freebsd-nq/sys/netinet/sctp_lock_bsd.h
Michael Tuexen 762ae0ec8d sctp: Simplify stream scheduler usage
Callers are getting the stcb send lock, so just KASSERT that.
No need to signal this when calling stream scheduler functions.
No functional change intended.

MFC after:	1 week
2021-09-21 17:13:57 +02:00

521 lines
16 KiB
C

/*-
* SPDX-License-Identifier: BSD-3-Clause
*
* Copyright (c) 2001-2007, by Cisco Systems, Inc. All rights reserved.
* Copyright (c) 2008-2012, by Randall Stewart. All rights reserved.
* Copyright (c) 2008-2012, by Michael Tuexen. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* a) Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* b) Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the distribution.
*
* c) Neither the name of Cisco Systems, Inc. nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#ifndef _NETINET_SCTP_LOCK_BSD_H_
#define _NETINET_SCTP_LOCK_BSD_H_
/*
* General locking concepts: The goal of our locking is to of course provide
* consistency and yet minimize overhead. We will attempt to use
* non-recursive locks which are supposed to be quite inexpensive. Now in
* order to do this the goal is that most functions are not aware of locking.
* Once we have a TCB we lock it and unlock when we are through. This means
* that the TCB lock is kind-of a "global" lock when working on an
* association. Caution must be used when asserting a TCB_LOCK since if we
* recurse we deadlock.
*
* Most other locks (INP and INFO) attempt to localize the locking i.e. we try
* to contain the lock and unlock within the function that needs to lock it.
* This sometimes mean we do extra locks and unlocks and lose a bit of
* efficiency, but if the performance statements about non-recursive locks are
* true this should not be a problem. One issue that arises with this only
* lock when needed is that if an implicit association setup is done we have
* a problem. If at the time I lookup an association I have NULL in the tcb
* return, by the time I call to create the association some other processor
* could have created it. This is what the CREATE lock on the endpoint.
* Places where we will be implicitly creating the association OR just
* creating an association (the connect call) will assert the CREATE_INP
* lock. This will assure us that during all the lookup of INP and INFO if
* another creator is also locking/looking up we can gate the two to
* synchronize. So the CREATE_INP lock is also another one we must use
* extreme caution in locking to make sure we don't hit a re-entrancy issue.
*
*/
/*
* When working with the global SCTP lists we lock and unlock the INP_INFO
* lock. So when we go to lookup an association we will want to do a
* SCTP_INP_INFO_RLOCK() and then when we want to add a new association to
* the SCTP_BASE_INFO() list's we will do a SCTP_INP_INFO_WLOCK().
*/
#define SCTP_IPI_COUNT_INIT()
#define SCTP_STATLOG_INIT_LOCK()
#define SCTP_STATLOG_DESTROY()
#define SCTP_STATLOG_LOCK()
#define SCTP_STATLOG_UNLOCK()
#define SCTP_INP_INFO_LOCK_INIT() do { \
rw_init(&SCTP_BASE_INFO(ipi_ep_mtx), "sctp-info"); \
} while (0)
#define SCTP_INP_INFO_LOCK_DESTROY() do { \
if (rw_wowned(&SCTP_BASE_INFO(ipi_ep_mtx))) { \
rw_wunlock(&SCTP_BASE_INFO(ipi_ep_mtx)); \
} \
rw_destroy(&SCTP_BASE_INFO(ipi_ep_mtx)); \
} while (0)
#define SCTP_INP_INFO_RLOCK() do { \
rw_rlock(&SCTP_BASE_INFO(ipi_ep_mtx)); \
} while (0)
#define SCTP_INP_INFO_WLOCK() do { \
rw_wlock(&SCTP_BASE_INFO(ipi_ep_mtx)); \
