2562 lines
96 KiB
C++
2562 lines
96 KiB
C++
/* Definitions of target machine GNU compiler. IA-64 version.
|
||
Copyright (C) 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
|
||
Contributed by James E. Wilson <wilson@cygnus.com> and
|
||
David Mosberger <davidm@hpl.hp.com>.
|
||
|
||
This file is part of GNU CC.
|
||
|
||
GNU CC is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2, or (at your option)
|
||
any later version.
|
||
|
||
GNU CC is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GNU CC; see the file COPYING. If not, write to
|
||
the Free Software Foundation, 59 Temple Place - Suite 330,
|
||
Boston, MA 02111-1307, USA. */
|
||
|
||
/* ??? Look at ABI group documents for list of preprocessor macros and
|
||
other features required for ABI compliance. */
|
||
|
||
/* ??? Functions containing a non-local goto target save many registers. Why?
|
||
See for instance execute/920428-2.c. */
|
||
|
||
/* ??? Add support for short data/bss sections. */
|
||
|
||
|
||
/* Run-time target specifications */
|
||
|
||
#define EXTRA_SPECS \
|
||
{ "cpp_cpu", CPP_CPU_SPEC }, \
|
||
{ "asm_extra", ASM_EXTRA_SPEC },
|
||
|
||
#define CPP_CPU_SPEC " \
|
||
-Acpu=ia64 -Amachine=ia64 -D__ia64 -D__ia64__ %{!milp32:-D_LP64 -D__LP64__} \
|
||
-D__ELF__"
|
||
|
||
#define CC1_SPEC "%(cc1_cpu) "
|
||
|
||
#define ASM_EXTRA_SPEC ""
|
||
|
||
|
||
/* This declaration should be present. */
|
||
extern int target_flags;
|
||
|
||
/* This series of macros is to allow compiler command arguments to enable or
|
||
disable the use of optional features of the target machine. */
|
||
|
||
#define MASK_BIG_ENDIAN 0x00000001 /* Generate big endian code. */
|
||
|
||
#define MASK_GNU_AS 0x00000002 /* Generate code for GNU as. */
|
||
|
||
#define MASK_GNU_LD 0x00000004 /* Generate code for GNU ld. */
|
||
|
||
#define MASK_NO_PIC 0x00000008 /* Generate code without GP reg. */
|
||
|
||
#define MASK_VOL_ASM_STOP 0x00000010 /* Emit stop bits for vol ext asm. */
|
||
|
||
#define MASK_ILP32 0x00000020 /* Generate ILP32 code. */
|
||
|
||
#define MASK_B_STEP 0x00000040 /* Emit code for Itanium B step. */
|
||
|
||
#define MASK_REG_NAMES 0x00000080 /* Use in/loc/out register names. */
|
||
|
||
#define MASK_NO_SDATA 0x00000100 /* Disable sdata/scommon/sbss. */
|
||
|
||
#define MASK_CONST_GP 0x00000200 /* treat gp as program-wide constant */
|
||
|
||
#define MASK_AUTO_PIC 0x00000400 /* generate automatically PIC */
|
||
|
||
#define MASK_INLINE_DIV_LAT 0x00000800 /* inline div, min latency. */
|
||
|
||
#define MASK_INLINE_DIV_THR 0x00001000 /* inline div, max throughput. */
|
||
|
||
#define MASK_DWARF2_ASM 0x40000000 /* test dwarf2 line info via gas. */
|
||
|
||
#define TARGET_BIG_ENDIAN (target_flags & MASK_BIG_ENDIAN)
|
||
|
||
#define TARGET_GNU_AS (target_flags & MASK_GNU_AS)
|
||
|
||
#define TARGET_GNU_LD (target_flags & MASK_GNU_LD)
|
||
|
||
#define TARGET_NO_PIC (target_flags & MASK_NO_PIC)
|
||
|
||
#define TARGET_VOL_ASM_STOP (target_flags & MASK_VOL_ASM_STOP)
|
||
|
||
#define TARGET_ILP32 (target_flags & MASK_ILP32)
|
||
|
||
#define TARGET_B_STEP (target_flags & MASK_B_STEP)
|
||
|
||
#define TARGET_REG_NAMES (target_flags & MASK_REG_NAMES)
|
||
|
||
#define TARGET_NO_SDATA (target_flags & MASK_NO_SDATA)
|
||
|
||
#define TARGET_CONST_GP (target_flags & MASK_CONST_GP)
|
||
|
||
#define TARGET_AUTO_PIC (target_flags & MASK_AUTO_PIC)
|
||
|
||
#define TARGET_INLINE_DIV_LAT (target_flags & MASK_INLINE_DIV_LAT)
|
||
|
||
#define TARGET_INLINE_DIV_THR (target_flags & MASK_INLINE_DIV_THR)
|
||
|
||
#define TARGET_INLINE_DIV \
|
||
(target_flags & (MASK_INLINE_DIV_LAT | MASK_INLINE_DIV_THR))
|
||
|
||
#define TARGET_DWARF2_ASM (target_flags & MASK_DWARF2_ASM)
|
||
|
||
/* This macro defines names of command options to set and clear bits in
|
||
`target_flags'. Its definition is an initializer with a subgrouping for
|
||
each command option. */
|
||
|
||
#define TARGET_SWITCHES \
|
||
{ \
|
||
{ "big-endian", MASK_BIG_ENDIAN, \
|
||
N_("Generate big endian code") }, \
|
||
{ "little-endian", -MASK_BIG_ENDIAN, \
|
||
N_("Generate little endian code") }, \
|
||
{ "gnu-as", MASK_GNU_AS, \
|
||
N_("Generate code for GNU as") }, \
|
||
{ "no-gnu-as", -MASK_GNU_AS, \
|
||
N_("Generate code for Intel as") }, \
|
||
{ "gnu-ld", MASK_GNU_LD, \
|
||
N_("Generate code for GNU ld") }, \
|
||
{ "no-gnu-ld", -MASK_GNU_LD, \
|
||
N_("Generate code for Intel ld") }, \
|
||
{ "no-pic", MASK_NO_PIC, \
|
||
N_("Generate code without GP reg") }, \
|
||
{ "volatile-asm-stop", MASK_VOL_ASM_STOP, \
|
||
N_("Emit stop bits before and after volatile extended asms") }, \
|
||
{ "no-volatile-asm-stop", -MASK_VOL_ASM_STOP, \
|
||
N_("Don't emit stop bits before and after volatile extended asms") }, \
|
||
{ "b-step", MASK_B_STEP, \
|
||
N_("Emit code for Itanium (TM) processor B step")}, \
|
||
{ "register-names", MASK_REG_NAMES, \
|
||
N_("Use in/loc/out register names")}, \
