freebsd-nq/sys/dev/netmap/netmap_mem2.c
2014-06-05 21:12:41 +00:00

1378 lines
34 KiB
C

/*
* Copyright (C) 2012-2014 Matteo Landi, Luigi Rizzo, Giuseppe Lettieri. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#ifdef linux
#include "bsd_glue.h"
#endif /* linux */
#ifdef __APPLE__
#include "osx_glue.h"
#endif /* __APPLE__ */
#ifdef __FreeBSD__
#include <sys/cdefs.h> /* prerequisite */
__FBSDID("$FreeBSD$");
#include <sys/types.h>
#include <sys/malloc.h>
#include <sys/proc.h>
#include <vm/vm.h> /* vtophys */
#include <vm/pmap.h> /* vtophys */
#include <sys/socket.h> /* sockaddrs */
#include <sys/selinfo.h>
#include <sys/sysctl.h>
#include <net/if.h>
#include <net/if_var.h>
#include <net/vnet.h>
#include <machine/bus.h> /* bus_dmamap_* */
#endif /* __FreeBSD__ */
#include <net/netmap.h>
#include <dev/netmap/netmap_kern.h>
#include "netmap_mem2.h"
#ifdef linux
#define NMA_LOCK_INIT(n) sema_init(&(n)->nm_mtx, 1)
#define NMA_LOCK_DESTROY(n)
#define NMA_LOCK(n) down(&(n)->nm_mtx)
#define NMA_UNLOCK(n) up(&(n)->nm_mtx)
#else /* !linux */
#define NMA_LOCK_INIT(n) mtx_init(&(n)->nm_mtx, "netmap memory allocator lock", NULL, MTX_DEF)
#define NMA_LOCK_DESTROY(n) mtx_destroy(&(n)->nm_mtx)
#define NMA_LOCK(n) mtx_lock(&(n)->nm_mtx)
#define NMA_UNLOCK(n) mtx_unlock(&(n)->nm_mtx)
#endif /* linux */
struct netmap_obj_params netmap_params[NETMAP_POOLS_NR] = {
[NETMAP_IF_POOL] = {
.size = 1024,
.num = 100,
},
[NETMAP_RING_POOL] = {
.size = 9*PAGE_SIZE,
.num = 200,
},
[NETMAP_BUF_POOL] = {
.size = 2048,
.num = NETMAP_BUF_MAX_NUM,
},
};
struct netmap_obj_params netmap_min_priv_params[NETMAP_POOLS_NR] = {
[NETMAP_IF_POOL] = {
.size = 1024,
.num = 1,
},
[NETMAP_RING_POOL] = {
.size = 5*PAGE_SIZE,
.num = 4,
},
[NETMAP_BUF_POOL] = {
.size = 2048,
.num = 4098,
},
};
/*
* nm_mem is the memory allocator used for all physical interfaces
* running in netmap mode.
* Virtual (VALE) ports will have each its own allocator.
*/
static int netmap_mem_global_config(struct netmap_mem_d *nmd);
static int netmap_mem_global_finalize(struct netmap_mem_d *nmd);
static void netmap_mem_global_deref(struct netmap_mem_d *nmd);
struct netmap_mem_d nm_mem = { /* Our memory allocator. */
.pools = {
[NETMAP_IF_POOL] = {
.name = "netmap_if",
.objminsize = sizeof(struct netmap_if),
.objmaxsize = 4096,
.nummin = 10, /* don't be stingy */
.nummax = 10000, /* XXX very large */
},
[NETMAP_RING_POOL] = {
.name = "netmap_ring",
.objminsize = sizeof(struct netmap_ring),
.objmaxsize = 32*PAGE_SIZE,
.nummin = 2,
.nummax = 1024,
},
[NETMAP_BUF_POOL] = {
.name = "netmap_buf",
.objminsize = 64,
.objmaxsize = 65536,
.nummin = 4,
.nummax = 1000000, /* one million! */
},
},
.config = netmap_mem_global_config,
.finalize = netmap_mem_global_finalize,
.deref = netmap_mem_global_deref,
.nm_id = 1,
.prev = &nm_mem,
.next = &nm_mem,
};
struct netmap_mem_d *netmap_last_mem_d = &nm_mem;
// XXX logically belongs to nm_mem
struct lut_entry *netmap_buffer_lut; /* exported */
/* blueprint for the private memory allocators */
static int netmap_mem_private_config(struct netmap_mem_d *nmd);
static int netmap_mem_private_finalize(struct netmap_mem_d *nmd);
static void netmap_mem_private_deref(struct netmap_mem_d *nmd);
const struct netmap_mem_d nm_blueprint = {
.pools = {
[NETMAP_IF_POOL] = {
.name = "%s_if",
.objminsize = sizeof(struct netmap_if),
.objmaxsize = 4096,
.nummin = 1,
.nummax = 100,
},
[NETMAP_RING_POOL] = {
.name = "%s_ring",
.objminsize = sizeof(struct netmap_ring),
.objmaxsize = 32*PAGE_SIZE,
.nummin = 2,
.nummax = 1024,
},
[NETMAP_BUF_POOL] = {
.name = "%s_buf",
.objminsize = 64,
.objmaxsize = 65536,
