freebsd-nq/sys/kern/vfs_export.c
Kirk McKusick 9b97113391 This patch corrects the first round of panics and hangs reported
with the new snapshot code.

Update addaliasu to correctly implement the semantics of the old
checkalias function. When a device vnode first comes into existence,
check to see if an anonymous vnode for the same device was created
at boot time by bdevvp(). If so, adopt the bdevvp vnode rather than
creating a new vnode for the device. This corrects a problem which
caused the kernel to panic when taking a snapshot of the root
filesystem.

Change the calling convention of vn_write_suspend_wait() to be the
same as vn_start_write().

Split out softdep_flushworklist() from softdep_flushfiles() so that
it can be used to clear the work queue when suspending filesystem
operations.

Access to buffers becomes recursive so that snapshots can recursively
traverse their indirect blocks using ffs_copyonwrite() when checking
for the need for copy on write when flushing one of their own indirect
blocks. This eliminates a deadlock between the syncer daemon and a
process taking a snapshot.

Ensure that softdep_process_worklist() can never block because of a
snapshot being taken. This eliminates a problem with buffer starvation.

Cleanup change in ffs_sync() which did not synchronously wait when
MNT_WAIT was specified. The result was an unclean filesystem panic
when doing forcible unmount with heavy filesystem I/O in progress.

Return a zero'ed block when reading a block that was not in use at
the time that a snapshot was taken. Normally, these blocks should
never be read. However, the readahead code will occationally read
them which can cause unexpected behavior.

Clean up the debugging code that ensures that no blocks be written
on a filesystem while it is suspended. Snapshots must explicitly
label the blocks that they are writing during the suspension so that
they do not cause a `write on suspended filesystem' panic.

Reorganize ffs_copyonwrite() to eliminate a deadlock and also to
prevent a race condition that would permit the same block to be
copied twice. This change eliminates an unexpected soft updates
inconsistency in fsck caused by the double allocation.

Use bqrelse rather than brelse for buffers that will be needed
soon again by the snapshot code. This improves snapshot performance.
2000-07-24 05:28:33 +00:00

2987 lines
70 KiB
C

/*
* Copyright (c) 1989, 1993
* The Regents of the University of California. All rights reserved.
* (c) UNIX System Laboratories, Inc.
* All or some portions of this file are derived from material licensed
* to the University of California by American Telephone and Telegraph
* Co. or Unix System Laboratories, Inc. and are reproduced herein with
* the permission of UNIX System Laboratories, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)vfs_subr.c 8.31 (Berkeley) 5/26/95
* $FreeBSD$
*/
/*
* External virtual filesystem routines
*/
#include "opt_ddb.h"
#include "opt_ffs.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bio.h>
#include <sys/buf.h>
#include <sys/conf.h>
#include <sys/dirent.h>
#include <sys/domain.h>
#include <sys/eventhandler.h>
#include <sys/fcntl.h>
#include <sys/kernel.h>
#include <sys/kthread.h>
#include <sys/malloc.h>
#include <sys/mount.h>
#include <sys/namei.h>
#include <sys/proc.h>
#include <sys/reboot.h>
#include <sys/socket.h>
#include <sys/stat.h>
#include <sys/sysctl.h>
#include <sys/vmmeter.h>
#include <sys/vnode.h>
#include <machine/limits.h>
#include <vm/vm.h>
#include <vm/vm_object.h>
#include <vm/vm_extern.h>
#include <vm/pmap.h>
#include <vm/vm_map.h>
#include <vm/vm_page.h>
#include <vm/vm_pager.h>
#include <vm/vnode_pager.h>
#include <vm/vm_zone.h>
static MALLOC_DEFINE(M_NETADDR, "Export Host", "Export host address structure");
static void insmntque __P((struct vnode *vp, struct mount *mp));
static void vclean __P((struct vnode *vp, int flags, struct proc *p));
static unsigned long numvnodes;
SYSCTL_INT(_debug, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0, "");
enum vtype iftovt_tab[16] = {
VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VBAD,
};
int vttoif_tab[9] = {
0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
S_IFSOCK, S_IFIFO, S_IFMT,
};
static TAILQ_HEAD(freelst, vnode) vnode_free_list; /* vnode free list */
static u_long wantfreevnodes = 25;
SYSCTL_INT(_debug, OID_AUTO, wantfreevnodes, CTLFLAG_RW, &wantfreevnodes, 0, "");
static u_long freevnodes = 0;
SYSCTL_INT(_debug, OID_AUTO, freevnodes, CTLFLAG_RD, &freevnodes, 0, "");
static int reassignbufcalls;
SYSCTL_INT(_vfs, OID_AUTO, reassignbufcalls, CTLFLAG_RW, &reassignbufcalls, 0, "");
static int reassignbufloops;
SYSCTL_INT(_vfs, OID_AUTO, reassignbufloops, CTLFLAG_RW, &reassignbufloops, 0, "");
static int reassignbufsortgood;
SYSCTL_INT(_vfs, OID_AUTO, reassignbufsortgood, CTLFLAG_RW, &reassignbufsortgood, 0, "");
static int reassignbufsortbad;
SYSCTL_INT(_vfs, OID_AUTO, reassignbufsortbad, CTLFLAG_RW, &reassignbufsortbad, 0, "");
static int reassignbufmethod = 1;
SYSCTL_INT(_vfs, OID_AUTO, reassignbufmethod, CTLFLAG_RW, &reassignbufmethod, 0, "");
#ifdef ENABLE_VFS_IOOPT
int vfs_ioopt = 0;
SYSCTL_INT(_vfs, OID_AUTO, ioopt, CTLFLAG_RW, &vfs_ioopt, 0, "");
#endif
struct mntlist mountlist = TAILQ_HEAD_INITIALIZER(mountlist); /* mounted fs */
struct simplelock mountlist_slock;
struct simplelock mntvnode_slock;
int nfs_mount_type = -1;
#ifndef NULL_SIMPLELOCKS
static struct simplelock mntid_slock;
static struct simplelock vnode_free_list_slock;
static struct simplelock spechash_slock;
#endif
struct nfs_public nfs_pub; /* publicly exported FS */
static vm_zone_t vnode_zone;
int prtactive = 0; /* 1 => print out reclaim of active vnodes */
/*
* The workitem queue.
*/
#define SYNCER_MAXDELAY 32
static int syncer_maxdelay = SYNCER_MAXDELAY; /* maximum delay time */
time_t syncdelay = 30; /* max time to delay syncing data */
time_t filedelay = 30; /* time to delay syncing files */
SYSCTL_INT(_kern, OID_AUTO, filedelay, CTLFLAG_RW, &filedelay, 0, "");
time_t dirdelay = 29; /* time to delay syncing directories */
SYSCTL_INT(_kern, OID_AUTO, dirdelay, CTLFLAG_RW, &dirdelay, 0, "");
time_t metadelay = 28; /* time to delay syncing metadata */
SYSCTL_INT(_kern, OID_AUTO, metadelay, CTLFLAG_RW, &metadelay, 0, "");
static int rushjob; /* number of slots to run ASAP */
static int stat_rush_requests; /* number of times I/O speeded up */
SYSCTL_INT(_debug, OID_AUTO, rush_requests, CTLFLAG_RW, &stat_rush_requests, 0, "");
static int syncer_delayno = 0;
static long syncer_mask;
LIST_HEAD(synclist, vnode);
static struct synclist *syncer_workitem_pending;
int desiredvnodes;
SYSCTL_INT(_kern, KERN_MAXVNODES, maxvnodes, CTLFLAG_RW,
&desiredvnodes, 0, "Maximum number of vnodes");
static void vfs_free_addrlist __P((struct netexport *nep));
static int vfs_free_netcred __P((struct radix_node *rn, void *w));
static int vfs_hang_addrlist __P((struct mount *mp, struct netexport *nep,
struct export_args *argp));
/*
* Initialize the vnode management data structures.
*/
void
vntblinit()
{
desiredvnodes = maxproc + cnt.v_page_count / 4;
simple_lock_init(&mntvnode_slock);
simple_lock_init(&mntid_slock);
simple_lock_init(&spechash_slock);
TAILQ_INIT(&vnode_free_list);
simple_lock_init(&vnode_free_list_slock);
vnode_zone = zinit("VNODE", sizeof (struct vnode), 0, 0, 5);
/*
* Initialize the filesystem syncer.
*/
syncer_workitem_pending = hashinit(syncer_maxdelay, M_VNODE,
&syncer_mask);
syncer_maxdelay = syncer_mask + 1;
}
/*
* Mark a mount point as busy. Used to synchronize access and to delay
* unmounting. Interlock is not released on failure.
*/
int
vfs_busy(mp, flags, interlkp, p)
struct mount *mp;
int flags;
struct simplelock *interlkp;
struct proc *p;
{
int lkflags;
if (mp->mnt_kern_flag & MNTK_UNMOUNT) {
if (flags & LK_NOWAIT)
return (ENOENT);
mp->mnt_kern_flag |= MNTK_MWAIT;
if (interlkp) {
simple_unlock(interlkp);
}
/*
* Since all busy locks are shared except the exclusive
* lock granted when unmounting, the only place that a
* wakeup needs to be done is at the release of the
* exclusive lock at the end of dounmount.
*/
tsleep((caddr_t)mp, PVFS, "vfs_busy", 0);
if (interlkp) {
simple_lock(interlkp);
}
return (ENOENT);
}
lkflags = LK_SHARED | LK_NOPAUSE;
if (interlkp)
lkflags |= LK_INTERLOCK;
if (lockmgr(&mp->mnt_lock, lkflags, interlkp, p))
panic("vfs_busy: unexpected lock failure");
return (0);
}
/*
* Free a busy filesystem.
*/
void
vfs_unbusy(mp, p)
struct mount *mp;
struct proc *p;
{
lockmgr(&mp->mnt_lock, LK_RELEASE, NULL, p);
}
/*
* Lookup a filesystem type, and if found allocate and initialize
* a mount structure for it.
*
* Devname is usually updated by mount(8) after booting.
