freebsd-nq/sys/opencrypto/cryptodev.c
John Baldwin ab91fb6c21 crypto: Refactor software support for AEAD ciphers.
Extend struct enc_xform to add new members to handle auth operations
for AEAD ciphers.  In particular, AEAD operations in cryptosoft no
longer use a struct auth_hash.  Instead, the setkey and reinit methods
of struct enc_xform are responsible for initializing both the cipher
and auth state.

Reviewed by:	markj
Sponsored by:	The FreeBSD Foundation
Differential Revision:	https://reviews.freebsd.org/D33196
2021-12-09 11:52:42 -08:00

1433 lines
33 KiB
C

/* $OpenBSD: cryptodev.c,v 1.52 2002/06/19 07:22:46 deraadt Exp $ */
/*-
* Copyright (c) 2001 Theo de Raadt
* Copyright (c) 2002-2006 Sam Leffler, Errno Consulting
* Copyright (c) 2014-2021 The FreeBSD Foundation
* All rights reserved.
*
* Portions of this software were developed by John-Mark Gurney
* under sponsorship of the FreeBSD Foundation and
* Rubicon Communications, LLC (Netgate).
*
* Portions of this software were developed by Ararat River
* Consulting, LLC under sponsorship of the FreeBSD Foundation.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Effort sponsored in part by the Defense Advanced Research Projects
* Agency (DARPA) and Air Force Research Laboratory, Air Force
* Materiel Command, USAF, under agreement number F30602-01-2-0537.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/sysctl.h>
#include <sys/errno.h>
#include <sys/random.h>
#include <sys/conf.h>
#include <sys/kernel.h>
#include <sys/module.h>
#include <sys/fcntl.h>
#include <sys/bus.h>
#include <sys/sdt.h>
#include <sys/syscallsubr.h>
#include <opencrypto/cryptodev.h>
#include <opencrypto/xform.h>
SDT_PROVIDER_DECLARE(opencrypto);
SDT_PROBE_DEFINE1(opencrypto, dev, ioctl, error, "int"/*line number*/);
#ifdef COMPAT_FREEBSD12
/*
* Previously, most ioctls were performed against a cloned descriptor
* of /dev/crypto obtained via CRIOGET. Now all ioctls are performed
* against /dev/crypto directly.
*/
#define CRIOGET _IOWR('c', 100, uint32_t)
#endif
/* the following are done against the cloned descriptor */
#ifdef COMPAT_FREEBSD32
#include <sys/mount.h>
#include <compat/freebsd32/freebsd32.h>
struct session_op32 {
uint32_t cipher;
uint32_t mac;
uint32_t keylen;
uint32_t key;
int mackeylen;
uint32_t mackey;
uint32_t ses;
};
struct session2_op32 {
uint32_t cipher;
uint32_t mac;
uint32_t keylen;
uint32_t key;
int mackeylen;
uint32_t mackey;
uint32_t ses;
int crid;
int ivlen;
int maclen;
int pad[2];
};
struct crypt_op32 {
uint32_t ses;
uint16_t op;
uint16_t flags;
u_int len;
uint32_t src, dst;
uint32_t mac;
uint32_t iv;
};
struct crypt_aead32 {
uint32_t ses;
uint16_t op;
uint16_t flags;
u_int len;
u_int aadlen;
u_int ivlen;
uint32_t src;
uint32_t dst;
uint32_t aad;
uint32_t tag;
uint32_t iv;
};
#define CIOCGSESSION32 _IOWR('c', 101, struct session_op32)
#define CIOCCRYPT32 _IOWR('c', 103, struct crypt_op32)
#define CIOCGSESSION232 _IOWR('c', 106, struct session2_op32)
#define CIOCCRYPTAEAD32 _IOWR('c', 109, struct crypt_aead32)
static void
session_op_from_32(const struct session_op32 *from, struct session2_op *to)
{
memset(to, 0, sizeof(*to));
CP(*from, *to, cipher);
CP(*from, *to, mac);
CP(*from, *to, keylen);
PTRIN_CP(*from, *to, key);
CP(*from, *to, mackeylen);
PTRIN_CP(*from, *to, mackey);
CP(*from, *to, ses);
to->crid = CRYPTOCAP_F_HARDWARE;
}
static void
session2_op_from_32(const struct session2_op32 *from, struct session2_op *to)
{
session_op_from_32((const struct session_op32 *)from, to);
CP(*from, *to, crid);
CP(*from, *to, ivlen);
CP(*from, *to, maclen);
}
static void
session_op_to_32(const struct session2_op *from, struct session_op32 *to)
{
CP(*from, *to, cipher);
CP(*from, *to, mac);
CP(*from, *to, keylen);
PTROUT_CP(*from, *to, key);
CP(*from, *to, mackeylen);
PTROUT_CP(*from, *to, mackey);
CP(*from, *to, ses);
}
static void
session2_op_to_32(const struct session2_op *from, struct session2_op32 *to)
{
session_op_to_32(from, (struct session_op32 *)to);
CP(*from, *to, crid);