.nummin = 4,
.nummax = 1000000, /* one million! */
},
},
.config = netmap_mem_private_config,
.finalize = netmap_mem_private_finalize,
.deref = netmap_mem_private_deref,
.flags = NETMAP_MEM_PRIVATE,
};
/* memory allocator related sysctls */
#define STRINGIFY(x) #x
#define DECLARE_SYSCTLS(id, name) \
SYSCTL_INT(_dev_netmap, OID_AUTO, name##_size, \
CTLFLAG_RW, &netmap_params[id].size, 0, "Requested size of netmap " STRINGIFY(name) "s"); \
SYSCTL_INT(_dev_netmap, OID_AUTO, name##_curr_size, \
CTLFLAG_RD, &nm_mem.pools[id]._objsize, 0, "Current size of netmap " STRINGIFY(name) "s"); \
SYSCTL_INT(_dev_netmap, OID_AUTO, name##_num, \
CTLFLAG_RW, &netmap_params[id].num, 0, "Requested number of netmap " STRINGIFY(name) "s"); \
SYSCTL_INT(_dev_netmap, OID_AUTO, name##_curr_num, \
CTLFLAG_RD, &nm_mem.pools[id].objtotal, 0, "Current number of netmap " STRINGIFY(name) "s"); \
SYSCTL_INT(_dev_netmap, OID_AUTO, priv_##name##_size, \
CTLFLAG_RW, &netmap_min_priv_params[id].size, 0, \
"Default size of private netmap " STRINGIFY(name) "s"); \
SYSCTL_INT(_dev_netmap, OID_AUTO, priv_##name##_num, \
CTLFLAG_RW, &netmap_min_priv_params[id].num, 0, \
"Default number of private netmap " STRINGIFY(name) "s")
SYSCTL_DECL(_dev_netmap);
DECLARE_SYSCTLS(NETMAP_IF_POOL, if);
DECLARE_SYSCTLS(NETMAP_RING_POOL, ring);
DECLARE_SYSCTLS(NETMAP_BUF_POOL, buf);
static int
nm_mem_assign_id(struct netmap_mem_d *nmd)
{
nm_memid_t id;
struct netmap_mem_d *scan = netmap_last_mem_d;
int error = ENOMEM;
NMA_LOCK(&nm_mem);
do {
/* we rely on unsigned wrap around */
id = scan->nm_id + 1;
if (id == 0) /* reserve 0 as error value */
id = 1;
scan = scan->next;
if (id != scan->nm_id) {
nmd->nm_id = id;
nmd->prev = scan->prev;
nmd->next = scan;
scan->prev->next = nmd;
scan->prev = nmd;
netmap_last_mem_d = nmd;
error = 0;
break;
}
} while (scan != netmap_last_mem_d);
NMA_UNLOCK(&nm_mem);
return error;
}
static void
nm_mem_release_id(struct netmap_mem_d *nmd)
{
NMA_LOCK(&nm_mem);
nmd->prev->next = nmd->next;
nmd->next->prev = nmd->prev;
if (netmap_last_mem_d == nmd)
netmap_last_mem_d = nmd->prev;
nmd->prev = nmd->next = NULL;
NMA_UNLOCK(&nm_mem);
}
/*
* First, find the allocator that contains the requested offset,
* then locate the cluster through a lookup table.
*/
vm_paddr_t
netmap_mem_ofstophys(struct netmap_mem_d* nmd, vm_ooffset_t offset)
{
int i;
vm_ooffset_t o = offset;
vm_paddr_t pa;
struct netmap_obj_pool *p;
NMA_LOCK(nmd);
p = nmd->pools;
for (i = 0; i < NETMAP_POOLS_NR; offset -= p[i].memtotal, i++) {
if (offset >= p[i].memtotal)
continue;
// now lookup the cluster's address
pa = p[i].lut[offset / p[i]._objsize].paddr +
offset % p[i]._objsize;
NMA_UNLOCK(nmd);
return pa;
}
/* this is only in case of errors */
D("invalid ofs 0x%x out of 0x%x 0x%x 0x%x", (u_int)o,
p[NETMAP_IF_POOL].memtotal,
p[NETMAP_IF_POOL].memtotal
+ p[NETMAP_RING_POOL].memtotal,
p[NETMAP_IF_POOL].memtotal
+ p[NETMAP_RING_POOL].memtotal
+ p[NETMAP_BUF_POOL].memtotal);
NMA_UNLOCK(nmd);
return 0; // XXX bad address
}
int
netmap_mem_get_info(struct netmap_mem_d* nmd, u_int* size, u_int *memflags,
nm_memid_t *id)
{
int error = 0;
NMA_LOCK(nmd);
error = nmd->config(nmd);
if (error)
goto out;
if (nmd->flags & NETMAP_MEM_FINALIZED) {
*size = nmd->nm_totalsize;
} else {
int i;
*size = 0;
for (i = 0; i < NETMAP_POOLS_NR; i++) {
struct netmap_obj_pool *p = nmd->pools + i;
*size += (p->_numclusters * p->_clustsize);
}
}
*memflags = nmd->flags;
*id = nmd->nm_id;
out:
NMA_UNLOCK(nmd);
return error;
}
/*
* we store objects by kernel address, need to find the offset
* within the pool to export the value to userspace.