|
||
{ "no-sdata", MASK_NO_SDATA, \
|
||
N_("Disable use of sdata/scommon/sbss")}, \
|
||
{ "sdata", -MASK_NO_SDATA, \
|
||
N_("Enable use of sdata/scommon/sbss")}, \
|
||
{ "constant-gp", MASK_CONST_GP, \
|
||
N_("gp is constant (but save/restore gp on indirect calls)") }, \
|
||
{ "auto-pic", MASK_AUTO_PIC, \
|
||
N_("Generate self-relocatable code") }, \
|
||
{ "inline-divide-min-latency", MASK_INLINE_DIV_LAT, \
|
||
N_("Generate inline division, optimize for latency") }, \
|
||
{ "inline-divide-max-throughput", MASK_INLINE_DIV_THR, \
|
||
N_("Generate inline division, optimize for throughput") }, \
|
||
{ "dwarf2-asm", MASK_DWARF2_ASM, \
|
||
N_("Enable Dwarf 2 line debug info via GNU as")}, \
|
||
{ "no-dwarf2-asm", -MASK_DWARF2_ASM, \
|
||
N_("Disable Dwarf 2 line debug info via GNU as")}, \
|
||
SUBTARGET_SWITCHES \
|
||
{ "", TARGET_DEFAULT | TARGET_CPU_DEFAULT, \
|
||
NULL } \
|
||
}
|
||
|
||
/* Default target_flags if no switches are specified */
|
||
|
||
#ifndef TARGET_DEFAULT
|
||
#define TARGET_DEFAULT MASK_DWARF2_ASM
|
||
#endif
|
||
|
||
#ifndef TARGET_CPU_DEFAULT
|
||
#define TARGET_CPU_DEFAULT 0
|
||
#endif
|
||
|
||
#ifndef SUBTARGET_SWITCHES
|
||
#define SUBTARGET_SWITCHES
|
||
#endif
|
||
|
||
/* This macro is similar to `TARGET_SWITCHES' but defines names of command
|
||
options that have values. Its definition is an initializer with a
|
||
subgrouping for each command option. */
|
||
|
||
extern const char *ia64_fixed_range_string;
|
||
#define TARGET_OPTIONS \
|
||
{ \
|
||
{ "fixed-range=", &ia64_fixed_range_string, \
|
||
N_("Specify range of registers to make fixed")}, \
|
||
}
|
||
|
||
/* Sometimes certain combinations of command options do not make sense on a
|
||
particular target machine. You can define a macro `OVERRIDE_OPTIONS' to
|
||
take account of this. This macro, if defined, is executed once just after
|
||
all the command options have been parsed. */
|
||
|
||
#define OVERRIDE_OPTIONS ia64_override_options ()
|
||
|
||
/* Some machines may desire to change what optimizations are performed for
|
||
various optimization levels. This macro, if defined, is executed once just
|
||
after the optimization level is determined and before the remainder of the
|
||
command options have been parsed. Values set in this macro are used as the
|
||
default values for the other command line options. */
|
||
|
||
/* #define OPTIMIZATION_OPTIONS(LEVEL,SIZE) */
|
||
|
||
/* Driver configuration */
|
||
|
||
/* A C string constant that tells the GNU CC driver program options to pass to
|
||
CPP. It can also specify how to translate options you give to GNU CC into
|
||
options for GNU CC to pass to the CPP. */
|
||
|
||
/* ??? __LONG_MAX__ depends on LP64/ILP32 switch. */
|
||
/* ??? An alternative is to modify glimits.h to check for __LP64__ instead
|
||
of checked for CPU specific defines. We could also get rid of all LONG_MAX
|
||
defines in other tm.h files. */
|
||
#define CPP_SPEC \
|
||
"%{mcpu=itanium:-D__itanium__} %{mbig-endian:-D__BIG_ENDIAN__} \
|
||
%(cpp_cpu) \
|
||
-D__LONG_MAX__=9223372036854775807L"
|
||
|
||
/* This is always "long" so it doesn't "change" in ILP32 vs. LP64. */
|
||
/* #define NO_BUILTIN_SIZE_TYPE */
|
||
|
||
/* This is always "long" so it doesn't "change" in ILP32 vs. LP64. */
|
||
/* #define NO_BUILTIN_PTRDIFF_TYPE */
|
||
|
||
/* A C string constant that tells the GNU CC driver program options to pass to
|
||
`cc1'. It can also specify how to translate options you give to GNU CC into
|
||
options for GNU CC to pass to the `cc1'. */
|
||
|
||
#undef CC1_SPEC
|
||
#define CC1_SPEC "%{G*}"
|
||
|
||
/* A C string constant that tells the GNU CC driver program options to pass to
|
||
`cc1plus'. It can also specify how to translate options you give to GNU CC
|
||
into options for GNU CC to pass to the `cc1plus'. */
|
||
|
||
/* #define CC1PLUS_SPEC "" */
|
||
|
||
/* Storage Layout */
|
||
|
||
/* Define this macro to have the value 1 if the most significant bit in a byte
|
||
has the lowest number; otherwise define it to have the value zero. */
|
||
|
||
#define BITS_BIG_ENDIAN 0
|
||
|
||
#define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
|
||
|
||
/* Define this macro to have the value 1 if, in a multiword object, the most
|
||
significant word has the lowest number. */
|
||
|
||
#define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
|
||
|
||
#if defined(__BIG_ENDIAN__)
|
||
#define LIBGCC2_WORDS_BIG_ENDIAN 1
|
||
#else
|
||
#define LIBGCC2_WORDS_BIG_ENDIAN 0
|
||
#endif
|
||
|
||
#define BITS_PER_UNIT 8
|
||
|
||
#define BITS_PER_WORD 64
|
||
|
||
#define UNITS_PER_WORD 8
|
||
|
||
#define POINTER_SIZE (TARGET_ILP32 ? 32 : 64)
|
||
|
||
/* A C expression whose value is zero if pointers that need to be extended
|
||
from being `POINTER_SIZE' bits wide to `Pmode' are sign-extended and one if
|
||
they are zero-extended and negative one if there is an ptr_extend operation.