}
static void
crypt_op_from_32(const struct crypt_op32 *from, struct crypt_op *to)
{
CP(*from, *to, ses);
CP(*from, *to, op);
CP(*from, *to, flags);
CP(*from, *to, len);
PTRIN_CP(*from, *to, src);
PTRIN_CP(*from, *to, dst);
PTRIN_CP(*from, *to, mac);
PTRIN_CP(*from, *to, iv);
}
static void
crypt_op_to_32(const struct crypt_op *from, struct crypt_op32 *to)
{
CP(*from, *to, ses);
CP(*from, *to, op);
CP(*from, *to, flags);
CP(*from, *to, len);
PTROUT_CP(*from, *to, src);
PTROUT_CP(*from, *to, dst);
PTROUT_CP(*from, *to, mac);
PTROUT_CP(*from, *to, iv);
}
static void
crypt_aead_from_32(const struct crypt_aead32 *from, struct crypt_aead *to)
{
CP(*from, *to, ses);
CP(*from, *to, op);
CP(*from, *to, flags);
CP(*from, *to, len);
CP(*from, *to, aadlen);
CP(*from, *to, ivlen);
PTRIN_CP(*from, *to, src);
PTRIN_CP(*from, *to, dst);
PTRIN_CP(*from, *to, aad);
PTRIN_CP(*from, *to, tag);
PTRIN_CP(*from, *to, iv);
}
static void
crypt_aead_to_32(const struct crypt_aead *from, struct crypt_aead32 *to)
{
CP(*from, *to, ses);
CP(*from, *to, op);
CP(*from, *to, flags);
CP(*from, *to, len);
CP(*from, *to, aadlen);
CP(*from, *to, ivlen);
PTROUT_CP(*from, *to, src);
PTROUT_CP(*from, *to, dst);
PTROUT_CP(*from, *to, aad);
PTROUT_CP(*from, *to, tag);
PTROUT_CP(*from, *to, iv);
}
#endif
static void
session2_op_from_op(const struct session_op *from, struct session2_op *to)
{
memset(to, 0, sizeof(*to));
memcpy(to, from, sizeof(*from));
to->crid = CRYPTOCAP_F_HARDWARE;
}
static void
session2_op_to_op(const struct session2_op *from, struct session_op *to)
{
memcpy(to, from, sizeof(*to));
}
struct csession {
TAILQ_ENTRY(csession) next;
crypto_session_t cses;
volatile u_int refs;
uint32_t ses;
struct mtx lock; /* for op submission */
const struct enc_xform *txform;
int hashsize;
int ivsize;
void *key;
void *mackey;
};
struct cryptop_data {
struct csession *cse;
char *buf;
char *obuf;
char *aad;
bool done;
};
struct fcrypt {
TAILQ_HEAD(csessionlist, csession) csessions;
int sesn;
struct mtx lock;
};
static bool use_outputbuffers;
SYSCTL_BOOL(_kern_crypto, OID_AUTO, cryptodev_use_output, CTLFLAG_RW,
&use_outputbuffers, 0,
"Use separate output buffers for /dev/crypto requests.");
static bool use_separate_aad;
SYSCTL_BOOL(_kern_crypto, OID_AUTO, cryptodev_separate_aad, CTLFLAG_RW,
&use_separate_aad, 0,
"Use separate AAD buffer for /dev/crypto requests.");
/*
* Check a crypto identifier to see if it requested
* a software device/driver. This can be done either
* by device name/class or through search constraints.
*/
static int
checkforsoftware(int *cridp)
{
int crid;
crid = *cridp;
if (!crypto_devallowsoft) {
if (crid & CRYPTOCAP_F_SOFTWARE) {
if (crid & CRYPTOCAP_F_HARDWARE) {
*cridp = CRYPTOCAP_F_HARDWARE;
return 0;
}
return EINVAL;
}
if ((crid & CRYPTOCAP_F_HARDWARE) == 0 &&
(crypto_getcaps(crid) & CRYPTOCAP_F_HARDWARE) == 0)
return EINVAL;
}
return 0;
}
static int
cse_create(struct fcrypt *fcr, struct session2_op *sop)
{
struct crypto_session_params csp;
struct csession *cse;
const struct enc_xform *txform;
const struct auth_hash *thash;
void *key = NULL;
void *mackey = NULL;
crypto_session_t cses;
int crid, error;
switch (sop->cipher) {
case 0:
txform = NULL;
break;
case CRYPTO_AES_CBC:
txform = &enc_xform_rijndael128;
break;
case CRYPTO_AES_XTS:
txform = &enc_xform_aes_xts;
break;
case CRYPTO_NULL_CBC:
txform = &enc_xform_null;
break;
case CRYPTO_CAMELLIA_CBC:
txform = &enc_xform_camellia;
break;
case CRYPTO_AES_ICM:
txform = &enc_xform_aes_icm;
break;
case CRYPTO_AES_NIST_GCM_16:
txform = &enc_xform_aes_nist_gcm;
break;
case CRYPTO_CHACHA20:
txform = &enc_xform_chacha20;
break;
case CRYPTO_AES_CCM_16:
txform = &enc_xform_ccm;
break;
case CRYPTO_CHACHA20_POLY1305:
txform = &enc_xform_chacha20_poly1305;
break;
default:
CRYPTDEB("invalid cipher");
SDT_PROBE1(opencrypto, dev, ioctl, error, __LINE__);
return (EINVAL);
}
switch (sop->mac) {
case 0:
thash = NULL;
break;
case CRYPTO_POLY1305:
thash = &auth_hash_poly1305;
break;
case CRYPTO_SHA1_HMAC:
thash = &auth_hash_hmac_sha1;
break;
case CRYPTO_SHA2_224_HMAC:
thash = &auth_hash_hmac_sha2_224;
break;
case CRYPTO_SHA2_256_HMAC:
thash = &auth_hash_hmac_sha2_256;
break;
case CRYPTO_SHA2_384_HMAC:
thash = &auth_hash_hmac_sha2_384;
break;
case CRYPTO_SHA2_512_HMAC:
thash = &auth_hash_hmac_sha2_512;
break;
case CRYPTO_RIPEMD160_HMAC:
thash = &auth_hash_hmac_ripemd_160;
break;
#ifdef COMPAT_FREEBSD12
case CRYPTO_AES_128_NIST_GMAC:
case CRYPTO_AES_192_NIST_GMAC:
case CRYPTO_AES_256_NIST_GMAC:
/* Should always be paired with GCM. */
if (sop->cipher != CRYPTO_AES_NIST_GCM_16) {
CRYPTDEB("GMAC without GCM");
SDT_PROBE1(opencrypto, dev, ioctl, error, __LINE__);
return (EINVAL);
}
break;
#endif
case CRYPTO_AES_NIST_GMAC:
switch (sop->mackeylen * 8) {
case 128:
thash = &auth_hash_nist_gmac_aes_128;
break;
case 192:
thash = &auth_hash_nist_gmac_aes_192;
break;
case 256:
thash = &auth_hash_nist_gmac_aes_256;
break;
default:
CRYPTDEB("invalid GMAC key length");
SDT_PROBE1(opencrypto, dev, ioctl, error, __LINE__);
return (EINVAL);
}
break;
case CRYPTO_AES_CCM_CBC_MAC:
switch (sop->mackeylen) {
case 16:
thash = &auth_hash_ccm_cbc_mac_128;
break;
case 24:
thash = &auth_hash_ccm_cbc_mac_192;
break;
case 32:
thash = &auth_hash_ccm_cbc_mac_256;
break;
default:
CRYPTDEB("Invalid CBC MAC key size %d", sop->keylen);
SDT_PROBE1(opencrypto, dev, ioctl, error, __LINE__);
return (EINVAL);
}
break;
case CRYPTO_SHA1:
thash = &auth_hash_sha1;
break;
case CRYPTO_SHA2_224:
thash = &auth_hash_sha2_224;
break;
case CRYPTO_SHA2_256:
thash = &auth_hash_sha2_256;
break;
case CRYPTO_SHA2_384:
thash = &auth_hash_sha2_384;
break;
case CRYPTO_SHA2_512:
thash = &auth_hash_sha2_512;
break;
case CRYPTO_NULL_HMAC:
thash = &auth_hash_null;
break;
case CRYPTO_BLAKE2B:
thash = &auth_hash_blake2b;
break;
case CRYPTO_BLAKE2S:
thash = &auth_hash_blake2s;
break;
default:
CRYPTDEB("invalid mac");
SDT_PROBE1(opencrypto, dev, ioctl, error, __LINE__);
return (EINVAL);
}
if (txform == NULL && thash == NULL) {
SDT_PROBE1(opencrypto, dev, ioctl, error, __LINE__);
return (EINVAL);
}
memset(&csp, 0, sizeof(csp));
if (use_outputbuffers)
csp.csp_flags |= CSP_F_SEPARATE_OUTPUT;
if (sop->cipher == CRYPTO_AES_NIST_GCM_16) {
switch (sop->mac) {
#ifdef COMPAT_FREEBSD12
case CRYPTO_AES_128_NIST_GMAC:
case CRYPTO_AES_192_NIST_GMAC:
case CRYPTO_AES_256_NIST_GMAC:
if (sop->keylen != sop->mackeylen) {
SDT_PROBE1(opencrypto, dev, ioctl, error,
__LINE__);
return (EINVAL);
}
break;
#endif
case 0:
break;
default:
SDT_PROBE1(opencrypto, dev, ioctl, error, __LINE__);
return (EINVAL);
}
csp.csp_mode = CSP_MODE_AEAD;
} else if (sop->cipher == CRYPTO_AES_CCM_16) {
switch (sop->mac) {
#ifdef COMPAT_FREEBSD12
case CRYPTO_AES_CCM_CBC_MAC:
if (sop->keylen != sop->mackeylen) {
SDT_PROBE1(opencrypto, dev, ioctl, error,
__LINE__);
return (EINVAL);
}
thash = NULL;
break;
#endif
case 0:
break;
default:
SDT_PROBE1(opencrypto, dev, ioctl, error, __LINE__);
return (EINVAL);
}
csp.csp_mode = CSP_MODE_AEAD;
} else if (sop->cipher == CRYPTO_CHACHA20_POLY1305) {
if (sop->mac != 0) {
SDT_PROBE1(opencrypto, dev, ioctl, error, __LINE__);
return (EINVAL);
}
csp.csp_mode = CSP_MODE_AEAD;
} else if (txform != NULL && thash != NULL)
csp.csp_mode = CSP_MODE_ETA;
else if (txform != NULL)
csp.csp_mode = CSP_MODE_CIPHER;
else
csp.csp_mode = CSP_MODE_DIGEST;
switch (csp.csp_mode) {
case CSP_MODE_AEAD:
case CSP_MODE_ETA:
if (use_separate_aad)
csp.csp_flags |= CSP_F_SEPARATE_AAD;
break;
}
if (txform != NULL) {
csp.csp_cipher_alg = txform->type;
csp.csp_cipher_klen = sop->keylen;
if (sop->keylen > txform->maxkey ||
sop->keylen < txform->minkey) {
CRYPTDEB("invalid cipher parameters");
error = EINVAL;
SDT_PROBE1(opencrypto, dev, ioctl, error, __LINE__);
goto bail;
}
key = malloc(csp.csp_cipher_klen, M_XDATA, M_WAITOK);
error = copyin(sop->key, key, csp.csp_cipher_klen);
if (error) {
CRYPTDEB("invalid key");
SDT_PROBE1(opencrypto, dev, ioctl, error, __LINE__);
goto bail;
}
csp.csp_cipher_key = key;
csp.csp_ivlen = txform->ivsize;