} while (0)
#define SCTP_INP_INFO_RUNLOCK() do { \
rw_runlock(&SCTP_BASE_INFO(ipi_ep_mtx)); \
} while (0)
#define SCTP_INP_INFO_WUNLOCK() do { \
rw_wunlock(&SCTP_BASE_INFO(ipi_ep_mtx)); \
} while (0)
#define SCTP_INP_INFO_LOCK_ASSERT() do { \
rw_assert(&SCTP_BASE_INFO(ipi_ep_mtx), RA_LOCKED); \
} while (0)
#define SCTP_INP_INFO_RLOCK_ASSERT() do { \
rw_assert(&SCTP_BASE_INFO(ipi_ep_mtx), RA_RLOCKED); \
} while (0)
#define SCTP_INP_INFO_WLOCK_ASSERT() do { \
rw_assert(&SCTP_BASE_INFO(ipi_ep_mtx), RA_WLOCKED); \
} while (0)
#define SCTP_MCORE_QLOCK_INIT(cpstr) do { \
mtx_init(&(cpstr)->que_mtx, "sctp-mcore_queue","queue_lock", \
MTX_DEF | MTX_DUPOK); \
} while (0)
#define SCTP_MCORE_QDESTROY(cpstr) do { \
if (mtx_owned(&(cpstr)->core_mtx)) { \
mtx_unlock(&(cpstr)->que_mtx); \
} \
mtx_destroy(&(cpstr)->que_mtx); \
} while (0)
#define SCTP_MCORE_QLOCK(cpstr) do { \
mtx_lock(&(cpstr)->que_mtx); \
} while (0)
#define SCTP_MCORE_QUNLOCK(cpstr) do { \
mtx_unlock(&(cpstr)->que_mtx); \
} while (0)
#define SCTP_MCORE_LOCK_INIT(cpstr) do { \
mtx_init(&(cpstr)->core_mtx, "sctp-cpulck","cpu_proc_lock", \
MTX_DEF | MTX_DUPOK); \
} while (0)
#define SCTP_MCORE_DESTROY(cpstr) do { \
if (mtx_owned(&(cpstr)->core_mtx)) { \
mtx_unlock(&(cpstr)->core_mtx); \
} \
mtx_destroy(&(cpstr)->core_mtx); \
} while (0)
#define SCTP_MCORE_LOCK(cpstr) do { \
mtx_lock(&(cpstr)->core_mtx); \
} while (0)
#define SCTP_MCORE_UNLOCK(cpstr) do { \
mtx_unlock(&(cpstr)->core_mtx); \
} while (0)
#define SCTP_IPI_ADDR_INIT() do { \
rw_init(&SCTP_BASE_INFO(ipi_addr_mtx), "sctp-addr"); \
} while (0)
#define SCTP_IPI_ADDR_DESTROY() do { \
if (rw_wowned(&SCTP_BASE_INFO(ipi_addr_mtx))) { \
rw_wunlock(&SCTP_BASE_INFO(ipi_addr_mtx)); \
} \
rw_destroy(&SCTP_BASE_INFO(ipi_addr_mtx)); \
} while (0)
#define SCTP_IPI_ADDR_RLOCK() do { \
rw_rlock(&SCTP_BASE_INFO(ipi_addr_mtx)); \
} while (0)
#define SCTP_IPI_ADDR_WLOCK() do { \
rw_wlock(&SCTP_BASE_INFO(ipi_addr_mtx)); \
} while (0)
#define SCTP_IPI_ADDR_RUNLOCK() do { \
rw_runlock(&SCTP_BASE_INFO(ipi_addr_mtx)); \
} while (0)
#define SCTP_IPI_ADDR_WUNLOCK() do { \
rw_wunlock(&SCTP_BASE_INFO(ipi_addr_mtx)); \
} while (0)
#define SCTP_IPI_ADDR_LOCK_ASSERT() do { \
rw_assert(&SCTP_BASE_INFO(ipi_addr_mtx), RA_LOCKED); \
} while (0)
#define SCTP_IPI_ADDR_WLOCK_ASSERT() do { \
rw_assert(&SCTP_BASE_INFO(ipi_addr_mtx), RA_WLOCKED); \
} while (0)
#define SCTP_IPI_ITERATOR_WQ_INIT() do { \
mtx_init(&sctp_it_ctl.ipi_iterator_wq_mtx, "sctp-it-wq", \
"sctp_it_wq", MTX_DEF); \
} while (0)
#define SCTP_IPI_ITERATOR_WQ_DESTROY() do { \
mtx_destroy(&sctp_it_ctl.ipi_iterator_wq_mtx); \
} while (0)
#define SCTP_IPI_ITERATOR_WQ_LOCK() do { \
mtx_lock(&sctp_it_ctl.ipi_iterator_wq_mtx); \
} while (0)
#define SCTP_IPI_ITERATOR_WQ_UNLOCK() do { \
mtx_unlock(&sctp_it_ctl.ipi_iterator_wq_mtx); \
} while (0)
#define SCTP_IP_PKTLOG_INIT() do { \
mtx_init(&SCTP_BASE_INFO(ipi_pktlog_mtx), "sctp-pktlog", \
"packetlog", MTX_DEF); \
} while (0)
#define SCTP_IP_PKTLOG_DESTROY() do { \
mtx_destroy(&SCTP_BASE_INFO(ipi_pktlog_mtx)); \
} while (0)
#define SCTP_IP_PKTLOG_LOCK() do { \
mtx_lock(&SCTP_BASE_INFO(ipi_pktlog_mtx)); \
} while (0)
#define SCTP_IP_PKTLOG_UNLOCK() do { \
mtx_unlock(&SCTP_BASE_INFO(ipi_pktlog_mtx)); \
} while (0)
/*
* The INP locks we will use for locking an SCTP endpoint, so for example if
* we want to change something at the endpoint level for example random_store
* or cookie secrets we lock the INP level.