|
||
|
||
You need not define this macro if the `POINTER_SIZE' is equal to the width
|
||
of `Pmode'. */
|
||
/* Need this for 32 bit pointers, see hpux.h for setting it. */
|
||
/* #define POINTERS_EXTEND_UNSIGNED */
|
||
|
||
/* A macro to update MODE and UNSIGNEDP when an object whose type is TYPE and
|
||
which has the specified mode and signedness is to be stored in a register.
|
||
This macro is only called when TYPE is a scalar type. */
|
||
#define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
|
||
do \
|
||
{ \
|
||
if (GET_MODE_CLASS (MODE) == MODE_INT \
|
||
&& GET_MODE_SIZE (MODE) < 4) \
|
||
(MODE) = SImode; \
|
||
} \
|
||
while (0)
|
||
|
||
/* ??? ABI doesn't allow us to define this. */
|
||
/* #define PROMOTE_FUNCTION_ARGS */
|
||
|
||
/* ??? ABI doesn't allow us to define this. */
|
||
/* #define PROMOTE_FUNCTION_RETURN */
|
||
|
||
#define PARM_BOUNDARY 64
|
||
|
||
/* Define this macro if you wish to preserve a certain alignment for the stack
|
||
pointer. The definition is a C expression for the desired alignment
|
||
(measured in bits). */
|
||
|
||
#define STACK_BOUNDARY 128
|
||
|
||
/* Align frames on double word boundaries */
|
||
#ifndef IA64_STACK_ALIGN
|
||
#define IA64_STACK_ALIGN(LOC) (((LOC) + 15) & ~15)
|
||
#endif
|
||
|
||
#define FUNCTION_BOUNDARY 128
|
||
|
||
/* Optional x86 80-bit float, quad-precision 128-bit float, and quad-word
|
||
128 bit integers all require 128 bit alignment. */
|
||
#define BIGGEST_ALIGNMENT 128
|
||
|
||
/* If defined, a C expression to compute the alignment for a static variable.
|
||
TYPE is the data type, and ALIGN is the alignment that the object
|
||
would ordinarily have. The value of this macro is used instead of that
|
||
alignment to align the object. */
|
||
|
||
#define DATA_ALIGNMENT(TYPE, ALIGN) \
|
||
(TREE_CODE (TYPE) == ARRAY_TYPE \
|
||
&& TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
|
||
&& (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
|
||
|
||
/* If defined, a C expression to compute the alignment given to a constant that
|
||
is being placed in memory. CONSTANT is the constant and ALIGN is the
|
||
alignment that the object would ordinarily have. The value of this macro is
|
||
used instead of that alignment to align the object. */
|
||
|
||
#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
|
||
(TREE_CODE (EXP) == STRING_CST \
|
||
&& (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
|
||
|
||
#define STRICT_ALIGNMENT 1
|
||
|
||
/* Define this if you wish to imitate the way many other C compilers handle
|
||
alignment of bitfields and the structures that contain them.