}
if (thash != NULL) {
csp.csp_auth_alg = thash->type;
csp.csp_auth_klen = sop->mackeylen;
if (sop->mackeylen > thash->keysize || sop->mackeylen < 0) {
CRYPTDEB("invalid mac key length");
error = EINVAL;
SDT_PROBE1(opencrypto, dev, ioctl, error, __LINE__);
goto bail;
}
if (csp.csp_auth_klen != 0) {
mackey = malloc(csp.csp_auth_klen, M_XDATA, M_WAITOK);
error = copyin(sop->mackey, mackey, csp.csp_auth_klen);
if (error) {
CRYPTDEB("invalid mac key");
SDT_PROBE1(opencrypto, dev, ioctl, error,
__LINE__);
goto bail;
}
csp.csp_auth_key = mackey;
}
if (csp.csp_auth_alg == CRYPTO_AES_NIST_GMAC)
csp.csp_ivlen = AES_GCM_IV_LEN;
if (csp.csp_auth_alg == CRYPTO_AES_CCM_CBC_MAC)
csp.csp_ivlen = AES_CCM_IV_LEN;
}
if (sop->ivlen != 0) {
if (csp.csp_ivlen == 0) {
CRYPTDEB("does not support an IV");
error = EINVAL;
SDT_PROBE1(opencrypto, dev, ioctl, error, __LINE__);
goto bail;
}
csp.csp_ivlen = sop->ivlen;
}
if (sop->maclen != 0) {
if (!(thash != NULL || csp.csp_mode == CSP_MODE_AEAD)) {
CRYPTDEB("does not support a MAC");
error = EINVAL;
SDT_PROBE1(opencrypto, dev, ioctl, error, __LINE__);
goto bail;
}
csp.csp_auth_mlen = sop->maclen;
}
crid = sop->crid;
error = checkforsoftware(&crid);
if (error) {
CRYPTDEB("checkforsoftware");
SDT_PROBE1(opencrypto, dev, ioctl, error, __LINE__);
goto bail;
}
error = crypto_newsession(&cses, &csp, crid);
if (error) {
CRYPTDEB("crypto_newsession");
SDT_PROBE1(opencrypto, dev, ioctl, error, __LINE__);
goto bail;
}
cse = malloc(sizeof(struct csession), M_XDATA, M_WAITOK | M_ZERO);
mtx_init(&cse->lock, "cryptodev", "crypto session lock", MTX_DEF);
refcount_init(&cse->refs, 1);
cse->key = key;
cse->mackey = mackey;
cse->cses = cses;
cse->txform = txform;
if (sop->maclen != 0)
cse->hashsize = sop->maclen;
else if (thash != NULL)
cse->hashsize = thash->hashsize;
else if (csp.csp_mode == CSP_MODE_AEAD)
cse->hashsize = txform->macsize;
cse->ivsize = csp.csp_ivlen;
mtx_lock(&fcr->lock);
TAILQ_INSERT_TAIL(&fcr->csessions, cse, next);
cse->ses = fcr->sesn++;
mtx_unlock(&fcr->lock);
sop->ses = cse->ses;
/* return hardware/driver id */
sop->crid = crypto_ses2hid(cse->cses);
bail:
if (error) {
free(key, M_XDATA);
free(mackey, M_XDATA);
}
return (error);
}
static struct csession *
cse_find(struct fcrypt *fcr, u_int ses)
{
struct csession *cse;
mtx_lock(&fcr->lock);
TAILQ_FOREACH(cse, &fcr->csessions, next) {
if (cse->ses == ses) {
refcount_acquire(&cse->refs);
mtx_unlock(&fcr->lock);
return (cse);
}
}
mtx_unlock(&fcr->lock);
return (NULL);
}
static void
cse_free(struct csession *cse)
{
if (!refcount_release(&cse->refs))
return;
crypto_freesession(cse->cses);
mtx_destroy(&cse->lock);
if (cse->key)
free(cse->key, M_XDATA);
if (cse->mackey)
free(cse->mackey, M_XDATA);
free(cse, M_XDATA);
}
static bool
cse_delete(struct fcrypt *fcr, u_int ses)
{
struct csession *cse;
mtx_lock(&fcr->lock);
TAILQ_FOREACH(cse, &fcr->csessions, next) {
if (cse->ses == ses) {
TAILQ_REMOVE(&fcr->csessions, cse, next);
mtx_unlock(&fcr->lock);
cse_free(cse);
return (true);
}
}
mtx_unlock(&fcr->lock);
return (false);
}
static struct cryptop_data *
cod_alloc(struct csession *cse, size_t aad_len, size_t len)
{
struct cryptop_data *cod;
cod = malloc(sizeof(struct cryptop_data), M_XDATA, M_WAITOK | M_ZERO);
cod->cse = cse;
if (crypto_get_params(cse->cses)->csp_flags & CSP_F_SEPARATE_AAD) {
if (aad_len != 0)
cod->aad = malloc(aad_len, M_XDATA, M_WAITOK);
cod->buf = malloc(len, M_XDATA, M_WAITOK);
} else
cod->buf = malloc(aad_len + len, M_XDATA, M_WAITOK);
if (crypto_get_params(cse->cses)->csp_flags & CSP_F_SEPARATE_OUTPUT)
cod->obuf = malloc(len, M_XDATA, M_WAITOK);
return (cod);
}
static void
cod_free(struct cryptop_data *cod)
{
free(cod->aad, M_XDATA);
free(cod->obuf, M_XDATA);
free(cod->buf, M_XDATA);
free(cod, M_XDATA);
}
static int
cryptodev_cb(struct cryptop *crp)
{
struct cryptop_data *cod = crp->crp_opaque;
/*
* Lock to ensure the wakeup() is not missed by the loops
* waiting on cod->done in cryptodev_op() and
* cryptodev_aead().
