c8ee75f231
The modification to the hash are already naturally locked by in_control_sx. Convert the hash lists to CK lists. Remove the in_ifaddr_rmlock. Assert the network epoch where necessary. Most cases when the hash lookup is done the epoch is already entered. Cover a few cases, that need entering the epoch, which mostly is initial configuration of tunnel interfaces and multicast addresses. Reviewed by: melifaro Differential revision: https://reviews.freebsd.org/D32584
3046 lines
78 KiB
C
3046 lines
78 KiB
C
/*-
|
|
* SPDX-License-Identifier: BSD-3-Clause
|
|
*
|
|
* Copyright (c) 2007-2009 Bruce Simpson.
|
|
* Copyright (c) 2005 Robert N. M. Watson.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. The name of the author may not be used to endorse or promote
|
|
* products derived from this software without specific prior written
|
|
* permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* IPv4 multicast socket, group, and socket option processing module.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/protosw.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/socketvar.h>
|
|
#include <sys/protosw.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/ktr.h>
|
|
#include <sys/taskqueue.h>
|
|
#include <sys/tree.h>
|
|
|
|
#include <net/if.h>
|
|
#include <net/if_var.h>
|
|
#include <net/if_dl.h>
|
|
#include <net/route.h>
|
|
#include <net/route/nhop.h>
|
|
#include <net/vnet.h>
|
|
|
|
#include <net/ethernet.h>
|
|
|
|
#include <netinet/in.h>
|
|
#include <netinet/in_systm.h>
|
|
#include <netinet/in_fib.h>
|
|
#include <netinet/in_pcb.h>
|
|
#include <netinet/in_var.h>
|
|
#include <netinet/ip_var.h>
|
|
#include <netinet/igmp_var.h>
|
|
|
|
#ifndef KTR_IGMPV3
|
|
#define KTR_IGMPV3 KTR_INET
|
|
#endif
|
|
|
|
#ifndef __SOCKUNION_DECLARED
|
|
union sockunion {
|
|
struct sockaddr_storage ss;
|
|
struct sockaddr sa;
|
|
struct sockaddr_dl sdl;
|
|
struct sockaddr_in sin;
|
|
};
|
|
typedef union sockunion sockunion_t;
|
|
#define __SOCKUNION_DECLARED
|
|
#endif /* __SOCKUNION_DECLARED */
|
|
|
|
static MALLOC_DEFINE(M_INMFILTER, "in_mfilter",
|
|
"IPv4 multicast PCB-layer source filter");
|
|
static MALLOC_DEFINE(M_IPMADDR, "in_multi", "IPv4 multicast group");
|
|
static MALLOC_DEFINE(M_IPMOPTS, "ip_moptions", "IPv4 multicast options");
|
|
static MALLOC_DEFINE(M_IPMSOURCE, "ip_msource",
|
|
"IPv4 multicast IGMP-layer source filter");
|
|
|
|
/*
|
|
* Locking:
|
|
*
|
|
* - Lock order is: Giant, IN_MULTI_LOCK, INP_WLOCK,
|
|
* IN_MULTI_LIST_LOCK, IGMP_LOCK, IF_ADDR_LOCK.
|
|
* - The IF_ADDR_LOCK is implicitly taken by inm_lookup() earlier, however
|
|
* it can be taken by code in net/if.c also.
|
|
* - ip_moptions and in_mfilter are covered by the INP_WLOCK.
|
|
*
|
|
* struct in_multi is covered by IN_MULTI_LIST_LOCK. There isn't strictly
|
|
* any need for in_multi itself to be virtualized -- it is bound to an ifp
|
|
* anyway no matter what happens.
|
|
*/
|
|
struct mtx in_multi_list_mtx;
|
|
MTX_SYSINIT(in_multi_mtx, &in_multi_list_mtx, "in_multi_list_mtx", MTX_DEF);
|
|
|
|
struct mtx in_multi_free_mtx;
|
|
MTX_SYSINIT(in_multi_free_mtx, &in_multi_free_mtx, "in_multi_free_mtx", MTX_DEF);
|
|
|
|
struct sx in_multi_sx;
|
|
SX_SYSINIT(in_multi_sx, &in_multi_sx, "in_multi_sx");
|
|
|
|
int ifma_restart;
|
|
|
|
/*
|
|
* Functions with non-static linkage defined in this file should be
|
|
* declared in in_var.h:
|
|
* imo_multi_filter()
|
|
* in_joingroup()
|
|
* in_joingroup_locked()
|
|
* in_leavegroup()
|
|
* in_leavegroup_locked()
|
|
* and ip_var.h:
|
|
* inp_freemoptions()
|
|
* inp_getmoptions()
|
|
* inp_setmoptions()
|
|
*/
|
|
static void imf_commit(struct in_mfilter *);
|
|
static int imf_get_source(struct in_mfilter *imf,
|
|
const struct sockaddr_in *psin,
|
|
struct in_msource **);
|
|
static struct in_msource *
|
|
imf_graft(struct in_mfilter *, const uint8_t,
|
|
const struct sockaddr_in *);
|
|
static void imf_leave(struct in_mfilter *);
|
|
static int imf_prune(struct in_mfilter *, const struct sockaddr_in *);
|
|
static void imf_purge(struct in_mfilter *);
|
|
static void imf_rollback(struct in_mfilter *);
|
|
static void imf_reap(struct in_mfilter *);
|
|
static struct in_mfilter *
|
|
imo_match_group(const struct ip_moptions *,
|
|
const struct ifnet *, const struct sockaddr *);
|
|
static struct in_msource *
|
|
imo_match_source(struct in_mfilter *, const struct sockaddr *);
|
|
static void ims_merge(struct ip_msource *ims,
|
|
const struct in_msource *lims, const int rollback);
|
|
static int in_getmulti(struct ifnet *, const struct in_addr *,
|
|
struct in_multi **);
|
|
static int inm_get_source(struct in_multi *inm, const in_addr_t haddr,
|
|
const int noalloc, struct ip_msource **pims);
|
|
#ifdef KTR
|
|
static int inm_is_ifp_detached(const struct in_multi *);
|
|
#endif
|
|
static int inm_merge(struct in_multi *, /*const*/ struct in_mfilter *);
|
|
static void inm_purge(struct in_multi *);
|
|
static void inm_reap(struct in_multi *);
|
|
static void inm_release(struct in_multi *);
|
|
static struct ip_moptions *
|
|
inp_findmoptions(struct inpcb *);
|
|
static int inp_get_source_filters(struct inpcb *, struct sockopt *);
|
|
static int inp_join_group(struct inpcb *, struct sockopt *);
|
|
static int inp_leave_group(struct inpcb *, struct sockopt *);
|
|
static struct ifnet *
|
|
inp_lookup_mcast_ifp(const struct inpcb *,
|
|
const struct sockaddr_in *, const struct in_addr);
|
|
static int inp_block_unblock_source(struct inpcb *, struct sockopt *);
|
|
static int inp_set_multicast_if(struct inpcb *, struct sockopt *);
|
|
static int inp_set_source_filters(struct inpcb *, struct sockopt *);
|
|
static int sysctl_ip_mcast_filters(SYSCTL_HANDLER_ARGS);
|
|
|
|
static SYSCTL_NODE(_net_inet_ip, OID_AUTO, mcast,
|
|
CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
|
|
"IPv4 multicast");
|
|
|
|
static u_long in_mcast_maxgrpsrc = IP_MAX_GROUP_SRC_FILTER;
|
|
SYSCTL_ULONG(_net_inet_ip_mcast, OID_AUTO, maxgrpsrc,
|
|
CTLFLAG_RWTUN, &in_mcast_maxgrpsrc, 0,
|
|
"Max source filters per group");
|
|
|
|
static u_long in_mcast_maxsocksrc = IP_MAX_SOCK_SRC_FILTER;
|
|
SYSCTL_ULONG(_net_inet_ip_mcast, OID_AUTO, maxsocksrc,
|
|
CTLFLAG_RWTUN, &in_mcast_maxsocksrc, 0,
|
|
"Max source filters per socket");
|
|
|
|
int in_mcast_loop = IP_DEFAULT_MULTICAST_LOOP;
|
|
SYSCTL_INT(_net_inet_ip_mcast, OID_AUTO, loop, CTLFLAG_RWTUN,
|
|
&in_mcast_loop, 0, "Loopback multicast datagrams by default");
|
|
|
|
static SYSCTL_NODE(_net_inet_ip_mcast, OID_AUTO, filters,
|
|
CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_ip_mcast_filters,
|
|
"Per-interface stack-wide source filters");
|
|
|
|
#ifdef KTR
|
|
/*
|
|
* Inline function which wraps assertions for a valid ifp.
|
|
* The ifnet layer will set the ifma's ifp pointer to NULL if the ifp
|
|
* is detached.
|
|
*/
|
|
static int __inline
|
|
inm_is_ifp_detached(const struct in_multi *inm)
|
|
{
|
|
struct ifnet *ifp;
|
|
|
|
KASSERT(inm->inm_ifma != NULL, ("%s: no ifma", __func__));
|
|
ifp = inm->inm_ifma->ifma_ifp;
|
|
if (ifp != NULL) {
|
|
/*
|
|
* Sanity check that netinet's notion of ifp is the
|
|
* same as net's.
|
|
*/
|
|
KASSERT(inm->inm_ifp == ifp, ("%s: bad ifp", __func__));
|
|
}
|
|
|
|
return (ifp == NULL);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Interface detach can happen in a taskqueue thread context, so we must use a
|
|
* dedicated thread to avoid deadlocks when draining inm_release tasks.
|
|
*/
|
|
TASKQUEUE_DEFINE_THREAD(inm_free);
|
|
static struct in_multi_head inm_free_list = SLIST_HEAD_INITIALIZER();
|
|
static void inm_release_task(void *arg __unused, int pending __unused);
|
|
static struct task inm_free_task = TASK_INITIALIZER(0, inm_release_task, NULL);
|
|
|
|
void
|
|
inm_release_wait(void *arg __unused)
|
|
{
|
|
|
|
/*
|
|
* Make sure all pending multicast addresses are freed before
|
|
* the VNET or network device is destroyed:
|
|
*/
|
|
taskqueue_drain(taskqueue_inm_free, &inm_free_task);
|
|
}
|
|
#ifdef VIMAGE
|
|
/* XXX-BZ FIXME, see D24914. */
|
|
VNET_SYSUNINIT(inm_release_wait, SI_SUB_PROTO_DOMAIN, SI_ORDER_FIRST, inm_release_wait, NULL);
|
|
#endif
|
|
|
|
void
|
|
inm_release_list_deferred(struct in_multi_head *inmh)
|
|
{
|
|
|
|
if (SLIST_EMPTY(inmh))
|
|
return;
|
|
mtx_lock(&in_multi_free_mtx);
|
|
SLIST_CONCAT(&inm_free_list, inmh, in_multi, inm_nrele);
|
|
mtx_unlock(&in_multi_free_mtx);
|
|
taskqueue_enqueue(taskqueue_inm_free, &inm_free_task);
|
|
}
|
|
|
|
void
|
|
inm_disconnect(struct in_multi *inm)
|
|
{
|
|
struct ifnet *ifp;
|
|
struct ifmultiaddr *ifma, *ll_ifma;
|
|
|
|
ifp = inm->inm_ifp;
|
|
IF_ADDR_WLOCK_ASSERT(ifp);
|
|
ifma = inm->inm_ifma;
|
|
|
|
if_ref(ifp);
|
|
if (ifma->ifma_flags & IFMA_F_ENQUEUED) {
|
|
CK_STAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifmultiaddr, ifma_link);
|
|
ifma->ifma_flags &= ~IFMA_F_ENQUEUED;
|
|
}
|
|
MCDPRINTF("removed ifma: %p from %s\n", ifma, ifp->if_xname);
|
|
if ((ll_ifma = ifma->ifma_llifma) != NULL) {
|
|
MPASS(ifma != ll_ifma);
|
|
ifma->ifma_llifma = NULL;
|
|
MPASS(ll_ifma->ifma_llifma == NULL);
|
|
MPASS(ll_ifma->ifma_ifp == ifp);
|
|
if (--ll_ifma->ifma_refcount == 0) {
|
|
if (ll_ifma->ifma_flags & IFMA_F_ENQUEUED) {
|
|
CK_STAILQ_REMOVE(&ifp->if_multiaddrs, ll_ifma, ifmultiaddr, ifma_link);
|
|
ll_ifma->ifma_flags &= ~IFMA_F_ENQUEUED;
|
|
}
|
|
MCDPRINTF("removed ll_ifma: %p from %s\n", ll_ifma, ifp->if_xname);
|
|
if_freemulti(ll_ifma);
|
|
ifma_restart = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
inm_release_deferred(struct in_multi *inm)
|
|
{
|
|
struct in_multi_head tmp;
|
|
|
|
IN_MULTI_LIST_LOCK_ASSERT();
|
|
MPASS(inm->inm_refcount > 0);
|
|
if (--inm->inm_refcount == 0) {
|
|
SLIST_INIT(&tmp);
|
|
inm_disconnect(inm);
|
|
inm->inm_ifma->ifma_protospec = NULL;
|
|
SLIST_INSERT_HEAD(&tmp, inm, inm_nrele);
|
|
inm_release_list_deferred(&tmp);
|
|
}
|
|
}
|
|
|
|
static void
|
|
inm_release_task(void *arg __unused, int pending __unused)
|
|
{
|
|
struct in_multi_head inm_free_tmp;
|
|
struct in_multi *inm, *tinm;
|
|
|
|
SLIST_INIT(&inm_free_tmp);
|
|
mtx_lock(&in_multi_free_mtx);
|
|
SLIST_CONCAT(&inm_free_tmp, &inm_free_list, in_multi, inm_nrele);
|
|
mtx_unlock(&in_multi_free_mtx);
|
|
IN_MULTI_LOCK();
|
|
SLIST_FOREACH_SAFE(inm, &inm_free_tmp, inm_nrele, tinm) {
|
|
SLIST_REMOVE_HEAD(&inm_free_tmp, inm_nrele);
|
|
MPASS(inm);
|
|
inm_release(inm);
|
|
}
|
|
IN_MULTI_UNLOCK();
|
|
}
|
|
|
|
/*
|
|
* Initialize an in_mfilter structure to a known state at t0, t1
|
|
* with an empty source filter list.
|
|
*/
|
|
static __inline void
|
|
imf_init(struct in_mfilter *imf, const int st0, const int st1)
|
|
{
|
|
memset(imf, 0, sizeof(struct in_mfilter));
|
|
RB_INIT(&imf->imf_sources);
|
|
imf->imf_st[0] = st0;
|
|
imf->imf_st[1] = st1;
|
|
}
|
|
|
|
struct in_mfilter *
|
|
ip_mfilter_alloc(const int mflags, const int st0, const int st1)
|
|
{
|
|
struct in_mfilter *imf;
|
|
|
|
imf = malloc(sizeof(*imf), M_INMFILTER, mflags);
|
|
if (imf != NULL)
|
|
imf_init(imf, st0, st1);
|
|
|
|
return (imf);
|
|
}
|
|
|
|
void
|
|
ip_mfilter_free(struct in_mfilter *imf)
|
|
{
|
|
|
|
imf_purge(imf);
|
|
free(imf, M_INMFILTER);
|
|
}
|
|
|
|
/*
|
|
* Function for looking up an in_multi record for an IPv4 multicast address
|
|
* on a given interface. ifp must be valid. If no record found, return NULL.
