freebsd-nq/sys/dev/aic7xxx/aic7xxx_inline.h
Justin T. Gibbs a5847d5c27 ahc_eisa.c:
Initialize rid to 0.  This doesn't seem to make any difference
	(the driver doesn't care what rid it gets and no-one seems to
	check rid's value), but follows standard conventions.

	Pass in our device_t to ahc_alloc().  We now use device_T
	softc storage, so passing NULL results in a panic.

	Set the unit number in our softc so that the driver core
	can retrieve it.

ahc_pci.c:
	Set the unit number in our softc so that the driver core
	can retrieve it.

aic7770.c:
	Insert our softc into the list of softcs when initialization
	is successful.

aic7xxx.c:
	Remove a workaround for an aic7895 bug we will never trigger.

	Add additional diagnostic info to ahc_dump_card_state().

	Always panic the system if a sequencer assertion fails.

	AHC_SCB_BTT is a "flag" not a "feature".  Check the right
	field in the softc.

	Replace a hard coded number with a constant.

	Guard against looping forever in ahc_pause_and_flushwork().
	A hot eject or card failure may make the intstat register
	return 0xFF, so limit the number of interrupts we'll process.

	Correct the code in ahc_search_qinfifo() that guarantees that
	the sequencer will see an abort collision if the qinfifo is
	modified when a DMA is in progress.  We now do this fixup
	after modifying the queue.  This guarantees that the HSCB
	we place at the head of the queue is not the same as the
	old head.  Using "next hscb" (guaranteed not to be the
	same as the first SCB) before clearing the queue could free
	up the original head hscb to be used during a remove operation
	placing it again at the head of the qinfifo.

aic7xxx.h:
	Reduce the maximum number of outstanding commands to 253 from
	254.  To handle our output queue correctly on machines that only
	support 32bit stores, we must clear the array 4 bytes at a
	time.  To avoid colliding with a DMA write from the sequencer,
	we must be sure that 4 slots are empty when we write to clear
	the queue.  This reduces us to 253 SCBs: 1 that just completed
	and the known three additional empty slots in the queue that
	preceed it.  Yahoo was able to force this race on one of their
	systems.  Interrupts were disabled for such a time that the
	entire output queue was filled (254 entries complete without
	any processing), and our 32bit write to clear the status clobbered
	one entry.

	Add a feature tag for devices that are removable.

aic7xxx.reg:
	Never use the sequencer interrupt value of 0xF0.  We need
	to guanrantee that an INTSTAT value of 0xFF can only occur
	during card failure or a hot-eject.

	Align the busy targets table with the begining of scratch
	space.  This seems to appease a chip bug in the aic7895.

aic7xxx.seq:
	Be sure to disable select-out after a bus free event that occurs
	early in a selection.  If we don't disable select-out, we will
	believe that it is enabled even though a new selection will never
	occur.

	Move the clearing of SELDI to just before a jump.  This appeases
	another chip bug of the aic7895.

	Make the target mode command loop a bit more efficient.

	AHC_SCB_BTT is a "flag" not a "feature".  Check the right
	field in the softc.

	Properly cleanup the last SCB we tested against should we
	fail to properly find an SCB for a reselection.

	Add some additional sequencer debugging code.

aic7xxx_freebsd.c:
	Limit the driver to 253 outstanding commands per adapter.

	Guard against overflow in timeout handling.

aic7xxx_inline.h:
	AHC_SCB_BTT is a "flag" not a "feature".  Check the right
	field in the softc.

aic7xxx_pci.c:
	Set the removable feature for the apa1480 cardbus and the 29160C
	Compact PCI card.

	Don't report high byte termination information for narrow cards.