*/
mtx_lock(&cod->cse->lock);
cod->done = true;
mtx_unlock(&cod->cse->lock);
wakeup(cod);
return (0);
}
static int
cryptodev_op(struct csession *cse, const struct crypt_op *cop)
{
const struct crypto_session_params *csp;
struct cryptop_data *cod = NULL;
struct cryptop *crp = NULL;
char *dst;
int error;
if (cop->len > 256*1024-4) {
SDT_PROBE1(opencrypto, dev, ioctl, error, __LINE__);
return (E2BIG);
}
if (cse->txform) {
if ((cop->len % cse->txform->blocksize) != 0) {
SDT_PROBE1(opencrypto, dev, ioctl, error, __LINE__);
return (EINVAL);
}
}
if (cop->mac && cse->hashsize == 0) {
SDT_PROBE1(opencrypto, dev, ioctl, error, __LINE__);
return (EINVAL);
}
/*
* The COP_F_CIPHER_FIRST flag predates explicit session
* modes, but the only way it was used was for EtA so allow it
* as long as it is consistent with EtA.
*/
if (cop->flags & COP_F_CIPHER_FIRST) {
if (cop->op != COP_ENCRYPT) {
SDT_PROBE1(opencrypto, dev, ioctl, error, __LINE__);
return (EINVAL);
}
}
cod = cod_alloc(cse, 0, cop->len + cse->hashsize);
dst = cop->dst;
crp = crypto_getreq(cse->cses, M_WAITOK);
error = copyin(cop->src, cod->buf, cop->len);
if (error) {
SDT_PROBE1(opencrypto, dev, ioctl, error, __LINE__);
goto bail;
}
crp->crp_payload_start = 0;
crp->crp_payload_length = cop->len;
if (cse->hashsize)
crp->crp_digest_start = cop->len;
csp = crypto_get_params(cse->cses);
switch (csp->csp_mode) {
case CSP_MODE_COMPRESS:
switch (cop->op) {
case COP_ENCRYPT:
crp->crp_op = CRYPTO_OP_COMPRESS;
break;
case COP_DECRYPT:
crp->crp_op = CRYPTO_OP_DECOMPRESS;
break;
default:
SDT_PROBE1(opencrypto, dev, ioctl, error, __LINE__);
error = EINVAL;
goto bail;
}
break;
case CSP_MODE_CIPHER:
if (cop->len == 0 ||
(cop->iv == NULL && cop->len == cse->ivsize)) {
SDT_PROBE1(opencrypto, dev, ioctl, error, __LINE__);
error = EINVAL;
goto bail;
}
switch (cop->op) {
case COP_ENCRYPT:
crp->crp_op = CRYPTO_OP_ENCRYPT;
break;
case COP_DECRYPT:
crp->crp_op = CRYPTO_OP_DECRYPT;
break;
default:
SDT_PROBE1(opencrypto, dev, ioctl, error, __LINE__);
error = EINVAL;
goto bail;
}
break;
case CSP_MODE_DIGEST:
switch (cop->op) {
case 0:
case COP_ENCRYPT:
case COP_DECRYPT:
crp->crp_op = CRYPTO_OP_COMPUTE_DIGEST;
if (cod->obuf != NULL)
crp->crp_digest_start = 0;
break;
default:
SDT_PROBE1(opencrypto, dev, ioctl, error, __LINE__);
error = EINVAL;
goto bail;
}
break;
case CSP_MODE_AEAD:
if (cse->ivsize != 0 && cop->iv == NULL) {
SDT_PROBE1(opencrypto, dev, ioctl, error, __LINE__);
error = EINVAL;
goto bail;
}
/* FALLTHROUGH */
case CSP_MODE_ETA:
switch (cop->op) {
case COP_ENCRYPT:
crp->crp_op = CRYPTO_OP_ENCRYPT |
CRYPTO_OP_COMPUTE_DIGEST;
break;
case COP_DECRYPT:
crp->crp_op = CRYPTO_OP_DECRYPT |
CRYPTO_OP_VERIFY_DIGEST;
break;
default:
SDT_PROBE1(opencrypto, dev, ioctl, error, __LINE__);
error = EINVAL;
goto bail;
}
break;
default:
SDT_PROBE1(opencrypto, dev, ioctl, error, __LINE__);
error = EINVAL;
goto bail;
}
crp->crp_flags = CRYPTO_F_CBIMM | (cop->flags & COP_F_BATCH);
crypto_use_buf(crp, cod->buf, cop->len + cse->hashsize);
if (cod->obuf)
crypto_use_output_buf(crp, cod->obuf, cop->len + cse->hashsize);
crp->crp_callback = cryptodev_cb;
crp->crp_opaque = cod;
if (cop->iv) {
if (cse->ivsize == 0) {
SDT_PROBE1(opencrypto, dev, ioctl, error, __LINE__);
error = EINVAL;
goto bail;
}
error = copyin(cop->iv, crp->crp_iv, cse->ivsize);
if (error) {
SDT_PROBE1(opencrypto, dev, ioctl, error, __LINE__);
goto bail;
}
crp->crp_flags |= CRYPTO_F_IV_SEPARATE;
} else if (cse->ivsize != 0) {
if (crp->crp_payload_length < cse->ivsize) {
SDT_PROBE1(opencrypto, dev, ioctl, error, __LINE__);
error = EINVAL;
goto bail;
}
crp->crp_iv_start = 0;
crp->crp_payload_length -= cse->ivsize;
if (crp->crp_payload_length != 0)
crp->crp_payload_start = cse->ivsize;
dst += cse->ivsize;
}
if (crp->crp_op & CRYPTO_OP_VERIFY_DIGEST) {
error = copyin(cop->mac, cod->buf + crp->crp_digest_start,
cse->hashsize);
if (error) {
SDT_PROBE1(opencrypto, dev, ioctl, error, __LINE__);
goto bail;
}
}
again:
/*
* Let the dispatch run unlocked, then, interlock against the
* callback before checking if the operation completed and going
* to sleep. This insures drivers don't inherit our lock which
* results in a lock order reversal between crypto_dispatch forced
* entry and the crypto_done callback into us.