*/
int
vfs_rootmountalloc(fstypename, devname, mpp)
char *fstypename;
char *devname;
struct mount **mpp;
{
struct proc *p = curproc; /* XXX */
struct vfsconf *vfsp;
struct mount *mp;
if (fstypename == NULL)
return (ENODEV);
for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next)
if (!strcmp(vfsp->vfc_name, fstypename))
break;
if (vfsp == NULL)
return (ENODEV);
mp = malloc((u_long)sizeof(struct mount), M_MOUNT, M_WAITOK);
bzero((char *)mp, (u_long)sizeof(struct mount));
lockinit(&mp->mnt_lock, PVFS, "vfslock", 0, LK_NOPAUSE);
(void)vfs_busy(mp, LK_NOWAIT, 0, p);
LIST_INIT(&mp->mnt_vnodelist);
mp->mnt_vfc = vfsp;
mp->mnt_op = vfsp->vfc_vfsops;
mp->mnt_flag = MNT_RDONLY;
mp->mnt_vnodecovered = NULLVP;
vfsp->vfc_refcount++;
mp->mnt_iosize_max = DFLTPHYS;
mp->mnt_stat.f_type = vfsp->vfc_typenum;
mp->mnt_flag |= vfsp->vfc_flags & MNT_VISFLAGMASK;
strncpy(mp->mnt_stat.f_fstypename, vfsp->vfc_name, MFSNAMELEN);
mp->mnt_stat.f_mntonname[0] = '/';
mp->mnt_stat.f_mntonname[1] = 0;
(void) copystr(devname, mp->mnt_stat.f_mntfromname, MNAMELEN - 1, 0);
*mpp = mp;
return (0);
}
/*
* Find an appropriate filesystem to use for the root. If a filesystem
* has not been preselected, walk through the list of known filesystems
* trying those that have mountroot routines, and try them until one
* works or we have tried them all.
*/
#ifdef notdef /* XXX JH */
int
lite2_vfs_mountroot()
{
struct vfsconf *vfsp;
extern int (*lite2_mountroot) __P((void));
int error;
if (lite2_mountroot != NULL)
return ((*lite2_mountroot)());
for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next) {
if (vfsp->vfc_mountroot == NULL)
continue;
if ((error = (*vfsp->vfc_mountroot)()) == 0)
return (0);
printf("%s_mountroot failed: %d\n", vfsp->vfc_name, error);
}
return (ENODEV);
}
#endif
/*
* Lookup a mount point by filesystem identifier.
*/
struct mount *
vfs_getvfs(fsid)
fsid_t *fsid;
{
register struct mount *mp;
simple_lock(&mountlist_slock);
TAILQ_FOREACH(mp, &mountlist, mnt_list) {
if (mp->mnt_stat.f_fsid.val[0] == fsid->val[0] &&
mp->mnt_stat.f_fsid.val[1] == fsid->val[1]) {
simple_unlock(&mountlist_slock);
return (mp);
}
}
simple_unlock(&mountlist_slock);
return ((struct mount *) 0);
}
/*
* Get a new unique fsid. Try to make its val[0] unique, since this value
* will be used to create fake device numbers for stat(). Also try (but
* not so hard) make its val[0] unique mod 2^16, since some emulators only
* support 16-bit device numbers. We end up with unique val[0]'s for the
* first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls.
*
* Keep in mind that several mounts may be running in parallel. Starting
* the search one past where the previous search terminated is both a
* micro-optimization and a defense against returning the same fsid to
* different mounts.
*/
void
vfs_getnewfsid(mp)
struct mount *mp;
{
static u_int16_t mntid_base;
fsid_t tfsid;
int mtype;
simple_lock(&mntid_slock);
mtype = mp->mnt_vfc->vfc_typenum;
tfsid.val[1] = mtype;
mtype = (mtype & 0xFF) << 24;
for (;;) {
tfsid.val[0] = makeudev(255,
mtype | ((mntid_base & 0xFF00) << 8) | (mntid_base & 0xFF));
mntid_base++;
if (vfs_getvfs(&tfsid) == NULL)
break;
}
mp->mnt_stat.f_fsid.val[0] = tfsid.val[0];
mp->mnt_stat.f_fsid.val[1] = tfsid.val[1];
simple_unlock(&mntid_slock);
}
/*
* Knob to control the precision of file timestamps:
*
* 0 = seconds only; nanoseconds zeroed.
* 1 = seconds and nanoseconds, accurate within 1/HZ.
* 2 = seconds and nanoseconds, truncated to microseconds.
* >=3 = seconds and nanoseconds, maximum precision.
*/
enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC };
static int timestamp_precision = TSP_SEC;
SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW,
&timestamp_precision, 0, "");
/*
* Get a current timestamp.
*/
void
vfs_timestamp(tsp)
struct timespec *tsp;
{
struct timeval tv;
switch (timestamp_precision) {
case TSP_SEC:
tsp->tv_sec = time_second;
tsp->tv_nsec = 0;
break;
case TSP_HZ:
getnanotime(tsp);
break;
case TSP_USEC:
microtime(&tv);
TIMEVAL_TO_TIMESPEC(&tv, tsp);
break;
case TSP_NSEC:
default:
nanotime(tsp);
break;
}
}
/*
* Set vnode attributes to VNOVAL
*/
void
vattr_null(vap)
register struct vattr *vap;
{
vap->va_type = VNON;
vap->va_size = VNOVAL;
vap->va_bytes = VNOVAL;
vap->va_mode = VNOVAL;
vap->va_nlink = VNOVAL;
vap->va_uid = VNOVAL;
vap->va_gid = VNOVAL;
vap->va_fsid = VNOVAL;
vap->va_fileid = VNOVAL;
vap->va_blocksize = VNOVAL;
vap->va_rdev = VNOVAL;
vap->va_atime.tv_sec = VNOVAL;
vap->va_atime.tv_nsec = VNOVAL;
vap->va_mtime.tv_sec = VNOVAL;
vap->va_mtime.tv_nsec = VNOVAL;
vap->va_ctime.tv_sec = VNOVAL;
vap->va_ctime.tv_nsec = VNOVAL;
vap->va_flags = VNOVAL;
vap->va_gen = VNOVAL;
vap->va_vaflags = 0;
}
/*
* Routines having to do with the management of the vnode table.
*/
extern vop_t **dead_vnodeop_p;
/*
* Return the next vnode from the free list.
*/
int
getnewvnode(tag, mp, vops, vpp)
enum vtagtype tag;
struct mount *mp;
vop_t **vops;
struct vnode **vpp;
{
int s, count;
struct proc *p = curproc; /* XXX */
struct vnode *vp = NULL;
struct mount *vnmp;
vm_object_t object;
/*
* We take the least recently used vnode from the freelist
* if we can get it and it has no cached pages, and no
* namecache entries are relative to it.
* Otherwise we allocate a new vnode
*/
s = splbio();
simple_lock(&vnode_free_list_slock);
if (wantfreevnodes && freevnodes < wantfreevnodes) {
vp = NULL;
} else if (!wantfreevnodes && freevnodes <= desiredvnodes) {
/*
* XXX: this is only here to be backwards compatible
*/
vp = NULL;
} else for (count = 0; count < freevnodes; count++) {
vp = TAILQ_FIRST(&vnode_free_list);
if (vp == NULL || vp->v_usecount)
panic("getnewvnode: free vnode isn't");
TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
/*
* Don't recycle if active in the namecache or
* if it still has cached pages or we cannot get
* its interlock.
*/
object = vp->v_object;
if (LIST_FIRST(&vp->v_cache_src) != NULL ||
(object && (object->resident_page_count ||
object->ref_count)) ||
!simple_lock_try(&vp->v_interlock)) {
TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
vp = NULL;
continue;
}
/*
* Skip over it if its filesystem is being suspended.
*/
if (vn_start_write(vp, &vnmp, V_NOWAIT) == 0)
break;
simple_unlock(&vp->v_interlock);
TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
vp = NULL;
}
if (vp) {
vp->v_flag |= VDOOMED;
freevnodes--;
simple_unlock(&vnode_free_list_slock);
cache_purge(vp);
vp->v_lease = NULL;
if (vp->v_type != VBAD) {
vgonel(vp, p);
} else {
simple_unlock(&vp->v_interlock);
}
vn_finished_write(vnmp);
#ifdef INVARIANTS
{
int s;
if (vp->v_data)
panic("cleaned vnode isn't");
s = splbio();
if (vp->v_numoutput)
panic("Clean vnode has pending I/O's");
splx(s);
if (vp->v_writecount != 0)
panic("Non-zero write count");
}
#endif
vp->v_flag = 0;
vp->v_lastw = 0;
vp->v_lasta = 0;
vp->v_cstart = 0;
vp->v_clen = 0;
vp->v_socket = 0;
} else {
simple_unlock(&vnode_free_list_slock);
vp = (struct vnode *) zalloc(vnode_zone);
bzero((char *) vp, sizeof *vp);
simple_lock_init(&vp->v_interlock);
vp->v_dd = vp;
cache_purge(vp);
LIST_INIT(&vp->v_cache_src);
TAILQ_INIT(&vp->v_cache_dst);
numvnodes++;
}
TAILQ_INIT(&vp->v_cleanblkhd);
TAILQ_INIT(&vp->v_dirtyblkhd);
vp->v_type = VNON;
vp->v_tag = tag;
vp->v_op = vops;
insmntque(vp, mp);
*vpp = vp;
vp->v_usecount = 1;
vp->v_data = 0;
splx(s);
vfs_object_create(vp, p, p->p_ucred);
return (0);
}
/*
* Move a vnode from one mount queue to another.
*/
static void
insmntque(vp, mp)
register struct vnode *vp;
register struct mount *mp;
{
simple_lock(&mntvnode_slock);
/*
* Delete from old mount point vnode list, if on one.
*/
if (vp->v_mount != NULL)
LIST_REMOVE(vp, v_mntvnodes);
/*
* Insert into list of vnodes for the new mount point, if available.
*/
if ((vp->v_mount = mp) == NULL) {
simple_unlock(&mntvnode_slock);
return;
}
LIST_INSERT_HEAD(&mp->mnt_vnodelist, vp, v_mntvnodes);
simple_unlock(&mntvnode_slock);
}
/*
* Update outstanding I/O count and do wakeup if requested.
*/
void
vwakeup(bp)
register struct buf *bp;
{
register struct vnode *vp;
bp->b_flags &= ~B_WRITEINPROG;
if ((vp = bp->b_vp)) {
vp->v_numoutput--;
if (vp->v_numoutput < 0)
panic("vwakeup: neg numoutput");
if ((vp->v_numoutput == 0) && (vp->v_flag & VBWAIT)) {
vp->v_flag &= ~VBWAIT;
wakeup((caddr_t) &vp->v_numoutput);
}
}
}
/*
* Flush out and invalidate all buffers associated with a vnode.
* Called with the underlying object locked.