|
||
The behavior is that the type written for a bitfield (`int', `short', or
|
||
other integer type) imposes an alignment for the entire structure, as if the
|
||
structure really did contain an ordinary field of that type. In addition,
|
||
the bitfield is placed within the structure so that it would fit within such
|
||
a field, not crossing a boundary for it. */
|
||
#define PCC_BITFIELD_TYPE_MATTERS 1
|
||
|
||
/* An integer expression for the size in bits of the largest integer machine
|
||
mode that should actually be used. */
|
||
|
||
/* Allow pairs of registers to be used, which is the intent of the default. */
|
||
#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TImode)
|
||
|
||
/* A code distinguishing the floating point format of the target machine. */
|
||
#define TARGET_FLOAT_FORMAT IEEE_FLOAT_FORMAT
|
||
|
||
/* By default, the C++ compiler will use function addresses in the
|
||
vtable entries. Setting this non-zero tells the compiler to use
|
||
function descriptors instead. The value of this macro says how
|
||
many words wide the descriptor is (normally 2). It is assumed
|
||
that the address of a function descriptor may be treated as a
|
||
pointer to a function. */
|
||
#define TARGET_VTABLE_USES_DESCRIPTORS 2
|
||
|
||
/* Layout of Source Language Data Types */
|
||
|
||
#define INT_TYPE_SIZE 32
|
||
|
||
#define SHORT_TYPE_SIZE 16
|
||
|
||
#define LONG_TYPE_SIZE (TARGET_ILP32 ? 32 : 64)
|
||
|
||
#define MAX_LONG_TYPE_SIZE 64
|
||
|
||
#define LONG_LONG_TYPE_SIZE 64
|
||
|
||
#define CHAR_TYPE_SIZE 8
|
||
|
||
#define FLOAT_TYPE_SIZE 32
|
||
|
||
#define DOUBLE_TYPE_SIZE 64
|
||
|
||
#define LONG_DOUBLE_TYPE_SIZE 128
|
||
|
||
/* Tell real.c that this is the 80-bit Intel extended float format
|
||
packaged in a 128-bit entity. */
|
||
|
||
#define INTEL_EXTENDED_IEEE_FORMAT 1
|
||
|
||
#define DEFAULT_SIGNED_CHAR 1
|
||
|
||
/* A C expression for a string describing the name of the data type to use for
|
||
size values. The typedef name `size_t' is defined using the contents of the
|
||
string. */
|
||
/* ??? Needs to be defined for P64 code. */
|
||
/* #define SIZE_TYPE */
|
||
|
||
/* A C expression for a string describing the name of the data type to use for
|
||
the result of subtracting two pointers. The typedef name `ptrdiff_t' is
|
||
defined using the contents of the string. See `SIZE_TYPE' above for more
|
||
information. */
|
||
/* ??? Needs to be defined for P64 code. */
|
||
/* #define PTRDIFF_TYPE */
|
||
|
||
/* A C expression for a string describing the name of the data type to use for
|
||
wide characters. The typedef name `wchar_t' is defined using the contents
|
||
of the string. See `SIZE_TYPE' above for more information. */
|
||
/* #define WCHAR_TYPE */
|
||
|
||
/* A C expression for the size in bits of the data type for wide characters.
|
||
This is used in `cpp', which cannot make use of `WCHAR_TYPE'. */
|
||
/* #define WCHAR_TYPE_SIZE */
|
||
|
||
|
||
/* Register Basics */
|
||
|
||
/* Number of hardware registers known to the compiler.
|
||
We have 128 general registers, 128 floating point registers,
|
||
64 predicate registers, 8 branch registers, one frame pointer,
|
||
and several "application" registers. */
|
||
|
||
#define FIRST_PSEUDO_REGISTER 335
|
||
|
||
/* Ranges for the various kinds of registers. */
|
||
#define ADDL_REGNO_P(REGNO) ((unsigned HOST_WIDE_INT) (REGNO) <= 3)
|
||
#define GR_REGNO_P(REGNO) ((unsigned HOST_WIDE_INT) (REGNO) <= 127)
|
||
#define FR_REGNO_P(REGNO) ((REGNO) >= 128 && (REGNO) <= 255)
|
||
#define PR_REGNO_P(REGNO) ((REGNO) >= 256 && (REGNO) <= 319)
|
||
#define BR_REGNO_P(REGNO) ((REGNO) >= 320 && (REGNO) <= 327)
|
||
#define GENERAL_REGNO_P(REGNO) \
|
||
(GR_REGNO_P (REGNO) \
|
||
|| (REGNO) == FRAME_POINTER_REGNUM \
|
||
|| (REGNO) == RETURN_ADDRESS_POINTER_REGNUM)
|
||
|
||
#define GR_REG(REGNO) ((REGNO) + 0)
|
||
#define FR_REG(REGNO) ((REGNO) + 128)
|
||
#define PR_REG(REGNO) ((REGNO) + 256)
|
||
#define BR_REG(REGNO) ((REGNO) + 320)
|
||
#define OUT_REG(REGNO) ((REGNO) + 120)
|
||
#define IN_REG(REGNO) ((REGNO) + 112)
|
||
#define LOC_REG(REGNO) ((REGNO) + 32)
|
||
|
||
#define AR_CCV_REGNUM 330
|
||
#define AR_UNAT_REGNUM 331
|
||
#define AR_PFS_REGNUM 332
|
||
#define AR_LC_REGNUM 333
|
||
#define AR_EC_REGNUM 334
|
||
|
||
#define IN_REGNO_P(REGNO) ((REGNO) >= IN_REG (0) && (REGNO) <= IN_REG (7))
|
||
#define LOC_REGNO_P(REGNO) ((REGNO) >= LOC_REG (0) && (REGNO) <= LOC_REG (79))
|
||
#define OUT_REGNO_P(REGNO) ((REGNO) >= OUT_REG (0) && (REGNO) <= OUT_REG (7))
|
||
|
||
#define AR_M_REGNO_P(REGNO) ((REGNO) == AR_CCV_REGNUM \
|
||
|| (REGNO) == AR_UNAT_REGNUM)
|
||
#define AR_I_REGNO_P(REGNO) ((REGNO) >= AR_PFS_REGNUM \
|
||
&& (REGNO) < FIRST_PSEUDO_REGISTER)
|
||
#define AR_REGNO_P(REGNO) ((REGNO) >= AR_CCV_REGNUM \
|
||
&& (REGNO) < FIRST_PSEUDO_REGISTER)
|
||
|
||
|
||
/* ??? Don't really need two sets of macros. I like this one better because
|
||
it is less typing. */
|
||
#define R_GR(REGNO) GR_REG (REGNO)
|
||
#define R_FR(REGNO) FR_REG (REGNO)
|
||
#define R_PR(REGNO) PR_REG (REGNO)
|
||
#define R_BR(REGNO) BR_REG (REGNO)
|
||
|
||
/* An initializer that says which registers are used for fixed purposes all
|
||
throughout the compiled code and are therefore not available for general
|
||
allocation.