	Use a PCI read rather than a questionable delay when fetching/setting
	termination settings.
2001-01-22 21:03:48 +00:00

479 lines
14 KiB
C

/*
* Inline routines shareable across OS platforms.
*
* Copyright (c) 1994, 1995, 1996, 1997, 1998, 1999, 2000 Justin T. Gibbs.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions, and the following disclaimer,
* without modification.
* 2. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* Alternatively, this software may be distributed under the terms of the
* GNU Public License ("GPL").
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $Id: //depot/src/aic7xxx/aic7xxx_inline.h#14 $
*
* $FreeBSD$
*/
#ifndef _AIC7XXX_INLINE_H_
#define _AIC7XXX_INLINE_H_
/************************* Sequencer Execution Control ************************/
static __inline int sequencer_paused(struct ahc_softc *ahc);
static __inline void ahc_pause_bug_fix(struct ahc_softc *ahc);
static __inline void pause_sequencer(struct ahc_softc *ahc);
static __inline void unpause_sequencer(struct ahc_softc *ahc);
/*
* Work around any chip bugs related to halting sequencer execution.
* On Ultra2 controllers, we must clear the CIOBUS stretch signal by
* reading a register that will set this signal and deassert it.
* Without this workaround, if the chip is paused, by an interrupt or
* manual pause while accessing scb ram, accesses to certain registers
* will hang the system (infinite pci retries).
*/
static __inline void
ahc_pause_bug_fix(struct ahc_softc *ahc)
{
if ((ahc->features & AHC_ULTRA2) != 0)
(void)ahc_inb(ahc, CCSCBCTL);
}
/*
* Determine whether the sequencer has halted code execution.
* Returns non-zero status if the sequencer is stopped.
*/
static __inline int
sequencer_paused(struct ahc_softc *ahc)
{
return ((ahc_inb(ahc, HCNTRL) & PAUSE) != 0);
}
/*
* Request that the sequencer stop and wait, indefinitely, for it
* to stop. The sequencer will only acknowledge that it is paused
* once it has reached an instruction boundary and PAUSEDIS is
* cleared in the SEQCTL register. The sequencer may use PAUSEDIS
* for critical sections.
*/
static __inline void
pause_sequencer(struct ahc_softc *ahc)
{
ahc_outb(ahc, HCNTRL, ahc->pause);
/*
* Since the sequencer can disable pausing in a critical section, we
* must loop until it actually stops.
*/
while (sequencer_paused(ahc) == 0)
;
ahc_pause_bug_fix(ahc);
}
/*
* Allow the sequencer to continue program execution.
* We check here to ensure that no additional interrupt
* sources that would cause the sequencer to halt have been
* asserted. If, for example, a SCSI bus reset is detected
* while we are fielding a different, pausing, interrupt type,
* we don't want to release the sequencer before going back
* into our interrupt handler and dealing with this new
* condition.
*/
static __inline void
unpause_sequencer(struct ahc_softc *ahc)
{
if ((ahc_inb(ahc, INTSTAT) & (SCSIINT | SEQINT | BRKADRINT)) == 0)
ahc_outb(ahc, HCNTRL, ahc->unpause);
}
/*********************** Untagged Transaction Routines ************************/
static __inline void ahc_freeze_untagged_queues(struct ahc_softc *ahc);
static __inline void ahc_release_untagged_queues(struct ahc_softc *ahc);
