv_info);
}
/*
* If we were not able to refill all buffers, try to move around
* the buffers that were not dispatched.
*/
static inline uint32_t
lio_droq_refill_pullup_descs(struct lio_droq *droq,
struct lio_droq_desc *desc_ring)
{
uint32_t desc_refilled = 0;
uint32_t refill_index = droq->refill_idx;
while (refill_index != droq->read_idx) {
if (droq->recv_buf_list[refill_index].buffer != NULL) {
droq->recv_buf_list[droq->refill_idx].buffer =
droq->recv_buf_list[refill_index].buffer;
droq->recv_buf_list[droq->refill_idx].data =
droq->recv_buf_list[refill_index].data;
desc_ring[droq->refill_idx].buffer_ptr =
desc_ring[refill_index].buffer_ptr;
droq->recv_buf_list[refill_index].buffer = NULL;
desc_ring[refill_index].buffer_ptr = 0;
do {
droq->refill_idx =
lio_incr_index(droq->refill_idx, 1,
droq->max_count);
desc_refilled++;
droq->refill_count--;
} while (droq->recv_buf_list[droq->refill_idx].buffer !=
NULL);
}
refill_index = lio_incr_index(refill_index, 1, droq->max_count);
} /* while */
return (desc_refilled);
}
/*
* lio_droq_refill
* Parameters:
* droq - droq in which descriptors require new buffers.
* Description:
* Called during normal DROQ processing in interrupt mode or by the poll
* thread to refill the descriptors from which buffers were dispatched
* to upper layers. Attempts to allocate new buffers. If that fails, moves
* up buffers (that were not dispatched) to form a contiguous ring.
* Returns:
* No of descriptors refilled.
* Locks:
* This routine is called with droq->lock held.
*/
uint32_t
lio_droq_refill(struct octeon_device *octeon_dev, struct lio_droq *droq)
{
struct lio_droq_desc *desc_ring;
void *buf = NULL;
uint32_t desc_refilled = 0;
uint8_t *data;
desc_ring = droq->desc_ring;
while (droq->refill_count && (desc_refilled < droq->max_count)) {
/*
* If a valid buffer exists (happens if there is no dispatch),
* reuse
* the buffer, else allocate.
*/
if (droq->recv_buf_list[droq->refill_idx].buffer == NULL) {
buf = lio_recv_buffer_alloc(droq->buffer_size);
/*
* If a buffer could not be allocated, no point in
* continuing
*/
if (buf == NULL) {
droq->stats.rx_alloc_failure++;
break;
}
droq->recv_buf_list[droq->refill_idx].buffer = buf;
data = ((struct mbuf *)buf)->m_data;
} else {
data = ((struct mbuf *)droq->recv_buf_list
[droq->refill_idx].buffer)->m_data;
}
droq->recv_buf_list[droq->refill_idx].data = data;
desc_ring[droq->refill_idx].buffer_ptr =
lio_map_ring(octeon_dev->device,
droq->recv_buf_list[droq->refill_idx].buffer,
droq->buffer_size);
droq->refill_idx = lio_incr_index(droq->refill_idx, 1,
droq->max_count);
desc_refilled++;
droq->refill_count--;
}
if (droq->refill_count)
desc_refilled += lio_droq_refill_pullup_descs(droq, desc_ring);
/*
* if droq->refill_count
* The refill count would not change in pass two. We only moved buffers
* to close the gap in the ring, but we would still have the same no. of
* buffers to refill.