* Algorithm: scan until we find the cluster, then add the
* actual offset in the cluster
*/
static ssize_t
netmap_obj_offset(struct netmap_obj_pool *p, const void *vaddr)
{
int i, k = p->_clustentries, n = p->objtotal;
ssize_t ofs = 0;
for (i = 0; i < n; i += k, ofs += p->_clustsize) {
const char *base = p->lut[i].vaddr;
ssize_t relofs = (const char *) vaddr - base;
if (relofs < 0 || relofs >= p->_clustsize)
continue;
ofs = ofs + relofs;
ND("%s: return offset %d (cluster %d) for pointer %p",
p->name, ofs, i, vaddr);
return ofs;
}
D("address %p is not contained inside any cluster (%s)",
vaddr, p->name);
return 0; /* An error occurred */
}
/* Helper functions which convert virtual addresses to offsets */
#define netmap_if_offset(n, v) \
netmap_obj_offset(&(n)->pools[NETMAP_IF_POOL], (v))
#define netmap_ring_offset(n, v) \
((n)->pools[NETMAP_IF_POOL].memtotal + \
netmap_obj_offset(&(n)->pools[NETMAP_RING_POOL], (v)))
#define netmap_buf_offset(n, v) \
((n)->pools[NETMAP_IF_POOL].memtotal + \
(n)->pools[NETMAP_RING_POOL].memtotal + \
netmap_obj_offset(&(n)->pools[NETMAP_BUF_POOL], (v)))
ssize_t
netmap_mem_if_offset(struct netmap_mem_d *nmd, const void *addr)
{
ssize_t v;
NMA_LOCK(nmd);
v = netmap_if_offset(nmd, addr);
NMA_UNLOCK(nmd);
return v;
}
/*
* report the index, and use start position as a hint,
* otherwise buffer allocation becomes terribly expensive.
*/
static void *
netmap_obj_malloc(struct netmap_obj_pool *p, u_int len, uint32_t *start, uint32_t *index)
{
uint32_t i = 0; /* index in the bitmap */
uint32_t mask, j; /* slot counter */
void *vaddr = NULL;
if (len > p->_objsize) {
D("%s request size %d too large", p->name, len);
// XXX cannot reduce the size
return NULL;
}
if (p->objfree == 0) {
D("no more %s objects", p->name);
return NULL;
}
if (start)
i = *start;
/* termination is guaranteed by p->free, but better check bounds on i */
while (vaddr == NULL && i < p->bitmap_slots) {
uint32_t cur = p->bitmap[i];
if (cur == 0) { /* bitmask is fully used */
i++;
continue;
}
/* locate a slot */
for (j = 0, mask = 1; (cur & mask) == 0; j++, mask <<= 1)
;
p->bitmap[i] &= ~mask; /* mark object as in use */
p->objfree--;
vaddr = p->lut[i * 32 + j].vaddr;
if (index)
*index = i * 32 + j;
}
ND("%s allocator: allocated object @ [%d][%d]: vaddr %p", i, j, vaddr);
if (start)
*start = i;
return vaddr;
}
/*
* free by index, not by address.
* XXX should we also cleanup the content ?
*/
static int
netmap_obj_free(struct netmap_obj_pool *p, uint32_t j)
{
uint32_t *ptr, mask;
if (j >= p->objtotal) {
D("invalid index %u, max %u", j, p->objtotal);
return 1;
}
ptr = &p->bitmap[j / 32];
mask = (1 << (j % 32));
if (*ptr & mask) {
D("ouch, double free on buffer %d", j);
return 1;
} else {
*ptr |= mask;
p->objfree++;
return 0;
}
}
/*
* free by address. This is slow but is only used for a few
* objects (rings, nifp)
*/
static void
netmap_obj_free_va(struct netmap_obj_pool *p, void *vaddr)
{
u_int i, j, n = p->numclusters;
for (i = 0, j = 0; i < n; i++, j += p->_clustentries) {
void *base = p->lut[i * p->_clustentries].vaddr;
ssize_t relofs = (ssize_t) vaddr - (ssize_t) base;
/* Given address, is out of the scope of the current cluster.*/
if (vaddr < base || relofs >= p->_clustsize)
continue;
j = j + relofs / p->_objsize;
/* KASSERT(j != 0, ("Cannot free object 0")); */
netmap_obj_free(p, j);
return;
}
D("address %p is not contained inside any cluster (%s)",
vaddr, p->name);
}
#define netmap_if_malloc(n, len) netmap_obj_malloc(&(n)->pools[NETMAP_IF_POOL], len, NULL, NULL)
#define netmap_if_free(n, v) netmap_obj_free_va(&(n)->pools[NETMAP_IF_POOL], (v))
#define netmap_ring_malloc(n, len) netmap_obj_malloc(&(n)->pools[NETMAP_RING_POOL], len, NULL, NULL)
#define netmap_ring_free(n, v) netmap_obj_free_va(&(n)->pools[NETMAP_RING_POOL], (v))
#define netmap_buf_malloc(n, _pos, _index) \
netmap_obj_malloc(&(n)->pools[NETMAP_BUF_POOL], NETMAP_BDG_BUF_SIZE(n), _pos, _index)
#if 0 // XXX unused
/* Return the index associated to the given packet buffer */
#define netmap_buf_index(n, v) \
(netmap_obj_offset(&(n)->pools[NETMAP_BUF_POOL], (v)) / NETMAP_BDG_BUF_SIZE(n))
#endif
/*
* allocate extra buffers in a linked list.
* returns the actual number.