|
|
* The IN_MULTI_LIST_LOCK and IF_ADDR_LOCK on ifp must be held.
|
|
*/
|
|
struct in_multi *
|
|
inm_lookup_locked(struct ifnet *ifp, const struct in_addr ina)
|
|
{
|
|
struct ifmultiaddr *ifma;
|
|
struct in_multi *inm;
|
|
|
|
IN_MULTI_LIST_LOCK_ASSERT();
|
|
IF_ADDR_LOCK_ASSERT(ifp);
|
|
|
|
inm = NULL;
|
|
CK_STAILQ_FOREACH(ifma, &((ifp)->if_multiaddrs), ifma_link) {
|
|
if (ifma->ifma_addr->sa_family != AF_INET ||
|
|
ifma->ifma_protospec == NULL)
|
|
continue;
|
|
inm = (struct in_multi *)ifma->ifma_protospec;
|
|
if (inm->inm_addr.s_addr == ina.s_addr)
|
|
break;
|
|
inm = NULL;
|
|
}
|
|
return (inm);
|
|
}
|
|
|
|
/*
|
|
* Wrapper for inm_lookup_locked().
|
|
* The IF_ADDR_LOCK will be taken on ifp and released on return.
|
|
*/
|
|
struct in_multi *
|
|
inm_lookup(struct ifnet *ifp, const struct in_addr ina)
|
|
{
|
|
struct epoch_tracker et;
|
|
struct in_multi *inm;
|
|
|
|
IN_MULTI_LIST_LOCK_ASSERT();
|
|
NET_EPOCH_ENTER(et);
|
|
|
|
inm = inm_lookup_locked(ifp, ina);
|
|
NET_EPOCH_EXIT(et);
|
|
|
|
return (inm);
|
|
}
|
|
|
|
/*
|
|
* Find an IPv4 multicast group entry for this ip_moptions instance
|
|
* which matches the specified group, and optionally an interface.
|
|
* Return its index into the array, or -1 if not found.
|
|
*/
|
|
static struct in_mfilter *
|
|
imo_match_group(const struct ip_moptions *imo, const struct ifnet *ifp,
|
|
const struct sockaddr *group)
|
|
{
|
|
const struct sockaddr_in *gsin;
|
|
struct in_mfilter *imf;
|
|
struct in_multi *inm;
|
|
|
|
gsin = (const struct sockaddr_in *)group;
|
|
|
|
IP_MFILTER_FOREACH(imf, &imo->imo_head) {
|
|
inm = imf->imf_inm;
|
|
if (inm == NULL)
|
|
continue;
|
|
if ((ifp == NULL || (inm->inm_ifp == ifp)) &&
|
|
in_hosteq(inm->inm_addr, gsin->sin_addr)) {
|
|
break;
|
|
}
|
|
}
|
|
return (imf);
|
|
}
|
|
|
|
/*
|
|
* Find an IPv4 multicast source entry for this imo which matches
|
|
* the given group index for this socket, and source address.
|
|
*
|
|
* NOTE: This does not check if the entry is in-mode, merely if
|
|
* it exists, which may not be the desired behaviour.
|
|
*/
|
|
static struct in_msource *
|
|
imo_match_source(struct in_mfilter *imf, const struct sockaddr *src)
|
|
{
|
|
struct ip_msource find;
|
|
struct ip_msource *ims;
|
|
const sockunion_t *psa;
|
|
|
|
KASSERT(src->sa_family == AF_INET, ("%s: !AF_INET", __func__));
|
|
|
|
/* Source trees are keyed in host byte order. */
|
|
psa = (const sockunion_t *)src;
|
|
find.ims_haddr = ntohl(psa->sin.sin_addr.s_addr);
|
|
ims = RB_FIND(ip_msource_tree, &imf->imf_sources, &find);
|
|
|
|
return ((struct in_msource *)ims);
|
|
}
|
|
|
|
/*
|
|
* Perform filtering for multicast datagrams on a socket by group and source.
|
|
*
|
|
* Returns 0 if a datagram should be allowed through, or various error codes
|
|
* if the socket was not a member of the group, or the source was muted, etc.
|
|
*/
|
|
int
|
|
imo_multi_filter(const struct ip_moptions *imo, const struct ifnet *ifp,
|
|
const struct sockaddr *group, const struct sockaddr *src)
|
|
{
|
|
struct in_mfilter *imf;
|
|
struct in_msource *ims;
|
|
int mode;
|
|
|
|
KASSERT(ifp != NULL, ("%s: null ifp", __func__));
|
|
|
|
imf = imo_match_group(imo, ifp, group);
|
|
if (imf == NULL)
|
|
return (MCAST_NOTGMEMBER);
|
|
|
|
/*
|
|
* Check if the source was included in an (S,G) join.
|
|
* Allow reception on exclusive memberships by default,
|
|
* reject reception on inclusive memberships by default.
|
|
* Exclude source only if an in-mode exclude filter exists.
|
|
* Include source only if an in-mode include filter exists.
|
|
* NOTE: We are comparing group state here at IGMP t1 (now)
|
|
* with socket-layer t0 (since last downcall).
|
|
*/
|
|
mode = imf->imf_st[1];
|
|
ims = imo_match_source(imf, src);
|
|
|
|
if ((ims == NULL && mode == MCAST_INCLUDE) ||
|
|
(ims != NULL && ims->imsl_st[0] != mode))
|
|
return (MCAST_NOTSMEMBER);
|
|
|
|
return (MCAST_PASS);
|
|
}
|
|
|
|
/*
|
|
* Find and return a reference to an in_multi record for (ifp, group),
|
|
* and bump its reference count.
|
|
* If one does not exist, try to allocate it, and update link-layer multicast
|
|
* filters on ifp to listen for group.
|
|
* Assumes the IN_MULTI lock is held across the call.
|
|
* Return 0 if successful, otherwise return an appropriate error code.
|
|
*/
|
|
static int
|
|
in_getmulti(struct ifnet *ifp, const struct in_addr *group,
|
|
struct in_multi **pinm)
|
|
{
|
|
struct sockaddr_in gsin;
|
|
struct ifmultiaddr *ifma;
|
|
struct in_ifinfo *ii;
|
|
struct in_multi *inm;
|
|
int error;
|
|
|
|
IN_MULTI_LOCK_ASSERT();
|
|
|
|
ii = (struct in_ifinfo *)ifp->if_afdata[AF_INET];
|
|
IN_MULTI_LIST_LOCK();
|
|
inm = inm_lookup(ifp, *group);
|
|
if (inm != NULL) {
|
|
/*
|
|
* If we already joined this group, just bump the
|
|
* refcount and return it.
|
|
*/
|
|
KASSERT(inm->inm_refcount >= 1,
|
|
("%s: bad refcount %d", __func__, inm->inm_refcount));
|
|
inm_acquire_locked(inm);
|
|
*pinm = inm;
|
|
}
|
|
IN_MULTI_LIST_UNLOCK();
|
|
if (inm != NULL)
|
|
return (0);
|
|
|
|
memset(&gsin, 0, sizeof(gsin));
|
|
gsin.sin_family = AF_INET;
|
|
gsin.sin_len = sizeof(struct sockaddr_in);
|
|
gsin.sin_addr = *group;
|
|
|
|
/*
|
|
* Check if a link-layer group is already associated
|
|
* with this network-layer group on the given ifnet.
|
|
*/
|
|
error = if_addmulti(ifp, (struct sockaddr *)&gsin, &ifma);
|
|
if (error != 0)
|
|
return (error);
|
|
|
|
/* XXX ifma_protospec must be covered by IF_ADDR_LOCK */
|
|
IN_MULTI_LIST_LOCK();
|
|
IF_ADDR_WLOCK(ifp);
|
|
|
|
/*
|
|
* If something other than netinet is occupying the link-layer
|
|
* group, print a meaningful error message and back out of
|
|
* the allocation.
|
|
* Otherwise, bump the refcount on the existing network-layer
|
|
* group association and return it.
|
|
*/
|
|
if (ifma->ifma_protospec != NULL) {
|
|
inm = (struct in_multi *)ifma->ifma_protospec;
|
|
#ifdef INVARIANTS
|
|
KASSERT(ifma->ifma_addr != NULL, ("%s: no ifma_addr",
|
|
__func__));
|
|
KASSERT(ifma->ifma_addr->sa_family == AF_INET,
|
|
("%s: ifma not AF_INET", __func__));
|
|
KASSERT(inm != NULL, ("%s: no ifma_protospec", __func__));
|
|
if (inm->inm_ifma != ifma || inm->inm_ifp != ifp ||
|
|
!in_hosteq(inm->inm_addr, *group)) {
|
|
char addrbuf[INET_ADDRSTRLEN];
|
|
|
|
panic("%s: ifma %p is inconsistent with %p (%s)",
|
|
__func__, ifma, inm, inet_ntoa_r(*group, addrbuf));
|
|
}
|
|
#endif
|
|
inm_acquire_locked(inm);
|
|
*pinm = inm;
|
|
goto out_locked;
|
|
}
|
|
|
|
IF_ADDR_WLOCK_ASSERT(ifp);
|
|
|
|
/*
|
|
* A new in_multi record is needed; allocate and initialize it.
|
|
* We DO NOT perform an IGMP join as the in_ layer may need to
|
|
* push an initial source list down to IGMP to support SSM.
|
|
*
|
|
* The initial source filter state is INCLUDE, {} as per the RFC.
|
|
*/
|
|
inm = malloc(sizeof(*inm), M_IPMADDR, M_NOWAIT | M_ZERO);
|
|
if (inm == NULL) {
|
|
IF_ADDR_WUNLOCK(ifp);
|
|
IN_MULTI_LIST_UNLOCK();
|
|
if_delmulti_ifma(ifma);
|
|
return (ENOMEM);
|
|
}
|
|
inm->inm_addr = *group;
|
|
inm->inm_ifp = ifp;
|
|
inm->inm_igi = ii->ii_igmp;
|
|
inm->inm_ifma = ifma;
|
|
inm->inm_refcount = 1;
|
|
inm->inm_state = IGMP_NOT_MEMBER;
|
|
mbufq_init(&inm->inm_scq, IGMP_MAX_STATE_CHANGES);
|
|
inm->inm_st[0].iss_fmode = MCAST_UNDEFINED;
|
|
inm->inm_st[1].iss_fmode = MCAST_UNDEFINED;
|
|
RB_INIT(&inm->inm_srcs);
|
|
|
|
ifma->ifma_protospec = inm;
|
|
|
|
*pinm = inm;
|
|
out_locked:
|
|
IF_ADDR_WUNLOCK(ifp);
|
|
IN_MULTI_LIST_UNLOCK();
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Drop a reference to an in_multi record.
|
|
*
|
|
* If the refcount drops to 0, free the in_multi record and
|
|
* delete the underlying link-layer membership.
|
|
*/
|
|
static void
|
|
inm_release(struct in_multi *inm)
|
|
{
|
|
struct ifmultiaddr *ifma;
|
|
struct ifnet *ifp;
|
|
|
|
CTR2(KTR_IGMPV3, "%s: refcount is %d", __func__, inm->inm_refcount);
|
|
MPASS(inm->inm_refcount == 0);
|
|
CTR2(KTR_IGMPV3, "%s: freeing inm %p", __func__, inm);
|
|
|
|
ifma = inm->inm_ifma;
|
|
ifp = inm->inm_ifp;
|
|
|
|
/* XXX this access is not covered by IF_ADDR_LOCK */
|
|
CTR2(KTR_IGMPV3, "%s: purging ifma %p", __func__, ifma);
|
|
if (ifp != NULL) {
|
|
CURVNET_SET(ifp->if_vnet);
|
|
inm_purge(inm);
|
|
free(inm, M_IPMADDR);
|
|
if_delmulti_ifma_flags(ifma, 1);
|
|
CURVNET_RESTORE();
|
|
if_rele(ifp);
|
|
} else {
|
|
inm_purge(inm);
|
|
free(inm, M_IPMADDR);
|
|
if_delmulti_ifma_flags(ifma, 1);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Clear recorded source entries for a group.
|
|
* Used by the IGMP code. Caller must hold the IN_MULTI lock.
|
|
* FIXME: Should reap.
|
|
*/
|
|
void
|
|
inm_clear_recorded(struct in_multi *inm)
|
|
{
|
|
struct ip_msource *ims;
|
|
|
|
IN_MULTI_LIST_LOCK_ASSERT();
|
|
|
|
RB_FOREACH(ims, ip_msource_tree, &inm->inm_srcs) {
|
|
if (ims->ims_stp) {
|
|
ims->ims_stp = 0;
|
|
--inm->inm_st[1].iss_rec;
|
|
}
|
|
}
|
|
KASSERT(inm->inm_st[1].iss_rec == 0,
|
|
("%s: iss_rec %d not 0", __func__, inm->inm_st[1].iss_rec));
|
|
}
|
|
|
|
/*
|
|
* Record a source as pending for a Source-Group IGMPv3 query.
|
|
* This lives here as it modifies the shared tree.
|
|
*
|
|
* inm is the group descriptor.
|
|
* naddr is the address of the source to record in network-byte order.
|
|
*
|
|
* If the net.inet.igmp.sgalloc sysctl is non-zero, we will
|
|
* lazy-allocate a source node in response to an SG query.
|
|
* Otherwise, no allocation is performed. This saves some memory
|
|
* with the trade-off that the source will not be reported to the
|
|
* router if joined in the window between the query response and
|
|
* the group actually being joined on the local host.
|
|
*
|
|
* VIMAGE: XXX: Currently the igmp_sgalloc feature has been removed.
|
|
* This turns off the allocation of a recorded source entry if
|
|
* the group has not been joined.
|
|
*
|
|
* Return 0 if the source didn't exist or was already marked as recorded.
|
|
* Return 1 if the source was marked as recorded by this function.
|
|
* Return <0 if any error occurred (negated errno code).
|
|
*/
|
|
int
|
|
inm_record_source(struct in_multi *inm, const in_addr_t naddr)
|
|
{
|
|
struct ip_msource find;
|
|
struct ip_msource *ims, *nims;
|
|
|
|
IN_MULTI_LIST_LOCK_ASSERT();
|
|
|
|
find.ims_haddr = ntohl(naddr);
|
|
ims = RB_FIND(ip_msource_tree, &inm->inm_srcs, &find);
|
|
if (ims && ims->ims_stp)
|
|
return (0);
|
|
if (ims == NULL) {
|
|
if (inm->inm_nsrc == in_mcast_maxgrpsrc)
|
|
return (-ENOSPC);
|
|
nims = malloc(sizeof(struct ip_msource), M_IPMSOURCE,
|
|
M_NOWAIT | M_ZERO);
|
|
if (nims == NULL)
|
|
return (-ENOMEM);
|
|
nims->ims_haddr = find.ims_haddr;
|
|
RB_INSERT(ip_msource_tree, &inm->inm_srcs, nims);
|
|
++inm->inm_nsrc;
|
|
ims = nims;
|
|
}
|
|
|
|
/*
|
|
* Mark the source as recorded and update the recorded
|
|
* source count.
|
|
*/
|
|
++ims->ims_stp;
|
|
++inm->inm_st[1].iss_rec;
|
|
|
|
return (1);
|
|
}
|
|
|
|
/*
|
|
* Return a pointer to an in_msource owned by an in_mfilter,
|
|
* given its source address.