*/
int
vinvalbuf(vp, flags, cred, p, slpflag, slptimeo)
register struct vnode *vp;
int flags;
struct ucred *cred;
struct proc *p;
int slpflag, slptimeo;
{
register struct buf *bp;
struct buf *nbp, *blist;
int s, error;
vm_object_t object;
if (flags & V_SAVE) {
s = splbio();
while (vp->v_numoutput) {
vp->v_flag |= VBWAIT;
error = tsleep((caddr_t)&vp->v_numoutput,
slpflag | (PRIBIO + 1), "vinvlbuf", slptimeo);
if (error) {
splx(s);
return (error);
}
}
if (!TAILQ_EMPTY(&vp->v_dirtyblkhd)) {
splx(s);
if ((error = VOP_FSYNC(vp, cred, MNT_WAIT, p)) != 0)
return (error);
s = splbio();
if (vp->v_numoutput > 0 ||
!TAILQ_EMPTY(&vp->v_dirtyblkhd))
panic("vinvalbuf: dirty bufs");
}
splx(s);
}
s = splbio();
for (;;) {
blist = TAILQ_FIRST(&vp->v_cleanblkhd);
if (!blist)
blist = TAILQ_FIRST(&vp->v_dirtyblkhd);
if (!blist)
break;
for (bp = blist; bp; bp = nbp) {
nbp = TAILQ_NEXT(bp, b_vnbufs);
if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
error = BUF_TIMELOCK(bp,
LK_EXCLUSIVE | LK_SLEEPFAIL,
"vinvalbuf", slpflag, slptimeo);
if (error == ENOLCK)
break;
splx(s);
return (error);
}
/*
* XXX Since there are no node locks for NFS, I
* believe there is a slight chance that a delayed
* write will occur while sleeping just above, so
* check for it. Note that vfs_bio_awrite expects
* buffers to reside on a queue, while VOP_BWRITE and
* brelse do not.
*/
if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
(flags & V_SAVE)) {
if (bp->b_vp == vp) {
if (bp->b_flags & B_CLUSTEROK) {
BUF_UNLOCK(bp);
vfs_bio_awrite(bp);
} else {
bremfree(bp);
bp->b_flags |= B_ASYNC;
BUF_WRITE(bp);
}
} else {
bremfree(bp);
(void) BUF_WRITE(bp);
}
break;
}
bremfree(bp);
bp->b_flags |= (B_INVAL | B_NOCACHE | B_RELBUF);
bp->b_flags &= ~B_ASYNC;
brelse(bp);
}
}
while (vp->v_numoutput > 0) {
vp->v_flag |= VBWAIT;
tsleep(&vp->v_numoutput, PVM, "vnvlbv", 0);
}
splx(s);
/*
* Destroy the copy in the VM cache, too.
*/
simple_lock(&vp->v_interlock);
object = vp->v_object;
if (object != NULL) {
vm_object_page_remove(object, 0, 0,
(flags & V_SAVE) ? TRUE : FALSE);
}
simple_unlock(&vp->v_interlock);
if (!TAILQ_EMPTY(&vp->v_dirtyblkhd) || !TAILQ_EMPTY(&vp->v_cleanblkhd))
panic("vinvalbuf: flush failed");
return (0);
}
/*
* Truncate a file's buffer and pages to a specified length. This
* is in lieu of the old vinvalbuf mechanism, which performed unneeded
* sync activity.
*/
int
vtruncbuf(vp, cred, p, length, blksize)
register struct vnode *vp;
struct ucred *cred;
struct proc *p;
off_t length;
int blksize;
{
register struct buf *bp;
struct buf *nbp;
int s, anyfreed;
int trunclbn;
/*
* Round up to the *next* lbn.
*/
trunclbn = (length + blksize - 1) / blksize;
s = splbio();
restart:
anyfreed = 1;
for (;anyfreed;) {
anyfreed = 0;
for (bp = TAILQ_FIRST(&vp->v_cleanblkhd); bp; bp = nbp) {
nbp = TAILQ_NEXT(bp, b_vnbufs);
if (bp->b_lblkno >= trunclbn) {
if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL);
goto restart;
} else {
bremfree(bp);
bp->b_flags |= (B_INVAL | B_RELBUF);
bp->b_flags &= ~B_ASYNC;
brelse(bp);
anyfreed = 1;
}
if (nbp &&
(((nbp->b_xflags & BX_VNCLEAN) == 0) ||
(nbp->b_vp != vp) ||
(nbp->b_flags & B_DELWRI))) {
goto restart;
}
}
}
for (bp = TAILQ_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
nbp = TAILQ_NEXT(bp, b_vnbufs);
if (bp->b_lblkno >= trunclbn) {
if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL);
goto restart;
} else {
bremfree(bp);
bp->b_flags |= (B_INVAL | B_RELBUF);
bp->b_flags &= ~B_ASYNC;
brelse(bp);
anyfreed = 1;
}
if (nbp &&
(((nbp->b_xflags & BX_VNDIRTY) == 0) ||
(nbp->b_vp != vp) ||
(nbp->b_flags & B_DELWRI) == 0)) {
goto restart;
}
}
}
}
if (length > 0) {
restartsync:
for (bp = TAILQ_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
nbp = TAILQ_NEXT(bp, b_vnbufs);
if ((bp->b_flags & B_DELWRI) && (bp->b_lblkno < 0)) {
if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL);
goto restart;
} else {
bremfree(bp);
if (bp->b_vp == vp) {
bp->b_flags |= B_ASYNC;
} else {
bp->b_flags &= ~B_ASYNC;
}
BUF_WRITE(bp);
}
goto restartsync;
}
}
}
while (vp->v_numoutput > 0) {
vp->v_flag |= VBWAIT;
tsleep(&vp->v_numoutput, PVM, "vbtrunc", 0);
}
splx(s);
vnode_pager_setsize(vp, length);
return (0);
}
/*
* Associate a buffer with a vnode.
*/
void
bgetvp(vp, bp)
register struct vnode *vp;
register struct buf *bp;
{
int s;
KASSERT(bp->b_vp == NULL, ("bgetvp: not free"));
vhold(vp);
bp->b_vp = vp;
bp->b_dev = vn_todev(vp);
/*
* Insert onto list for new vnode.
*/
s = splbio();
bp->b_xflags |= BX_VNCLEAN;
bp->b_xflags &= ~BX_VNDIRTY;
TAILQ_INSERT_TAIL(&vp->v_cleanblkhd, bp, b_vnbufs);
splx(s);
}
/*
* Disassociate a buffer from a vnode.
*/
void
brelvp(bp)
register struct buf *bp;
{
struct vnode *vp;
struct buflists *listheadp;
int s;
KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
/*
* Delete from old vnode list, if on one.
*/
vp = bp->b_vp;
s = splbio();
if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN)) {
if (bp->b_xflags & BX_VNDIRTY)
listheadp = &vp->v_dirtyblkhd;
else
listheadp = &vp->v_cleanblkhd;
TAILQ_REMOVE(listheadp, bp, b_vnbufs);
bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN);
}
if ((vp->v_flag & VONWORKLST) && TAILQ_EMPTY(&vp->v_dirtyblkhd)) {
vp->v_flag &= ~VONWORKLST;
LIST_REMOVE(vp, v_synclist);
}
splx(s);
bp->b_vp = (struct vnode *) 0;
vdrop(vp);
}
/*
* The workitem queue.
*
* It is useful to delay writes of file data and filesystem metadata
* for tens of seconds so that quickly created and deleted files need
* not waste disk bandwidth being created and removed. To realize this,
* we append vnodes to a "workitem" queue. When running with a soft
* updates implementation, most pending metadata dependencies should
* not wait for more than a few seconds. Thus, mounted on block devices
* are delayed only about a half the time that file data is delayed.
* Similarly, directory updates are more critical, so are only delayed
* about a third the time that file data is delayed. Thus, there are
* SYNCER_MAXDELAY queues that are processed round-robin at a rate of
* one each second (driven off the filesystem syncer process). The
* syncer_delayno variable indicates the next queue that is to be processed.
* Items that need to be processed soon are placed in this queue:
*
* syncer_workitem_pending[syncer_delayno]
*
* A delay of fifteen seconds is done by placing the request fifteen
* entries later in the queue:
*
* syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask]
*
*/
/*
* Add an item to the syncer work queue.
*/
static void
vn_syncer_add_to_worklist(struct vnode *vp, int delay)
{
int s, slot;
s = splbio();
if (vp->v_flag & VONWORKLST) {
LIST_REMOVE(vp, v_synclist);
}
if (delay > syncer_maxdelay - 2)
delay = syncer_maxdelay - 2;
slot = (syncer_delayno + delay) & syncer_mask;
LIST_INSERT_HEAD(&syncer_workitem_pending[slot], vp, v_synclist);
vp->v_flag |= VONWORKLST;
splx(s);
}
struct proc *updateproc;
static void sched_sync __P((void));
static struct kproc_desc up_kp = {
"syncer",
sched_sync,
&updateproc
};
SYSINIT(syncer, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp)
/*
* System filesystem synchronizer daemon.
*/
void
sched_sync(void)
{
struct synclist *slp;
struct vnode *vp;
struct mount *mp;
long starttime;
int s;
struct proc *p = updateproc;
EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc, p,
SHUTDOWN_PRI_LAST);
for (;;) {
kproc_suspend_loop(p);
starttime = time_second;
/*
* Push files whose dirty time has expired. Be careful
* of interrupt race on slp queue.
*/
s = splbio();
slp = &syncer_workitem_pending[syncer_delayno];
syncer_delayno += 1;
if (syncer_delayno == syncer_maxdelay)
syncer_delayno = 0;
splx(s);
while ((vp = LIST_FIRST(slp)) != NULL) {
if (VOP_ISLOCKED(vp, NULL) == 0 &&
vn_start_write(vp, &mp, V_NOWAIT) == 0) {
vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, p);
(void) VOP_FSYNC(vp, p->p_ucred, MNT_LAZY, p);
VOP_UNLOCK(vp, 0, p);
vn_finished_write(mp);
}
s = splbio();
if (LIST_FIRST(slp) == vp) {
/*
* Note: v_tag VT_VFS vps can remain on the
* worklist too with no dirty blocks, but
* since sync_fsync() moves it to a different
* slot we are safe.
*/
if (TAILQ_EMPTY(&vp->v_dirtyblkhd) &&
!vn_isdisk(vp, NULL))
panic("sched_sync: fsync failed vp %p tag %d", vp, vp->v_tag);
/*
* Put us back on the worklist. The worklist
* routine will remove us from our current
* position and then add us back in at a later
* position.
*/
vn_syncer_add_to_worklist(vp, syncdelay);
}
splx(s);
}
/*
* Do soft update processing.
*/
#ifdef SOFTUPDATES
softdep_process_worklist(NULL);
#endif
/*
* The variable rushjob allows the kernel to speed up the
* processing of the filesystem syncer process. A rushjob
* value of N tells the filesystem syncer to process the next
* N seconds worth of work on its queue ASAP. Currently rushjob
* is used by the soft update code to speed up the filesystem
* syncer process when the incore state is getting so far
* ahead of the disk that the kernel memory pool is being
* threatened with exhaustion.
*/
if (rushjob > 0) {
rushjob -= 1;
continue;
}
/*
* If it has taken us less than a second to process the
* current work, then wait. Otherwise start right over
* again. We can still lose time if any single round
* takes more than two seconds, but it does not really
* matter as we are just trying to generally pace the
* filesystem activity.
*/
if (time_second == starttime)
tsleep(&lbolt, PPAUSE, "syncer", 0);
}
}
/*
* Request the syncer daemon to speed up its work.