*/
uint32_t
netmap_extra_alloc(struct netmap_adapter *na, uint32_t *head, uint32_t n)
{
struct netmap_mem_d *nmd = na->nm_mem;
uint32_t i, pos = 0; /* opaque, scan position in the bitmap */
NMA_LOCK(nmd);
*head = 0; /* default, 'null' index ie empty list */
for (i = 0 ; i < n; i++) {
uint32_t cur = *head; /* save current head */
uint32_t *p = netmap_buf_malloc(nmd, &pos, head);
if (p == NULL) {
D("no more buffers after %d of %d", i, n);
*head = cur; /* restore */
break;
}
RD(5, "allocate buffer %d -> %d", *head, cur);
*p = cur; /* link to previous head */
}
NMA_UNLOCK(nmd);
return i;
}
static void
netmap_extra_free(struct netmap_adapter *na, uint32_t head)
{
struct lut_entry *lut = na->na_lut;
struct netmap_mem_d *nmd = na->nm_mem;
struct netmap_obj_pool *p = &nmd->pools[NETMAP_BUF_POOL];
uint32_t i, cur, *buf;
D("freeing the extra list");
for (i = 0; head >=2 && head < p->objtotal; i++) {
cur = head;
buf = lut[head].vaddr;
head = *buf;
*buf = 0;
if (netmap_obj_free(p, cur))
break;
}
if (head != 0)
D("breaking with head %d", head);
D("freed %d buffers", i);
}
/* Return nonzero on error */
static int
netmap_new_bufs(struct netmap_mem_d *nmd, struct netmap_slot *slot, u_int n)
{
struct netmap_obj_pool *p = &nmd->pools[NETMAP_BUF_POOL];
u_int i = 0; /* slot counter */
uint32_t pos = 0; /* slot in p->bitmap */
uint32_t index = 0; /* buffer index */
for (i = 0; i < n; i++) {
void *vaddr = netmap_buf_malloc(nmd, &pos, &index);
if (vaddr == NULL) {
D("no more buffers after %d of %d", i, n);
goto cleanup;
}
slot[i].buf_idx = index;
slot[i].len = p->_objsize;
slot[i].flags = 0;
}
ND("allocated %d buffers, %d available, first at %d", n, p->objfree, pos);
return (0);
cleanup:
while (i > 0) {
i--;
netmap_obj_free(p, slot[i].buf_idx);
}
bzero(slot, n * sizeof(slot[0]));
return (ENOMEM);
}
static void
netmap_mem_set_ring(struct netmap_mem_d *nmd, struct netmap_slot *slot, u_int n, uint32_t index)
{
struct netmap_obj_pool *p = &nmd->pools[NETMAP_BUF_POOL];
u_int i;
for (i = 0; i < n; i++) {
slot[i].buf_idx = index;
slot[i].len = p->_objsize;
slot[i].flags = 0;
}
}
static void
netmap_free_buf(struct netmap_mem_d *nmd, uint32_t i)
{
struct netmap_obj_pool *p = &nmd->pools[NETMAP_BUF_POOL];
if (i < 2 || i >= p->objtotal) {
D("Cannot free buf#%d: should be in [2, %d[", i, p->objtotal);
return;
}
netmap_obj_free(p, i);
}
static void
netmap_free_bufs(struct netmap_mem_d *nmd, struct netmap_slot *slot, u_int n)
{
u_int i;
for (i = 0; i < n; i++) {
if (slot[i].buf_idx > 2)
netmap_free_buf(nmd, slot[i].buf_idx);
}
}
static void
netmap_reset_obj_allocator(struct netmap_obj_pool *p)
{
if (p == NULL)
return;
if (p->bitmap)
free(p->bitmap, M_NETMAP);
p->bitmap = NULL;
if (p->lut) {
u_int i;
size_t sz = p->_clustsize;
for (i = 0; i < p->objtotal; i += p->_clustentries) {
if (p->lut[i].vaddr)
contigfree(p->lut[i].vaddr, sz, M_NETMAP);
}
bzero(p->lut, sizeof(struct lut_entry) * p->objtotal);
#ifdef linux
vfree(p->lut);
#else
free(p->lut, M_NETMAP);
#endif
}
p->lut = NULL;
p->objtotal = 0;
p->memtotal = 0;
p->numclusters = 0;
p->objfree = 0;
}
/*
* Free all resources related to an allocator.
*/
static void
netmap_destroy_obj_allocator(struct netmap_obj_pool *p)
{
if (p == NULL)
return;
netmap_reset_obj_allocator(p);
}
/*
* We receive a request for objtotal objects, of size objsize each.
* Internally we may round up both numbers, as we allocate objects
* in small clusters multiple of the page size.
* We need to keep track of objtotal and clustentries,
* as they are needed when freeing memory.
*
* XXX note -- userspace needs the buffers to be contiguous,
* so we cannot afford gaps at the end of a cluster.
*/
/* call with NMA_LOCK held */
static int
netmap_config_obj_allocator(struct netmap_obj_pool *p, u_int objtotal, u_int objsize)
{
int i;
u_int clustsize; /* the cluster size, multiple of page size */
u_int clustentries; /* how many objects per entry */
/* we store the current request, so we can
* detect configuration changes later */
p->r_objtotal = objtotal;
p->r_objsize = objsize;
#define MAX_CLUSTSIZE (1<<17)
#define LINE_ROUND NM_CACHE_ALIGN // 64
if (objsize >= MAX_CLUSTSIZE) {
/* we could do it but there is no point */
D("unsupported allocation for %d bytes", objsize);
return EINVAL;
}
/* make sure objsize is a multiple of LINE_ROUND */
i = (objsize & (LINE_ROUND - 1));
if (i) {
D("XXX aligning object by %d bytes", LINE_ROUND - i);
objsize += LINE_ROUND - i;
}
if (objsize < p->objminsize || objsize > p->objmaxsize) {
D("requested objsize %d out of range [%d, %d]",
objsize, p->objminsize, p->objmaxsize);
return EINVAL;
}
if (objtotal < p->nummin || objtotal > p->nummax) {
D("requested objtotal %d out of range [%d, %d]",
objtotal, p->nummin, p->nummax);
return EINVAL;
}
/*
* Compute number of objects using a brute-force approach:
* given a max cluster size,
* we try to fill it with objects keeping track of the
* wasted space to the next page boundary.