|
|
* Lazy-allocate if needed. If this is a new entry its filter state is
|
|
* undefined at t0.
|
|
*
|
|
* imf is the filter set being modified.
|
|
* haddr is the source address in *host* byte-order.
|
|
*
|
|
* SMPng: May be called with locks held; malloc must not block.
|
|
*/
|
|
static int
|
|
imf_get_source(struct in_mfilter *imf, const struct sockaddr_in *psin,
|
|
struct in_msource **plims)
|
|
{
|
|
struct ip_msource find;
|
|
struct ip_msource *ims, *nims;
|
|
struct in_msource *lims;
|
|
int error;
|
|
|
|
error = 0;
|
|
ims = NULL;
|
|
lims = NULL;
|
|
|
|
/* key is host byte order */
|
|
find.ims_haddr = ntohl(psin->sin_addr.s_addr);
|
|
ims = RB_FIND(ip_msource_tree, &imf->imf_sources, &find);
|
|
lims = (struct in_msource *)ims;
|
|
if (lims == NULL) {
|
|
if (imf->imf_nsrc == in_mcast_maxsocksrc)
|
|
return (ENOSPC);
|
|
nims = malloc(sizeof(struct in_msource), M_INMFILTER,
|
|
M_NOWAIT | M_ZERO);
|
|
if (nims == NULL)
|
|
return (ENOMEM);
|
|
lims = (struct in_msource *)nims;
|
|
lims->ims_haddr = find.ims_haddr;
|
|
lims->imsl_st[0] = MCAST_UNDEFINED;
|
|
RB_INSERT(ip_msource_tree, &imf->imf_sources, nims);
|
|
++imf->imf_nsrc;
|
|
}
|
|
|
|
*plims = lims;
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Graft a source entry into an existing socket-layer filter set,
|
|
* maintaining any required invariants and checking allocations.
|
|
*
|
|
* The source is marked as being in the new filter mode at t1.
|
|
*
|
|
* Return the pointer to the new node, otherwise return NULL.
|
|
*/
|
|
static struct in_msource *
|
|
imf_graft(struct in_mfilter *imf, const uint8_t st1,
|
|
const struct sockaddr_in *psin)
|
|
{
|
|
struct ip_msource *nims;
|
|
struct in_msource *lims;
|
|
|
|
nims = malloc(sizeof(struct in_msource), M_INMFILTER,
|
|
M_NOWAIT | M_ZERO);
|
|
if (nims == NULL)
|
|
return (NULL);
|
|
lims = (struct in_msource *)nims;
|
|
lims->ims_haddr = ntohl(psin->sin_addr.s_addr);
|
|
lims->imsl_st[0] = MCAST_UNDEFINED;
|
|
lims->imsl_st[1] = st1;
|
|
RB_INSERT(ip_msource_tree, &imf->imf_sources, nims);
|
|
++imf->imf_nsrc;
|
|
|
|
return (lims);
|
|
}
|
|
|
|
/*
|
|
* Prune a source entry from an existing socket-layer filter set,
|
|
* maintaining any required invariants and checking allocations.
|
|
*
|
|
* The source is marked as being left at t1, it is not freed.
|
|
*
|
|
* Return 0 if no error occurred, otherwise return an errno value.
|
|
*/
|
|
static int
|
|
imf_prune(struct in_mfilter *imf, const struct sockaddr_in *psin)
|
|
{
|
|
struct ip_msource find;
|
|
struct ip_msource *ims;
|
|
struct in_msource *lims;
|
|
|
|
/* key is host byte order */
|
|
find.ims_haddr = ntohl(psin->sin_addr.s_addr);
|
|
ims = RB_FIND(ip_msource_tree, &imf->imf_sources, &find);
|
|
if (ims == NULL)
|
|
return (ENOENT);
|
|
lims = (struct in_msource *)ims;
|
|
lims->imsl_st[1] = MCAST_UNDEFINED;
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Revert socket-layer filter set deltas at t1 to t0 state.
|
|
*/
|
|
static void
|
|
imf_rollback(struct in_mfilter *imf)
|
|
{
|
|
struct ip_msource *ims, *tims;
|
|
struct in_msource *lims;
|
|
|
|
RB_FOREACH_SAFE(ims, ip_msource_tree, &imf->imf_sources, tims) {
|
|
lims = (struct in_msource *)ims;
|
|
if (lims->imsl_st[0] == lims->imsl_st[1]) {
|
|
/* no change at t1 */
|
|
continue;
|
|
} else if (lims->imsl_st[0] != MCAST_UNDEFINED) {
|
|
/* revert change to existing source at t1 */
|
|
lims->imsl_st[1] = lims->imsl_st[0];
|
|
} else {
|
|
/* revert source added t1 */
|
|
CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims);
|
|
RB_REMOVE(ip_msource_tree, &imf->imf_sources, ims);
|
|
free(ims, M_INMFILTER);
|
|
imf->imf_nsrc--;
|
|
}
|
|
}
|
|
imf->imf_st[1] = imf->imf_st[0];
|
|
}
|
|
|
|
/*
|
|
* Mark socket-layer filter set as INCLUDE {} at t1.
|
|
*/
|
|
static void
|
|
imf_leave(struct in_mfilter *imf)
|
|
{
|
|
struct ip_msource *ims;
|
|
struct in_msource *lims;
|
|
|
|
RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) {
|
|
lims = (struct in_msource *)ims;
|
|
lims->imsl_st[1] = MCAST_UNDEFINED;
|
|
}
|
|
imf->imf_st[1] = MCAST_INCLUDE;
|
|
}
|
|
|
|
/*
|
|
* Mark socket-layer filter set deltas as committed.
|
|
*/
|
|
static void
|
|
imf_commit(struct in_mfilter *imf)
|
|
{
|
|
struct ip_msource *ims;
|
|
struct in_msource *lims;
|
|
|
|
RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) {
|
|
lims = (struct in_msource *)ims;
|
|
lims->imsl_st[0] = lims->imsl_st[1];
|
|
}
|
|
imf->imf_st[0] = imf->imf_st[1];
|
|
}
|
|
|
|
/*
|
|
* Reap unreferenced sources from socket-layer filter set.
|
|
*/
|
|
static void
|
|
imf_reap(struct in_mfilter *imf)
|
|
{
|
|
struct ip_msource *ims, *tims;
|
|
struct in_msource *lims;
|
|
|
|
RB_FOREACH_SAFE(ims, ip_msource_tree, &imf->imf_sources, tims) {
|
|
lims = (struct in_msource *)ims;
|
|
if ((lims->imsl_st[0] == MCAST_UNDEFINED) &&
|
|
(lims->imsl_st[1] == MCAST_UNDEFINED)) {
|
|
CTR2(KTR_IGMPV3, "%s: free lims %p", __func__, ims);
|
|
RB_REMOVE(ip_msource_tree, &imf->imf_sources, ims);
|
|
free(ims, M_INMFILTER);
|
|
imf->imf_nsrc--;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Purge socket-layer filter set.
|
|
*/
|
|
static void
|
|
imf_purge(struct in_mfilter *imf)
|
|
{
|
|
struct ip_msource *ims, *tims;
|
|
|
|
RB_FOREACH_SAFE(ims, ip_msource_tree, &imf->imf_sources, tims) {
|
|
CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims);
|
|
RB_REMOVE(ip_msource_tree, &imf->imf_sources, ims);
|
|
free(ims, M_INMFILTER);
|
|
imf->imf_nsrc--;
|
|
}
|
|
imf->imf_st[0] = imf->imf_st[1] = MCAST_UNDEFINED;
|
|
KASSERT(RB_EMPTY(&imf->imf_sources),
|
|
("%s: imf_sources not empty", __func__));
|
|
}
|
|
|
|
/*
|
|
* Look up a source filter entry for a multicast group.
|
|
*
|
|
* inm is the group descriptor to work with.
|
|
* haddr is the host-byte-order IPv4 address to look up.
|
|
* noalloc may be non-zero to suppress allocation of sources.
|
|
* *pims will be set to the address of the retrieved or allocated source.
|
|
*
|
|
* SMPng: NOTE: may be called with locks held.
|
|
* Return 0 if successful, otherwise return a non-zero error code.
|
|
*/
|
|
static int
|
|
inm_get_source(struct in_multi *inm, const in_addr_t haddr,
|
|
const int noalloc, struct ip_msource **pims)
|
|
{
|
|
struct ip_msource find;
|
|
struct ip_msource *ims, *nims;
|
|
|
|
find.ims_haddr = haddr;
|
|
ims = RB_FIND(ip_msource_tree, &inm->inm_srcs, &find);
|
|
if (ims == NULL && !noalloc) {
|
|
if (inm->inm_nsrc == in_mcast_maxgrpsrc)
|
|
return (ENOSPC);
|
|
nims = malloc(sizeof(struct ip_msource), M_IPMSOURCE,
|
|
M_NOWAIT | M_ZERO);
|
|
if (nims == NULL)
|
|
return (ENOMEM);
|
|
nims->ims_haddr = haddr;
|
|
RB_INSERT(ip_msource_tree, &inm->inm_srcs, nims);
|
|
++inm->inm_nsrc;
|
|
ims = nims;
|
|
#ifdef KTR
|
|
CTR3(KTR_IGMPV3, "%s: allocated 0x%08x as %p", __func__,
|
|
haddr, ims);
|
|
#endif
|
|
}
|
|
|
|
*pims = ims;
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Merge socket-layer source into IGMP-layer source.
|
|
* If rollback is non-zero, perform the inverse of the merge.
|
|
*/
|
|
static void
|
|
ims_merge(struct ip_msource *ims, const struct in_msource *lims,
|
|
const int rollback)
|
|
{
|
|
int n = rollback ? -1 : 1;
|
|
|
|
if (lims->imsl_st[0] == MCAST_EXCLUDE) {
|
|
CTR3(KTR_IGMPV3, "%s: t1 ex -= %d on 0x%08x",
|
|
__func__, n, ims->ims_haddr);
|
|
ims->ims_st[1].ex -= n;
|
|
} else if (lims->imsl_st[0] == MCAST_INCLUDE) {
|
|
CTR3(KTR_IGMPV3, "%s: t1 in -= %d on 0x%08x",
|
|
__func__, n, ims->ims_haddr);
|
|
ims->ims_st[1].in -= n;
|
|
}
|
|
|
|
if (lims->imsl_st[1] == MCAST_EXCLUDE) {
|
|
CTR3(KTR_IGMPV3, "%s: t1 ex += %d on 0x%08x",
|
|
__func__, n, ims->ims_haddr);
|
|
ims->ims_st[1].ex += n;
|
|
} else if (lims->imsl_st[1] == MCAST_INCLUDE) {
|
|
CTR3(KTR_IGMPV3, "%s: t1 in += %d on 0x%08x",
|
|
__func__, n, ims->ims_haddr);
|
|
ims->ims_st[1].in += n;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Atomically update the global in_multi state, when a membership's
|
|
* filter list is being updated in any way.
|
|
*
|
|
* imf is the per-inpcb-membership group filter pointer.
|
|
* A fake imf may be passed for in-kernel consumers.
|
|
*
|
|
* XXX This is a candidate for a set-symmetric-difference style loop
|
|
* which would eliminate the repeated lookup from root of ims nodes,
|
|
* as they share the same key space.
|
|
*
|
|
* If any error occurred this function will back out of refcounts
|
|
* and return a non-zero value.
|
|
*/
|
|
static int
|
|
inm_merge(struct in_multi *inm, /*const*/ struct in_mfilter *imf)
|
|
{
|
|
struct ip_msource *ims, *nims;
|
|
struct in_msource *lims;
|
|
int schanged, error;
|
|
int nsrc0, nsrc1;
|
|
|
|
schanged = 0;
|
|
error = 0;
|
|
nsrc1 = nsrc0 = 0;
|
|
IN_MULTI_LIST_LOCK_ASSERT();
|
|
|
|
/*
|
|
* Update the source filters first, as this may fail.
|
|
* Maintain count of in-mode filters at t0, t1. These are
|
|
* used to work out if we transition into ASM mode or not.
|
|
* Maintain a count of source filters whose state was
|
|
* actually modified by this operation.
|
|
*/
|
|
RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) {
|
|
lims = (struct in_msource *)ims;
|
|
if (lims->imsl_st[0] == imf->imf_st[0]) nsrc0++;
|
|
if (lims->imsl_st[1] == imf->imf_st[1]) nsrc1++;
|
|
if (lims->imsl_st[0] == lims->imsl_st[1]) continue;
|
|
error = inm_get_source(inm, lims->ims_haddr, 0, &nims);
|
|
++schanged;
|
|
if (error)
|
|
break;
|
|
ims_merge(nims, lims, 0);
|
|
}
|
|
if (error) {
|
|
struct ip_msource *bims;
|
|
|
|
RB_FOREACH_REVERSE_FROM(ims, ip_msource_tree, nims) {
|
|
lims = (struct in_msource *)ims;
|
|
if (lims->imsl_st[0] == lims->imsl_st[1])
|
|
continue;
|
|
(void)inm_get_source(inm, lims->ims_haddr, 1, &bims);
|
|
if (bims == NULL)
|
|
continue;
|
|
ims_merge(bims, lims, 1);
|
|
}
|
|
goto out_reap;
|
|
}
|
|
|
|
CTR3(KTR_IGMPV3, "%s: imf filters in-mode: %d at t0, %d at t1",
|
|
__func__, nsrc0, nsrc1);
|
|
|
|
/* Handle transition between INCLUDE {n} and INCLUDE {} on socket. */
|
|
if (imf->imf_st[0] == imf->imf_st[1] &&
|
|
imf->imf_st[1] == MCAST_INCLUDE) {
|
|
if (nsrc1 == 0) {
|
|
CTR1(KTR_IGMPV3, "%s: --in on inm at t1", __func__);
|
|
--inm->inm_st[1].iss_in;
|
|
}
|
|
}
|
|
|
|
/* Handle filter mode transition on socket. */
|
|
if (imf->imf_st[0] != imf->imf_st[1]) {
|
|
CTR3(KTR_IGMPV3, "%s: imf transition %d to %d",
|
|
__func__, imf->imf_st[0], imf->imf_st[1]);
|
|
|
|
if (imf->imf_st[0] == MCAST_EXCLUDE) {
|
|
CTR1(KTR_IGMPV3, "%s: --ex on inm at t1", __func__);
|
|
--inm->inm_st[1].iss_ex;
|
|
} else if (imf->imf_st[0] == MCAST_INCLUDE) {
|
|
CTR1(KTR_IGMPV3, "%s: --in on inm at t1", __func__);
|
|
--inm->inm_st[1].iss_in;
|
|
}
|
|
|
|
if (imf->imf_st[1] == MCAST_EXCLUDE) {
|
|
CTR1(KTR_IGMPV3, "%s: ex++ on inm at t1", __func__);
|
|
inm->inm_st[1].iss_ex++;
|
|
} else if (imf->imf_st[1] == MCAST_INCLUDE && nsrc1 > 0) {
|
|
CTR1(KTR_IGMPV3, "%s: in++ on inm at t1", __func__);
|
|
inm->inm_st[1].iss_in++;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Track inm filter state in terms of listener counts.
|
|
* If there are any exclusive listeners, stack-wide
|
|
* membership is exclusive.
|
|
* Otherwise, if only inclusive listeners, stack-wide is inclusive.