* We never push it to speed up more than half of its
* normal turn time, otherwise it could take over the cpu.
*/
int
speedup_syncer()
{
int s;
s = splhigh();
if (updateproc->p_wchan == &lbolt)
setrunnable(updateproc);
splx(s);
if (rushjob < syncdelay / 2) {
rushjob += 1;
stat_rush_requests += 1;
return (1);
}
return(0);
}
/*
* Associate a p-buffer with a vnode.
*
* Also sets B_PAGING flag to indicate that vnode is not fully associated
* with the buffer. i.e. the bp has not been linked into the vnode or
* ref-counted.
*/
void
pbgetvp(vp, bp)
register struct vnode *vp;
register struct buf *bp;
{
KASSERT(bp->b_vp == NULL, ("pbgetvp: not free"));
bp->b_vp = vp;
bp->b_flags |= B_PAGING;
bp->b_dev = vn_todev(vp);
}
/*
* Disassociate a p-buffer from a vnode.
*/
void
pbrelvp(bp)
register struct buf *bp;
{
KASSERT(bp->b_vp != NULL, ("pbrelvp: NULL"));
/* XXX REMOVE ME */
if (bp->b_vnbufs.tqe_next != NULL) {
panic(
"relpbuf(): b_vp was probably reassignbuf()d %p %x",
bp,
(int)bp->b_flags
);
}
bp->b_vp = (struct vnode *) 0;
bp->b_flags &= ~B_PAGING;
}
void
pbreassignbuf(bp, newvp)
struct buf *bp;
struct vnode *newvp;
{
if ((bp->b_flags & B_PAGING) == 0) {
panic(
"pbreassignbuf() on non phys bp %p",
bp
);
}
bp->b_vp = newvp;
}
/*
* Reassign a buffer from one vnode to another.
* Used to assign file specific control information
* (indirect blocks) to the vnode to which they belong.
*/
void
reassignbuf(bp, newvp)
register struct buf *bp;
register struct vnode *newvp;
{
struct buflists *listheadp;
int delay;
int s;
if (newvp == NULL) {
printf("reassignbuf: NULL");
return;
}
++reassignbufcalls;
/*
* B_PAGING flagged buffers cannot be reassigned because their vp
* is not fully linked in.
*/
if (bp->b_flags & B_PAGING)
panic("cannot reassign paging buffer");
s = splbio();
/*
* Delete from old vnode list, if on one.
*/
if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN)) {
if (bp->b_xflags & BX_VNDIRTY)
listheadp = &bp->b_vp->v_dirtyblkhd;
else
listheadp = &bp->b_vp->v_cleanblkhd;
TAILQ_REMOVE(listheadp, bp, b_vnbufs);
bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN);
if (bp->b_vp != newvp) {
vdrop(bp->b_vp);
bp->b_vp = NULL; /* for clarification */
}
}
/*
* If dirty, put on list of dirty buffers; otherwise insert onto list
* of clean buffers.
*/
if (bp->b_flags & B_DELWRI) {
struct buf *tbp;
listheadp = &newvp->v_dirtyblkhd;
if ((newvp->v_flag & VONWORKLST) == 0) {
switch (newvp->v_type) {
case VDIR:
delay = dirdelay;
break;
case VCHR:
case VBLK:
if (newvp->v_specmountpoint != NULL) {
delay = metadelay;
break;
}
/* fall through */
default:
delay = filedelay;
}
vn_syncer_add_to_worklist(newvp, delay);
}
bp->b_xflags |= BX_VNDIRTY;
tbp = TAILQ_FIRST(listheadp);
if (tbp == NULL ||
bp->b_lblkno == 0 ||
(bp->b_lblkno > 0 && tbp->b_lblkno < 0) ||
(bp->b_lblkno > 0 && bp->b_lblkno < tbp->b_lblkno)) {
TAILQ_INSERT_HEAD(listheadp, bp, b_vnbufs);
++reassignbufsortgood;
} else if (bp->b_lblkno < 0) {
TAILQ_INSERT_TAIL(listheadp, bp, b_vnbufs);
++reassignbufsortgood;
} else if (reassignbufmethod == 1) {
/*
* New sorting algorithm, only handle sequential case,
* otherwise append to end (but before metadata)
*/
if ((tbp = gbincore(newvp, bp->b_lblkno - 1)) != NULL &&
(tbp->b_xflags & BX_VNDIRTY)) {
/*
* Found the best place to insert the buffer
*/
TAILQ_INSERT_AFTER(listheadp, tbp, bp, b_vnbufs);
++reassignbufsortgood;
} else {
/*
* Missed, append to end, but before meta-data.
* We know that the head buffer in the list is
* not meta-data due to prior conditionals.
*
* Indirect effects: NFS second stage write
* tends to wind up here, giving maximum
* distance between the unstable write and the
* commit rpc.
*/
tbp = TAILQ_LAST(listheadp, buflists);
while (tbp && tbp->b_lblkno < 0)
tbp = TAILQ_PREV(tbp, buflists, b_vnbufs);
TAILQ_INSERT_AFTER(listheadp, tbp, bp, b_vnbufs);
++reassignbufsortbad;
}
} else {
/*
* Old sorting algorithm, scan queue and insert
*/
struct buf *ttbp;
while ((ttbp = TAILQ_NEXT(tbp, b_vnbufs)) &&
(ttbp->b_lblkno < bp->b_lblkno)) {
++reassignbufloops;
tbp = ttbp;
}
TAILQ_INSERT_AFTER(listheadp, tbp, bp, b_vnbufs);
}
} else {
bp->b_xflags |= BX_VNCLEAN;
TAILQ_INSERT_TAIL(&newvp->v_cleanblkhd, bp, b_vnbufs);
if ((newvp->v_flag & VONWORKLST) &&
TAILQ_EMPTY(&newvp->v_dirtyblkhd)) {
newvp->v_flag &= ~VONWORKLST;
LIST_REMOVE(newvp, v_synclist);
}
}
if (bp->b_vp != newvp) {
bp->b_vp = newvp;
vhold(bp->b_vp);
}
splx(s);
}
/*
* Create a vnode for a block device.
* Used for mounting the root file system.
* XXX: This now changed to a VCHR due to the block/char merging.
*/
int
bdevvp(dev, vpp)
dev_t dev;
struct vnode **vpp;
{
register struct vnode *vp;
struct vnode *nvp;
int error;
if (dev == NODEV) {
*vpp = NULLVP;
return (ENXIO);
}
error = getnewvnode(VT_NON, (struct mount *)0, spec_vnodeop_p, &nvp);
if (error) {
*vpp = NULLVP;
return (error);
}
vp = nvp;
vp->v_type = VCHR;
addalias(vp, dev);
*vpp = vp;
return (0);
}
/*
* Add vnode to the alias list hung off the dev_t.
*
* The reason for this gunk is that multiple vnodes can reference
* the same physical device, so checking vp->v_usecount to see
* how many users there are is inadequate; the v_usecount for
* the vnodes need to be accumulated. vcount() does that.
*/
struct vnode *
addaliasu(nvp, nvp_rdev)
struct vnode *nvp;
udev_t nvp_rdev;
{
struct vnode *ovp;
vop_t **ops;
dev_t dev;
if (nvp->v_type != VBLK && nvp->v_type != VCHR)
panic("addaliasu on non-special vnode");
dev = udev2dev(nvp_rdev, nvp->v_type == VBLK ? 1 : 0);
/*
* Check to see if we have a bdevvp vnode with no associated
* filesystem. If so, we want to associate the filesystem of
* the new newly instigated vnode with the bdevvp vnode and
* discard the newly created vnode rather than leaving the
* bdevvp vnode lying around with no associated filesystem.
*/
if (vfinddev(dev, nvp->v_type, &ovp) == 0 || ovp->v_data != NULL) {
addalias(nvp, dev);
return (nvp);
}
/*
* Discard unneeded vnode, but save its node specific data.
* Note that if there is a lock, it is carried over in the
* node specific data to the replacement vnode.
*/
vref(ovp);
ovp->v_data = nvp->v_data;
ovp->v_tag = nvp->v_tag;
nvp->v_data = NULL;
ops = nvp->v_op;
nvp->v_op = ovp->v_op;
ovp->v_op = ops;
insmntque(ovp, nvp->v_mount);
vrele(nvp);
vgone(nvp);
return (ovp);
}
void
addalias(nvp, dev)
struct vnode *nvp;
dev_t dev;
{
if (nvp->v_type != VBLK && nvp->v_type != VCHR)
panic("addalias on non-special vnode");
nvp->v_rdev = dev;
simple_lock(&spechash_slock);
SLIST_INSERT_HEAD(&dev->si_hlist, nvp, v_specnext);
simple_unlock(&spechash_slock);
}
/*
* Grab a particular vnode from the free list, increment its
* reference count and lock it. The vnode lock bit is set if the
* vnode is being eliminated in vgone. The process is awakened
* when the transition is completed, and an error returned to
* indicate that the vnode is no longer usable (possibly having
* been changed to a new file system type).
*/
int
vget(vp, flags, p)
register struct vnode *vp;
int flags;
struct proc *p;
{
int error;
/*
* If the vnode is in the process of being cleaned out for
* another use, we wait for the cleaning to finish and then
* return failure. Cleaning is determined by checking that
* the VXLOCK flag is set.
*/
if ((flags & LK_INTERLOCK) == 0) {
simple_lock(&vp->v_interlock);
}
if (vp->v_flag & VXLOCK) {
vp->v_flag |= VXWANT;
simple_unlock(&vp->v_interlock);
tsleep((caddr_t)vp, PINOD, "vget", 0);
return (ENOENT);
}
vp->v_usecount++;
if (VSHOULDBUSY(vp))
vbusy(vp);
if (flags & LK_TYPE_MASK) {
if ((error = vn_lock(vp, flags | LK_INTERLOCK, p)) != 0) {
/*
* must expand vrele here because we do not want
* to call VOP_INACTIVE if the reference count
* drops back to zero since it was never really
* active. We must remove it from the free list
* before sleeping so that multiple processes do
* not try to recycle it.
*/
simple_lock(&vp->v_interlock);
vp->v_usecount--;
if (VSHOULDFREE(vp))
vfree(vp);
simple_unlock(&vp->v_interlock);
}
return (error);
}
simple_unlock(&vp->v_interlock);
return (0);
}
void
vref(struct vnode *vp)
{
simple_lock(&vp->v_interlock);
vp->v_usecount++;
simple_unlock(&vp->v_interlock);
}
/*
* Vnode put/release.
* If count drops to zero, call inactive routine and return to freelist.