/*
* Block our completion routine from starting the next untagged
* transaction for this target or target lun.
*/
static __inline void
ahc_freeze_untagged_queues(struct ahc_softc *ahc)
{
if ((ahc->flags & AHC_SCB_BTT) == 0)
ahc->untagged_queue_lock++;
}
/*
* Allow the next untagged transaction for this target or target lun
* to be executed. We use a counting semaphore to allow the lock
* to be acquired recursively. Once the count drops to zero, the
* transaction queues will be run.
*/
static __inline void
ahc_release_untagged_queues(struct ahc_softc *ahc)
{
if ((ahc->flags & AHC_SCB_BTT) == 0) {
ahc->untagged_queue_lock--;
if (ahc->untagged_queue_lock == 0)
ahc_run_untagged_queues(ahc);
}
}
/************************** Memory mapping routines ***************************/
static __inline struct ahc_dma_seg *
ahc_sg_bus_to_virt(struct scb *scb,
uint32_t sg_busaddr);
static __inline uint32_t
ahc_sg_virt_to_bus(struct scb *scb,
struct ahc_dma_seg *sg);
static __inline uint32_t
ahc_hscb_busaddr(struct ahc_softc *ahc, u_int index);
static __inline struct ahc_dma_seg *
ahc_sg_bus_to_virt(struct scb *scb, uint32_t sg_busaddr)
{
int sg_index;
sg_index = (sg_busaddr - scb->sg_list_phys)/sizeof(struct ahc_dma_seg);
/* sg_list_phys points to entry 1, not 0 */
sg_index++;
return (&scb->sg_list[sg_index]);
}
static __inline uint32_t
ahc_sg_virt_to_bus(struct scb *scb, struct ahc_dma_seg *sg)
{
int sg_index;
/* sg_list_phys points to entry 1, not 0 */
sg_index = sg - &scb->sg_list[1];
return (scb->sg_list_phys + (sg_index * sizeof(*scb->sg_list)));
}
static __inline uint32_t
ahc_hscb_busaddr(struct ahc_softc *ahc, u_int index)
{
return (ahc->scb_data->hscb_busaddr
+ (sizeof(struct hardware_scb) * index));
}
/******************************** Debugging ***********************************/
static __inline char *ahc_name(struct ahc_softc *ahc);
static __inline char *
ahc_name(struct ahc_softc *ahc)
{
return (ahc->name);
}
/*********************** Miscelaneous Support Functions ***********************/
static __inline int ahc_check_residual(struct scb *scb);
static __inline struct ahc_initiator_tinfo *
ahc_fetch_transinfo(struct ahc_softc *ahc,
char channel, u_int our_id,
u_int remote_id,
struct tmode_tstate **tstate);
static __inline struct scb*
ahc_get_scb(struct ahc_softc *ahc);
static __inline void ahc_free_scb(struct ahc_softc *ahc, struct scb *scb);
static __inline void ahc_swap_with_next_hscb(struct ahc_softc *ahc,
struct scb *scb);
static __inline void ahc_queue_scb(struct ahc_softc *ahc, struct scb *scb);
static __inline struct scsi_sense_data *
ahc_get_sense_buf(struct ahc_softc *ahc,
struct scb *scb);
static __inline uint32_t
ahc_get_sense_bufaddr(struct ahc_softc *ahc,
struct scb *scb);
/*
* Determine whether the sequencer reported a residual
* for this SCB/transaction.
*/
static __inline int
ahc_check_residual(struct scb *scb)
{
struct status_pkt *sp;
sp = &scb->hscb->shared_data.status;
if ((scb->hscb->sgptr & SG_RESID_VALID) != 0)
return (1);
return (0);
}
/*
* Return pointers to the transfer negotiation information
* for the specified our_id/remote_id pair.