*/
for (clustentries = 0, i = 1;; i++) {
u_int delta, used = i * objsize;
if (used > MAX_CLUSTSIZE)
break;
delta = used % PAGE_SIZE;
if (delta == 0) { // exact solution
clustentries = i;
break;
}
if (delta > ( (clustentries*objsize) % PAGE_SIZE) )
clustentries = i;
}
// D("XXX --- ouch, delta %d (bad for buffers)", delta);
/* compute clustsize and round to the next page */
clustsize = clustentries * objsize;
i = (clustsize & (PAGE_SIZE - 1));
if (i)
clustsize += PAGE_SIZE - i;
if (netmap_verbose)
D("objsize %d clustsize %d objects %d",
objsize, clustsize, clustentries);
/*
* The number of clusters is n = ceil(objtotal/clustentries)
* objtotal' = n * clustentries
*/
p->_clustentries = clustentries;
p->_clustsize = clustsize;
p->_numclusters = (objtotal + clustentries - 1) / clustentries;
/* actual values (may be larger than requested) */
p->_objsize = objsize;
p->_objtotal = p->_numclusters * clustentries;
return 0;
}
/* call with NMA_LOCK held */
static int
netmap_finalize_obj_allocator(struct netmap_obj_pool *p)
{
int i; /* must be signed */
size_t n;
/* optimistically assume we have enough memory */
p->numclusters = p->_numclusters;
p->objtotal = p->_objtotal;
n = sizeof(struct lut_entry) * p->objtotal;
#ifdef linux
p->lut = vmalloc(n);
#else
p->lut = malloc(n, M_NETMAP, M_NOWAIT | M_ZERO);
#endif
if (p->lut == NULL) {
D("Unable to create lookup table (%d bytes) for '%s'", (int)n, p->name);
goto clean;
}
/* Allocate the bitmap */
n = (p->objtotal + 31) / 32;
p->bitmap = malloc(sizeof(uint32_t) * n, M_NETMAP, M_NOWAIT | M_ZERO);
if (p->bitmap == NULL) {
D("Unable to create bitmap (%d entries) for allocator '%s'", (int)n,
p->name);
goto clean;
}
p->bitmap_slots = n;
/*
* Allocate clusters, init pointers and bitmap
*/
n = p->_clustsize;
for (i = 0; i < (int)p->objtotal;) {
int lim = i + p->_clustentries;
char *clust;
clust = contigmalloc(n, M_NETMAP, M_NOWAIT | M_ZERO,
(size_t)0, -1UL, PAGE_SIZE, 0);
if (clust == NULL) {
/*
* If we get here, there is a severe memory shortage,
* so halve the allocated memory to reclaim some.
*/
D("Unable to create cluster at %d for '%s' allocator",
i, p->name);
if (i < 2) /* nothing to halve */
goto out;
lim = i / 2;
for (i--; i >= lim; i--) {
p->bitmap[ (i>>5) ] &= ~( 1 << (i & 31) );
if (i % p->_clustentries == 0 && p->lut[i].vaddr)
contigfree(p->lut[i].vaddr,
n, M_NETMAP);
}
out:
p->objtotal = i;
/* we may have stopped in the middle of a cluster */
p->numclusters = (i + p->_clustentries - 1) / p->_clustentries;
break;
}
for (; i < lim; i++, clust += p->_objsize) {
p->bitmap[ (i>>5) ] |= ( 1 << (i & 31) );
p->lut[i].vaddr = clust;
p->lut[i].paddr = vtophys(clust);
}
}
p->objfree = p->objtotal;
p->memtotal = p->numclusters * p->_clustsize;
if (p->objfree == 0)
goto clean;
if (netmap_verbose)
D("Pre-allocated %d clusters (%d/%dKB) for '%s'",
p->numclusters, p->_clustsize >> 10,
p->memtotal >> 10, p->name);
return 0;
clean:
netmap_reset_obj_allocator(p);
return ENOMEM;
}
/* call with lock held */
static int
netmap_memory_config_changed(struct netmap_mem_d *nmd)
{
int i;
for (i = 0; i < NETMAP_POOLS_NR; i++) {
if (nmd->pools[i].r_objsize != netmap_params[i].size ||
nmd->pools[i].r_objtotal != netmap_params[i].num)
return 1;
}
return 0;
}