*/
#define SCTP_INP_READ_INIT(_inp) do { \
mtx_init(&(_inp)->inp_rdata_mtx, "sctp-read", "inpr", \
MTX_DEF | MTX_DUPOK); \
} while (0)
#define SCTP_INP_READ_DESTROY(_inp) do { \
mtx_destroy(&(_inp)->inp_rdata_mtx); \
} while (0)
#define SCTP_INP_READ_LOCK(_inp) do { \
mtx_lock(&(_inp)->inp_rdata_mtx); \
} while (0)
#define SCTP_INP_READ_UNLOCK(_inp) do { \
mtx_unlock(&(_inp)->inp_rdata_mtx); \
} while (0)
#define SCTP_INP_LOCK_INIT(_inp) do { \
mtx_init(&(_inp)->inp_mtx, "sctp-inp", "inp", \
MTX_DEF | MTX_DUPOK); \
} while (0)
#define SCTP_INP_LOCK_DESTROY(_inp) do { \
mtx_destroy(&(_inp)->inp_mtx); \
} while (0)
#define SCTP_INP_LOCK_CONTENDED(_inp) \
((_inp)->inp_mtx.mtx_lock & MTX_CONTESTED)
#define SCTP_INP_READ_CONTENDED(_inp) \
((_inp)->inp_rdata_mtx.mtx_lock & MTX_CONTESTED)
#ifdef SCTP_LOCK_LOGGING
#define SCTP_INP_RLOCK(_inp) do { \
if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_LOCK_LOGGING_ENABLE) \
sctp_log_lock(_inp, NULL, SCTP_LOG_LOCK_INP); \
mtx_lock(&(_inp)->inp_mtx); \
} while (0)
#define SCTP_INP_WLOCK(_inp) do { \
if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_LOCK_LOGGING_ENABLE) \
sctp_log_lock(_inp, NULL, SCTP_LOG_LOCK_INP); \
mtx_lock(&(_inp)->inp_mtx); \
} while (0)
#else
#define SCTP_INP_RLOCK(_inp) do { \
mtx_lock(&(_inp)->inp_mtx); \
} while (0)
#define SCTP_INP_WLOCK(_inp) do { \
mtx_lock(&(_inp)->inp_mtx); \
} while (0)
#endif
#define SCTP_INP_RUNLOCK(_inp) do { \
mtx_unlock(&(_inp)->inp_mtx); \
} while (0)
#define SCTP_INP_WUNLOCK(_inp) do { \
mtx_unlock(&(_inp)->inp_mtx); \
} while (0)
#define SCTP_INP_RLOCK_ASSERT(_inp) do { \
KASSERT(mtx_owned(&(_inp)->inp_mtx), \
("Don't own INP read lock")); \
} while (0)
#define SCTP_INP_WLOCK_ASSERT(_inp) do { \
KASSERT(mtx_owned(&(_inp)->inp_mtx), \
("Don't own INP write lock")); \
} while (0)
#define SCTP_INP_INCR_REF(_inp) atomic_add_int(&((_inp)->refcount), 1)
#define SCTP_INP_DECR_REF(_inp) atomic_add_int(&((_inp)->refcount), -1)
#define SCTP_ASOC_CREATE_LOCK_INIT(_inp) do { \
mtx_init(&(_inp)->inp_create_mtx, "sctp-create", "inp_create", \
MTX_DEF | MTX_DUPOK); \
} while (0)
#define SCTP_ASOC_CREATE_LOCK_DESTROY(_inp) do { \
mtx_destroy(&(_inp)->inp_create_mtx); \
} while (0)
#ifdef SCTP_LOCK_LOGGING
#define SCTP_ASOC_CREATE_LOCK(_inp) do { \
if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_LOCK_LOGGING_ENABLE) \
sctp_log_lock(_inp, NULL, SCTP_LOG_LOCK_CREATE); \
mtx_lock(&(_inp)->inp_create_mtx); \
} while (0)
#else
#define SCTP_ASOC_CREATE_LOCK(_inp) do { \