*/
static __inline struct ahc_initiator_tinfo *
ahc_fetch_transinfo(struct ahc_softc *ahc, char channel, u_int our_id,
u_int remote_id, struct tmode_tstate **tstate)
{
/*
* Transfer data structures are stored from the perspective
* of the target role. Since the parameters for a connection
* in the initiator role to a given target are the same as
* when the roles are reversed, we pretend we are the target.
*/
if (channel == 'B')
our_id += 8;
*tstate = ahc->enabled_targets[our_id];
return (&(*tstate)->transinfo[remote_id]);
}
/*
* Get a free scb. If there are none, see if we can allocate a new SCB.
*/
static __inline struct scb *
ahc_get_scb(struct ahc_softc *ahc)
{
struct scb *scb;
if ((scb = SLIST_FIRST(&ahc->scb_data->free_scbs)) == NULL) {
ahc_alloc_scbs(ahc);
scb = SLIST_FIRST(&ahc->scb_data->free_scbs);
if (scb == NULL)
return (NULL);
}
SLIST_REMOVE_HEAD(&ahc->scb_data->free_scbs, links.sle);
return (scb);
}
/*
* Return an SCB resource to the free list.
*/
static __inline void
ahc_free_scb(struct ahc_softc *ahc, struct scb *scb)
{
struct hardware_scb *hscb;
hscb = scb->hscb;
/* Clean up for the next user */
ahc->scb_data->scbindex[hscb->tag] = NULL;
scb->flags = SCB_FREE;
hscb->control = 0;
SLIST_INSERT_HEAD(&ahc->scb_data->free_scbs, scb, links.sle);
/* Notify the OSM that a resource is now available. */
ahc_platform_scb_free(ahc, scb);
}
static __inline struct scb *
ahc_lookup_scb(struct ahc_softc *ahc, u_int tag)
{
return (ahc->scb_data->scbindex[tag]);
}
static __inline void
ahc_swap_with_next_hscb(struct ahc_softc *ahc, struct scb *scb)
{
struct hardware_scb *q_hscb;
u_int saved_tag;
/*
* Our queuing method is a bit tricky. The card
* knows in advance which HSCB to download, and we
* can't disappoint it. To achieve this, the next
* SCB to download is saved off in ahc->next_queued_scb.
* When we are called to queue "an arbitrary scb",
* we copy the contents of the incoming HSCB to the one
* the sequencer knows about, swap HSCB pointers and
* finally assign the SCB to the tag indexed location
* in the scb_array. This makes sure that we can still
* locate the correct SCB by SCB_TAG.
*/
q_hscb = ahc->next_queued_scb->hscb;
saved_tag = q_hscb->tag;
memcpy(q_hscb, scb->hscb, sizeof(*scb->hscb));
if ((scb->flags & SCB_CDB32_PTR) != 0) {
q_hscb->shared_data.cdb_ptr =
ahc_hscb_busaddr(ahc, q_hscb->tag)
+ offsetof(struct hardware_scb, cdb32);
}
q_hscb->tag = saved_tag;
q_hscb->next = scb->hscb->tag;
/* Now swap HSCB pointers. */
ahc->next_queued_scb->hscb = scb->hscb;
scb->hscb = q_hscb;
/* Now define the mapping from tag to SCB in the scbindex */
ahc->scb_data->scbindex[scb->hscb->tag] = scb;
}
/*
* Tell the sequencer about a new transaction to execute.
*/
static __inline void
ahc_queue_scb(struct ahc_softc *ahc, struct scb *scb)
{
ahc_swap_with_next_hscb(ahc, scb);
if (scb->hscb->tag == SCB_LIST_NULL
|| scb->hscb->next == SCB_LIST_NULL)
panic("Attempt to queue invalid SCB tag %x:%x\n",
scb->hscb->tag, scb->hscb->next);
/*
* Keep a history of SCBs we've downloaded in the qinfifo.
*/
ahc->qinfifo[ahc->qinfifonext++] = scb->hscb->tag;
if ((ahc->features & AHC_QUEUE_REGS) != 0) {