|
|
* If no listeners remain, state is undefined at t1,
|
|
* and the IGMP lifecycle for this group should finish.
|
|
*/
|
|
if (inm->inm_st[1].iss_ex > 0) {
|
|
CTR1(KTR_IGMPV3, "%s: transition to EX", __func__);
|
|
inm->inm_st[1].iss_fmode = MCAST_EXCLUDE;
|
|
} else if (inm->inm_st[1].iss_in > 0) {
|
|
CTR1(KTR_IGMPV3, "%s: transition to IN", __func__);
|
|
inm->inm_st[1].iss_fmode = MCAST_INCLUDE;
|
|
} else {
|
|
CTR1(KTR_IGMPV3, "%s: transition to UNDEF", __func__);
|
|
inm->inm_st[1].iss_fmode = MCAST_UNDEFINED;
|
|
}
|
|
|
|
/* Decrement ASM listener count on transition out of ASM mode. */
|
|
if (imf->imf_st[0] == MCAST_EXCLUDE && nsrc0 == 0) {
|
|
if ((imf->imf_st[1] != MCAST_EXCLUDE) ||
|
|
(imf->imf_st[1] == MCAST_EXCLUDE && nsrc1 > 0)) {
|
|
CTR1(KTR_IGMPV3, "%s: --asm on inm at t1", __func__);
|
|
--inm->inm_st[1].iss_asm;
|
|
}
|
|
}
|
|
|
|
/* Increment ASM listener count on transition to ASM mode. */
|
|
if (imf->imf_st[1] == MCAST_EXCLUDE && nsrc1 == 0) {
|
|
CTR1(KTR_IGMPV3, "%s: asm++ on inm at t1", __func__);
|
|
inm->inm_st[1].iss_asm++;
|
|
}
|
|
|
|
CTR3(KTR_IGMPV3, "%s: merged imf %p to inm %p", __func__, imf, inm);
|
|
inm_print(inm);
|
|
|
|
out_reap:
|
|
if (schanged > 0) {
|
|
CTR1(KTR_IGMPV3, "%s: sources changed; reaping", __func__);
|
|
inm_reap(inm);
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Mark an in_multi's filter set deltas as committed.
|
|
* Called by IGMP after a state change has been enqueued.
|
|
*/
|
|
void
|
|
inm_commit(struct in_multi *inm)
|
|
{
|
|
struct ip_msource *ims;
|
|
|
|
CTR2(KTR_IGMPV3, "%s: commit inm %p", __func__, inm);
|
|
CTR1(KTR_IGMPV3, "%s: pre commit:", __func__);
|
|
inm_print(inm);
|
|
|
|
RB_FOREACH(ims, ip_msource_tree, &inm->inm_srcs) {
|
|
ims->ims_st[0] = ims->ims_st[1];
|
|
}
|
|
inm->inm_st[0] = inm->inm_st[1];
|
|
}
|
|
|
|
/*
|
|
* Reap unreferenced nodes from an in_multi's filter set.
|
|
*/
|
|
static void
|
|
inm_reap(struct in_multi *inm)
|
|
{
|
|
struct ip_msource *ims, *tims;
|
|
|
|
RB_FOREACH_SAFE(ims, ip_msource_tree, &inm->inm_srcs, tims) {
|
|
if (ims->ims_st[0].ex > 0 || ims->ims_st[0].in > 0 ||
|
|
ims->ims_st[1].ex > 0 || ims->ims_st[1].in > 0 ||
|
|
ims->ims_stp != 0)
|
|
continue;
|
|
CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims);
|
|
RB_REMOVE(ip_msource_tree, &inm->inm_srcs, ims);
|
|
free(ims, M_IPMSOURCE);
|
|
inm->inm_nsrc--;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Purge all source nodes from an in_multi's filter set.
|
|
*/
|
|
static void
|
|
inm_purge(struct in_multi *inm)
|
|
{
|
|
struct ip_msource *ims, *tims;
|
|
|
|
RB_FOREACH_SAFE(ims, ip_msource_tree, &inm->inm_srcs, tims) {
|
|
CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims);
|
|
RB_REMOVE(ip_msource_tree, &inm->inm_srcs, ims);
|
|
free(ims, M_IPMSOURCE);
|
|
inm->inm_nsrc--;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Join a multicast group; unlocked entry point.
|
|
*
|
|
* SMPng: XXX: in_joingroup() is called from in_control() when Giant
|
|
* is not held. Fortunately, ifp is unlikely to have been detached
|
|
* at this point, so we assume it's OK to recurse.
|
|
*/
|
|
int
|
|
in_joingroup(struct ifnet *ifp, const struct in_addr *gina,
|
|
/*const*/ struct in_mfilter *imf, struct in_multi **pinm)
|
|
{
|
|
int error;
|
|
|
|
IN_MULTI_LOCK();
|
|
error = in_joingroup_locked(ifp, gina, imf, pinm);
|
|
IN_MULTI_UNLOCK();
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Join a multicast group; real entry point.
|
|
*
|
|
* Only preserves atomicity at inm level.
|
|
* NOTE: imf argument cannot be const due to sys/tree.h limitations.
|
|
*
|
|
* If the IGMP downcall fails, the group is not joined, and an error
|
|
* code is returned.
|
|
*/
|
|
int
|
|
in_joingroup_locked(struct ifnet *ifp, const struct in_addr *gina,
|
|
/*const*/ struct in_mfilter *imf, struct in_multi **pinm)
|
|
{
|
|
struct in_mfilter timf;
|
|
struct in_multi *inm;
|
|
int error;
|
|
|
|
IN_MULTI_LOCK_ASSERT();
|
|
IN_MULTI_LIST_UNLOCK_ASSERT();
|
|
|
|
CTR4(KTR_IGMPV3, "%s: join 0x%08x on %p(%s))", __func__,
|
|
ntohl(gina->s_addr), ifp, ifp->if_xname);
|
|
|
|
error = 0;
|
|
inm = NULL;
|
|
|
|
/*
|
|
* If no imf was specified (i.e. kernel consumer),
|
|
* fake one up and assume it is an ASM join.
|
|
*/
|
|
if (imf == NULL) {
|
|
imf_init(&timf, MCAST_UNDEFINED, MCAST_EXCLUDE);
|
|
imf = &timf;
|
|
}
|
|
|
|
error = in_getmulti(ifp, gina, &inm);
|
|
if (error) {
|
|
CTR1(KTR_IGMPV3, "%s: in_getmulti() failure", __func__);
|
|
return (error);
|
|
}
|
|
IN_MULTI_LIST_LOCK();
|
|
CTR1(KTR_IGMPV3, "%s: merge inm state", __func__);
|
|
error = inm_merge(inm, imf);
|
|
if (error) {
|
|
CTR1(KTR_IGMPV3, "%s: failed to merge inm state", __func__);
|
|
goto out_inm_release;
|
|
}
|
|
|
|
CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__);
|
|
error = igmp_change_state(inm);
|
|
if (error) {
|
|
CTR1(KTR_IGMPV3, "%s: failed to update source", __func__);
|
|
goto out_inm_release;
|
|
}
|
|
|
|
out_inm_release:
|
|
if (error) {
|
|
CTR2(KTR_IGMPV3, "%s: dropping ref on %p", __func__, inm);
|
|
IF_ADDR_WLOCK(ifp);
|
|
inm_release_deferred(inm);
|
|
IF_ADDR_WUNLOCK(ifp);
|
|
} else {
|
|
*pinm = inm;
|
|
}
|
|
IN_MULTI_LIST_UNLOCK();
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Leave a multicast group; unlocked entry point.
|
|
*/
|
|
int
|
|
in_leavegroup(struct in_multi *inm, /*const*/ struct in_mfilter *imf)
|
|
{
|
|
int error;
|
|
|
|
IN_MULTI_LOCK();
|
|
error = in_leavegroup_locked(inm, imf);
|
|
IN_MULTI_UNLOCK();
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Leave a multicast group; real entry point.
|
|
* All source filters will be expunged.
|
|
*
|
|
* Only preserves atomicity at inm level.
|
|
*
|
|
* Holding the write lock for the INP which contains imf
|
|
* is highly advisable. We can't assert for it as imf does not
|
|
* contain a back-pointer to the owning inp.
|
|
*
|
|
* Note: This is not the same as inm_release(*) as this function also
|
|
* makes a state change downcall into IGMP.
|
|
*/
|
|
int
|
|
in_leavegroup_locked(struct in_multi *inm, /*const*/ struct in_mfilter *imf)
|
|
{
|
|
struct in_mfilter timf;
|
|
int error;
|
|
|
|
IN_MULTI_LOCK_ASSERT();
|
|
IN_MULTI_LIST_UNLOCK_ASSERT();
|
|
|
|
error = 0;
|
|
|
|
CTR5(KTR_IGMPV3, "%s: leave inm %p, 0x%08x/%s, imf %p", __func__,
|
|
inm, ntohl(inm->inm_addr.s_addr),
|
|
(inm_is_ifp_detached(inm) ? "null" : inm->inm_ifp->if_xname),
|
|
imf);
|
|
|
|
/*
|
|
* If no imf was specified (i.e. kernel consumer),
|
|
* fake one up and assume it is an ASM join.
|
|
*/
|
|
if (imf == NULL) {
|
|
imf_init(&timf, MCAST_EXCLUDE, MCAST_UNDEFINED);
|
|
imf = &timf;
|
|
}
|
|
|
|
/*
|
|
* Begin state merge transaction at IGMP layer.
|
|
*
|
|
* As this particular invocation should not cause any memory
|
|
* to be allocated, and there is no opportunity to roll back
|
|
* the transaction, it MUST NOT fail.
|
|
*/
|
|
CTR1(KTR_IGMPV3, "%s: merge inm state", __func__);
|
|
IN_MULTI_LIST_LOCK();
|
|
error = inm_merge(inm, imf);
|
|
KASSERT(error == 0, ("%s: failed to merge inm state", __func__));
|
|
|
|
CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__);
|
|
CURVNET_SET(inm->inm_ifp->if_vnet);
|
|
error = igmp_change_state(inm);
|
|
IF_ADDR_WLOCK(inm->inm_ifp);
|
|
inm_release_deferred(inm);
|
|
IF_ADDR_WUNLOCK(inm->inm_ifp);
|
|
IN_MULTI_LIST_UNLOCK();
|
|
CURVNET_RESTORE();
|
|
if (error)
|
|
CTR1(KTR_IGMPV3, "%s: failed igmp downcall", __func__);
|
|
|
|
CTR2(KTR_IGMPV3, "%s: dropping ref on %p", __func__, inm);
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*#ifndef BURN_BRIDGES*/
|
|
|
|
/*
|
|
* Block or unblock an ASM multicast source on an inpcb.
|
|
* This implements the delta-based API described in RFC 3678.
|
|
*
|
|
* The delta-based API applies only to exclusive-mode memberships.
|
|
* An IGMP downcall will be performed.
|
|
*
|
|
* SMPng: NOTE: Must take Giant as a join may create a new ifma.
|
|
*
|
|
* Return 0 if successful, otherwise return an appropriate error code.
|
|
*/
|
|
static int
|
|
inp_block_unblock_source(struct inpcb *inp, struct sockopt *sopt)
|
|
{
|
|
struct group_source_req gsr;
|
|
sockunion_t *gsa, *ssa;
|
|
struct ifnet *ifp;
|
|
struct in_mfilter *imf;
|
|
struct ip_moptions *imo;
|
|
struct in_msource *ims;
|
|
struct in_multi *inm;
|
|
uint16_t fmode;
|
|
int error, doblock;
|
|
|
|
ifp = NULL;
|
|
error = 0;
|
|
doblock = 0;
|
|
|
|
memset(&gsr, 0, sizeof(struct group_source_req));
|
|
gsa = (sockunion_t *)&gsr.gsr_group;
|
|
ssa = (sockunion_t *)&gsr.gsr_source;
|
|
|
|
switch (sopt->sopt_name) {
|
|
case IP_BLOCK_SOURCE:
|
|
case IP_UNBLOCK_SOURCE: {
|
|
struct ip_mreq_source mreqs;
|
|
|
|
error = sooptcopyin(sopt, &mreqs,
|
|
sizeof(struct ip_mreq_source),
|
|
sizeof(struct ip_mreq_source));
|
|
if (error)
|
|
return (error);
|
|
|
|
gsa->sin.sin_family = AF_INET;
|
|
gsa->sin.sin_len = sizeof(struct sockaddr_in);
|
|
gsa->sin.sin_addr = mreqs.imr_multiaddr;
|
|
|
|
ssa->sin.sin_family = AF_INET;
|
|
ssa->sin.sin_len = sizeof(struct sockaddr_in);
|
|
ssa->sin.sin_addr = mreqs.imr_sourceaddr;
|
|
|
|
if (!in_nullhost(mreqs.imr_interface)) {
|
|
struct epoch_tracker et;
|
|
|
|
NET_EPOCH_ENTER(et);
|
|
INADDR_TO_IFP(mreqs.imr_interface, ifp);
|
|
/* XXXGL: ifref? */
|
|
NET_EPOCH_EXIT(et);
|
|
}
|
|
if (sopt->sopt_name == IP_BLOCK_SOURCE)
|
|
doblock = 1;
|
|
|
|
CTR3(KTR_IGMPV3, "%s: imr_interface = 0x%08x, ifp = %p",
|
|
__func__, ntohl(mreqs.imr_interface.s_addr), ifp);
|
|
break;
|
|
}
|
|
|
|
case MCAST_BLOCK_SOURCE:
|
|
case MCAST_UNBLOCK_SOURCE:
|
|
error = sooptcopyin(sopt, &gsr,
|
|
sizeof(struct group_source_req),
|
|
sizeof(struct group_source_req));
|
|
if (error)
|
|
return (error);
|
|
|
|
if (gsa->sin.sin_family != AF_INET ||
|
|
gsa->sin.sin_len != sizeof(struct sockaddr_in))
|
|
return (EINVAL);
|
|
|
|
if (ssa->sin.sin_family != AF_INET ||
|
|
ssa->sin.sin_len != sizeof(struct sockaddr_in))
|
|
return (EINVAL);
|
|
|
|
if (gsr.gsr_interface == 0 || V_if_index < gsr.gsr_interface)
|
|
return (EADDRNOTAVAIL);
|
|
|
|
ifp = ifnet_byindex(gsr.gsr_interface);
|
|
|
|
if (sopt->sopt_name == MCAST_BLOCK_SOURCE)
|
|
doblock = 1;
|
|
break;
|
|
|
|
default:
|
|
CTR2(KTR_IGMPV3, "%s: unknown sopt_name %d",
|
|
__func__, sopt->sopt_name);
|
|
return (EOPNOTSUPP);
|
|
break;
|
|
}
|
|
|
|
if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr)))
|
|
return (EINVAL);
|
|
|
|
IN_MULTI_LOCK();
|
|
|
|
/*
|
|
* Check if we are actually a member of this group.
|
|
*/
|
|
imo = inp_findmoptions(inp);
|
|
imf = imo_match_group(imo, ifp, &gsa->sa);
|
|
if (imf == NULL) {
|
|
error = EADDRNOTAVAIL;
|
|
goto out_inp_locked;
|
|
}
|
|
inm = imf->imf_inm;
|
|
|
|
/*
|
|
* Attempting to use the delta-based API on an
|
|
* non exclusive-mode membership is an error.