*/
void
vrele(vp)
struct vnode *vp;
{
struct proc *p = curproc; /* XXX */
KASSERT(vp != NULL, ("vrele: null vp"));
KASSERT(vp->v_writecount < vp->v_usecount, ("vrele: missed vn_close"));
simple_lock(&vp->v_interlock);
if (vp->v_usecount > 1) {
vp->v_usecount--;
simple_unlock(&vp->v_interlock);
return;
}
if (vp->v_usecount == 1) {
vp->v_usecount--;
if (VSHOULDFREE(vp))
vfree(vp);
/*
* If we are doing a vput, the node is already locked, and we must
* call VOP_INACTIVE with the node locked. So, in the case of
* vrele, we explicitly lock the vnode before calling VOP_INACTIVE.
*/
if (vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK, p) == 0) {
VOP_INACTIVE(vp, p);
}
} else {
#ifdef DIAGNOSTIC
vprint("vrele: negative ref count", vp);
simple_unlock(&vp->v_interlock);
#endif
panic("vrele: negative ref cnt");
}
}
void
vput(vp)
struct vnode *vp;
{
struct proc *p = curproc; /* XXX */
KASSERT(vp != NULL, ("vput: null vp"));
KASSERT(vp->v_writecount < vp->v_usecount, ("vput: missed vn_close"));
simple_lock(&vp->v_interlock);
if (vp->v_usecount > 1) {
vp->v_usecount--;
VOP_UNLOCK(vp, LK_INTERLOCK, p);
return;
}
if (vp->v_usecount == 1) {
vp->v_usecount--;
if (VSHOULDFREE(vp))
vfree(vp);
/*
* If we are doing a vput, the node is already locked, and we must
* call VOP_INACTIVE with the node locked. So, in the case of
* vrele, we explicitly lock the vnode before calling VOP_INACTIVE.
*/
simple_unlock(&vp->v_interlock);
VOP_INACTIVE(vp, p);
} else {
#ifdef DIAGNOSTIC
vprint("vput: negative ref count", vp);
#endif
panic("vput: negative ref cnt");
}
}
/*
* Somebody doesn't want the vnode recycled.
*/
void
vhold(vp)
register struct vnode *vp;
{
int s;
s = splbio();
vp->v_holdcnt++;
if (VSHOULDBUSY(vp))
vbusy(vp);
splx(s);
}
/*
* One less who cares about this vnode.
*/
void
vdrop(vp)
register struct vnode *vp;
{
int s;
s = splbio();
if (vp->v_holdcnt <= 0)
panic("vdrop: holdcnt");
vp->v_holdcnt--;
if (VSHOULDFREE(vp))
vfree(vp);
splx(s);
}
/*
* Remove any vnodes in the vnode table belonging to mount point mp.
*
* If MNT_NOFORCE is specified, there should not be any active ones,
* return error if any are found (nb: this is a user error, not a
* system error). If MNT_FORCE is specified, detach any active vnodes
* that are found.
*/
#ifdef DIAGNOSTIC
static int busyprt = 0; /* print out busy vnodes */
SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "");
#endif
int
vflush(mp, skipvp, flags)
struct mount *mp;
struct vnode *skipvp;
int flags;
{
struct proc *p = curproc; /* XXX */
struct vnode *vp, *nvp;
int busy = 0;
simple_lock(&mntvnode_slock);
loop:
for (vp = LIST_FIRST(&mp->mnt_vnodelist); vp; vp = nvp) {
/*
* Make sure this vnode wasn't reclaimed in getnewvnode().
* Start over if it has (it won't be on the list anymore).
*/
if (vp->v_mount != mp)
goto loop;
nvp = LIST_NEXT(vp, v_mntvnodes);
/*
* Skip over a selected vnode.
*/
if (vp == skipvp)
continue;
simple_lock(&vp->v_interlock);
/*
* Skip over a vnodes marked VSYSTEM.
*/
if ((flags & SKIPSYSTEM) && (vp->v_flag & VSYSTEM)) {
simple_unlock(&vp->v_interlock);
continue;
}
/*
* If WRITECLOSE is set, only flush out regular file vnodes
* open for writing.
*/
if ((flags & WRITECLOSE) &&
(vp->v_writecount == 0 || vp->v_type != VREG)) {
simple_unlock(&vp->v_interlock);
continue;
}
/*
* With v_usecount == 0, all we need to do is clear out the
* vnode data structures and we are done.
*/
if (vp->v_usecount == 0) {
simple_unlock(&mntvnode_slock);
vgonel(vp, p);
simple_lock(&mntvnode_slock);
continue;
}
/*
* If FORCECLOSE is set, forcibly close the vnode. For block
* or character devices, revert to an anonymous device. For
* all other files, just kill them.
*/
if (flags & FORCECLOSE) {
simple_unlock(&mntvnode_slock);
if (vp->v_type != VBLK && vp->v_type != VCHR) {
vgonel(vp, p);
} else {
vclean(vp, 0, p);
vp->v_op = spec_vnodeop_p;
insmntque(vp, (struct mount *) 0);
}
simple_lock(&mntvnode_slock);
continue;
}
#ifdef DIAGNOSTIC
if (busyprt)
vprint("vflush: busy vnode", vp);
#endif
simple_unlock(&vp->v_interlock);
busy++;
}
simple_unlock(&mntvnode_slock);
if (busy)
return (EBUSY);
return (0);
}
/*
* Disassociate the underlying file system from a vnode.
*/
static void
vclean(vp, flags, p)
struct vnode *vp;
int flags;
struct proc *p;
{
int active;
vm_object_t obj;
/*
* Check to see if the vnode is in use. If so we have to reference it
* before we clean it out so that its count cannot fall to zero and
* generate a race against ourselves to recycle it.
*/
if ((active = vp->v_usecount))
vp->v_usecount++;
/*
* Prevent the vnode from being recycled or brought into use while we
* clean it out.
*/
if (vp->v_flag & VXLOCK)
panic("vclean: deadlock");
vp->v_flag |= VXLOCK;
/*
* Even if the count is zero, the VOP_INACTIVE routine may still
* have the object locked while it cleans it out. The VOP_LOCK
* ensures that the VOP_INACTIVE routine is done with its work.
* For active vnodes, it ensures that no other activity can
* occur while the underlying object is being cleaned out.
*/
VOP_LOCK(vp, LK_DRAIN | LK_INTERLOCK, p);
/*
* Clean out any buffers associated with the vnode.
* If the flush fails, just toss the buffers.
*/
if (flags & DOCLOSE) {
if (TAILQ_FIRST(&vp->v_dirtyblkhd) != NULL)
(void) vn_write_suspend_wait(vp, NULL, V_WAIT);
if (vinvalbuf(vp, V_SAVE, NOCRED, p, 0, 0) != 0)
vinvalbuf(vp, 0, NOCRED, p, 0, 0);
}
if ((obj = vp->v_object) != NULL) {
if (obj->ref_count == 0) {
/*
* vclean() may be called twice. The first time
* removes the primary reference to the object,
* the second time goes one further and is a
* special-case to terminate the object.
*/
vm_object_terminate(obj);
} else {
/*
* Woe to the process that tries to page now :-).
*/
vm_pager_deallocate(obj);
}
}
/*
* If purging an active vnode, it must be closed and
* deactivated before being reclaimed. Note that the
* VOP_INACTIVE will unlock the vnode.
*/
if (active) {
if (flags & DOCLOSE)
VOP_CLOSE(vp, FNONBLOCK, NOCRED, p);
VOP_INACTIVE(vp, p);
} else {
/*
* Any other processes trying to obtain this lock must first
* wait for VXLOCK to clear, then call the new lock operation.
*/
VOP_UNLOCK(vp, 0, p);
}
/*
* Reclaim the vnode.
*/
if (VOP_RECLAIM(vp, p))
panic("vclean: cannot reclaim");
if (active) {
/*
* Inline copy of vrele() since VOP_INACTIVE
* has already been called.
*/
simple_lock(&vp->v_interlock);
if (--vp->v_usecount <= 0) {
#ifdef DIAGNOSTIC
if (vp->v_usecount < 0 || vp->v_writecount != 0) {
vprint("vclean: bad ref count", vp);
panic("vclean: ref cnt");
}
#endif
vfree(vp);
}
simple_unlock(&vp->v_interlock);
}
cache_purge(vp);
if (vp->v_vnlock) {
FREE(vp->v_vnlock, M_VNODE);
vp->v_vnlock = NULL;
}
if (VSHOULDFREE(vp))
vfree(vp);
/*
* Done with purge, notify sleepers of the grim news.
*/
vp->v_op = dead_vnodeop_p;
vn_pollgone(vp);
vp->v_tag = VT_NON;
vp->v_flag &= ~VXLOCK;
if (vp->v_flag & VXWANT) {
vp->v_flag &= ~VXWANT;
wakeup((caddr_t) vp);
}
}
/*
* Eliminate all activity associated with the requested vnode
* and with all vnodes aliased to the requested vnode.
*/
int
vop_revoke(ap)
struct vop_revoke_args /* {
struct vnode *a_vp;
int a_flags;
} */ *ap;
{
struct vnode *vp, *vq;
dev_t dev;
KASSERT((ap->a_flags & REVOKEALL) != 0, ("vop_revoke"));
vp = ap->a_vp;
/*
* If a vgone (or vclean) is already in progress,
* wait until it is done and return.
*/
if (vp->v_flag & VXLOCK) {
vp->v_flag |= VXWANT;
simple_unlock(&vp->v_interlock);
tsleep((caddr_t)vp, PINOD, "vop_revokeall", 0);
return (0);
}
dev = vp->v_rdev;
for (;;) {
simple_lock(&spechash_slock);
vq = SLIST_FIRST(&dev->si_hlist);
simple_unlock(&spechash_slock);
if (!vq)
break;
vgone(vq);
}
return (0);
}
/*
* Recycle an unused vnode to the front of the free list.
* Release the passed interlock if the vnode will be recycled.
*/
int
vrecycle(vp, inter_lkp, p)
struct vnode *vp;
struct simplelock *inter_lkp;
struct proc *p;
{
simple_lock(&vp->v_interlock);
if (vp->v_usecount == 0) {
if (inter_lkp) {
simple_unlock(inter_lkp);
}
vgonel(vp, p);
return (1);
}
simple_unlock(&vp->v_interlock);
return (0);
}
/*
* Eliminate all activity associated with a vnode
* in preparation for reuse.
*/
void
vgone(vp)
register struct vnode *vp;
{
struct proc *p = curproc; /* XXX */
simple_lock(&vp->v_interlock);
vgonel(vp, p);
}
/*
* vgone, with the vp interlock held.
*/
void
vgonel(vp, p)
struct vnode *vp;
struct proc *p;
{
int s;
/*
* If a vgone (or vclean) is already in progress,
* wait until it is done and return.
*/
if (vp->v_flag & VXLOCK) {
vp->v_flag |= VXWANT;
simple_unlock(&vp->v_interlock);
tsleep((caddr_t)vp, PINOD, "vgone", 0);
return;
}
/*
* Clean out the filesystem specific data.