*/
error = crypto_dispatch(crp);
if (error != 0) {
SDT_PROBE1(opencrypto, dev, ioctl, error, __LINE__);
goto bail;
}
mtx_lock(&cse->lock);
while (!cod->done)
mtx_sleep(cod, &cse->lock, PWAIT, "crydev", 0);
mtx_unlock(&cse->lock);
if (crp->crp_etype == EAGAIN) {
crp->crp_etype = 0;
crp->crp_flags &= ~CRYPTO_F_DONE;
cod->done = false;
goto again;
}
if (crp->crp_etype != 0) {
SDT_PROBE1(opencrypto, dev, ioctl, error, __LINE__);
error = crp->crp_etype;
goto bail;
}
if (cop->dst != NULL) {
error = copyout(cod->obuf != NULL ? cod->obuf :
cod->buf + crp->crp_payload_start, dst,
crp->crp_payload_length);
if (error) {
SDT_PROBE1(opencrypto, dev, ioctl, error, __LINE__);
goto bail;
}
}
if (cop->mac != NULL && (crp->crp_op & CRYPTO_OP_VERIFY_DIGEST) == 0) {
error = copyout((cod->obuf != NULL ? cod->obuf : cod->buf) +
crp->crp_digest_start, cop->mac, cse->hashsize);
if (error) {
SDT_PROBE1(opencrypto, dev, ioctl, error, __LINE__);
goto bail;
}
}
bail:
crypto_freereq(crp);
cod_free(cod);
return (error);
}
static int
cryptodev_aead(struct csession *cse, struct crypt_aead *caead)
{
const struct crypto_session_params *csp;
struct cryptop_data *cod = NULL;
struct cryptop *crp = NULL;
char *dst;
int error;
if (caead->len > 256*1024-4 || caead->aadlen > 256*1024-4) {
SDT_PROBE1(opencrypto, dev, ioctl, error, __LINE__);
return (E2BIG);
}
if (cse->txform == NULL || cse->hashsize == 0 || caead->tag == NULL ||
(caead->len % cse->txform->blocksize) != 0) {
SDT_PROBE1(opencrypto, dev, ioctl, error, __LINE__);
return (EINVAL);
}
/*
* The COP_F_CIPHER_FIRST flag predates explicit session
* modes, but the only way it was used was for EtA so allow it
* as long as it is consistent with EtA.
*/
if (caead->flags & COP_F_CIPHER_FIRST) {
if (caead->op != COP_ENCRYPT) {
SDT_PROBE1(opencrypto, dev, ioctl, error, __LINE__);
return (EINVAL);
}
}
cod = cod_alloc(cse, caead->aadlen, caead->len + cse->hashsize);
dst = caead->dst;
crp = crypto_getreq(cse->cses, M_WAITOK);
if (cod->aad != NULL)
error = copyin(caead->aad, cod->aad, caead->aadlen);
else
error = copyin(caead->aad, cod->buf, caead->aadlen);
if (error) {
SDT_PROBE1(opencrypto, dev, ioctl, error, __LINE__);
goto bail;
}
crp->crp_aad = cod->aad;
crp->crp_aad_start = 0;
crp->crp_aad_length = caead->aadlen;
if (cod->aad != NULL)
crp->crp_payload_start = 0;
else
crp->crp_payload_start = caead->aadlen;
error = copyin(caead->src, cod->buf + crp->crp_payload_start,
caead->len);
if (error) {
SDT_PROBE1(opencrypto, dev, ioctl, error, __LINE__);
goto bail;
}
crp->crp_payload_length = caead->len;
if (caead->op == COP_ENCRYPT && cod->obuf != NULL)
crp->crp_digest_start = crp->crp_payload_output_start +
caead->len;
else
crp->crp_digest_start = crp->crp_payload_start + caead->len;
csp = crypto_get_params(cse->cses);
switch (csp->csp_mode) {
case CSP_MODE_AEAD:
case CSP_MODE_ETA:
switch (caead->op) {
case COP_ENCRYPT:
crp->crp_op = CRYPTO_OP_ENCRYPT |
CRYPTO_OP_COMPUTE_DIGEST;
break;
case COP_DECRYPT:
crp->crp_op = CRYPTO_OP_DECRYPT |
CRYPTO_OP_VERIFY_DIGEST;
break;
default:
SDT_PROBE1(opencrypto, dev, ioctl, error, __LINE__);
error = EINVAL;
goto bail;
}
break;
default:
SDT_PROBE1(opencrypto, dev, ioctl, error, __LINE__);
error = EINVAL;
goto bail;
}
crp->crp_flags = CRYPTO_F_CBIMM | (caead->flags & COP_F_BATCH);
crypto_use_buf(crp, cod->buf, crp->crp_payload_start + caead->len +
cse->hashsize);
if (cod->obuf != NULL)
crypto_use_output_buf(crp, cod->obuf, caead->len +
cse->hashsize);
crp->crp_callback = cryptodev_cb;
crp->crp_opaque = cod;
if (caead->iv) {
/*
* Permit a 16-byte IV for AES-XTS, but only use the
* first 8 bytes as a block number.