|
||
|
||
r0: constant 0
|
||
r1: global pointer (gp)
|
||
r12: stack pointer (sp)
|
||
r13: thread pointer (tp)
|
||
f0: constant 0.0
|
||
f1: constant 1.0
|
||
p0: constant true
|
||
fp: eliminable frame pointer */
|
||
|
||
/* The last 16 stacked regs are reserved for the 8 input and 8 output
|
||
registers. */
|
||
|
||
#define FIXED_REGISTERS \
|
||
{ /* General registers. */ \
|
||
1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, \
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
|
||
/* Floating-point registers. */ \
|
||
1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
|
||
/* Predicate registers. */ \
|
||
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
|
||
/* Branch registers. */ \
|
||
0, 0, 0, 0, 0, 0, 0, 0, \
|
||
/*FP RA CCV UNAT PFS LC EC */ \
|
||
1, 1, 1, 1, 1, 0, 1 \
|
||
}
|
||
|
||
/* Like `FIXED_REGISTERS' but has 1 for each register that is clobbered
|
||
(in general) by function calls as well as for fixed registers. This
|
||
macro therefore identifies the registers that are not available for
|
||
general allocation of values that must live across function calls. */
|
||
|
||
#define CALL_USED_REGISTERS \
|
||
{ /* General registers. */ \
|
||
1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, \
|
||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
|
||
0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, \
|
||
/* Floating-point registers. */ \
|
||
1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
|
||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
|
||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
|
||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
|
||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
|
||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
|
||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
|
||
/* Predicate registers. */ \
|
||
1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
|
||
/* Branch registers. */ \
|
||
1, 0, 0, 0, 0, 0, 1, 1, \
|
||
/*FP RA CCV UNAT PFS LC EC */ \
|
||
1, 1, 1, 1, 1, 0, 1 \
|
||
}
|
||
|
||
/* Like `CALL_USED_REGISTERS' but used to overcome a historical
|
||
problem which makes CALL_USED_REGISTERS *always* include
|
||
all the FIXED_REGISTERS. Until this problem has been
|
||
resolved this macro can be used to overcome this situation.
|
||
In particular, block_propagate() requires this list
|
||
be acurate, or we can remove registers which should be live.
|
||
This macro is used in regs_invalidated_by_call. */
|
||
|
||
#define CALL_REALLY_USED_REGISTERS \
|
||
{ /* General registers. */ \
|
||
1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, \
|
||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
|
||
0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, \
|
||
/* Floating-point registers. */ \
|
||
1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
|
||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
|
||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
|
||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
|
||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
|
||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
|
||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
|
||
/* Predicate registers. */ \
|
||
1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
|
||
/* Branch registers. */ \
|
||
1, 0, 0, 0, 0, 0, 1, 1, \
|
||
/*FP RA CCV UNAT PFS LC EC */ \
|
||
0, 0, 1, 0, 1, 0, 0 \
|
||
}
|
||
|
||
|
||
/* Define this macro if the target machine has register windows. This C
|
||
expression returns the register number as seen by the called function
|
||
corresponding to the register number OUT as seen by the calling function.
|
||
Return OUT if register number OUT is not an outbound register. */
|
||
|
||
#define INCOMING_REGNO(OUT) \
|
||
((unsigned) ((OUT) - OUT_REG (0)) < 8 ? IN_REG ((OUT) - OUT_REG (0)) : (OUT))
|
||
|
||
/* Define this macro if the target machine has register windows. This C
|
||
expression returns the register number as seen by the calling function
|
||
corresponding to the register number IN as seen by the called function.
|
||
Return IN if register number IN is not an inbound register. */
|
||
|
||
#define OUTGOING_REGNO(IN) \
|
||
((unsigned) ((IN) - IN_REG (0)) < 8 ? OUT_REG ((IN) - IN_REG (0)) : (IN))
|
||
|
||
/* Define this macro if the target machine has register windows. This
|
||
C expression returns true if the register is call-saved but is in the
|
||
register window. */
|
||
|
||
#define LOCAL_REGNO(REGNO) \
|
||
(IN_REGNO_P (REGNO) || LOC_REGNO_P (REGNO))
|
||
|
||
/* Add any extra modes needed to represent the condition code.
|
||
|
||
CCImode is used to mark a single predicate register instead
|
||
of a register pair. This is currently only used in reg_raw_mode
|
||
so that flow doesn't do something stupid. */
|
||
|
||
#define EXTRA_CC_MODES CC(CCImode, "CCI")
|
||
|
||
/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
|
||
return the mode to be used for the comparison. Must be defined if
|
||
EXTRA_CC_MODES is defined. */
|
||
|
||
#define SELECT_CC_MODE(OP,X,Y) CCmode
|
||
|
||
/* Order of allocation of registers */
|
||
|
||
/* If defined, an initializer for a vector of integers, containing the numbers
|
||
of hard registers in the order in which GNU CC should prefer to use them
|
||
(from most preferred to least).
|
||
|
||
If this macro is not defined, registers are used lowest numbered first (all
|
||
else being equal).