*/
vclean(vp, DOCLOSE, p);
simple_lock(&vp->v_interlock);
/*
* Delete from old mount point vnode list, if on one.
*/
if (vp->v_mount != NULL)
insmntque(vp, (struct mount *)0);
/*
* If special device, remove it from special device alias list
* if it is on one.
*/
if ((vp->v_type == VBLK || vp->v_type == VCHR) && vp->v_rdev != NULL) {
simple_lock(&spechash_slock);
SLIST_REMOVE(&vp->v_hashchain, vp, vnode, v_specnext);
freedev(vp->v_rdev);
simple_unlock(&spechash_slock);
vp->v_rdev = NULL;
}
/*
* If it is on the freelist and not already at the head,
* move it to the head of the list. The test of the
* VDOOMED flag and the reference count of zero is because
* it will be removed from the free list by getnewvnode,
* but will not have its reference count incremented until
* after calling vgone. If the reference count were
* incremented first, vgone would (incorrectly) try to
* close the previous instance of the underlying object.
*/
if (vp->v_usecount == 0 && !(vp->v_flag & VDOOMED)) {
s = splbio();
simple_lock(&vnode_free_list_slock);
if (vp->v_flag & VFREE)
TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
else
freevnodes++;
vp->v_flag |= VFREE;
TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
simple_unlock(&vnode_free_list_slock);
splx(s);
}
vp->v_type = VBAD;
simple_unlock(&vp->v_interlock);
}
/*
* Lookup a vnode by device number.
*/
int
vfinddev(dev, type, vpp)
dev_t dev;
enum vtype type;
struct vnode **vpp;
{
struct vnode *vp;
simple_lock(&spechash_slock);
SLIST_FOREACH(vp, &dev->si_hlist, v_specnext) {
if (type == vp->v_type) {
*vpp = vp;
simple_unlock(&spechash_slock);
return (1);
}
}
simple_unlock(&spechash_slock);
return (0);
}
/*
* Calculate the total number of references to a special device.
*/
int
vcount(vp)
struct vnode *vp;
{
struct vnode *vq;
int count;
count = 0;
simple_lock(&spechash_slock);
SLIST_FOREACH(vq, &vp->v_hashchain, v_specnext)
count += vq->v_usecount;
simple_unlock(&spechash_slock);
return (count);
}
/*
* Same as above, but using the dev_t as argument
*/
int
count_dev(dev)
dev_t dev;
{
struct vnode *vp;
vp = SLIST_FIRST(&dev->si_hlist);
if (vp == NULL)
return (0);
return(vcount(vp));
}
/*
* Print out a description of a vnode.
*/
static char *typename[] =
{"VNON", "VREG", "VDIR", "VBLK", "VCHR", "VLNK", "VSOCK", "VFIFO", "VBAD"};
void
vprint(label, vp)
char *label;
struct vnode *vp;
{
char buf[96];
if (label != NULL)
printf("%s: %p: ", label, (void *)vp);
else
printf("%p: ", (void *)vp);
printf("type %s, usecount %d, writecount %d, refcount %d,",
typename[vp->v_type], vp->v_usecount, vp->v_writecount,
vp->v_holdcnt);
buf[0] = '\0';
if (vp->v_flag & VROOT)
strcat(buf, "|VROOT");
if (vp->v_flag & VTEXT)
strcat(buf, "|VTEXT");
if (vp->v_flag & VSYSTEM)
strcat(buf, "|VSYSTEM");
if (vp->v_flag & VXLOCK)
strcat(buf, "|VXLOCK");
if (vp->v_flag & VXWANT)
strcat(buf, "|VXWANT");
if (vp->v_flag & VBWAIT)
strcat(buf, "|VBWAIT");
if (vp->v_flag & VDOOMED)
strcat(buf, "|VDOOMED");
if (vp->v_flag & VFREE)
strcat(buf, "|VFREE");
if (vp->v_flag & VOBJBUF)
strcat(buf, "|VOBJBUF");
if (buf[0] != '\0')
printf(" flags (%s)", &buf[1]);
if (vp->v_data == NULL) {
printf("\n");
} else {
printf("\n\t");
VOP_PRINT(vp);
}
}
#ifdef DDB
#include <ddb/ddb.h>
/*
* List all of the locked vnodes in the system.
* Called when debugging the kernel.
*/
DB_SHOW_COMMAND(lockedvnodes, lockedvnodes)
{
struct proc *p = curproc; /* XXX */
struct mount *mp, *nmp;
struct vnode *vp;
printf("Locked vnodes\n");
simple_lock(&mountlist_slock);
for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) {
if (vfs_busy(mp, LK_NOWAIT, &mountlist_slock, p)) {
nmp = TAILQ_NEXT(mp, mnt_list);
continue;
}
LIST_FOREACH(vp, &mp->mnt_vnodelist, v_mntvnodes) {
if (VOP_ISLOCKED(vp, NULL))
vprint((char *)0, vp);
}
simple_lock(&mountlist_slock);
nmp = TAILQ_NEXT(mp, mnt_list);
vfs_unbusy(mp, p);
}
simple_unlock(&mountlist_slock);
}
#endif
/*
* Top level filesystem related information gathering.
*/
static int sysctl_ovfs_conf __P((SYSCTL_HANDLER_ARGS));
static int
vfs_sysctl(SYSCTL_HANDLER_ARGS)
{
int *name = (int *)arg1 - 1; /* XXX */
u_int namelen = arg2 + 1; /* XXX */
struct vfsconf *vfsp;
#if 1 || defined(COMPAT_PRELITE2)
/* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
if (namelen == 1)
return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
#endif
#ifdef notyet
/* all sysctl names at this level are at least name and field */
if (namelen < 2)
return (ENOTDIR); /* overloaded */
if (name[0] != VFS_GENERIC) {
for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next)
if (vfsp->vfc_typenum == name[0])
break;
if (vfsp == NULL)
return (EOPNOTSUPP);
return ((*vfsp->vfc_vfsops->vfs_sysctl)(&name[1], namelen - 1,
oldp, oldlenp, newp, newlen, p));
}
#endif
switch (name[1]) {
case VFS_MAXTYPENUM:
if (namelen != 2)
return (ENOTDIR);
return (SYSCTL_OUT(req, &maxvfsconf, sizeof(int)));
case VFS_CONF:
if (namelen != 3)
return (ENOTDIR); /* overloaded */
for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next)
if (vfsp->vfc_typenum == name[2])
break;
if (vfsp == NULL)
return (EOPNOTSUPP);
return (SYSCTL_OUT(req, vfsp, sizeof *vfsp));
}
return (EOPNOTSUPP);
}
SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD, vfs_sysctl,
"Generic filesystem");
#if 1 || defined(COMPAT_PRELITE2)
static int
sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)
{
int error;
struct vfsconf *vfsp;
struct ovfsconf ovfs;
for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next) {
ovfs.vfc_vfsops = vfsp->vfc_vfsops; /* XXX used as flag */
strcpy(ovfs.vfc_name, vfsp->vfc_name);
ovfs.vfc_index = vfsp->vfc_typenum;
ovfs.vfc_refcount = vfsp->vfc_refcount;
ovfs.vfc_flags = vfsp->vfc_flags;
error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
if (error)
return error;
}
return 0;
}
#endif /* 1 || COMPAT_PRELITE2 */
#if 0
#define KINFO_VNODESLOP 10
/*
* Dump vnode list (via sysctl).
* Copyout address of vnode followed by vnode.
*/
/* ARGSUSED */
static int
sysctl_vnode(SYSCTL_HANDLER_ARGS)
{
struct proc *p = curproc; /* XXX */
struct mount *mp, *nmp;
struct vnode *nvp, *vp;
int error;
#define VPTRSZ sizeof (struct vnode *)
#define VNODESZ sizeof (struct vnode)
req->lock = 0;
if (!req->oldptr) /* Make an estimate */
return (SYSCTL_OUT(req, 0,
(numvnodes + KINFO_VNODESLOP) * (VPTRSZ + VNODESZ)));
simple_lock(&mountlist_slock);
for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) {
if (vfs_busy(mp, LK_NOWAIT, &mountlist_slock, p)) {
nmp = TAILQ_NEXT(mp, mnt_list);
continue;
}
again:
simple_lock(&mntvnode_slock);
for (vp = LIST_FIRST(&mp->mnt_vnodelist);
vp != NULL;
vp = nvp) {
/*
* Check that the vp is still associated with
* this filesystem. RACE: could have been
* recycled onto the same filesystem.
*/
if (vp->v_mount != mp) {
simple_unlock(&mntvnode_slock);
goto again;
}
nvp = LIST_NEXT(vp, v_mntvnodes);
simple_unlock(&mntvnode_slock);
if ((error = SYSCTL_OUT(req, &vp, VPTRSZ)) ||
(error = SYSCTL_OUT(req, vp, VNODESZ)))
return (error);
simple_lock(&mntvnode_slock);
}
simple_unlock(&mntvnode_slock);
simple_lock(&mountlist_slock);
nmp = TAILQ_NEXT(mp, mnt_list);
vfs_unbusy(mp, p);
}
simple_unlock(&mountlist_slock);
return (0);
}
#endif
/*
* XXX
* Exporting the vnode list on large systems causes them to crash.
* Exporting the vnode list on medium systems causes sysctl to coredump.
*/
#if 0
SYSCTL_PROC(_kern, KERN_VNODE, vnode, CTLTYPE_OPAQUE|CTLFLAG_RD,
0, 0, sysctl_vnode, "S,vnode", "");
#endif
/*
* Check to see if a filesystem is mounted on a block device.
*/
int
vfs_mountedon(vp)
struct vnode *vp;
{
if (vp->v_specmountpoint != NULL)
return (EBUSY);
return (0);
}
/*
* Unmount all filesystems. The list is traversed in reverse order
* of mounting to avoid dependencies.
*/
void
vfs_unmountall()
{
struct mount *mp;
struct proc *p;
int error;
if (curproc != NULL)
p = curproc;
else
p = initproc; /* XXX XXX should this be proc0? */
/*
* Since this only runs when rebooting, it is not interlocked.
*/
while(!TAILQ_EMPTY(&mountlist)) {
mp = TAILQ_LAST(&mountlist, mntlist);
error = dounmount(mp, MNT_FORCE, p);
if (error) {
TAILQ_REMOVE(&mountlist, mp, mnt_list);
printf("unmount of %s failed (",
mp->mnt_stat.f_mntonname);
if (error == EBUSY)
printf("BUSY)\n");
else
printf("%d)\n", error);
} else {
/* The unmount has removed mp from the mountlist */
}
}
}
/*
* Build hash lists of net addresses and hang them off the mount point.
* Called by ufs_mount() to set up the lists of export addresses.