*/
if (csp->csp_mode == CSP_MODE_ETA &&
csp->csp_cipher_alg == CRYPTO_AES_XTS &&
caead->ivlen == AES_BLOCK_LEN)
caead->ivlen = AES_XTS_IV_LEN;
if (cse->ivsize == 0) {
SDT_PROBE1(opencrypto, dev, ioctl, error, __LINE__);
error = EINVAL;
goto bail;
}
if (caead->ivlen != cse->ivsize) {
error = EINVAL;
SDT_PROBE1(opencrypto, dev, ioctl, error, __LINE__);
goto bail;
}
error = copyin(caead->iv, crp->crp_iv, cse->ivsize);
if (error) {
SDT_PROBE1(opencrypto, dev, ioctl, error, __LINE__);
goto bail;
}
crp->crp_flags |= CRYPTO_F_IV_SEPARATE;
} else {
error = EINVAL;
SDT_PROBE1(opencrypto, dev, ioctl, error, __LINE__);
goto bail;
}
if (crp->crp_op & CRYPTO_OP_VERIFY_DIGEST) {
error = copyin(caead->tag, cod->buf + crp->crp_digest_start,
cse->hashsize);
if (error) {
SDT_PROBE1(opencrypto, dev, ioctl, error, __LINE__);
goto bail;
}
}
again:
/*
* Let the dispatch run unlocked, then, interlock against the
* callback before checking if the operation completed and going
* to sleep. This insures drivers don't inherit our lock which
* results in a lock order reversal between crypto_dispatch forced
* entry and the crypto_done callback into us.
*/
error = crypto_dispatch(crp);
if (error != 0) {
SDT_PROBE1(opencrypto, dev, ioctl, error, __LINE__);
goto bail;
}
mtx_lock(&cse->lock);
while (!cod->done)
mtx_sleep(cod, &cse->lock, PWAIT, "crydev", 0);
mtx_unlock(&cse->lock);
if (crp->crp_etype == EAGAIN) {
crp->crp_etype = 0;
crp->crp_flags &= ~CRYPTO_F_DONE;
cod->done = false;
goto again;
}
if (crp->crp_etype != 0) {
error = crp->crp_etype;
SDT_PROBE1(opencrypto, dev, ioctl, error, __LINE__);
goto bail;
}
if (caead->dst != NULL) {
error = copyout(cod->obuf != NULL ? cod->obuf :
cod->buf + crp->crp_payload_start, dst,
crp->crp_payload_length);
if (error) {
SDT_PROBE1(opencrypto, dev, ioctl, error, __LINE__);
goto bail;
}
}
if ((crp->crp_op & CRYPTO_OP_VERIFY_DIGEST) == 0) {
error = copyout((cod->obuf != NULL ? cod->obuf : cod->buf) +
crp->crp_digest_start, caead->tag, cse->hashsize);
if (error) {
SDT_PROBE1(opencrypto, dev, ioctl, error, __LINE__);
goto bail;
}
}
bail:
crypto_freereq(crp);
cod_free(cod);
return (error);
}
static int
cryptodev_find(struct crypt_find_op *find)
{
device_t dev;
size_t fnlen = sizeof find->name;
if (find->crid != -1) {
dev = crypto_find_device_byhid(find->crid);
if (dev == NULL)
return (ENOENT);
strncpy(find->name, device_get_nameunit(dev), fnlen);
find->name[fnlen - 1] = '\x0';
} else {
find->name[fnlen - 1] = '\x0';
find->crid = crypto_find_driver(find->name);
if (find->crid == -1)
return (ENOENT);
}
return (0);
}
static void
fcrypt_dtor(void *data)
{
struct fcrypt *fcr = data;
struct csession *cse;
while ((cse = TAILQ_FIRST(&fcr->csessions))) {
TAILQ_REMOVE(&fcr->csessions, cse, next);
KASSERT(refcount_load(&cse->refs) == 1,
("%s: crypto session %p with %d refs", __func__, cse,
refcount_load(&cse->refs)));
cse_free(cse);
}
mtx_destroy(&fcr->lock);
free(fcr, M_XDATA);
}
static int
crypto_open(struct cdev *dev, int oflags, int devtype, struct thread *td)
{
struct fcrypt *fcr;
int error;
fcr = malloc(sizeof(struct fcrypt), M_XDATA, M_WAITOK | M_ZERO);
TAILQ_INIT(&fcr->csessions);
mtx_init(&fcr->lock, "fcrypt", NULL, MTX_DEF);
error = devfs_set_cdevpriv(fcr, fcrypt_dtor);
if (error)
fcrypt_dtor(fcr);
return (error);
}
static int
crypto_ioctl(struct cdev *dev, u_long cmd, caddr_t data, int flag,
struct thread *td)
{
struct fcrypt *fcr;
struct csession *cse;
struct session2_op *sop;
struct crypt_op *cop;
struct crypt_aead *caead;
uint32_t ses;
int error = 0;
union {
struct session2_op sopc;
#ifdef COMPAT_FREEBSD32