static void
netmap_mem_reset_all(struct netmap_mem_d *nmd)
{
int i;
if (netmap_verbose)
D("resetting %p", nmd);
for (i = 0; i < NETMAP_POOLS_NR; i++) {
netmap_reset_obj_allocator(&nmd->pools[i]);
}
nmd->flags &= ~NETMAP_MEM_FINALIZED;
}
static int
netmap_mem_finalize_all(struct netmap_mem_d *nmd)
{
int i;
if (nmd->flags & NETMAP_MEM_FINALIZED)
return 0;
nmd->lasterr = 0;
nmd->nm_totalsize = 0;
for (i = 0; i < NETMAP_POOLS_NR; i++) {
nmd->lasterr = netmap_finalize_obj_allocator(&nmd->pools[i]);
if (nmd->lasterr)
goto error;
nmd->nm_totalsize += nmd->pools[i].memtotal;
}
/* buffers 0 and 1 are reserved */
nmd->pools[NETMAP_BUF_POOL].objfree -= 2;
nmd->pools[NETMAP_BUF_POOL].bitmap[0] = ~3;
nmd->flags |= NETMAP_MEM_FINALIZED;
if (netmap_verbose)
D("interfaces %d KB, rings %d KB, buffers %d MB",
nmd->pools[NETMAP_IF_POOL].memtotal >> 10,
nmd->pools[NETMAP_RING_POOL].memtotal >> 10,
nmd->pools[NETMAP_BUF_POOL].memtotal >> 20);
if (netmap_verbose)
D("Free buffers: %d", nmd->pools[NETMAP_BUF_POOL].objfree);
return 0;
error:
netmap_mem_reset_all(nmd);
return nmd->lasterr;
}
void
netmap_mem_private_delete(struct netmap_mem_d *nmd)
{
if (nmd == NULL)
return;
if (netmap_verbose)
D("deleting %p", nmd);
if (nmd->refcount > 0)
D("bug: deleting mem allocator with refcount=%d!", nmd->refcount);
nm_mem_release_id(nmd);
if (netmap_verbose)
D("done deleting %p", nmd);
NMA_LOCK_DESTROY(nmd);
free(nmd, M_DEVBUF);
}
static int
netmap_mem_private_config(struct netmap_mem_d *nmd)
{
/* nothing to do, we are configured on creation
* and configuration never changes thereafter
*/
return 0;
}
static int
netmap_mem_private_finalize(struct netmap_mem_d *nmd)
{
int err;
NMA_LOCK(nmd);
nmd->refcount++;
err = netmap_mem_finalize_all(nmd);
NMA_UNLOCK(nmd);
return err;
}
static void
netmap_mem_private_deref(struct netmap_mem_d *nmd)
{
NMA_LOCK(nmd);
if (--nmd->refcount <= 0)
netmap_mem_reset_all(nmd);
NMA_UNLOCK(nmd);
}
/*
* allocator for private memory
*/
struct netmap_mem_d *
netmap_mem_private_new(const char *name, u_int txr, u_int txd,
u_int rxr, u_int rxd, u_int extra_bufs, u_int npipes, int *perr)
{
struct netmap_mem_d *d = NULL;
struct netmap_obj_params p[NETMAP_POOLS_NR];
int i, err;
u_int v, maxd;
d = malloc(sizeof(struct netmap_mem_d),
M_DEVBUF, M_NOWAIT | M_ZERO);
if (d == NULL) {
err = ENOMEM;
goto error;
}
*d = nm_blueprint;
err = nm_mem_assign_id(d);
if (err)
goto error;
/* account for the fake host rings */
txr++;
rxr++;
/* copy the min values */
for (i = 0; i < NETMAP_POOLS_NR; i++) {
p[i] = netmap_min_priv_params[i];
}
/* possibly increase them to fit user request */
v = sizeof(struct netmap_if) + sizeof(ssize_t) * (txr + rxr);
if (p[NETMAP_IF_POOL].size < v)
p[NETMAP_IF_POOL].size = v;
v = 2 + 4 * npipes;
if (p[NETMAP_IF_POOL].num < v)
p[NETMAP_IF_POOL].num = v;
maxd = (txd > rxd) ? txd : rxd;
v = sizeof(struct netmap_ring) + sizeof(struct netmap_slot) * maxd;
if (p[NETMAP_RING_POOL].size < v)
p[NETMAP_RING_POOL].size = v;
/* each pipe endpoint needs two tx rings (1 normal + 1 host, fake)
* and two rx rings (again, 1 normal and 1 fake host)
*/
v = txr + rxr + 8 * npipes;
if (p[NETMAP_RING_POOL].num < v)
p[NETMAP_RING_POOL].num = v;
/* for each pipe we only need the buffers for the 4 "real" rings.