|
|
*/
|
|
fmode = imf->imf_st[0];
|
|
if (fmode != MCAST_EXCLUDE) {
|
|
error = EINVAL;
|
|
goto out_inp_locked;
|
|
}
|
|
|
|
/*
|
|
* Deal with error cases up-front:
|
|
* Asked to block, but already blocked; or
|
|
* Asked to unblock, but nothing to unblock.
|
|
* If adding a new block entry, allocate it.
|
|
*/
|
|
ims = imo_match_source(imf, &ssa->sa);
|
|
if ((ims != NULL && doblock) || (ims == NULL && !doblock)) {
|
|
CTR3(KTR_IGMPV3, "%s: source 0x%08x %spresent", __func__,
|
|
ntohl(ssa->sin.sin_addr.s_addr), doblock ? "" : "not ");
|
|
error = EADDRNOTAVAIL;
|
|
goto out_inp_locked;
|
|
}
|
|
|
|
INP_WLOCK_ASSERT(inp);
|
|
|
|
/*
|
|
* Begin state merge transaction at socket layer.
|
|
*/
|
|
if (doblock) {
|
|
CTR2(KTR_IGMPV3, "%s: %s source", __func__, "block");
|
|
ims = imf_graft(imf, fmode, &ssa->sin);
|
|
if (ims == NULL)
|
|
error = ENOMEM;
|
|
} else {
|
|
CTR2(KTR_IGMPV3, "%s: %s source", __func__, "allow");
|
|
error = imf_prune(imf, &ssa->sin);
|
|
}
|
|
|
|
if (error) {
|
|
CTR1(KTR_IGMPV3, "%s: merge imf state failed", __func__);
|
|
goto out_imf_rollback;
|
|
}
|
|
|
|
/*
|
|
* Begin state merge transaction at IGMP layer.
|
|
*/
|
|
CTR1(KTR_IGMPV3, "%s: merge inm state", __func__);
|
|
IN_MULTI_LIST_LOCK();
|
|
error = inm_merge(inm, imf);
|
|
if (error) {
|
|
CTR1(KTR_IGMPV3, "%s: failed to merge inm state", __func__);
|
|
IN_MULTI_LIST_UNLOCK();
|
|
goto out_imf_rollback;
|
|
}
|
|
|
|
CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__);
|
|
error = igmp_change_state(inm);
|
|
IN_MULTI_LIST_UNLOCK();
|
|
if (error)
|
|
CTR1(KTR_IGMPV3, "%s: failed igmp downcall", __func__);
|
|
|
|
out_imf_rollback:
|
|
if (error)
|
|
imf_rollback(imf);
|
|
else
|
|
imf_commit(imf);
|
|
|
|
imf_reap(imf);
|
|
|
|
out_inp_locked:
|
|
INP_WUNLOCK(inp);
|
|
IN_MULTI_UNLOCK();
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Given an inpcb, return its multicast options structure pointer. Accepts
|
|
* an unlocked inpcb pointer, but will return it locked. May sleep.
|
|
*
|
|
* SMPng: NOTE: Potentially calls malloc(M_WAITOK) with Giant held.
|
|
* SMPng: NOTE: Returns with the INP write lock held.
|
|
*/
|
|
static struct ip_moptions *
|
|
inp_findmoptions(struct inpcb *inp)
|
|
{
|
|
struct ip_moptions *imo;
|
|
|
|
INP_WLOCK(inp);
|
|
if (inp->inp_moptions != NULL)
|
|
return (inp->inp_moptions);
|
|
|
|
INP_WUNLOCK(inp);
|
|
|
|
imo = malloc(sizeof(*imo), M_IPMOPTS, M_WAITOK);
|
|
|
|
imo->imo_multicast_ifp = NULL;
|
|
imo->imo_multicast_addr.s_addr = INADDR_ANY;
|
|
imo->imo_multicast_vif = -1;
|
|
imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
|
|
imo->imo_multicast_loop = in_mcast_loop;
|
|
STAILQ_INIT(&imo->imo_head);
|
|
|
|
INP_WLOCK(inp);
|
|
if (inp->inp_moptions != NULL) {
|
|
free(imo, M_IPMOPTS);
|
|
return (inp->inp_moptions);
|
|
}
|
|
inp->inp_moptions = imo;
|
|
return (imo);
|
|
}
|
|
|
|
void
|
|
inp_freemoptions(struct ip_moptions *imo)
|
|
{
|
|
struct in_mfilter *imf;
|
|
struct in_multi *inm;
|
|
struct ifnet *ifp;
|
|
|
|
if (imo == NULL)
|
|
return;
|
|
|
|
while ((imf = ip_mfilter_first(&imo->imo_head)) != NULL) {
|
|
ip_mfilter_remove(&imo->imo_head, imf);
|
|
|
|
imf_leave(imf);
|
|
if ((inm = imf->imf_inm) != NULL) {
|
|
if ((ifp = inm->inm_ifp) != NULL) {
|
|
CURVNET_SET(ifp->if_vnet);
|
|
(void)in_leavegroup(inm, imf);
|
|
CURVNET_RESTORE();
|
|
} else {
|
|
(void)in_leavegroup(inm, imf);
|
|
}
|
|
}
|
|
ip_mfilter_free(imf);
|
|
}
|
|
free(imo, M_IPMOPTS);
|
|
}
|
|
|
|
/*
|
|
* Atomically get source filters on a socket for an IPv4 multicast group.
|
|
* Called with INP lock held; returns with lock released.
|
|
*/
|
|
static int
|
|
inp_get_source_filters(struct inpcb *inp, struct sockopt *sopt)
|
|
{
|
|
struct __msfilterreq msfr;
|
|
sockunion_t *gsa;
|
|
struct ifnet *ifp;
|
|
struct ip_moptions *imo;
|
|
struct in_mfilter *imf;
|
|
struct ip_msource *ims;
|
|
struct in_msource *lims;
|
|
struct sockaddr_in *psin;
|
|
struct sockaddr_storage *ptss;
|
|
struct sockaddr_storage *tss;
|
|
int error;
|
|
size_t nsrcs, ncsrcs;
|
|
|
|
INP_WLOCK_ASSERT(inp);
|
|
|
|
imo = inp->inp_moptions;
|
|
KASSERT(imo != NULL, ("%s: null ip_moptions", __func__));
|
|
|
|
INP_WUNLOCK(inp);
|
|
|
|
error = sooptcopyin(sopt, &msfr, sizeof(struct __msfilterreq),
|
|
sizeof(struct __msfilterreq));
|
|
if (error)
|
|
return (error);
|
|
|
|
if (msfr.msfr_ifindex == 0 || V_if_index < msfr.msfr_ifindex)
|
|
return (EINVAL);
|
|
|
|
ifp = ifnet_byindex(msfr.msfr_ifindex);
|
|
if (ifp == NULL)
|
|
return (EINVAL);
|
|
|
|
INP_WLOCK(inp);
|
|
|
|
/*
|
|
* Lookup group on the socket.
|
|
*/
|
|
gsa = (sockunion_t *)&msfr.msfr_group;
|
|
imf = imo_match_group(imo, ifp, &gsa->sa);
|
|
if (imf == NULL) {
|
|
INP_WUNLOCK(inp);
|
|
return (EADDRNOTAVAIL);
|
|
}
|
|
|
|
/*
|
|
* Ignore memberships which are in limbo.
|
|
*/
|
|
if (imf->imf_st[1] == MCAST_UNDEFINED) {
|
|
INP_WUNLOCK(inp);
|
|
return (EAGAIN);
|
|
}
|
|
msfr.msfr_fmode = imf->imf_st[1];
|
|
|
|
/*
|
|
* If the user specified a buffer, copy out the source filter
|
|
* entries to userland gracefully.
|
|
* We only copy out the number of entries which userland
|
|
* has asked for, but we always tell userland how big the
|
|
* buffer really needs to be.
|
|
*/
|
|
if (msfr.msfr_nsrcs > in_mcast_maxsocksrc)
|
|
msfr.msfr_nsrcs = in_mcast_maxsocksrc;
|
|
tss = NULL;
|
|
if (msfr.msfr_srcs != NULL && msfr.msfr_nsrcs > 0) {
|
|
tss = malloc(sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs,
|
|
M_TEMP, M_NOWAIT | M_ZERO);
|
|
if (tss == NULL) {
|
|
INP_WUNLOCK(inp);
|
|
return (ENOBUFS);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Count number of sources in-mode at t0.
|
|
* If buffer space exists and remains, copy out source entries.
|
|
*/
|
|
nsrcs = msfr.msfr_nsrcs;
|
|
ncsrcs = 0;
|
|
ptss = tss;
|
|
RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) {
|
|
lims = (struct in_msource *)ims;
|
|
if (lims->imsl_st[0] == MCAST_UNDEFINED ||
|
|
lims->imsl_st[0] != imf->imf_st[0])
|
|
continue;
|
|
++ncsrcs;
|
|
if (tss != NULL && nsrcs > 0) {
|
|
psin = (struct sockaddr_in *)ptss;
|
|
psin->sin_family = AF_INET;
|
|
psin->sin_len = sizeof(struct sockaddr_in);
|
|
psin->sin_addr.s_addr = htonl(lims->ims_haddr);
|
|
psin->sin_port = 0;
|
|
++ptss;
|
|
--nsrcs;
|
|
}
|
|
}
|
|
|
|
INP_WUNLOCK(inp);
|
|
|
|
if (tss != NULL) {
|
|
error = copyout(tss, msfr.msfr_srcs,
|
|
sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs);
|
|
free(tss, M_TEMP);
|
|
if (error)
|
|
return (error);
|
|
}
|
|
|
|
msfr.msfr_nsrcs = ncsrcs;
|
|
error = sooptcopyout(sopt, &msfr, sizeof(struct __msfilterreq));
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Return the IP multicast options in response to user getsockopt().
|
|
*/
|
|
int
|
|
inp_getmoptions(struct inpcb *inp, struct sockopt *sopt)
|
|
{
|
|
struct ip_mreqn mreqn;
|
|
struct ip_moptions *imo;
|
|
struct ifnet *ifp;
|
|
struct in_ifaddr *ia;
|
|
int error, optval;
|
|
u_char coptval;
|
|
|
|
INP_WLOCK(inp);
|
|
imo = inp->inp_moptions;
|
|
/*
|
|
* If socket is neither of type SOCK_RAW or SOCK_DGRAM,
|
|
* or is a divert socket, reject it.
|
|
*/
|
|
if (inp->inp_socket->so_proto->pr_protocol == IPPROTO_DIVERT ||
|
|
(inp->inp_socket->so_proto->pr_type != SOCK_RAW &&
|
|
inp->inp_socket->so_proto->pr_type != SOCK_DGRAM)) {
|
|
INP_WUNLOCK(inp);
|
|
return (EOPNOTSUPP);
|
|
}
|
|
|
|
error = 0;
|
|
switch (sopt->sopt_name) {
|
|
case IP_MULTICAST_VIF:
|
|
if (imo != NULL)
|
|
optval = imo->imo_multicast_vif;
|
|
else
|
|
optval = -1;
|
|
INP_WUNLOCK(inp);
|
|
error = sooptcopyout(sopt, &optval, sizeof(int));
|
|
break;
|
|
|
|
case IP_MULTICAST_IF:
|
|
memset(&mreqn, 0, sizeof(struct ip_mreqn));
|
|
if (imo != NULL) {
|
|
ifp = imo->imo_multicast_ifp;
|
|
if (!in_nullhost(imo->imo_multicast_addr)) {
|
|
mreqn.imr_address = imo->imo_multicast_addr;
|
|
} else if (ifp != NULL) {
|
|
struct epoch_tracker et;
|
|
|
|
mreqn.imr_ifindex = ifp->if_index;
|
|
NET_EPOCH_ENTER(et);
|
|
IFP_TO_IA(ifp, ia);
|
|
if (ia != NULL)
|
|
mreqn.imr_address =
|
|
IA_SIN(ia)->sin_addr;
|
|
NET_EPOCH_EXIT(et);
|
|
}
|
|
}
|
|
INP_WUNLOCK(inp);
|
|
if (sopt->sopt_valsize == sizeof(struct ip_mreqn)) {
|
|
error = sooptcopyout(sopt, &mreqn,
|
|
sizeof(struct ip_mreqn));
|
|
} else {
|
|
error = sooptcopyout(sopt, &mreqn.imr_address,
|
|
sizeof(struct in_addr));
|
|
}
|
|
break;
|
|
|
|
case IP_MULTICAST_TTL:
|
|
if (imo == NULL)
|
|
optval = coptval = IP_DEFAULT_MULTICAST_TTL;
|
|
else
|
|
optval = coptval = imo->imo_multicast_ttl;
|
|
INP_WUNLOCK(inp);
|
|
if (sopt->sopt_valsize == sizeof(u_char))
|
|
error = sooptcopyout(sopt, &coptval, sizeof(u_char));
|
|
else
|
|
error = sooptcopyout(sopt, &optval, sizeof(int));
|
|
break;
|
|
|
|
case IP_MULTICAST_LOOP:
|
|
if (imo == NULL)
|
|
optval = coptval = IP_DEFAULT_MULTICAST_LOOP;
|
|
else
|
|
optval = coptval = imo->imo_multicast_loop;
|
|
INP_WUNLOCK(inp);
|
|
if (sopt->sopt_valsize == sizeof(u_char))
|
|
error = sooptcopyout(sopt, &coptval, sizeof(u_char));
|
|
else
|
|
error = sooptcopyout(sopt, &optval, sizeof(int));
|
|
break;
|
|
|
|
case IP_MSFILTER:
|
|
if (imo == NULL) {
|
|
error = EADDRNOTAVAIL;
|
|
INP_WUNLOCK(inp);
|
|
} else {
|
|
error = inp_get_source_filters(inp, sopt);
|
|
}
|
|
break;
|
|
|
|
default:
|
|
INP_WUNLOCK(inp);
|
|
error = ENOPROTOOPT;
|
|
break;
|
|
}
|
|
|
|
INP_UNLOCK_ASSERT(inp);
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Look up the ifnet to use for a multicast group membership,
|
|
* given the IPv4 address of an interface, and the IPv4 group address.
|
|
*
|
|
* This routine exists to support legacy multicast applications
|
|
* which do not understand that multicast memberships are scoped to
|
|
* specific physical links in the networking stack, or which need
|
|
* to join link-scope groups before IPv4 addresses are configured.
|
|
*
|
|
* Use this socket's current FIB number for any required FIB lookup.
|
|
* If ina is INADDR_ANY, look up the group address in the unicast FIB,
|
|
* and use its ifp; usually, this points to the default next-hop.
|
|
*
|
|
* If the FIB lookup fails, attempt to use the first non-loopback
|
|
* interface with multicast capability in the system as a
|
|
* last resort. The legacy IPv4 ASM API requires that we do
|
|
* this in order to allow groups to be joined when the routing
|
|
* table has not yet been populated during boot.
|
|
*
|
|
* Returns NULL if no ifp could be found, otherwise return referenced ifp.
|
|
*
|
|
* FUTURE: Implement IPv4 source-address selection.