|
||
|
||
One use of this macro is on machines where the highest numbered registers
|
||
must always be saved and the save-multiple-registers instruction supports
|
||
only sequences of consecutive registers. On such machines, define
|
||
`REG_ALLOC_ORDER' to be an initializer that lists the highest numbered
|
||
allocatable register first. */
|
||
|
||
/* ??? Should the GR return value registers come before or after the rest
|
||
of the caller-save GRs? */
|
||
|
||
#define REG_ALLOC_ORDER \
|
||
{ \
|
||
/* Caller-saved general registers. */ \
|
||
R_GR (14), R_GR (15), R_GR (16), R_GR (17), \
|
||
R_GR (18), R_GR (19), R_GR (20), R_GR (21), R_GR (22), R_GR (23), \
|
||
R_GR (24), R_GR (25), R_GR (26), R_GR (27), R_GR (28), R_GR (29), \
|
||
R_GR (30), R_GR (31), \
|
||
/* Output registers. */ \
|
||
R_GR (120), R_GR (121), R_GR (122), R_GR (123), R_GR (124), R_GR (125), \
|
||
R_GR (126), R_GR (127), \
|
||
/* Caller-saved general registers, also used for return values. */ \
|
||
R_GR (8), R_GR (9), R_GR (10), R_GR (11), \
|
||
/* addl caller-saved general registers. */ \
|
||
R_GR (2), R_GR (3), \
|
||
/* Caller-saved FP registers. */ \
|
||
R_FR (6), R_FR (7), \
|
||
/* Caller-saved FP registers, used for parameters and return values. */ \
|
||
R_FR (8), R_FR (9), R_FR (10), R_FR (11), \
|
||
R_FR (12), R_FR (13), R_FR (14), R_FR (15), \
|
||
/* Rotating caller-saved FP registers. */ \
|
||
R_FR (32), R_FR (33), R_FR (34), R_FR (35), \
|
||
R_FR (36), R_FR (37), R_FR (38), R_FR (39), R_FR (40), R_FR (41), \
|
||
R_FR (42), R_FR (43), R_FR (44), R_FR (45), R_FR (46), R_FR (47), \
|
||
R_FR (48), R_FR (49), R_FR (50), R_FR (51), R_FR (52), R_FR (53), \
|
||
R_FR (54), R_FR (55), R_FR (56), R_FR (57), R_FR (58), R_FR (59), \
|
||
R_FR (60), R_FR (61), R_FR (62), R_FR (63), R_FR (64), R_FR (65), \
|
||
R_FR (66), R_FR (67), R_FR (68), R_FR (69), R_FR (70), R_FR (71), \
|
||
R_FR (72), R_FR (73), R_FR (74), R_FR (75), R_FR (76), R_FR (77), \
|
||
R_FR (78), R_FR (79), R_FR (80), R_FR (81), R_FR (82), R_FR (83), \
|
||
R_FR (84), R_FR (85), R_FR (86), R_FR (87), R_FR (88), R_FR (89), \
|
||
R_FR (90), R_FR (91), R_FR (92), R_FR (93), R_FR (94), R_FR (95), \
|
||
R_FR (96), R_FR (97), R_FR (98), R_FR (99), R_FR (100), R_FR (101), \
|
||
R_FR (102), R_FR (103), R_FR (104), R_FR (105), R_FR (106), R_FR (107), \
|
||
R_FR (108), R_FR (109), R_FR (110), R_FR (111), R_FR (112), R_FR (113), \
|
||
R_FR (114), R_FR (115), R_FR (116), R_FR (117), R_FR (118), R_FR (119), \
|
||
R_FR (120), R_FR (121), R_FR (122), R_FR (123), R_FR (124), R_FR (125), \
|
||
R_FR (126), R_FR (127), \
|
||
/* Caller-saved predicate registers. */ \
|
||
R_PR (6), R_PR (7), R_PR (8), R_PR (9), R_PR (10), R_PR (11), \
|
||
R_PR (12), R_PR (13), R_PR (14), R_PR (15), \
|
||
/* Rotating caller-saved predicate registers. */ \
|
||
R_PR (16), R_PR (17), \
|
||
R_PR (18), R_PR (19), R_PR (20), R_PR (21), R_PR (22), R_PR (23), \
|
||
R_PR (24), R_PR (25), R_PR (26), R_PR (27), R_PR (28), R_PR (29), \
|
||
R_PR (30), R_PR (31), R_PR (32), R_PR (33), R_PR (34), R_PR (35), \
|
||
R_PR (36), R_PR (37), R_PR (38), R_PR (39), R_PR (40), R_PR (41), \
|
||
R_PR (42), R_PR (43), R_PR (44), R_PR (45), R_PR (46), R_PR (47), \
|
||
R_PR (48), R_PR (49), R_PR (50), R_PR (51), R_PR (52), R_PR (53), \
|
||
R_PR (54), R_PR (55), R_PR (56), R_PR (57), R_PR (58), R_PR (59), \
|
||
R_PR (60), R_PR (61), R_PR (62), R_PR (63), \
|
||
/* Caller-saved branch registers. */ \
|
||
R_BR (6), R_BR (7), \
|
||
\
|
||
/* Stacked callee-saved general registers. */ \
|
||
R_GR (32), R_GR (33), R_GR (34), R_GR (35), \
|
||
R_GR (36), R_GR (37), R_GR (38), R_GR (39), R_GR (40), R_GR (41), \
|
||