*/
return (desc_refilled);
}
static inline uint32_t
lio_droq_get_bufcount(uint32_t buf_size, uint32_t total_len)
{
return ((total_len + buf_size - 1) / buf_size);
}
static int
lio_droq_dispatch_pkt(struct octeon_device *oct, struct lio_droq *droq,
union octeon_rh *rh, struct lio_droq_info *info)
{
struct lio_recv_info *rinfo;
lio_dispatch_fn_t disp_fn;
uint32_t cnt;
cnt = lio_droq_get_bufcount(droq->buffer_size, (uint32_t)info->length);
disp_fn = lio_get_dispatch(oct, (uint16_t)rh->r.opcode,
(uint16_t)rh->r.subcode);
if (disp_fn) {
rinfo = lio_create_recv_info(oct, droq, cnt, droq->read_idx);
if (rinfo != NULL) {
struct __dispatch *rdisp = rinfo->rsvd;
rdisp->rinfo = rinfo;
rdisp->disp_fn = disp_fn;
rinfo->recv_pkt->rh = *rh;
STAILQ_INSERT_TAIL(&droq->dispatch_stq_head,
&rdisp->node, entries);
} else {
droq->stats.dropped_nomem++;
}
} else {
lio_dev_err(oct, "DROQ: No dispatch function (opcode %u/%u)\n",
(unsigned int)rh->r.opcode,
(unsigned int)rh->r.subcode);
droq->stats.dropped_nodispatch++;
}
return (cnt);
}
static inline void
lio_droq_drop_packets(struct octeon_device *oct, struct lio_droq *droq,
uint32_t cnt)
{
struct lio_droq_info *info;
uint32_t i = 0, buf_cnt;
for (i = 0; i < cnt; i++) {
info = (struct lio_droq_info *)
droq->recv_buf_list[droq->read_idx].data;
lio_swap_8B_data((uint64_t *)info, 2);
if (info->length) {
info->length += 8;
droq->stats.bytes_received += info->length;
buf_cnt = lio_droq_get_bufcount(droq->buffer_size,
(uint32_t)info->length);
} else {
lio_dev_err(oct, "DROQ: In drop: pkt with len 0\n");
buf_cnt = 1;
}
droq->read_idx = lio_incr_index(droq->read_idx, buf_cnt,
droq->max_count);
droq->refill_count += buf_cnt;
}
}
static uint32_t
lio_droq_fast_process_packets(struct octeon_device *oct, struct lio_droq *droq,
uint32_t pkts_to_process)
{
struct lio_droq_info *info;
union octeon_rh *rh;
uint32_t pkt, pkt_count, total_len = 0;
pkt_count = pkts_to_process;
for (pkt = 0; pkt < pkt_count; pkt++) {
struct mbuf *nicbuf = NULL;
uint32_t pkt_len = 0;
info = (struct lio_droq_info *)
droq->recv_buf_list[droq->read_idx].data;
lio_swap_8B_data((uint64_t *)info, 2);
if (!info->length) {
lio_dev_err(oct,
"DROQ[%d] idx: %d len:0, pkt_cnt: %d\n",
droq->q_no, droq->read_idx, pkt_count);
hexdump((uint8_t *)info, LIO_DROQ_INFO_SIZE, NULL,
HD_OMIT_CHARS);
pkt++;
lio_incr_index(droq->read_idx, 1, droq->max_count);
droq->refill_count++;
break;
}
rh = &info->rh;
info->length += 8;
rh->r_dh.len += (LIO_DROQ_INFO_SIZE + 7) / 8;
total_len += (uint32_t)info->length;
if (lio_opcode_slow_path(rh)) {
uint32_t buf_cnt;
buf_cnt = lio_droq_dispatch_pkt(oct, droq, rh, info);
droq->read_idx = lio_incr_index(droq->read_idx, buf_cnt,
droq->max_count);
droq->refill_count += buf_cnt;
} else {
if (info->length <= droq->buffer_size) {
pkt_len = (uint32_t)info->length;
nicbuf = droq->recv_buf_list[
droq->read_idx].buffer;
nicbuf->m_len = pkt_len;
droq->recv_buf_list[droq->read_idx].buffer =
NULL;
droq->read_idx =
lio_incr_index(droq->read_idx,
1, droq->max_count);
droq->refill_count++;
} else {
bool secondary_frag = false;
pkt_len = 0;
while (pkt_len < info->length) {
int frag_len, idx = droq->read_idx;
struct mbuf *buffer;
frag_len =
((pkt_len + droq->buffer_size) >
info->length) ?
((uint32_t)info->length -
pkt_len) : droq->buffer_size;
buffer = ((struct mbuf *)
droq->recv_buf_list[idx].
buffer);
buffer->m_len = frag_len;
if (__predict_true(secondary_frag)) {
m_cat(nicbuf, buffer);
} else {
nicbuf = buffer;
secondary_frag = true;
}
droq->recv_buf_list[droq->read_idx].
buffer = NULL;
pkt_len += frag_len;
droq->read_idx =
lio_incr_index(droq->read_idx,
1,
droq->max_count);
droq->refill_count++;
}
}
if (nicbuf != NULL) {
if (droq->ops.fptr != NULL) {
droq->ops.fptr(nicbuf, pkt_len, rh,
droq, droq->ops.farg);
} else {
lio_recv_buffer_free(nicbuf);
}
}
}
if (droq->refill_count >= droq->refill_threshold) {
int desc_refilled = lio_droq_refill(oct, droq);
/*
* Flush the droq descriptor data to memory to be sure
* that when we update the credits the data in memory
* is accurate.