|
|
*/
|
|
static struct ifnet *
|
|
inp_lookup_mcast_ifp(const struct inpcb *inp,
|
|
const struct sockaddr_in *gsin, const struct in_addr ina)
|
|
{
|
|
struct ifnet *ifp;
|
|
struct nhop_object *nh;
|
|
|
|
NET_EPOCH_ASSERT();
|
|
KASSERT(inp != NULL, ("%s: inp must not be NULL", __func__));
|
|
KASSERT(gsin->sin_family == AF_INET, ("%s: not AF_INET", __func__));
|
|
KASSERT(IN_MULTICAST(ntohl(gsin->sin_addr.s_addr)),
|
|
("%s: not multicast", __func__));
|
|
|
|
ifp = NULL;
|
|
if (!in_nullhost(ina)) {
|
|
INADDR_TO_IFP(ina, ifp);
|
|
if (ifp != NULL)
|
|
if_ref(ifp);
|
|
} else {
|
|
nh = fib4_lookup(inp->inp_inc.inc_fibnum, gsin->sin_addr, 0, NHR_NONE, 0);
|
|
if (nh != NULL) {
|
|
ifp = nh->nh_ifp;
|
|
if_ref(ifp);
|
|
} else {
|
|
struct in_ifaddr *ia;
|
|
struct ifnet *mifp;
|
|
|
|
mifp = NULL;
|
|
CK_STAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) {
|
|
mifp = ia->ia_ifp;
|
|
if (!(mifp->if_flags & IFF_LOOPBACK) &&
|
|
(mifp->if_flags & IFF_MULTICAST)) {
|
|
ifp = mifp;
|
|
if_ref(ifp);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return (ifp);
|
|
}
|
|
|
|
/*
|
|
* Join an IPv4 multicast group, possibly with a source.
|
|
*/
|
|
static int
|
|
inp_join_group(struct inpcb *inp, struct sockopt *sopt)
|
|
{
|
|
struct group_source_req gsr;
|
|
sockunion_t *gsa, *ssa;
|
|
struct ifnet *ifp;
|
|
struct in_mfilter *imf;
|
|
struct ip_moptions *imo;
|
|
struct in_multi *inm;
|
|
struct in_msource *lims;
|
|
struct epoch_tracker et;
|
|
int error, is_new;
|
|
|
|
ifp = NULL;
|
|
lims = NULL;
|
|
error = 0;
|
|
|
|
memset(&gsr, 0, sizeof(struct group_source_req));
|
|
gsa = (sockunion_t *)&gsr.gsr_group;
|
|
gsa->ss.ss_family = AF_UNSPEC;
|
|
ssa = (sockunion_t *)&gsr.gsr_source;
|
|
ssa->ss.ss_family = AF_UNSPEC;
|
|
|
|
switch (sopt->sopt_name) {
|
|
case IP_ADD_MEMBERSHIP: {
|
|
struct ip_mreqn mreqn;
|
|
|
|
if (sopt->sopt_valsize == sizeof(struct ip_mreqn))
|
|
error = sooptcopyin(sopt, &mreqn,
|
|
sizeof(struct ip_mreqn), sizeof(struct ip_mreqn));
|
|
else
|
|
error = sooptcopyin(sopt, &mreqn,
|
|
sizeof(struct ip_mreq), sizeof(struct ip_mreq));
|
|
if (error)
|
|
return (error);
|
|
|
|
gsa->sin.sin_family = AF_INET;
|
|
gsa->sin.sin_len = sizeof(struct sockaddr_in);
|
|
gsa->sin.sin_addr = mreqn.imr_multiaddr;
|
|
if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr)))
|
|
return (EINVAL);
|
|
|
|
NET_EPOCH_ENTER(et);
|
|
if (sopt->sopt_valsize == sizeof(struct ip_mreqn) &&
|
|
mreqn.imr_ifindex != 0)
|
|
ifp = ifnet_byindex_ref(mreqn.imr_ifindex);
|
|
else
|
|
ifp = inp_lookup_mcast_ifp(inp, &gsa->sin,
|
|
mreqn.imr_address);
|
|
NET_EPOCH_EXIT(et);
|
|
break;
|
|
}
|
|
case IP_ADD_SOURCE_MEMBERSHIP: {
|
|
struct ip_mreq_source mreqs;
|
|
|
|
error = sooptcopyin(sopt, &mreqs, sizeof(struct ip_mreq_source),
|
|
sizeof(struct ip_mreq_source));
|
|
if (error)
|
|
return (error);
|
|
|
|
gsa->sin.sin_family = ssa->sin.sin_family = AF_INET;
|
|
gsa->sin.sin_len = ssa->sin.sin_len =
|
|
sizeof(struct sockaddr_in);
|
|
|
|
gsa->sin.sin_addr = mreqs.imr_multiaddr;
|
|
if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr)))
|
|
return (EINVAL);
|
|
|
|
ssa->sin.sin_addr = mreqs.imr_sourceaddr;
|
|
|
|
NET_EPOCH_ENTER(et);
|
|
ifp = inp_lookup_mcast_ifp(inp, &gsa->sin,
|
|
mreqs.imr_interface);
|
|
NET_EPOCH_EXIT(et);
|
|
CTR3(KTR_IGMPV3, "%s: imr_interface = 0x%08x, ifp = %p",
|
|
__func__, ntohl(mreqs.imr_interface.s_addr), ifp);
|
|
break;
|
|
}
|
|
|
|
case MCAST_JOIN_GROUP:
|
|
case MCAST_JOIN_SOURCE_GROUP:
|
|
if (sopt->sopt_name == MCAST_JOIN_GROUP) {
|
|
error = sooptcopyin(sopt, &gsr,
|
|
sizeof(struct group_req),
|
|
sizeof(struct group_req));
|
|
} else if (sopt->sopt_name == MCAST_JOIN_SOURCE_GROUP) {
|
|
error = sooptcopyin(sopt, &gsr,
|
|
sizeof(struct group_source_req),
|
|
sizeof(struct group_source_req));
|
|
}
|
|
if (error)
|
|
return (error);
|
|
|
|
if (gsa->sin.sin_family != AF_INET ||
|
|
gsa->sin.sin_len != sizeof(struct sockaddr_in))
|
|
return (EINVAL);
|
|
|
|
/*
|
|
* Overwrite the port field if present, as the sockaddr
|
|
* being copied in may be matched with a binary comparison.
|
|
*/
|
|
gsa->sin.sin_port = 0;
|
|
if (sopt->sopt_name == MCAST_JOIN_SOURCE_GROUP) {
|
|
if (ssa->sin.sin_family != AF_INET ||
|
|
ssa->sin.sin_len != sizeof(struct sockaddr_in))
|
|
return (EINVAL);
|
|
ssa->sin.sin_port = 0;
|
|
}
|
|
|
|
if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr)))
|
|
return (EINVAL);
|
|
|
|
if (gsr.gsr_interface == 0 || V_if_index < gsr.gsr_interface)
|
|
return (EADDRNOTAVAIL);
|
|
NET_EPOCH_ENTER(et);
|
|
ifp = ifnet_byindex_ref(gsr.gsr_interface);
|
|
NET_EPOCH_EXIT(et);
|
|
break;
|
|
|
|
default:
|
|
CTR2(KTR_IGMPV3, "%s: unknown sopt_name %d",
|
|
__func__, sopt->sopt_name);
|
|
return (EOPNOTSUPP);
|
|
break;
|
|
}
|
|
|
|
if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
|
|
if (ifp != NULL)
|
|
if_rele(ifp);
|
|
return (EADDRNOTAVAIL);
|
|
}
|
|
|
|
IN_MULTI_LOCK();
|
|
|
|
/*
|
|
* Find the membership in the membership list.
|
|
*/
|
|
imo = inp_findmoptions(inp);
|
|
imf = imo_match_group(imo, ifp, &gsa->sa);
|
|
if (imf == NULL) {
|
|
is_new = 1;
|
|
inm = NULL;
|
|
|
|
if (ip_mfilter_count(&imo->imo_head) >= IP_MAX_MEMBERSHIPS) {
|
|
error = ENOMEM;
|
|
goto out_inp_locked;
|
|
}
|
|
} else {
|
|
is_new = 0;
|
|
inm = imf->imf_inm;
|
|
|
|
if (ssa->ss.ss_family != AF_UNSPEC) {
|
|
/*
|
|
* MCAST_JOIN_SOURCE_GROUP on an exclusive membership
|
|
* is an error. On an existing inclusive membership,
|
|
* it just adds the source to the filter list.
|
|
*/
|
|
if (imf->imf_st[1] != MCAST_INCLUDE) {
|
|
error = EINVAL;
|
|
goto out_inp_locked;
|
|
}
|
|
/*
|
|
* Throw out duplicates.
|
|
*
|
|
* XXX FIXME: This makes a naive assumption that
|
|
* even if entries exist for *ssa in this imf,
|
|
* they will be rejected as dupes, even if they
|
|
* are not valid in the current mode (in-mode).
|
|
*
|
|
* in_msource is transactioned just as for anything
|
|
* else in SSM -- but note naive use of inm_graft()
|
|
* below for allocating new filter entries.
|
|
*
|
|
* This is only an issue if someone mixes the
|
|
* full-state SSM API with the delta-based API,
|
|
* which is discouraged in the relevant RFCs.
|
|
*/
|
|
lims = imo_match_source(imf, &ssa->sa);
|
|
if (lims != NULL /*&&
|
|
lims->imsl_st[1] == MCAST_INCLUDE*/) {
|
|
error = EADDRNOTAVAIL;
|
|
goto out_inp_locked;
|
|
}
|
|
} else {
|
|
/*
|
|
* MCAST_JOIN_GROUP on an existing exclusive
|
|
* membership is an error; return EADDRINUSE
|
|
* to preserve 4.4BSD API idempotence, and
|
|
* avoid tedious detour to code below.
|
|
* NOTE: This is bending RFC 3678 a bit.
|
|
*
|
|
* On an existing inclusive membership, this is also
|
|
* an error; if you want to change filter mode,
|
|
* you must use the userland API setsourcefilter().
|
|
* XXX We don't reject this for imf in UNDEFINED
|
|
* state at t1, because allocation of a filter
|
|
* is atomic with allocation of a membership.
|
|
*/
|
|
error = EINVAL;
|
|
if (imf->imf_st[1] == MCAST_EXCLUDE)
|
|
error = EADDRINUSE;
|
|
goto out_inp_locked;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Begin state merge transaction at socket layer.
|
|
*/
|
|
INP_WLOCK_ASSERT(inp);
|
|
|
|
/*
|
|
* Graft new source into filter list for this inpcb's
|
|
* membership of the group. The in_multi may not have
|
|
* been allocated yet if this is a new membership, however,
|
|
* the in_mfilter slot will be allocated and must be initialized.
|
|
*
|
|
* Note: Grafting of exclusive mode filters doesn't happen
|
|
* in this path.
|
|
* XXX: Should check for non-NULL lims (node exists but may
|
|
* not be in-mode) for interop with full-state API.
|
|
*/
|
|
if (ssa->ss.ss_family != AF_UNSPEC) {
|
|
/* Membership starts in IN mode */
|
|
if (is_new) {
|
|
CTR1(KTR_IGMPV3, "%s: new join w/source", __func__);
|
|
imf = ip_mfilter_alloc(M_NOWAIT, MCAST_UNDEFINED, MCAST_INCLUDE);
|
|
if (imf == NULL) {
|
|
error = ENOMEM;
|
|
goto out_inp_locked;
|
|
}
|
|
} else {
|
|
CTR2(KTR_IGMPV3, "%s: %s source", __func__, "allow");
|
|
}
|
|
lims = imf_graft(imf, MCAST_INCLUDE, &ssa->sin);
|
|
if (lims == NULL) {
|
|
CTR1(KTR_IGMPV3, "%s: merge imf state failed",
|
|
__func__);
|
|
error = ENOMEM;
|
|
goto out_inp_locked;
|
|
}
|
|
} else {
|
|
/* No address specified; Membership starts in EX mode */
|
|
if (is_new) {
|
|
CTR1(KTR_IGMPV3, "%s: new join w/o source", __func__);
|
|
imf = ip_mfilter_alloc(M_NOWAIT, MCAST_UNDEFINED, MCAST_EXCLUDE);
|
|
if (imf == NULL) {
|
|
error = ENOMEM;
|
|
goto out_inp_locked;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Begin state merge transaction at IGMP layer.
|
|
*/
|
|
if (is_new) {
|
|
in_pcbref(inp);
|
|
INP_WUNLOCK(inp);
|
|
|
|
error = in_joingroup_locked(ifp, &gsa->sin.sin_addr, imf,
|
|
&imf->imf_inm);
|
|
|
|
INP_WLOCK(inp);
|
|
if (in_pcbrele_wlocked(inp)) {
|
|
error = ENXIO;
|
|
goto out_inp_unlocked;
|
|
}
|
|
if (error) {
|
|
CTR1(KTR_IGMPV3, "%s: in_joingroup_locked failed",
|
|
__func__);
|
|
goto out_inp_locked;
|
|
}
|
|
/*
|
|
* NOTE: Refcount from in_joingroup_locked()
|
|
* is protecting membership.
|
|
*/
|
|
ip_mfilter_insert(&imo->imo_head, imf);
|
|
} else {
|
|
CTR1(KTR_IGMPV3, "%s: merge inm state", __func__);
|
|
IN_MULTI_LIST_LOCK();
|
|
error = inm_merge(inm, imf);
|
|
if (error) {
|
|
CTR1(KTR_IGMPV3, "%s: failed to merge inm state",
|
|
__func__);
|
|
IN_MULTI_LIST_UNLOCK();
|
|
imf_rollback(imf);
|
|
imf_reap(imf);
|
|
goto out_inp_locked;
|
|
}
|
|
CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__);
|
|
error = igmp_change_state(inm);
|
|
IN_MULTI_LIST_UNLOCK();
|
|
if (error) {
|
|
CTR1(KTR_IGMPV3, "%s: failed igmp downcall",
|
|
__func__);
|
|
imf_rollback(imf);
|
|
imf_reap(imf);
|
|
goto out_inp_locked;
|
|
}
|
|
}
|
|
|
|
imf_commit(imf);
|
|
imf = NULL;
|
|
|
|
out_inp_locked:
|
|
INP_WUNLOCK(inp);
|
|
out_inp_unlocked:
|
|
IN_MULTI_UNLOCK();
|
|
|
|
if (is_new && imf) {
|
|
if (imf->imf_inm != NULL) {
|
|
IN_MULTI_LIST_LOCK();
|
|
IF_ADDR_WLOCK(ifp);
|
|
inm_release_deferred(imf->imf_inm);
|
|
IF_ADDR_WUNLOCK(ifp);
|
|
IN_MULTI_LIST_UNLOCK();
|
|
}
|
|
ip_mfilter_free(imf);
|
|
}
|
|
if_rele(ifp);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Leave an IPv4 multicast group on an inpcb, possibly with a source.
|
|
*/
|
|
static int
|
|
inp_leave_group(struct inpcb *inp, struct sockopt *sopt)
|
|
{
|
|
struct group_source_req gsr;
|
|
struct ip_mreq_source mreqs;
|
|
sockunion_t *gsa, *ssa;
|
|
struct ifnet *ifp;
|
|
struct in_mfilter *imf;
|
|
struct ip_moptions *imo;
|
|
struct in_msource *ims;
|
|
struct in_multi *inm;
|
|
int error;
|
|
bool is_final;
|
|
|
|
ifp = NULL;
|
|
error = 0;
|
|
is_final = true;
|
|
|
|
memset(&gsr, 0, sizeof(struct group_source_req));
|
|
gsa = (sockunion_t *)&gsr.gsr_group;
|
|
gsa->ss.ss_family = AF_UNSPEC;
|
|
ssa = (sockunion_t *)&gsr.gsr_source;
|
|
ssa->ss.ss_family = AF_UNSPEC;
|
|
|
|
switch (sopt->sopt_name) {
|
|
case IP_DROP_MEMBERSHIP:
|
|
case IP_DROP_SOURCE_MEMBERSHIP:
|
|
if (sopt->sopt_name == IP_DROP_MEMBERSHIP) {
|
|
error = sooptcopyin(sopt, &mreqs,
|
|
sizeof(struct ip_mreq),
|
|
sizeof(struct ip_mreq));
|
|
/*
|
|
* Swap interface and sourceaddr arguments,
|
|
* as ip_mreq and ip_mreq_source are laid
|
|
* out differently.