* On the other end, the pipe ring dimension may be different from
* the parent port ring dimension. As a compromise, we allocate twice the
* space actually needed if the pipe rings were the same size as the parent rings
*/
v = (4 * npipes + rxr) * rxd + (4 * npipes + txr) * txd + 2 + extra_bufs;
/* the +2 is for the tx and rx fake buffers (indices 0 and 1) */
if (p[NETMAP_BUF_POOL].num < v)
p[NETMAP_BUF_POOL].num = v;
if (netmap_verbose)
D("req if %d*%d ring %d*%d buf %d*%d",
p[NETMAP_IF_POOL].num,
p[NETMAP_IF_POOL].size,
p[NETMAP_RING_POOL].num,
p[NETMAP_RING_POOL].size,
p[NETMAP_BUF_POOL].num,
p[NETMAP_BUF_POOL].size);
for (i = 0; i < NETMAP_POOLS_NR; i++) {
snprintf(d->pools[i].name, NETMAP_POOL_MAX_NAMSZ,
nm_blueprint.pools[i].name,
name);
err = netmap_config_obj_allocator(&d->pools[i],
p[i].num, p[i].size);
if (err)
goto error;
}
d->flags &= ~NETMAP_MEM_FINALIZED;
NMA_LOCK_INIT(d);
return d;
error:
netmap_mem_private_delete(d);
if (perr)
*perr = err;
return NULL;
}
/* call with lock held */
static int
netmap_mem_global_config(struct netmap_mem_d *nmd)
{
int i;
if (nmd->refcount)
/* already in use, we cannot change the configuration */
goto out;
if (!netmap_memory_config_changed(nmd))
goto out;
D("reconfiguring");
if (nmd->flags & NETMAP_MEM_FINALIZED) {
/* reset previous allocation */
for (i = 0; i < NETMAP_POOLS_NR; i++) {
netmap_reset_obj_allocator(&nmd->pools[i]);
}
nmd->flags &= ~NETMAP_MEM_FINALIZED;
}
for (i = 0; i < NETMAP_POOLS_NR; i++) {
nmd->lasterr = netmap_config_obj_allocator(&nmd->pools[i],
netmap_params[i].num, netmap_params[i].size);
if (nmd->lasterr)
goto out;
}
out:
return nmd->lasterr;
}
static int
netmap_mem_global_finalize(struct netmap_mem_d *nmd)
{
int err;
NMA_LOCK(nmd);
/* update configuration if changed */
if (netmap_mem_global_config(nmd))
goto out;
nmd->refcount++;
if (nmd->flags & NETMAP_MEM_FINALIZED) {
/* may happen if config is not changed */
ND("nothing to do");
goto out;
}
if (netmap_mem_finalize_all(nmd))
goto out;
/* backward compatibility */
netmap_buf_size = nmd->pools[NETMAP_BUF_POOL]._objsize;
netmap_total_buffers = nmd->pools[NETMAP_BUF_POOL].objtotal;
netmap_buffer_lut = nmd->pools[NETMAP_BUF_POOL].lut;
netmap_buffer_base = nmd->pools[NETMAP_BUF_POOL].lut[0].vaddr;
nmd->lasterr = 0;
out:
if (nmd->lasterr)
nmd->refcount--;
err = nmd->lasterr;
NMA_UNLOCK(nmd);
return err;
}
int
netmap_mem_init(void)
{
NMA_LOCK_INIT(&nm_mem);
return (0);
}
void
netmap_mem_fini(void)
{
int i;
for (i = 0; i < NETMAP_POOLS_NR; i++) {
netmap_destroy_obj_allocator(&nm_mem.pools[i]);
}
NMA_LOCK_DESTROY(&nm_mem);
}
static void
netmap_free_rings(struct netmap_adapter *na)
{
struct netmap_kring *kring;
struct netmap_ring *ring;
if (!na->tx_rings)
return;
for (kring = na->tx_rings; kring != na->rx_rings; kring++) {
ring = kring->ring;
if (ring == NULL)
continue;
netmap_free_bufs(na->nm_mem, ring->slot, kring->nkr_num_slots);
netmap_ring_free(na->nm_mem, ring);
kring->ring = NULL;
}
for (/* cont'd from above */; kring != na->tailroom; kring++) {
ring = kring->ring;
if (ring == NULL)
continue;
netmap_free_bufs(na->nm_mem, ring->slot, kring->nkr_num_slots);
netmap_ring_free(na->nm_mem, ring);
kring->ring = NULL;
}
}
/* call with NMA_LOCK held *
*
* Allocate netmap rings and buffers for this card
* The rings are contiguous, but have variable size.
* The kring array must follow the layout described
* in netmap_krings_create().
*/
int
netmap_mem_rings_create(struct netmap_adapter *na)
{
struct netmap_ring *ring;
u_int len, ndesc;
struct netmap_kring *kring;
u_int i;
NMA_LOCK(na->nm_mem);
/* transmit rings */
for (i =0, kring = na->tx_rings; kring != na->rx_rings; kring++, i++) {
if (kring->ring) {
ND("%s %ld already created", kring->name, kring - na->tx_rings);
continue; /* already created by somebody else */
}
ndesc = kring->nkr_num_slots;
len = sizeof(struct netmap_ring) +
ndesc * sizeof(struct netmap_slot);
ring = netmap_ring_malloc(na->nm_mem, len);
if (ring == NULL) {
D("Cannot allocate tx_ring");
goto cleanup;
}
ND("txring at %p", ring);
kring->ring = ring;
*(uint32_t *)(uintptr_t)&ring->num_slots = ndesc;
*(int64_t *)(uintptr_t)&ring->buf_ofs =
(na->nm_mem->pools[NETMAP_IF_POOL].memtotal +
na->nm_mem->pools[NETMAP_RING_POOL].memtotal) -
netmap_ring_offset(na->nm_mem, ring);
/* copy values from kring */
ring->head = kring->rhead;
ring->cur = kring->rcur;