mtx_lock(&(_inp)->inp_create_mtx); \
} while (0)
#endif
#define SCTP_ASOC_CREATE_UNLOCK(_inp) do { \
mtx_unlock(&(_inp)->inp_create_mtx); \
} while (0)
#define SCTP_ASOC_CREATE_LOCK_CONTENDED(_inp) \
((_inp)->inp_create_mtx.mtx_lock & MTX_CONTESTED)
#define SCTP_TCB_SEND_LOCK_INIT(_tcb) do { \
mtx_init(&(_tcb)->tcb_send_mtx, "sctp-send-tcb", "tcbs", \
MTX_DEF | MTX_DUPOK); \
} while (0)
#define SCTP_TCB_SEND_LOCK_DESTROY(_tcb) do { \
mtx_destroy(&(_tcb)->tcb_send_mtx); \
} while (0)
#define SCTP_TCB_SEND_LOCK(_tcb) do { \
mtx_lock(&(_tcb)->tcb_send_mtx); \
} while (0)
#define SCTP_TCB_SEND_UNLOCK(_tcb) do { \
mtx_unlock(&(_tcb)->tcb_send_mtx); \
} while (0)
#define SCTP_TCB_SEND_LOCK_ASSERT(_tcb) do { \
KASSERT(mtx_owned(&(_tcb)->tcb_send_mtx), \
("Don't own TCB send lock")); \
} while (0)
/*
* For the majority of things (once we have found the association) we will
* lock the actual association mutex. This will protect all the assoiciation
* level queues and streams and such. We will need to lock the socket layer
* when we stuff data up into the receiving sb_mb. I.e. we will need to do an
* extra SOCKBUF_LOCK(&so->so_rcv) even though the association is locked.
*/
#define SCTP_TCB_LOCK_INIT(_tcb) do { \
mtx_init(&(_tcb)->tcb_mtx, "sctp-tcb", "tcb", \
MTX_DEF | MTX_DUPOK); \
} while (0)
#define SCTP_TCB_LOCK_DESTROY(_tcb) do { \
mtx_destroy(&(_tcb)->tcb_mtx); \
} while (0)
#ifdef SCTP_LOCK_LOGGING
#define SCTP_TCB_LOCK(_tcb) do { \
if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_LOCK_LOGGING_ENABLE) \
sctp_log_lock(_tcb->sctp_ep, _tcb, SCTP_LOG_LOCK_TCB); \
mtx_lock(&(_tcb)->tcb_mtx); \
} while (0)
#else
#define SCTP_TCB_LOCK(_tcb) do { \
mtx_lock(&(_tcb)->tcb_mtx); \
} while (0)
#endif
#define SCTP_TCB_TRYLOCK(_tcb) \
mtx_trylock(&(_tcb)->tcb_mtx)
#define SCTP_TCB_UNLOCK(_tcb) do { \
mtx_unlock(&(_tcb)->tcb_mtx); \
} while (0)
#define SCTP_TCB_UNLOCK_IFOWNED(_tcb) do { \
if (mtx_owned(&(_tcb)->tcb_mtx)) \
mtx_unlock(&(_tcb)->tcb_mtx); \
} while (0)
#define SCTP_TCB_LOCK_ASSERT(_tcb) do { \
KASSERT(mtx_owned(&(_tcb)->tcb_mtx), \
("Don't own TCB lock")); \
} while (0)
#define SCTP_ITERATOR_LOCK_INIT() do { \
mtx_init(&sctp_it_ctl.it_mtx, "sctp-it", "iterator", MTX_DEF); \
} while (0)
#define SCTP_ITERATOR_LOCK_DESTROY() do { \
mtx_destroy(&sctp_it_ctl.it_mtx); \
} while (0)
#define SCTP_ITERATOR_LOCK() \
do { \
KASSERT(!mtx_owned(&sctp_it_ctl.it_mtx), \
("Own the iterator lock")); \
mtx_lock(&sctp_it_ctl.it_mtx); \
} while (0)
#define SCTP_ITERATOR_UNLOCK() do { \