|
|
*/
|
|
mreqs.imr_interface = mreqs.imr_sourceaddr;
|
|
mreqs.imr_sourceaddr.s_addr = INADDR_ANY;
|
|
} else if (sopt->sopt_name == IP_DROP_SOURCE_MEMBERSHIP) {
|
|
error = sooptcopyin(sopt, &mreqs,
|
|
sizeof(struct ip_mreq_source),
|
|
sizeof(struct ip_mreq_source));
|
|
}
|
|
if (error)
|
|
return (error);
|
|
|
|
gsa->sin.sin_family = AF_INET;
|
|
gsa->sin.sin_len = sizeof(struct sockaddr_in);
|
|
gsa->sin.sin_addr = mreqs.imr_multiaddr;
|
|
|
|
if (sopt->sopt_name == IP_DROP_SOURCE_MEMBERSHIP) {
|
|
ssa->sin.sin_family = AF_INET;
|
|
ssa->sin.sin_len = sizeof(struct sockaddr_in);
|
|
ssa->sin.sin_addr = mreqs.imr_sourceaddr;
|
|
}
|
|
|
|
/*
|
|
* Attempt to look up hinted ifp from interface address.
|
|
* Fallthrough with null ifp iff lookup fails, to
|
|
* preserve 4.4BSD mcast API idempotence.
|
|
* XXX NOTE WELL: The RFC 3678 API is preferred because
|
|
* using an IPv4 address as a key is racy.
|
|
*/
|
|
if (!in_nullhost(mreqs.imr_interface)) {
|
|
struct epoch_tracker et;
|
|
|
|
NET_EPOCH_ENTER(et);
|
|
INADDR_TO_IFP(mreqs.imr_interface, ifp);
|
|
/* XXXGL ifref? */
|
|
NET_EPOCH_EXIT(et);
|
|
}
|
|
CTR3(KTR_IGMPV3, "%s: imr_interface = 0x%08x, ifp = %p",
|
|
__func__, ntohl(mreqs.imr_interface.s_addr), ifp);
|
|
|
|
break;
|
|
|
|
case MCAST_LEAVE_GROUP:
|
|
case MCAST_LEAVE_SOURCE_GROUP:
|
|
if (sopt->sopt_name == MCAST_LEAVE_GROUP) {
|
|
error = sooptcopyin(sopt, &gsr,
|
|
sizeof(struct group_req),
|
|
sizeof(struct group_req));
|
|
} else if (sopt->sopt_name == MCAST_LEAVE_SOURCE_GROUP) {
|
|
error = sooptcopyin(sopt, &gsr,
|
|
sizeof(struct group_source_req),
|
|
sizeof(struct group_source_req));
|
|
}
|
|
if (error)
|
|
return (error);
|
|
|
|
if (gsa->sin.sin_family != AF_INET ||
|
|
gsa->sin.sin_len != sizeof(struct sockaddr_in))
|
|
return (EINVAL);
|
|
|
|
if (sopt->sopt_name == MCAST_LEAVE_SOURCE_GROUP) {
|
|
if (ssa->sin.sin_family != AF_INET ||
|
|
ssa->sin.sin_len != sizeof(struct sockaddr_in))
|
|
return (EINVAL);
|
|
}
|
|
|
|
if (gsr.gsr_interface == 0 || V_if_index < gsr.gsr_interface)
|
|
return (EADDRNOTAVAIL);
|
|
|
|
ifp = ifnet_byindex(gsr.gsr_interface);
|
|
|
|
if (ifp == NULL)
|
|
return (EADDRNOTAVAIL);
|
|
break;
|
|
|
|
default:
|
|
CTR2(KTR_IGMPV3, "%s: unknown sopt_name %d",
|
|
__func__, sopt->sopt_name);
|
|
return (EOPNOTSUPP);
|
|
break;
|
|
}
|
|
|
|
if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr)))
|
|
return (EINVAL);
|
|
|
|
IN_MULTI_LOCK();
|
|
|
|
/*
|
|
* Find the membership in the membership list.
|
|
*/
|
|
imo = inp_findmoptions(inp);
|
|
imf = imo_match_group(imo, ifp, &gsa->sa);
|
|
if (imf == NULL) {
|
|
error = EADDRNOTAVAIL;
|
|
goto out_inp_locked;
|
|
}
|
|
inm = imf->imf_inm;
|
|
|
|
if (ssa->ss.ss_family != AF_UNSPEC)
|
|
is_final = false;
|
|
|
|
/*
|
|
* Begin state merge transaction at socket layer.
|
|
*/
|
|
INP_WLOCK_ASSERT(inp);
|
|
|
|
/*
|
|
* If we were instructed only to leave a given source, do so.
|
|
* MCAST_LEAVE_SOURCE_GROUP is only valid for inclusive memberships.
|
|
*/
|
|
if (is_final) {
|
|
ip_mfilter_remove(&imo->imo_head, imf);
|
|
imf_leave(imf);
|
|
|
|
/*
|
|
* Give up the multicast address record to which
|
|
* the membership points.
|
|
*/
|
|
(void) in_leavegroup_locked(imf->imf_inm, imf);
|
|
} else {
|
|
if (imf->imf_st[0] == MCAST_EXCLUDE) {
|
|
error = EADDRNOTAVAIL;
|
|
goto out_inp_locked;
|
|
}
|
|
ims = imo_match_source(imf, &ssa->sa);
|
|
if (ims == NULL) {
|
|
CTR3(KTR_IGMPV3, "%s: source 0x%08x %spresent",
|
|
__func__, ntohl(ssa->sin.sin_addr.s_addr), "not ");
|
|
error = EADDRNOTAVAIL;
|
|
goto out_inp_locked;
|
|
}
|
|
CTR2(KTR_IGMPV3, "%s: %s source", __func__, "block");
|
|
error = imf_prune(imf, &ssa->sin);
|
|
if (error) {
|
|
CTR1(KTR_IGMPV3, "%s: merge imf state failed",
|
|
__func__);
|
|
goto out_inp_locked;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Begin state merge transaction at IGMP layer.
|
|
*/
|
|
if (!is_final) {
|
|
CTR1(KTR_IGMPV3, "%s: merge inm state", __func__);
|
|
IN_MULTI_LIST_LOCK();
|
|
error = inm_merge(inm, imf);
|
|
if (error) {
|
|
CTR1(KTR_IGMPV3, "%s: failed to merge inm state",
|
|
__func__);
|
|
IN_MULTI_LIST_UNLOCK();
|
|
imf_rollback(imf);
|
|
imf_reap(imf);
|
|
goto out_inp_locked;
|
|
}
|
|
|
|
CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__);
|
|
error = igmp_change_state(inm);
|
|
IN_MULTI_LIST_UNLOCK();
|
|
if (error) {
|
|
CTR1(KTR_IGMPV3, "%s: failed igmp downcall",
|
|
__func__);
|
|
imf_rollback(imf);
|
|
imf_reap(imf);
|
|
goto out_inp_locked;
|
|
}
|
|
}
|
|
imf_commit(imf);
|
|
imf_reap(imf);
|
|
|
|
out_inp_locked:
|
|
INP_WUNLOCK(inp);
|
|
|
|
if (is_final && imf)
|
|
ip_mfilter_free(imf);
|
|
|
|
IN_MULTI_UNLOCK();
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Select the interface for transmitting IPv4 multicast datagrams.
|
|
*
|
|
* Either an instance of struct in_addr or an instance of struct ip_mreqn
|
|
* may be passed to this socket option. An address of INADDR_ANY or an
|
|
* interface index of 0 is used to remove a previous selection.
|
|
* When no interface is selected, one is chosen for every send.
|
|
*/
|
|
static int
|
|
inp_set_multicast_if(struct inpcb *inp, struct sockopt *sopt)
|
|
{
|
|
struct in_addr addr;
|
|
struct ip_mreqn mreqn;
|
|
struct ifnet *ifp;
|
|
struct ip_moptions *imo;
|
|
int error;
|
|
|
|
if (sopt->sopt_valsize == sizeof(struct ip_mreqn)) {
|
|
/*
|
|
* An interface index was specified using the
|
|
* Linux-derived ip_mreqn structure.
|
|
*/
|
|
error = sooptcopyin(sopt, &mreqn, sizeof(struct ip_mreqn),
|
|
sizeof(struct ip_mreqn));
|
|
if (error)
|
|
return (error);
|
|
|
|
if (mreqn.imr_ifindex < 0 || V_if_index < mreqn.imr_ifindex)
|
|
return (EINVAL);
|
|
|
|
if (mreqn.imr_ifindex == 0) {
|
|
ifp = NULL;
|
|
} else {
|
|
ifp = ifnet_byindex(mreqn.imr_ifindex);
|
|
if (ifp == NULL)
|
|
return (EADDRNOTAVAIL);
|
|
}
|
|
} else {
|
|
/*
|
|
* An interface was specified by IPv4 address.
|
|
* This is the traditional BSD usage.
|
|
*/
|
|
error = sooptcopyin(sopt, &addr, sizeof(struct in_addr),
|
|
sizeof(struct in_addr));
|
|
if (error)
|
|
return (error);
|
|
if (in_nullhost(addr)) {
|
|
ifp = NULL;
|
|
} else {
|
|
struct epoch_tracker et;
|
|
|
|
NET_EPOCH_ENTER(et);
|
|
INADDR_TO_IFP(addr, ifp);
|
|
/* XXXGL ifref? */
|
|
NET_EPOCH_EXIT(et);
|
|
if (ifp == NULL)
|
|
return (EADDRNOTAVAIL);
|
|
}
|
|
CTR3(KTR_IGMPV3, "%s: ifp = %p, addr = 0x%08x", __func__, ifp,
|
|
ntohl(addr.s_addr));
|
|
}
|
|
|
|
/* Reject interfaces which do not support multicast. */
|
|
if (ifp != NULL && (ifp->if_flags & IFF_MULTICAST) == 0)
|
|
return (EOPNOTSUPP);
|
|
|
|
imo = inp_findmoptions(inp);
|
|
imo->imo_multicast_ifp = ifp;
|
|
imo->imo_multicast_addr.s_addr = INADDR_ANY;
|
|
INP_WUNLOCK(inp);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Atomically set source filters on a socket for an IPv4 multicast group.
|
|
*
|
|
* SMPng: NOTE: Potentially calls malloc(M_WAITOK) with Giant held.
|
|
*/
|
|
static int
|
|
inp_set_source_filters(struct inpcb *inp, struct sockopt *sopt)
|
|
{
|
|
struct __msfilterreq msfr;
|
|
sockunion_t *gsa;
|
|
struct ifnet *ifp;
|
|
struct in_mfilter *imf;
|
|
struct ip_moptions *imo;
|
|
struct in_multi *inm;
|
|
int error;
|
|
|
|
error = sooptcopyin(sopt, &msfr, sizeof(struct __msfilterreq),
|
|
sizeof(struct __msfilterreq));
|
|
if (error)
|
|
return (error);
|
|
|
|
if (msfr.msfr_nsrcs > in_mcast_maxsocksrc)
|
|
return (ENOBUFS);
|
|
|
|
if ((msfr.msfr_fmode != MCAST_EXCLUDE &&
|
|
msfr.msfr_fmode != MCAST_INCLUDE))
|
|
return (EINVAL);
|
|
|
|
if (msfr.msfr_group.ss_family != AF_INET ||
|
|
msfr.msfr_group.ss_len != sizeof(struct sockaddr_in))
|
|
return (EINVAL);
|
|
|
|
gsa = (sockunion_t *)&msfr.msfr_group;
|
|
if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr)))
|
|
return (EINVAL);
|
|
|
|
gsa->sin.sin_port = 0; /* ignore port */
|
|
|
|
if (msfr.msfr_ifindex == 0 || V_if_index < msfr.msfr_ifindex)
|
|
return (EADDRNOTAVAIL);
|
|
|
|
ifp = ifnet_byindex(msfr.msfr_ifindex);
|
|
if (ifp == NULL)
|
|
return (EADDRNOTAVAIL);
|
|
|
|
IN_MULTI_LOCK();
|
|
|
|
/*
|
|
* Take the INP write lock.
|
|
* Check if this socket is a member of this group.
|
|
*/
|
|
imo = inp_findmoptions(inp);
|
|
imf = imo_match_group(imo, ifp, &gsa->sa);
|
|
if (imf == NULL) {
|
|
error = EADDRNOTAVAIL;
|
|
goto out_inp_locked;
|
|
}
|
|
inm = imf->imf_inm;
|
|
|
|
/*
|
|
* Begin state merge transaction at socket layer.
|
|
*/
|
|
INP_WLOCK_ASSERT(inp);
|
|
|
|
imf->imf_st[1] = msfr.msfr_fmode;
|
|
|
|
/*
|
|
* Apply any new source filters, if present.
|
|
* Make a copy of the user-space source vector so
|
|
* that we may copy them with a single copyin. This
|
|
* allows us to deal with page faults up-front.
|
|
*/
|
|
if (msfr.msfr_nsrcs > 0) {
|
|
struct in_msource *lims;
|
|
struct sockaddr_in *psin;
|
|
struct sockaddr_storage *kss, *pkss;
|
|
int i;
|
|
|
|
INP_WUNLOCK(inp);
|
|
|
|
CTR2(KTR_IGMPV3, "%s: loading %lu source list entries",
|
|
__func__, (unsigned long)msfr.msfr_nsrcs);
|
|
kss = malloc(sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs,
|
|
M_TEMP, M_WAITOK);
|
|
error = copyin(msfr.msfr_srcs, kss,
|
|
sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs);
|
|
if (error) {
|
|
free(kss, M_TEMP);
|
|
return (error);
|
|
}
|
|
|
|
INP_WLOCK(inp);
|
|
|
|
/*
|
|
* Mark all source filters as UNDEFINED at t1.
|
|
* Restore new group filter mode, as imf_leave()
|
|
* will set it to INCLUDE.
|
|
*/
|
|
imf_leave(imf);
|
|
imf->imf_st[1] = msfr.msfr_fmode;
|
|
|
|
/*
|
|
* Update socket layer filters at t1, lazy-allocating
|
|
* new entries. This saves a bunch of memory at the
|
|
* cost of one RB_FIND() per source entry; duplicate
|
|
* entries in the msfr_nsrcs vector are ignored.
|
|
* If we encounter an error, rollback transaction.
|
|
*
|
|
* XXX This too could be replaced with a set-symmetric
|
|
* difference like loop to avoid walking from root
|
|
* every time, as the key space is common.