*/
static int
vfs_hang_addrlist(mp, nep, argp)
struct mount *mp;
struct netexport *nep;
struct export_args *argp;
{
register struct netcred *np;
register struct radix_node_head *rnh;
register int i;
struct radix_node *rn;
struct sockaddr *saddr, *smask = 0;
struct domain *dom;
int error;
if (argp->ex_addrlen == 0) {
if (mp->mnt_flag & MNT_DEFEXPORTED)
return (EPERM);
np = &nep->ne_defexported;
np->netc_exflags = argp->ex_flags;
np->netc_anon = argp->ex_anon;
np->netc_anon.cr_ref = 1;
mp->mnt_flag |= MNT_DEFEXPORTED;
return (0);
}
i = sizeof(struct netcred) + argp->ex_addrlen + argp->ex_masklen;
np = (struct netcred *) malloc(i, M_NETADDR, M_WAITOK);
bzero((caddr_t) np, i);
saddr = (struct sockaddr *) (np + 1);
if ((error = copyin(argp->ex_addr, (caddr_t) saddr, argp->ex_addrlen)))
goto out;
if (saddr->sa_len > argp->ex_addrlen)
saddr->sa_len = argp->ex_addrlen;
if (argp->ex_masklen) {
smask = (struct sockaddr *) ((caddr_t) saddr + argp->ex_addrlen);
error = copyin(argp->ex_mask, (caddr_t) smask, argp->ex_masklen);
if (error)
goto out;
if (smask->sa_len > argp->ex_masklen)
smask->sa_len = argp->ex_masklen;
}
i = saddr->sa_family;
if ((rnh = nep->ne_rtable[i]) == 0) {
/*
* Seems silly to initialize every AF when most are not used,
* do so on demand here
*/
for (dom = domains; dom; dom = dom->dom_next)
if (dom->dom_family == i && dom->dom_rtattach) {
dom->dom_rtattach((void **) &nep->ne_rtable[i],
dom->dom_rtoffset);
break;
}
if ((rnh = nep->ne_rtable[i]) == 0) {
error = ENOBUFS;
goto out;
}
}
rn = (*rnh->rnh_addaddr) ((caddr_t) saddr, (caddr_t) smask, rnh,
np->netc_rnodes);
if (rn == 0 || np != (struct netcred *) rn) { /* already exists */
error = EPERM;
goto out;
}
np->netc_exflags = argp->ex_flags;
np->netc_anon = argp->ex_anon;
np->netc_anon.cr_ref = 1;
return (0);
out:
free(np, M_NETADDR);
return (error);
}
/* ARGSUSED */
static int
vfs_free_netcred(rn, w)
struct radix_node *rn;
void *w;
{
register struct radix_node_head *rnh = (struct radix_node_head *) w;
(*rnh->rnh_deladdr) (rn->rn_key, rn->rn_mask, rnh);
free((caddr_t) rn, M_NETADDR);
return (0);
}
/*
* Free the net address hash lists that are hanging off the mount points.
*/
static void
vfs_free_addrlist(nep)
struct netexport *nep;
{
register int i;
register struct radix_node_head *rnh;
for (i = 0; i <= AF_MAX; i++)
if ((rnh = nep->ne_rtable[i])) {
(*rnh->rnh_walktree) (rnh, vfs_free_netcred,
(caddr_t) rnh);
free((caddr_t) rnh, M_RTABLE);
nep->ne_rtable[i] = 0;
}
}
int
vfs_export(mp, nep, argp)
struct mount *mp;
struct netexport *nep;
struct export_args *argp;
{
int error;
if (argp->ex_flags & MNT_DELEXPORT) {
if (mp->mnt_flag & MNT_EXPUBLIC) {
vfs_setpublicfs(NULL, NULL, NULL);
mp->mnt_flag &= ~MNT_EXPUBLIC;
}
vfs_free_addrlist(nep);
mp->mnt_flag &= ~(MNT_EXPORTED | MNT_DEFEXPORTED);
}
if (argp->ex_flags & MNT_EXPORTED) {
if (argp->ex_flags & MNT_EXPUBLIC) {
if ((error = vfs_setpublicfs(mp, nep, argp)) != 0)
return (error);
mp->mnt_flag |= MNT_EXPUBLIC;
}
if ((error = vfs_hang_addrlist(mp, nep, argp)))
return (error);
mp->mnt_flag |= MNT_EXPORTED;
}
return (0);
}
/*
* Set the publicly exported filesystem (WebNFS). Currently, only
* one public filesystem is possible in the spec (RFC 2054 and 2055)
*/
int
vfs_setpublicfs(mp, nep, argp)
struct mount *mp;
struct netexport *nep;
struct export_args *argp;
{
int error;
struct vnode *rvp;
char *cp;
/*
* mp == NULL -> invalidate the current info, the FS is
* no longer exported. May be called from either vfs_export
* or unmount, so check if it hasn't already been done.
*/
if (mp == NULL) {
if (nfs_pub.np_valid) {
nfs_pub.np_valid = 0;
if (nfs_pub.np_index != NULL) {
FREE(nfs_pub.np_index, M_TEMP);
nfs_pub.np_index = NULL;
}
}
return (0);
}
/*
* Only one allowed at a time.
*/
if (nfs_pub.np_valid != 0 && mp != nfs_pub.np_mount)
return (EBUSY);
/*
* Get real filehandle for root of exported FS.
*/
bzero((caddr_t)&nfs_pub.np_handle, sizeof(nfs_pub.np_handle));
nfs_pub.np_handle.fh_fsid = mp->mnt_stat.f_fsid;
if ((error = VFS_ROOT(mp, &rvp)))
return (error);
if ((error = VFS_VPTOFH(rvp, &nfs_pub.np_handle.fh_fid)))
return (error);
vput(rvp);
/*
* If an indexfile was specified, pull it in.
*/
if (argp->ex_indexfile != NULL) {
MALLOC(nfs_pub.np_index, char *, MAXNAMLEN + 1, M_TEMP,
M_WAITOK);
error = copyinstr(argp->ex_indexfile, nfs_pub.np_index,
MAXNAMLEN, (size_t *)0);
if (!error) {
/*
* Check for illegal filenames.
*/
for (cp = nfs_pub.np_index; *cp; cp++) {
if (*cp == '/') {
error = EINVAL;
break;
}
}
}
if (error) {
FREE(nfs_pub.np_index, M_TEMP);
return (error);
}
}
nfs_pub.np_mount = mp;
nfs_pub.np_valid = 1;
return (0);
}
struct netcred *
vfs_export_lookup(mp, nep, nam)
register struct mount *mp;
struct netexport *nep;
struct sockaddr *nam;
{
register struct netcred *np;
register struct radix_node_head *rnh;
struct sockaddr *saddr;
np = NULL;
if (mp->mnt_flag & MNT_EXPORTED) {
/*
* Lookup in the export list first.
*/
if (nam != NULL) {
saddr = nam;
rnh = nep->ne_rtable[saddr->sa_family];
if (rnh != NULL) {
np = (struct netcred *)
(*rnh->rnh_matchaddr)((caddr_t)saddr,
rnh);
if (np && np->netc_rnodes->rn_flags & RNF_ROOT)
np = NULL;
}
}
/*
* If no address match, use the default if it exists.
*/
if (np == NULL && mp->mnt_flag & MNT_DEFEXPORTED)
np = &nep->ne_defexported;
}
return (np);
}
/*
* perform msync on all vnodes under a mount point
* the mount point must be locked.
*/
void
vfs_msync(struct mount *mp, int flags) {
struct vnode *vp, *nvp;
struct vm_object *obj;
int anyio, tries;
tries = 5;
loop:
anyio = 0;
for (vp = LIST_FIRST(&mp->mnt_vnodelist); vp != NULL; vp = nvp) {
nvp = LIST_NEXT(vp, v_mntvnodes);
if (vp->v_mount != mp) {
goto loop;
}
if (vp->v_flag & VXLOCK) /* XXX: what if MNT_WAIT? */
continue;
if (flags != MNT_WAIT) {
obj = vp->v_object;
if (obj == NULL || (obj->flags & OBJ_MIGHTBEDIRTY) == 0)
continue;
if (VOP_ISLOCKED(vp, NULL))
continue;
}
simple_lock(&vp->v_interlock);
if (vp->v_object &&
(vp->v_object->flags & OBJ_MIGHTBEDIRTY)) {
if (!vget(vp,
LK_INTERLOCK | LK_EXCLUSIVE | LK_RETRY | LK_NOOBJ, curproc)) {
if (vp->v_object) {
vm_object_page_clean(vp->v_object, 0, 0, flags == MNT_WAIT ? OBJPC_SYNC : OBJPC_NOSYNC);
anyio = 1;
}
vput(vp);
}
} else {
simple_unlock(&vp->v_interlock);
}
}
if (anyio && (--tries > 0))
goto loop;
}
/*
* Create the VM object needed for VMIO and mmap support. This
* is done for all VREG files in the system. Some filesystems might
* afford the additional metadata buffering capability of the
* VMIO code by making the device node be VMIO mode also.
*
* vp must be locked when vfs_object_create is called.
*/
int
vfs_object_create(vp, p, cred)
struct vnode *vp;
struct proc *p;
struct ucred *cred;
{
struct vattr vat;
vm_object_t object;
int error = 0;
if (!vn_isdisk(vp, NULL) && vn_canvmio(vp) == FALSE)
return 0;
retry:
if ((object = vp->v_object) == NULL) {
if (vp->v_type == VREG || vp->v_type == VDIR) {
if ((error = VOP_GETATTR(vp, &vat, cred, p)) != 0)
goto retn;
object = vnode_pager_alloc(vp, vat.va_size, 0, 0);
} else if (devsw(vp->v_rdev) != NULL) {
/*
* This simply allocates the biggest object possible
* for a disk vnode. This should be fixed, but doesn't
* cause any problems (yet).
*/
object = vnode_pager_alloc(vp, IDX_TO_OFF(INT_MAX), 0, 0);
} else {
goto retn;
}
/*
* Dereference the reference we just created. This assumes
* that the object is associated with the vp.
*/
object->ref_count--;
vp->v_usecount--;
} else {
if (object->flags & OBJ_DEAD) {
VOP_UNLOCK(vp, 0, p);
tsleep(object, PVM, "vodead", 0);
vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, p);
goto retry;
}
}
KASSERT(vp->v_object != NULL, ("vfs_object_create: NULL object"));
vp->v_flag |= VOBJBUF;
retn:
return error;
}
void
vfree(vp)
struct vnode *vp;
{
int s;
s = splbio();
simple_lock(&vnode_free_list_slock);
KASSERT((vp->v_flag & VFREE) == 0, ("vnode already free"));
if (vp->v_flag & VAGE) {
TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
} else {
TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
}
freevnodes++;
simple_unlock(&vnode_free_list_slock);
vp->v_flag &= ~VAGE;
vp->v_flag |= VFREE;
splx(s);
}
void
vbusy(vp)
struct vnode *vp;
{
int s;
s = splbio();
simple_lock(&vnode_free_list_slock);
KASSERT((vp->v_flag & VFREE) != 0, ("vnode not free"));
TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
freevnodes--;
simple_unlock(&vnode_free_list_slock);
vp->v_flag &= ~(VFREE|VAGE);
splx(s);
}
/*
* Record a process's interest in events which might happen to
* a vnode. Because poll uses the historic select-style interface
* internally, this routine serves as both the ``check for any
* pending events'' and the ``record my interest in future events''
* functions. (These are done together, while the lock is held,
* to avoid race conditions.)