*/
wmb();
lio_write_csr32(oct, droq->pkts_credit_reg,
desc_refilled);
/* make sure mmio write completes */
__compiler_membar();
}
} /* for (each packet)... */
/* Increment refill_count by the number of buffers processed. */
droq->stats.pkts_received += pkt;
droq->stats.bytes_received += total_len;
tcp_lro_flush_all(&droq->lro);
if ((droq->ops.drop_on_max) && (pkts_to_process - pkt)) {
lio_droq_drop_packets(oct, droq, (pkts_to_process - pkt));
droq->stats.dropped_toomany += (pkts_to_process - pkt);
return (pkts_to_process);
}
return (pkt);
}
int
lio_droq_process_packets(struct octeon_device *oct, struct lio_droq *droq,
uint32_t budget)
{
struct lio_stailq_node *tmp, *tmp2;
uint32_t pkt_count = 0, pkts_processed = 0;
/* Grab the droq lock */
mtx_lock(&droq->lock);
lio_droq_check_hw_for_pkts(droq);
pkt_count = atomic_load_acq_int(&droq->pkts_pending);
if (!pkt_count) {
mtx_unlock(&droq->lock);
return (0);
}
if (pkt_count > budget)
pkt_count = budget;
pkts_processed = lio_droq_fast_process_packets(oct, droq, pkt_count);
atomic_subtract_int(&droq->pkts_pending, pkts_processed);
/* Release the lock */
mtx_unlock(&droq->lock);
STAILQ_FOREACH_SAFE(tmp, &droq->dispatch_stq_head, entries, tmp2) {
struct __dispatch *rdisp = (struct __dispatch *)tmp;
STAILQ_REMOVE_HEAD(&droq->dispatch_stq_head, entries);
rdisp->disp_fn(rdisp->rinfo, lio_get_dispatch_arg(oct,
(uint16_t)rdisp->rinfo->recv_pkt->rh.r.opcode,
(uint16_t)rdisp->rinfo->recv_pkt->rh.r.subcode));
}
/* If there are packets pending. schedule tasklet again */
if (atomic_load_acq_int(&droq->pkts_pending))
return (1);
return (0);
}
int
lio_register_droq_ops(struct octeon_device *oct, uint32_t q_no,
struct lio_droq_ops *ops)
{
struct lio_droq *droq;
struct lio_config *lio_cfg = NULL;
lio_cfg = lio_get_conf(oct);
if (lio_cfg == NULL)
return (-EINVAL);
if (ops == NULL) {
lio_dev_err(oct, "%s: droq_ops pointer is NULL\n", __func__);
return (-EINVAL);
}
if (q_no >= LIO_GET_OQ_MAX_Q_CFG(lio_cfg)) {
lio_dev_err(oct, "%s: droq id (%d) exceeds MAX (%d)\n",
__func__, q_no, (oct->num_oqs - 1));
return (-EINVAL);
}
droq = oct->droq[q_no];
mtx_lock(&droq->lock);
memcpy(&droq->ops, ops, sizeof(struct lio_droq_ops));
mtx_unlock(&droq->lock);
return (0);
}
int
lio_unregister_droq_ops(struct octeon_device *oct, uint32_t q_no)
{
struct lio_droq *droq;
struct lio_config *lio_cfg = NULL;
lio_cfg = lio_get_conf(oct);
if (lio_cfg == NULL)
return (-EINVAL);
if (q_no >= LIO_GET_OQ_MAX_Q_CFG(lio_cfg)) {
lio_dev_err(oct, "%s: droq id (%d) exceeds MAX (%d)\n",
__func__, q_no, oct->num_oqs - 1);
return (-EINVAL);
}
droq = oct->droq[q_no];
if (droq == NULL) {
lio_dev_info(oct, "Droq id (%d) not available.\n", q_no);
return (0);
}
mtx_lock(&droq->lock);
droq->ops.fptr = NULL;
droq->ops.farg = NULL;
droq->ops.drop_on_max = 0;
mtx_unlock(&droq->lock);
return (0);
}
int
lio_create_droq(struct octeon_device *oct, uint32_t q_no, uint32_t num_descs,
uint32_t desc_size, void *app_ctx)
{
if (oct->droq[q_no]->oct_dev != NULL) {
lio_dev_dbg(oct, "Droq already in use. Cannot create droq %d again\n",
q_no);
return (1);
}
/* Initialize the Droq */
if (lio_init_droq(oct, q_no, num_descs, desc_size, app_ctx)) {
bzero(oct->droq[q_no], sizeof(struct lio_droq));
goto create_droq_fail;
}
oct->num_oqs++;
lio_dev_dbg(oct, "%s: Total number of OQ: %d\n", __func__,
oct->num_oqs);
/* Global Droq register settings */
/*
* As of now not required, as setting are done for all 32 Droqs at
* the same time.
*/
return (0);
create_droq_fail:
return (-ENOMEM);
}