mtx_unlock(&sctp_it_ctl.it_mtx); \
} while (0)
#define SCTP_WQ_ADDR_INIT() do { \
mtx_init(&SCTP_BASE_INFO(wq_addr_mtx), \
"sctp-addr-wq","sctp_addr_wq", MTX_DEF); \
} while (0)
#define SCTP_WQ_ADDR_DESTROY() do { \
if (mtx_owned(&SCTP_BASE_INFO(wq_addr_mtx))) { \
mtx_unlock(&SCTP_BASE_INFO(wq_addr_mtx)); \
} \
mtx_destroy(&SCTP_BASE_INFO(wq_addr_mtx)); \
} while (0)
#define SCTP_WQ_ADDR_LOCK() do { \
mtx_lock(&SCTP_BASE_INFO(wq_addr_mtx)); \
} while (0)
#define SCTP_WQ_ADDR_UNLOCK() do { \
mtx_unlock(&SCTP_BASE_INFO(wq_addr_mtx)); \
} while (0)
#define SCTP_WQ_ADDR_LOCK_ASSERT() do { \
KASSERT(mtx_owned(&SCTP_BASE_INFO(wq_addr_mtx)), \
("Don't own the ADDR-WQ lock")); \
} while (0)
#define SCTP_INCR_EP_COUNT() do { \
atomic_add_int(&SCTP_BASE_INFO(ipi_count_ep), 1); \
} while (0)
#define SCTP_DECR_EP_COUNT() do { \
atomic_subtract_int(&SCTP_BASE_INFO(ipi_count_ep), 1); \
} while (0)
#define SCTP_INCR_ASOC_COUNT() do { \
atomic_add_int(&SCTP_BASE_INFO(ipi_count_asoc), 1); \
} while (0)
#define SCTP_DECR_ASOC_COUNT() do { \
atomic_subtract_int(&SCTP_BASE_INFO(ipi_count_asoc), 1); \
} while (0)
#define SCTP_INCR_LADDR_COUNT() do { \
atomic_add_int(&SCTP_BASE_INFO(ipi_count_laddr), 1); \
} while (0)
#define SCTP_DECR_LADDR_COUNT() do { \
atomic_subtract_int(&SCTP_BASE_INFO(ipi_count_laddr), 1); \
} while (0)
#define SCTP_INCR_RADDR_COUNT() do { \
atomic_add_int(&SCTP_BASE_INFO(ipi_count_raddr), 1); \
} while (0)
#define SCTP_DECR_RADDR_COUNT() do { \
atomic_subtract_int(&SCTP_BASE_INFO(ipi_count_raddr),1); \
} while (0)
#define SCTP_INCR_CHK_COUNT() do { \
atomic_add_int(&SCTP_BASE_INFO(ipi_count_chunk), 1); \
} while (0)
#define SCTP_DECR_CHK_COUNT() do { \
KASSERT(SCTP_BASE_INFO(ipi_count_chunk) > 0, \
("ipi_count_chunk would become negative")); \
if (SCTP_BASE_INFO(ipi_count_chunk) != 0) \
atomic_subtract_int(&SCTP_BASE_INFO(ipi_count_chunk), \
1); \
} while (0)
#define SCTP_INCR_READQ_COUNT() do { \
atomic_add_int(&SCTP_BASE_INFO(ipi_count_readq), 1); \
} while (0)
#define SCTP_DECR_READQ_COUNT() do { \
atomic_subtract_int(&SCTP_BASE_INFO(ipi_count_readq), 1); \
} while (0)
#define SCTP_INCR_STRMOQ_COUNT() do { \
atomic_add_int(&SCTP_BASE_INFO(ipi_count_strmoq), 1); \
} while (0)
#define SCTP_DECR_STRMOQ_COUNT() do { \
atomic_subtract_int(&SCTP_BASE_INFO(ipi_count_strmoq), 1); \
} while (0)
#if defined(SCTP_SO_LOCK_TESTING)
#define SCTP_INP_SO(sctpinp) \
(sctpinp)->ip_inp.inp.inp_socket
#define SCTP_SOCKET_LOCK(so, refcnt)
#define SCTP_SOCKET_UNLOCK(so, refcnt)
#endif
#endif