R_GR (42), R_GR (43), R_GR (44), R_GR (45), R_GR (46), R_GR (47), \
|
||
R_GR (48), R_GR (49), R_GR (50), R_GR (51), R_GR (52), R_GR (53), \
|
||
R_GR (54), R_GR (55), R_GR (56), R_GR (57), R_GR (58), R_GR (59), \
|
||
R_GR (60), R_GR (61), R_GR (62), R_GR (63), R_GR (64), R_GR (65), \
|
||
R_GR (66), R_GR (67), R_GR (68), R_GR (69), R_GR (70), R_GR (71), \
|
||
R_GR (72), R_GR (73), R_GR (74), R_GR (75), R_GR (76), R_GR (77), \
|
||
R_GR (78), R_GR (79), R_GR (80), R_GR (81), R_GR (82), R_GR (83), \
|
||
R_GR (84), R_GR (85), R_GR (86), R_GR (87), R_GR (88), R_GR (89), \
|
||
R_GR (90), R_GR (91), R_GR (92), R_GR (93), R_GR (94), R_GR (95), \
|
||
R_GR (96), R_GR (97), R_GR (98), R_GR (99), R_GR (100), R_GR (101), \
|
||
R_GR (102), R_GR (103), R_GR (104), R_GR (105), R_GR (106), R_GR (107), \
|
||
R_GR (108), \
|
||
/* Input registers. */ \
|
||
R_GR (112), R_GR (113), R_GR (114), R_GR (115), R_GR (116), R_GR (117), \
|
||
R_GR (118), R_GR (119), \
|
||
/* Callee-saved general registers. */ \
|
||
R_GR (4), R_GR (5), R_GR (6), R_GR (7), \
|
||
/* Callee-saved FP registers. */ \
|
||
R_FR (2), R_FR (3), R_FR (4), R_FR (5), R_FR (16), R_FR (17), \
|
||
R_FR (18), R_FR (19), R_FR (20), R_FR (21), R_FR (22), R_FR (23), \
|
||
R_FR (24), R_FR (25), R_FR (26), R_FR (27), R_FR (28), R_FR (29), \
|
||
R_FR (30), R_FR (31), \
|
||
/* Callee-saved predicate registers. */ \
|
||
R_PR (1), R_PR (2), R_PR (3), R_PR (4), R_PR (5), \
|
||
/* Callee-saved branch registers. */ \
|
||
R_BR (1), R_BR (2), R_BR (3), R_BR (4), R_BR (5), \
|
||
\
|
||
/* ??? Stacked registers reserved for fp, rp, and ar.pfs. */ \
|
||
R_GR (109), R_GR (110), R_GR (111), \
|
||
\
|
||
/* Special general registers. */ \
|
||
R_GR (0), R_GR (1), R_GR (12), R_GR (13), \
|
||
/* Special FP registers. */ \
|
||
R_FR (0), R_FR (1), \
|
||
/* Special predicate registers. */ \
|
||
R_PR (0), \
|
||
/* Special branch registers. */ \
|
||
R_BR (0), \
|
||
/* Other fixed registers. */ \
|
||
FRAME_POINTER_REGNUM, RETURN_ADDRESS_POINTER_REGNUM, \
|
||
AR_CCV_REGNUM, AR_UNAT_REGNUM, AR_PFS_REGNUM, AR_LC_REGNUM, \
|
||
AR_EC_REGNUM \
|
||
}
|
||
|
||
/* How Values Fit in Registers */
|
||
|
||
/* A C expression for the number of consecutive hard registers, starting at
|
||
register number REGNO, required to hold a value of mode MODE. */
|
||
|
||
/* ??? We say that BImode PR values require two registers. This allows us to
|
||
easily store the normal and inverted values. We use CCImode to indicate
|
||
a single predicate register. */
|
||
|
||
#define HARD_REGNO_NREGS(REGNO, MODE) \
|
||
((REGNO) == PR_REG (0) && (MODE) == DImode ? 64 \
|
||
: PR_REGNO_P (REGNO) && (MODE) == BImode ? 2 \
|
||
: PR_REGNO_P (REGNO) && (MODE) == CCImode ? 1 \
|
||
: FR_REGNO_P (REGNO) && (MODE) == TFmode && INTEL_EXTENDED_IEEE_FORMAT ? 1 \
|
||
: (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
|
||
|
||
/* A C expression that is nonzero if it is permissible to store a value of mode
|
||
MODE in hard register number REGNO (or in several registers starting with
|
||
that one). */
|
||
|
||
#define HARD_REGNO_MODE_OK(REGNO, MODE) \
|
||
(FR_REGNO_P (REGNO) ? \
|
||
GET_MODE_CLASS (MODE) != MODE_CC && \
|
||
(MODE) != TImode && \
|
||
(MODE) != BImode && \
|
||
((MODE) != TFmode || INTEL_EXTENDED_IEEE_FORMAT) \
|
||
: PR_REGNO_P (REGNO) ? \
|
||
(MODE) == BImode || GET_MODE_CLASS (MODE) == MODE_CC \
|
||
: GR_REGNO_P (REGNO) ? (MODE) != CCImode && (MODE) != TFmode \
|
||
: AR_REGNO_P (REGNO) ? (MODE) == DImode \
|
||
: BR_REGNO_P (REGNO) ? (MODE) == DImode \
|
||
: 0)
|
||
|
||
/* A C expression that is nonzero if it is desirable to choose register
|
||
allocation so as to avoid move instructions between a value of mode MODE1
|
||
and a value of mode MODE2.