ahc_outb(ahc, HNSCB_QOFF, ahc->qinfifonext);
} else {
if ((ahc->features & AHC_AUTOPAUSE) == 0)
pause_sequencer(ahc);
ahc_outb(ahc, KERNEL_QINPOS, ahc->qinfifonext);
if ((ahc->features & AHC_AUTOPAUSE) == 0)
unpause_sequencer(ahc);
}
}
static __inline struct scsi_sense_data *
ahc_get_sense_buf(struct ahc_softc *ahc, struct scb *scb)
{
int offset;
offset = scb - ahc->scb_data->scbarray;
return (&ahc->scb_data->sense[offset]);
}
static __inline uint32_t
ahc_get_sense_bufaddr(struct ahc_softc *ahc, struct scb *scb)
{
int offset;
offset = scb - ahc->scb_data->scbarray;
return (ahc->scb_data->sense_busaddr
+ (offset * sizeof(struct scsi_sense_data)));
}
/************************** Interrupt Processing ******************************/
static __inline u_int ahc_check_cmdcmpltqueues(struct ahc_softc *ahc);
static __inline void ahc_intr(struct ahc_softc *ahc);
/*
* See if the firmware has posted any completed commands
* into our in-core command complete fifos.
*/
#define AHC_RUN_QOUTFIFO 0x1
#define AHC_RUN_TQINFIFO 0x2
static __inline u_int
ahc_check_cmdcmpltqueues(struct ahc_softc *ahc)
{
u_int retval;
retval = 0;
if (ahc->qoutfifo[ahc->qoutfifonext] != SCB_LIST_NULL)
retval |= AHC_RUN_QOUTFIFO;
#ifdef AHC_TARGET_MODE
if ((ahc->flags & AHC_TARGETROLE) != 0
&& ahc->targetcmds[ahc->tqinfifonext].cmd_valid != 0)
retval |= AHC_RUN_TQINFIFO;
#endif
return (retval);
}
/*
* Catch an interrupt from the adapter
*/
static __inline void
ahc_intr(struct ahc_softc *ahc)
{
u_int intstat;
u_int queuestat;
/*
* Instead of directly reading the interrupt status register,
* infer the cause of the interrupt by checking our in-core
* completion queues. This avoids a costly PCI bus read in
* most cases.
*/
intstat = 0;
if ((queuestat = ahc_check_cmdcmpltqueues(ahc)) != 0)
intstat = CMDCMPLT;
if ((intstat & INT_PEND) == 0
|| (ahc->flags & AHC_ALL_INTERRUPTS) != 0) {
intstat = ahc_inb(ahc, INTSTAT);
#if AHC_PCI_CONFIG > 0
if (ahc->unsolicited_ints > 500
&& (ahc->chip & AHC_PCI) != 0
&& (ahc_inb(ahc, ERROR) & PCIERRSTAT) != 0)
ahc_pci_intr(ahc);
#endif
}
if (intstat == 0xFF && (ahc->features & AHC_REMOVABLE) != 0)
/* Hot eject */
return;
if ((intstat & INT_PEND) == 0) {
ahc->unsolicited_ints++;
return;
}
ahc->unsolicited_ints = 0;
if (intstat & CMDCMPLT) {
ahc_outb(ahc, CLRINT, CLRCMDINT);
/*
* Ensure that the chip sees that we've cleared
* this interrupt before we walk the output fifo.
* Otherwise, we may, due to posted bus writes,
* clear the interrupt after we finish the scan,
* and after the sequencer has added new entries
* and asserted the interrupt again.
*/
ahc_flush_device_writes(ahc);
#ifdef AHC_TARGET_MODE
if ((queuestat & AHC_RUN_QOUTFIFO) != 0)
#endif
ahc_run_qoutfifo(ahc);
#ifdef AHC_TARGET_MODE
if ((queuestat & AHC_RUN_TQINFIFO) != 0)
ahc_run_tqinfifo(ahc, /*paused*/FALSE);
#endif
}
if (intstat & BRKADRINT) {
ahc_handle_brkadrint(ahc);
/* Fatal error, no more interrupts to handle. */
return;
}
if ((intstat & (SEQINT|SCSIINT)) != 0)
ahc_pause_bug_fix(ahc);
if ((intstat & SEQINT) != 0)
ahc_handle_seqint(ahc, intstat);
if ((intstat & SCSIINT) != 0)
ahc_handle_scsiint(ahc, intstat);
}
#endif /* _AIC7XXX_INLINE_H_ */