|
|
*/
|
|
for (i = 0, pkss = kss; i < msfr.msfr_nsrcs; i++, pkss++) {
|
|
psin = (struct sockaddr_in *)pkss;
|
|
if (psin->sin_family != AF_INET) {
|
|
error = EAFNOSUPPORT;
|
|
break;
|
|
}
|
|
if (psin->sin_len != sizeof(struct sockaddr_in)) {
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
error = imf_get_source(imf, psin, &lims);
|
|
if (error)
|
|
break;
|
|
lims->imsl_st[1] = imf->imf_st[1];
|
|
}
|
|
free(kss, M_TEMP);
|
|
}
|
|
|
|
if (error)
|
|
goto out_imf_rollback;
|
|
|
|
INP_WLOCK_ASSERT(inp);
|
|
|
|
/*
|
|
* Begin state merge transaction at IGMP layer.
|
|
*/
|
|
CTR1(KTR_IGMPV3, "%s: merge inm state", __func__);
|
|
IN_MULTI_LIST_LOCK();
|
|
error = inm_merge(inm, imf);
|
|
if (error) {
|
|
CTR1(KTR_IGMPV3, "%s: failed to merge inm state", __func__);
|
|
IN_MULTI_LIST_UNLOCK();
|
|
goto out_imf_rollback;
|
|
}
|
|
|
|
CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__);
|
|
error = igmp_change_state(inm);
|
|
IN_MULTI_LIST_UNLOCK();
|
|
if (error)
|
|
CTR1(KTR_IGMPV3, "%s: failed igmp downcall", __func__);
|
|
|
|
out_imf_rollback:
|
|
if (error)
|
|
imf_rollback(imf);
|
|
else
|
|
imf_commit(imf);
|
|
|
|
imf_reap(imf);
|
|
|
|
out_inp_locked:
|
|
INP_WUNLOCK(inp);
|
|
IN_MULTI_UNLOCK();
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Set the IP multicast options in response to user setsockopt().
|
|
*
|
|
* Many of the socket options handled in this function duplicate the
|
|
* functionality of socket options in the regular unicast API. However,
|
|
* it is not possible to merge the duplicate code, because the idempotence
|
|
* of the IPv4 multicast part of the BSD Sockets API must be preserved;
|
|
* the effects of these options must be treated as separate and distinct.
|
|
*
|
|
* SMPng: XXX: Unlocked read of inp_socket believed OK.
|
|
* FUTURE: The IP_MULTICAST_VIF option may be eliminated if MROUTING
|
|
* is refactored to no longer use vifs.
|
|
*/
|
|
int
|
|
inp_setmoptions(struct inpcb *inp, struct sockopt *sopt)
|
|
{
|
|
struct ip_moptions *imo;
|
|
int error;
|
|
|
|
error = 0;
|
|
|
|
/*
|
|
* If socket is neither of type SOCK_RAW or SOCK_DGRAM,
|
|
* or is a divert socket, reject it.
|
|
*/
|
|
if (inp->inp_socket->so_proto->pr_protocol == IPPROTO_DIVERT ||
|
|
(inp->inp_socket->so_proto->pr_type != SOCK_RAW &&
|
|
inp->inp_socket->so_proto->pr_type != SOCK_DGRAM))
|
|
return (EOPNOTSUPP);
|
|
|
|
switch (sopt->sopt_name) {
|
|
case IP_MULTICAST_VIF: {
|
|
int vifi;
|
|
/*
|
|
* Select a multicast VIF for transmission.
|
|
* Only useful if multicast forwarding is active.
|
|
*/
|
|
if (legal_vif_num == NULL) {
|
|
error = EOPNOTSUPP;
|
|
break;
|
|
}
|
|
error = sooptcopyin(sopt, &vifi, sizeof(int), sizeof(int));
|
|
if (error)
|
|
break;
|
|
if (!legal_vif_num(vifi) && (vifi != -1)) {
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
imo = inp_findmoptions(inp);
|
|
imo->imo_multicast_vif = vifi;
|
|
INP_WUNLOCK(inp);
|
|
break;
|
|
}
|
|
|
|
case IP_MULTICAST_IF:
|
|
error = inp_set_multicast_if(inp, sopt);
|
|
break;
|
|
|
|
case IP_MULTICAST_TTL: {
|
|
u_char ttl;
|
|
|
|
/*
|
|
* Set the IP time-to-live for outgoing multicast packets.
|
|
* The original multicast API required a char argument,
|
|
* which is inconsistent with the rest of the socket API.
|
|
* We allow either a char or an int.
|
|
*/
|
|
if (sopt->sopt_valsize == sizeof(u_char)) {
|
|
error = sooptcopyin(sopt, &ttl, sizeof(u_char),
|
|
sizeof(u_char));
|
|
if (error)
|
|
break;
|
|
} else {
|
|
u_int ittl;
|
|
|
|
error = sooptcopyin(sopt, &ittl, sizeof(u_int),
|
|
sizeof(u_int));
|
|
if (error)
|
|
break;
|
|
if (ittl > 255) {
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
ttl = (u_char)ittl;
|
|
}
|
|
imo = inp_findmoptions(inp);
|
|
imo->imo_multicast_ttl = ttl;
|
|
INP_WUNLOCK(inp);
|
|
break;
|
|
}
|
|
|
|
case IP_MULTICAST_LOOP: {
|
|
u_char loop;
|
|
|
|
/*
|
|
* Set the loopback flag for outgoing multicast packets.
|
|
* Must be zero or one. The original multicast API required a
|
|
* char argument, which is inconsistent with the rest
|
|
* of the socket API. We allow either a char or an int.
|
|
*/
|
|
if (sopt->sopt_valsize == sizeof(u_char)) {
|
|
error = sooptcopyin(sopt, &loop, sizeof(u_char),
|
|
sizeof(u_char));
|
|
if (error)
|
|
break;
|
|
} else {
|
|
u_int iloop;
|
|
|
|
error = sooptcopyin(sopt, &iloop, sizeof(u_int),
|
|
sizeof(u_int));
|
|
if (error)
|
|
break;
|
|
loop = (u_char)iloop;
|
|
}
|
|
imo = inp_findmoptions(inp);
|
|
imo->imo_multicast_loop = !!loop;
|
|
INP_WUNLOCK(inp);
|
|
break;
|
|
}
|
|
|
|
case IP_ADD_MEMBERSHIP:
|
|
case IP_ADD_SOURCE_MEMBERSHIP:
|
|
case MCAST_JOIN_GROUP:
|
|
case MCAST_JOIN_SOURCE_GROUP:
|
|
error = inp_join_group(inp, sopt);
|
|
break;
|
|
|
|
case IP_DROP_MEMBERSHIP:
|
|
case IP_DROP_SOURCE_MEMBERSHIP:
|
|
case MCAST_LEAVE_GROUP:
|
|
case MCAST_LEAVE_SOURCE_GROUP:
|
|
error = inp_leave_group(inp, sopt);
|
|
break;
|
|
|
|
case IP_BLOCK_SOURCE:
|
|
case IP_UNBLOCK_SOURCE:
|
|
case MCAST_BLOCK_SOURCE:
|
|
case MCAST_UNBLOCK_SOURCE:
|
|
error = inp_block_unblock_source(inp, sopt);
|
|
break;
|
|
|
|
case IP_MSFILTER:
|
|
error = inp_set_source_filters(inp, sopt);
|
|
break;
|
|
|
|
default:
|
|
error = EOPNOTSUPP;
|
|
break;
|
|
}
|
|
|
|
INP_UNLOCK_ASSERT(inp);
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Expose IGMP's multicast filter mode and source list(s) to userland,
|
|
* keyed by (ifindex, group).
|
|
* The filter mode is written out as a uint32_t, followed by
|
|
* 0..n of struct in_addr.
|
|
* For use by ifmcstat(8).
|
|
* SMPng: NOTE: unlocked read of ifindex space.
|
|
*/
|
|
static int
|
|
sysctl_ip_mcast_filters(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
struct in_addr src, group;
|
|
struct epoch_tracker et;
|
|
struct ifnet *ifp;
|
|
struct ifmultiaddr *ifma;
|
|
struct in_multi *inm;
|
|
struct ip_msource *ims;
|
|
int *name;
|
|
int retval;
|
|
u_int namelen;
|
|
uint32_t fmode, ifindex;
|
|
|
|
name = (int *)arg1;
|
|
namelen = arg2;
|
|
|
|
if (req->newptr != NULL)
|
|
return (EPERM);
|
|
|
|
if (namelen != 2)
|
|
return (EINVAL);
|
|
|
|
ifindex = name[0];
|
|
if (ifindex <= 0 || ifindex > V_if_index) {
|
|
CTR2(KTR_IGMPV3, "%s: ifindex %u out of range",
|
|
__func__, ifindex);
|
|
return (ENOENT);
|
|
}
|
|
|
|
group.s_addr = name[1];
|
|
if (!IN_MULTICAST(ntohl(group.s_addr))) {
|
|
CTR2(KTR_IGMPV3, "%s: group 0x%08x is not multicast",
|
|
__func__, ntohl(group.s_addr));
|
|
return (EINVAL);
|
|
}
|
|
|
|
NET_EPOCH_ENTER(et);
|
|
ifp = ifnet_byindex(ifindex);
|
|
if (ifp == NULL) {
|
|
NET_EPOCH_EXIT(et);
|
|
CTR2(KTR_IGMPV3, "%s: no ifp for ifindex %u",
|
|
__func__, ifindex);
|
|
return (ENOENT);
|
|
}
|
|
|
|
retval = sysctl_wire_old_buffer(req,
|
|
sizeof(uint32_t) + (in_mcast_maxgrpsrc * sizeof(struct in_addr)));
|
|
if (retval) {
|
|
NET_EPOCH_EXIT(et);
|
|
return (retval);
|
|
}
|
|
|
|
IN_MULTI_LIST_LOCK();
|
|
|
|
CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
|
|
if (ifma->ifma_addr->sa_family != AF_INET ||
|
|
ifma->ifma_protospec == NULL)
|
|
continue;
|
|
inm = (struct in_multi *)ifma->ifma_protospec;
|
|
if (!in_hosteq(inm->inm_addr, group))
|
|
continue;
|
|
fmode = inm->inm_st[1].iss_fmode;
|
|
retval = SYSCTL_OUT(req, &fmode, sizeof(uint32_t));
|
|
if (retval != 0)
|
|
break;
|
|
RB_FOREACH(ims, ip_msource_tree, &inm->inm_srcs) {
|
|
CTR2(KTR_IGMPV3, "%s: visit node 0x%08x", __func__,
|
|
ims->ims_haddr);
|
|
/*
|
|
* Only copy-out sources which are in-mode.
|
|
*/
|
|
if (fmode != ims_get_mode(inm, ims, 1)) {
|
|
CTR1(KTR_IGMPV3, "%s: skip non-in-mode",
|
|
__func__);
|
|
continue;
|
|
}
|
|
src.s_addr = htonl(ims->ims_haddr);
|
|
retval = SYSCTL_OUT(req, &src, sizeof(struct in_addr));
|
|
if (retval != 0)
|
|
break;
|
|
}
|
|
}
|
|
|
|
IN_MULTI_LIST_UNLOCK();
|
|
NET_EPOCH_EXIT(et);
|
|
|
|
return (retval);
|
|
}
|
|
|
|
#if defined(KTR) && (KTR_COMPILE & KTR_IGMPV3)
|
|
|
|
static const char *inm_modestrs[] = {
|
|
[MCAST_UNDEFINED] = "un",
|
|
[MCAST_INCLUDE] = "in",
|
|
[MCAST_EXCLUDE] = "ex",
|
|
};
|
|
_Static_assert(MCAST_UNDEFINED == 0 &&
|
|
MCAST_EXCLUDE + 1 == nitems(inm_modestrs),
|
|
"inm_modestrs: no longer matches #defines");
|
|
|
|
static const char *
|
|
inm_mode_str(const int mode)
|
|
{
|
|
|
|
if (mode >= MCAST_UNDEFINED && mode <= MCAST_EXCLUDE)
|
|
return (inm_modestrs[mode]);
|
|
return ("??");
|
|
}
|
|
|
|
static const char *inm_statestrs[] = {
|
|
[IGMP_NOT_MEMBER] = "not-member",
|
|
[IGMP_SILENT_MEMBER] = "silent",
|
|
[IGMP_REPORTING_MEMBER] = "reporting",
|
|
[IGMP_IDLE_MEMBER] = "idle",
|
|
[IGMP_LAZY_MEMBER] = "lazy",
|
|
[IGMP_SLEEPING_MEMBER] = "sleeping",
|
|
[IGMP_AWAKENING_MEMBER] = "awakening",
|
|
[IGMP_G_QUERY_PENDING_MEMBER] = "query-pending",
|
|
[IGMP_SG_QUERY_PENDING_MEMBER] = "sg-query-pending",
|
|
[IGMP_LEAVING_MEMBER] = "leaving",
|
|
};
|
|
_Static_assert(IGMP_NOT_MEMBER == 0 &&
|
|
IGMP_LEAVING_MEMBER + 1 == nitems(inm_statestrs),
|
|
"inm_statetrs: no longer matches #defines");
|
|
|
|
static const char *
|
|
inm_state_str(const int state)
|
|
{
|
|
|
|
if (state >= IGMP_NOT_MEMBER && state <= IGMP_LEAVING_MEMBER)
|
|
return (inm_statestrs[state]);
|
|
return ("??");
|
|
}
|
|
|
|
/*
|
|
* Dump an in_multi structure to the console.
|
|
*/
|
|
void
|
|
inm_print(const struct in_multi *inm)
|
|
{
|
|
int t;
|
|
char addrbuf[INET_ADDRSTRLEN];
|
|
|
|
if ((ktr_mask & KTR_IGMPV3) == 0)
|
|
return;
|
|
|
|
printf("%s: --- begin inm %p ---\n", __func__, inm);
|
|
printf("addr %s ifp %p(%s) ifma %p\n",
|
|
inet_ntoa_r(inm->inm_addr, addrbuf),
|
|
inm->inm_ifp,
|
|
inm->inm_ifp->if_xname,
|
|
inm->inm_ifma);
|
|
printf("timer %u state %s refcount %u scq.len %u\n",
|
|
inm->inm_timer,
|
|
inm_state_str(inm->inm_state),
|
|
inm->inm_refcount,
|
|
inm->inm_scq.mq_len);
|
|
printf("igi %p nsrc %lu sctimer %u scrv %u\n",
|
|
inm->inm_igi,
|
|
inm->inm_nsrc,
|
|
inm->inm_sctimer,
|
|
inm->inm_scrv);
|
|
for (t = 0; t < 2; t++) {
|
|
printf("t%d: fmode %s asm %u ex %u in %u rec %u\n", t,
|
|
inm_mode_str(inm->inm_st[t].iss_fmode),
|
|
inm->inm_st[t].iss_asm,
|
|
inm->inm_st[t].iss_ex,
|
|
inm->inm_st[t].iss_in,
|
|
inm->inm_st[t].iss_rec);
|
|
}
|
|
printf("%s: --- end inm %p ---\n", __func__, inm);
|
|
}
|
|
|
|
#else /* !KTR || !(KTR_COMPILE & KTR_IGMPV3) */
|
|
|
|
void
|
|
inm_print(const struct in_multi *inm)
|
|
{
|
|
|
|
}
|
|
|
|
#endif /* KTR && (KTR_COMPILE & KTR_IGMPV3) */
|
|
|
|
RB_GENERATE(ip_msource_tree, ip_msource, ims_link, ip_msource_cmp);
|