*/
int
vn_pollrecord(vp, p, events)
struct vnode *vp;
struct proc *p;
short events;
{
simple_lock(&vp->v_pollinfo.vpi_lock);
if (vp->v_pollinfo.vpi_revents & events) {
/*
* This leaves events we are not interested
* in available for the other process which
* which presumably had requested them
* (otherwise they would never have been
* recorded).
*/
events &= vp->v_pollinfo.vpi_revents;
vp->v_pollinfo.vpi_revents &= ~events;
simple_unlock(&vp->v_pollinfo.vpi_lock);
return events;
}
vp->v_pollinfo.vpi_events |= events;
selrecord(p, &vp->v_pollinfo.vpi_selinfo);
simple_unlock(&vp->v_pollinfo.vpi_lock);
return 0;
}
/*
* Note the occurrence of an event. If the VN_POLLEVENT macro is used,
* it is possible for us to miss an event due to race conditions, but
* that condition is expected to be rare, so for the moment it is the
* preferred interface.
*/
void
vn_pollevent(vp, events)
struct vnode *vp;
short events;
{
simple_lock(&vp->v_pollinfo.vpi_lock);
if (vp->v_pollinfo.vpi_events & events) {
/*
* We clear vpi_events so that we don't
* call selwakeup() twice if two events are
* posted before the polling process(es) is
* awakened. This also ensures that we take at
* most one selwakeup() if the polling process
* is no longer interested. However, it does
* mean that only one event can be noticed at
* a time. (Perhaps we should only clear those
* event bits which we note?) XXX
*/
vp->v_pollinfo.vpi_events = 0; /* &= ~events ??? */
vp->v_pollinfo.vpi_revents |= events;
selwakeup(&vp->v_pollinfo.vpi_selinfo);
}
simple_unlock(&vp->v_pollinfo.vpi_lock);
}
/*
* Wake up anyone polling on vp because it is being revoked.
* This depends on dead_poll() returning POLLHUP for correct
* behavior.
*/
void
vn_pollgone(vp)
struct vnode *vp;
{
simple_lock(&vp->v_pollinfo.vpi_lock);
if (vp->v_pollinfo.vpi_events) {
vp->v_pollinfo.vpi_events = 0;
selwakeup(&vp->v_pollinfo.vpi_selinfo);
}
simple_unlock(&vp->v_pollinfo.vpi_lock);
}
/*
* Routine to create and manage a filesystem syncer vnode.
*/
#define sync_close ((int (*) __P((struct vop_close_args *)))nullop)
static int sync_fsync __P((struct vop_fsync_args *));
static int sync_inactive __P((struct vop_inactive_args *));
static int sync_reclaim __P((struct vop_reclaim_args *));
#define sync_lock ((int (*) __P((struct vop_lock_args *)))vop_nolock)
#define sync_unlock ((int (*) __P((struct vop_unlock_args *)))vop_nounlock)
static int sync_print __P((struct vop_print_args *));
#define sync_islocked ((int(*) __P((struct vop_islocked_args *)))vop_noislocked)
static vop_t **sync_vnodeop_p;
static struct vnodeopv_entry_desc sync_vnodeop_entries[] = {
{ &vop_default_desc, (vop_t *) vop_eopnotsupp },
{ &vop_close_desc, (vop_t *) sync_close }, /* close */
{ &vop_fsync_desc, (vop_t *) sync_fsync }, /* fsync */
{ &vop_inactive_desc, (vop_t *) sync_inactive }, /* inactive */
{ &vop_reclaim_desc, (vop_t *) sync_reclaim }, /* reclaim */
{ &vop_lock_desc, (vop_t *) sync_lock }, /* lock */
{ &vop_unlock_desc, (vop_t *) sync_unlock }, /* unlock */
{ &vop_print_desc, (vop_t *) sync_print }, /* print */
{ &vop_islocked_desc, (vop_t *) sync_islocked }, /* islocked */
{ NULL, NULL }
};
static struct vnodeopv_desc sync_vnodeop_opv_desc =
{ &sync_vnodeop_p, sync_vnodeop_entries };
VNODEOP_SET(sync_vnodeop_opv_desc);
/*
* Create a new filesystem syncer vnode for the specified mount point.
*/
int
vfs_allocate_syncvnode(mp)
struct mount *mp;
{
struct vnode *vp;
static long start, incr, next;
int error;
/* Allocate a new vnode */
if ((error = getnewvnode(VT_VFS, mp, sync_vnodeop_p, &vp)) != 0) {
mp->mnt_syncer = NULL;
return (error);
}
vp->v_type = VNON;
/*
* Place the vnode onto the syncer worklist. We attempt to
* scatter them about on the list so that they will go off
* at evenly distributed times even if all the filesystems
* are mounted at once.
*/
next += incr;
if (next == 0 || next > syncer_maxdelay) {
start /= 2;
incr /= 2;
if (start == 0) {
start = syncer_maxdelay / 2;
incr = syncer_maxdelay;
}
next = start;
}
vn_syncer_add_to_worklist(vp, syncdelay > 0 ? next % syncdelay : 0);
mp->mnt_syncer = vp;
return (0);
}
/*
* Do a lazy sync of the filesystem.
*/
static int
sync_fsync(ap)
struct vop_fsync_args /* {
struct vnode *a_vp;
struct ucred *a_cred;
int a_waitfor;
struct proc *a_p;
} */ *ap;
{
struct vnode *syncvp = ap->a_vp;
struct mount *mp = syncvp->v_mount;
struct proc *p = ap->a_p;
int asyncflag;
/*
* We only need to do something if this is a lazy evaluation.
*/
if (ap->a_waitfor != MNT_LAZY)
return (0);
/*
* Move ourselves to the back of the sync list.
*/
vn_syncer_add_to_worklist(syncvp, syncdelay);
/*
* Walk the list of vnodes pushing all that are dirty and
* not already on the sync list.
*/
simple_lock(&mountlist_slock);
if (vfs_busy(mp, LK_EXCLUSIVE | LK_NOWAIT, &mountlist_slock, p) != 0) {
simple_unlock(&mountlist_slock);
return (0);
}
if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) {
vfs_unbusy(mp, p);
simple_unlock(&mountlist_slock);
return (0);
}
asyncflag = mp->mnt_flag & MNT_ASYNC;
mp->mnt_flag &= ~MNT_ASYNC;
vfs_msync(mp, MNT_NOWAIT);
VFS_SYNC(mp, MNT_LAZY, ap->a_cred, p);
if (asyncflag)
mp->mnt_flag |= MNT_ASYNC;
vn_finished_write(mp);
vfs_unbusy(mp, p);
return (0);
}
/*
* The syncer vnode is no referenced.
*/
static int
sync_inactive(ap)
struct vop_inactive_args /* {
struct vnode *a_vp;
struct proc *a_p;
} */ *ap;
{
vgone(ap->a_vp);
return (0);
}
/*
* The syncer vnode is no longer needed and is being decommissioned.
*
* Modifications to the worklist must be protected at splbio().
*/
static int
sync_reclaim(ap)
struct vop_reclaim_args /* {
struct vnode *a_vp;
} */ *ap;
{
struct vnode *vp = ap->a_vp;
int s;
s = splbio();
vp->v_mount->mnt_syncer = NULL;
if (vp->v_flag & VONWORKLST) {
LIST_REMOVE(vp, v_synclist);
vp->v_flag &= ~VONWORKLST;
}
splx(s);
return (0);
}
/*
* Print out a syncer vnode.
*/
static int
sync_print(ap)
struct vop_print_args /* {
struct vnode *a_vp;
} */ *ap;
{
struct vnode *vp = ap->a_vp;
printf("syncer vnode");
if (vp->v_vnlock != NULL)
lockmgr_printinfo(vp->v_vnlock);
printf("\n");
return (0);
}
/*
* extract the dev_t from a VBLK or VCHR
*/
dev_t
vn_todev(vp)
struct vnode *vp;
{
if (vp->v_type != VBLK && vp->v_type != VCHR)
return (NODEV);
return (vp->v_rdev);
}
/*
* Check if vnode represents a disk device
*/
int
vn_isdisk(vp, errp)
struct vnode *vp;
int *errp;
{
if (vp->v_type != VBLK && vp->v_type != VCHR) {
if (errp != NULL)
*errp = ENOTBLK;
return (0);
}
if (vp->v_rdev == NULL) {
if (errp != NULL)
*errp = ENXIO;
return (0);
}
if (!devsw(vp->v_rdev)) {
if (errp != NULL)
*errp = ENXIO;
return (0);
}
if (!(devsw(vp->v_rdev)->d_flags & D_DISK)) {
if (errp != NULL)
*errp = ENOTBLK;
return (0);
}
if (errp != NULL)
*errp = 0;
return (1);
}
void
NDFREE(ndp, flags)
struct nameidata *ndp;
const uint flags;
{
if (!(flags & NDF_NO_FREE_PNBUF) &&
(ndp->ni_cnd.cn_flags & HASBUF)) {
zfree(namei_zone, ndp->ni_cnd.cn_pnbuf);
ndp->ni_cnd.cn_flags &= ~HASBUF;
}
if (!(flags & NDF_NO_DVP_UNLOCK) &&
(ndp->ni_cnd.cn_flags & LOCKPARENT) &&
ndp->ni_dvp != ndp->ni_vp)
VOP_UNLOCK(ndp->ni_dvp, 0, ndp->ni_cnd.cn_proc);
if (!(flags & NDF_NO_DVP_RELE) &&
(ndp->ni_cnd.cn_flags & (LOCKPARENT|WANTPARENT))) {
vrele(ndp->ni_dvp);
ndp->ni_dvp = NULL;
}
if (!(flags & NDF_NO_VP_UNLOCK) &&
(ndp->ni_cnd.cn_flags & LOCKLEAF) && ndp->ni_vp)
VOP_UNLOCK(ndp->ni_vp, 0, ndp->ni_cnd.cn_proc);
if (!(flags & NDF_NO_VP_RELE) &&
ndp->ni_vp) {
vrele(ndp->ni_vp);
ndp->ni_vp = NULL;
}
if (!(flags & NDF_NO_STARTDIR_RELE) &&
(ndp->ni_cnd.cn_flags & SAVESTART)) {
vrele(ndp->ni_startdir);
ndp->ni_startdir = NULL;
}
}