struct crypt_op copc;
struct crypt_aead aeadc;
#endif
} thunk;
#ifdef COMPAT_FREEBSD32
u_long cmd32;
void *data32;
cmd32 = 0;
data32 = NULL;
switch (cmd) {
case CIOCGSESSION32:
cmd32 = cmd;
data32 = data;
cmd = CIOCGSESSION;
data = (void *)&thunk.sopc;
session_op_from_32((struct session_op32 *)data32, &thunk.sopc);
break;
case CIOCGSESSION232:
cmd32 = cmd;
data32 = data;
cmd = CIOCGSESSION2;
data = (void *)&thunk.sopc;
session2_op_from_32((struct session2_op32 *)data32,
&thunk.sopc);
break;
case CIOCCRYPT32:
cmd32 = cmd;
data32 = data;
cmd = CIOCCRYPT;
data = (void *)&thunk.copc;
crypt_op_from_32((struct crypt_op32 *)data32, &thunk.copc);
break;
case CIOCCRYPTAEAD32:
cmd32 = cmd;
data32 = data;
cmd = CIOCCRYPTAEAD;
data = (void *)&thunk.aeadc;
crypt_aead_from_32((struct crypt_aead32 *)data32, &thunk.aeadc);
break;
}
#endif
devfs_get_cdevpriv((void **)&fcr);
switch (cmd) {
#ifdef COMPAT_FREEBSD12
case CRIOGET:
/*
* NB: This may fail in cases that the old
* implementation did not if the current process has
* restricted filesystem access (e.g. running in a
* jail that does not expose /dev/crypto or in
* capability mode).
*/
error = kern_openat(td, AT_FDCWD, "/dev/crypto", UIO_SYSSPACE,
O_RDWR, 0);
if (error == 0)
*(uint32_t *)data = td->td_retval[0];
break;
#endif
case CIOCGSESSION:
case CIOCGSESSION2:
if (cmd == CIOCGSESSION) {
session2_op_from_op((void *)data, &thunk.sopc);
sop = &thunk.sopc;
} else
sop = (struct session2_op *)data;
error = cse_create(fcr, sop);
if (cmd == CIOCGSESSION && error == 0)
session2_op_to_op(sop, (void *)data);
break;
case CIOCFSESSION:
ses = *(uint32_t *)data;
if (!cse_delete(fcr, ses)) {
SDT_PROBE1(opencrypto, dev, ioctl, error, __LINE__);
return (EINVAL);
}
break;
case CIOCCRYPT:
cop = (struct crypt_op *)data;
cse = cse_find(fcr, cop->ses);
if (cse == NULL) {
SDT_PROBE1(opencrypto, dev, ioctl, error, __LINE__);
return (EINVAL);
}
error = cryptodev_op(cse, cop);
cse_free(cse);
break;
case CIOCFINDDEV:
error = cryptodev_find((struct crypt_find_op *)data);
break;
case CIOCCRYPTAEAD:
caead = (struct crypt_aead *)data;
cse = cse_find(fcr, caead->ses);
if (cse == NULL) {
SDT_PROBE1(opencrypto, dev, ioctl, error, __LINE__);
return (EINVAL);
}
error = cryptodev_aead(cse, caead);
cse_free(cse);
break;
default:
error = EINVAL;
SDT_PROBE1(opencrypto, dev, ioctl, error, __LINE__);
break;
}
#ifdef COMPAT_FREEBSD32
switch (cmd32) {
case CIOCGSESSION32:
if (error == 0)
session_op_to_32((void *)data, data32);
break;
case CIOCGSESSION232:
if (error == 0)
session2_op_to_32((void *)data, data32);
break;
case CIOCCRYPT32:
if (error == 0)
crypt_op_to_32((void *)data, data32);
break;
case CIOCCRYPTAEAD32:
if (error == 0)
crypt_aead_to_32((void *)data, data32);
break;
}
#endif
return (error);
}
static struct cdevsw crypto_cdevsw = {
.d_version = D_VERSION,
.d_open = crypto_open,
.d_ioctl = crypto_ioctl,
.d_name = "crypto",
};
static struct cdev *crypto_dev;
/*
* Initialization code, both for static and dynamic loading.
*/
static int
cryptodev_modevent(module_t mod, int type, void *unused)
{
switch (type) {
case MOD_LOAD:
if (bootverbose)
printf("crypto: <crypto device>\n");
crypto_dev = make_dev(&crypto_cdevsw, 0,
UID_ROOT, GID_WHEEL, 0666,
"crypto");
return 0;
case MOD_UNLOAD:
/*XXX disallow if active sessions */
destroy_dev(crypto_dev);
return 0;
}
return EINVAL;
}
static moduledata_t cryptodev_mod = {
"cryptodev",
cryptodev_modevent,
0
};
MODULE_VERSION(cryptodev, 1);
DECLARE_MODULE(cryptodev, cryptodev_mod, SI_SUB_PSEUDO, SI_ORDER_ANY);
MODULE_DEPEND(cryptodev, crypto, 1, 1, 1);
MODULE_DEPEND(cryptodev, zlib, 1, 1, 1);