ring->tail = kring->rtail;
*(uint16_t *)(uintptr_t)&ring->nr_buf_size =
NETMAP_BDG_BUF_SIZE(na->nm_mem);
ND("%s h %d c %d t %d", kring->name,
ring->head, ring->cur, ring->tail);
ND("initializing slots for txring");
if (i != na->num_tx_rings || (na->na_flags & NAF_HOST_RINGS)) {
/* this is a real ring */
if (netmap_new_bufs(na->nm_mem, ring->slot, ndesc)) {
D("Cannot allocate buffers for tx_ring");
goto cleanup;
}
} else {
/* this is a fake tx ring, set all indices to 0 */
netmap_mem_set_ring(na->nm_mem, ring->slot, ndesc, 0);
}
}
/* receive rings */
for ( i = 0 /* kring cont'd from above */ ; kring != na->tailroom; kring++, i++) {
if (kring->ring) {
ND("%s %ld already created", kring->name, kring - na->rx_rings);
continue; /* already created by somebody else */
}
ndesc = kring->nkr_num_slots;
len = sizeof(struct netmap_ring) +
ndesc * sizeof(struct netmap_slot);
ring = netmap_ring_malloc(na->nm_mem, len);
if (ring == NULL) {
D("Cannot allocate rx_ring");
goto cleanup;
}
ND("rxring at %p", ring);
kring->ring = ring;
*(uint32_t *)(uintptr_t)&ring->num_slots = ndesc;
*(int64_t *)(uintptr_t)&ring->buf_ofs =
(na->nm_mem->pools[NETMAP_IF_POOL].memtotal +
na->nm_mem->pools[NETMAP_RING_POOL].memtotal) -
netmap_ring_offset(na->nm_mem, ring);
/* copy values from kring */
ring->head = kring->rhead;
ring->cur = kring->rcur;
ring->tail = kring->rtail;
*(int *)(uintptr_t)&ring->nr_buf_size =
NETMAP_BDG_BUF_SIZE(na->nm_mem);
ND("%s h %d c %d t %d", kring->name,
ring->head, ring->cur, ring->tail);
ND("initializing slots for rxring %p", ring);
if (i != na->num_rx_rings || (na->na_flags & NAF_HOST_RINGS)) {
/* this is a real ring */
if (netmap_new_bufs(na->nm_mem, ring->slot, ndesc)) {
D("Cannot allocate buffers for rx_ring");
goto cleanup;
}
} else {
/* this is a fake rx ring, set all indices to 1 */
netmap_mem_set_ring(na->nm_mem, ring->slot, ndesc, 1);
}
}
NMA_UNLOCK(na->nm_mem);
return 0;
cleanup:
netmap_free_rings(na);
NMA_UNLOCK(na->nm_mem);
return ENOMEM;
}
void
netmap_mem_rings_delete(struct netmap_adapter *na)
{
/* last instance, release bufs and rings */
NMA_LOCK(na->nm_mem);
netmap_free_rings(na);
NMA_UNLOCK(na->nm_mem);
}
/* call with NMA_LOCK held */
/*
* Allocate the per-fd structure netmap_if.
*
* We assume that the configuration stored in na
* (number of tx/rx rings and descs) does not change while
* the interface is in netmap mode.
*/
struct netmap_if *
netmap_mem_if_new(const char *ifname, struct netmap_adapter *na)
{
struct netmap_if *nifp;
ssize_t base; /* handy for relative offsets between rings and nifp */
u_int i, len, ntx, nrx;
/* account for the (eventually fake) host rings */
ntx = na->num_tx_rings + 1;
nrx = na->num_rx_rings + 1;
/*
* the descriptor is followed inline by an array of offsets
* to the tx and rx rings in the shared memory region.
*/
NMA_LOCK(na->nm_mem);
len = sizeof(struct netmap_if) + (nrx + ntx) * sizeof(ssize_t);
nifp = netmap_if_malloc(na->nm_mem, len);
if (nifp == NULL) {
NMA_UNLOCK(na->nm_mem);
return NULL;
}
/* initialize base fields -- override const */
*(u_int *)(uintptr_t)&nifp->ni_tx_rings = na->num_tx_rings;
*(u_int *)(uintptr_t)&nifp->ni_rx_rings = na->num_rx_rings;
strncpy(nifp->ni_name, ifname, (size_t)IFNAMSIZ);
/*
* fill the slots for the rx and tx rings. They contain the offset
* between the ring and nifp, so the information is usable in
* userspace to reach the ring from the nifp.
*/
base = netmap_if_offset(na->nm_mem, nifp);
for (i = 0; i < ntx; i++) {
*(ssize_t *)(uintptr_t)&nifp->ring_ofs[i] =
netmap_ring_offset(na->nm_mem, na->tx_rings[i].ring) - base;
}
for (i = 0; i < nrx; i++) {
*(ssize_t *)(uintptr_t)&nifp->ring_ofs[i+ntx] =
netmap_ring_offset(na->nm_mem, na->rx_rings[i].ring) - base;
}
NMA_UNLOCK(na->nm_mem);
return (nifp);
}
void
netmap_mem_if_delete(struct netmap_adapter *na, struct netmap_if *nifp)
{
if (nifp == NULL)
/* nothing to do */
return;
NMA_LOCK(na->nm_mem);
if (nifp->ni_bufs_head)
netmap_extra_free(na, nifp->ni_bufs_head);
netmap_if_free(na->nm_mem, nifp);
NMA_UNLOCK(na->nm_mem);
}
static void
netmap_mem_global_deref(struct netmap_mem_d *nmd)
{
NMA_LOCK(nmd);
nmd->refcount--;
if (netmap_verbose)
D("refcount = %d", nmd->refcount);
NMA_UNLOCK(nmd);
}
int
netmap_mem_finalize(struct netmap_mem_d *nmd)
{
return nmd->finalize(nmd);
}
void
netmap_mem_deref(struct netmap_mem_d *nmd)
{
return nmd->deref(nmd);
}