|
||
|
||
If `HARD_REGNO_MODE_OK (R, MODE1)' and `HARD_REGNO_MODE_OK (R, MODE2)' are
|
||
ever different for any R, then `MODES_TIEABLE_P (MODE1, MODE2)' must be
|
||
zero. */
|
||
/* Don't tie integer and FP modes, as that causes us to get integer registers
|
||
allocated for FP instructions. TFmode only supported in FP registers so
|
||
we can't tie it with any other modes. */
|
||
#define MODES_TIEABLE_P(MODE1, MODE2) \
|
||
(GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2) \
|
||
&& (((MODE1) == TFmode) == ((MODE2) == TFmode)) \
|
||
&& (((MODE1) == BImode) == ((MODE2) == BImode)))
|
||
|
||
/* Handling Leaf Functions */
|
||
|
||
/* A C initializer for a vector, indexed by hard register number, which
|
||
contains 1 for a register that is allowable in a candidate for leaf function
|
||
treatment. */
|
||
/* ??? This might be useful. */
|
||
/* #define LEAF_REGISTERS */
|
||
|
||
/* A C expression whose value is the register number to which REGNO should be
|
||
renumbered, when a function is treated as a leaf function. */
|
||
/* ??? This might be useful. */
|
||
/* #define LEAF_REG_REMAP(REGNO) */
|
||
|
||
|
||
/* Register Classes */
|
||
|
||
/* An enumeral type that must be defined with all the register class names as
|
||
enumeral values. `NO_REGS' must be first. `ALL_REGS' must be the last
|
||
register class, followed by one more enumeral value, `LIM_REG_CLASSES',
|
||
which is not a register class but rather tells how many classes there
|
||
are. */
|
||
/* ??? When compiling without optimization, it is possible for the only use of
|
||
a pseudo to be a parameter load from the stack with a REG_EQUIV note.
|
||
Regclass handles this case specially and does not assign any costs to the
|
||
pseudo. The pseudo then ends up using the last class before ALL_REGS.
|
||
Thus we must not let either PR_REGS or BR_REGS be the last class. The
|
||
testcase for this is gcc.c-torture/execute/va-arg-7.c. */
|
||
enum reg_class
|
||
{
|
||
NO_REGS,
|
||
PR_REGS,
|
||
BR_REGS,
|
||
AR_M_REGS,
|
||
AR_I_REGS,
|
||
ADDL_REGS,
|
||
GR_REGS,
|
||
FR_REGS,
|
||
GR_AND_BR_REGS,
|
||
GR_AND_FR_REGS,
|
||
ALL_REGS,
|
||
LIM_REG_CLASSES
|
||
};
|
||
|
||
#define GENERAL_REGS GR_REGS
|
||
|
||
/* The number of distinct register classes. */
|
||
#define N_REG_CLASSES ((int) LIM_REG_CLASSES)
|
||
|
||
/* An initializer containing the names of the register classes as C string
|
||
constants. These names are used in writing some of the debugging dumps. */
|
||
#define REG_CLASS_NAMES \
|
||
{ "NO_REGS", "PR_REGS", "BR_REGS", "AR_M_REGS", "AR_I_REGS", \
|
||
"ADDL_REGS", "GR_REGS", "FR_REGS", \
|
||
"GR_AND_BR_REGS", "GR_AND_FR_REGS", "ALL_REGS" }
|
||
|
||
/* An initializer containing the contents of the register classes, as integers
|
||
which are bit masks. The Nth integer specifies the contents of class N.
|
||
The way the integer MASK is interpreted is that register R is in the class
|
||
if `MASK & (1 << R)' is 1. */
|
||
#define REG_CLASS_CONTENTS \
|
||
{ \
|
||
/* NO_REGS. */ \
|
||
{ 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
|
||
0x00000000, 0x00000000, 0x00000000, 0x00000000, \
|
||
0x00000000, 0x00000000, 0x0000 }, \
|
||
/* PR_REGS. */ \
|
||
{ 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
|
||
0x00000000, 0x00000000, 0x00000000, 0x00000000, \
|
||
0xFFFFFFFF, 0xFFFFFFFF, 0x0000 }, \
|
||
/* BR_REGS. */ \
|
||
{ 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
|
||
0x00000000, 0x00000000, 0x00000000, 0x00000000, \
|
||
0x00000000, 0x00000000, 0x00FF }, \
|
||
/* AR_M_REGS. */ \
|
||
{ 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
|
||
0x00000000, 0x00000000, 0x00000000, 0x00000000, \
|
||
0x00000000, 0x00000000, 0x0C00 }, \
|
||
/* AR_I_REGS. */ \
|
||
{ 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
|
||
0x00000000, 0x00000000, 0x00000000, 0x00000000, \
|
||
0x00000000, 0x00000000, 0x7000 }, \
|
||
/* ADDL_REGS. */ \
|
||
{ 0x0000000F, 0x00000000, 0x00000000, 0x00000000, \
|
||
0x00000000, 0x00000000, 0x00000000, 0x00000000, \
|
||
0x00000000, 0x00000000, 0x0000 }, \
|
||
/* GR_REGS. */ \
|
||
{ 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, \
|
||
0x00000000, 0x00000000, 0x00000000, 0x00000000, \
|
||
0x00000000, 0x00000000, 0x0300 }, \
|
||
/* FR_REGS. */ \
|
||
{ 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
|
||
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, \
|
||
0x00000000, 0x00000000, 0x0000 }, \
|
||
/* GR_AND_BR_REGS. */ \
|
||
{ 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, \
|
||
0x00000000, 0x00000000, 0x00000000, 0x00000000, \
|
||
0x00000000, 0x00000000, 0x03FF }, \
|
||
/* GR_AND_FR_REGS. */ \
|
||
{ 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, \
|
||
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, \
|
||
0x00000000, 0x00000000, 0x0300 }, \
|
||
/* ALL_REGS. */ \
|
||
{ 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, \
|
||
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, \
|
||
0xFFFFFFFF, 0xFFFFFFFF, 0x7FFF }, \
|
||
}
|
||
|
||
/* A C expression whose value is a register class containing hard register
|
||
REGNO. In general there is more than one such class; choose a class which
|
||
is "minimal", meaning that no smaller class also contains the register. */
|
||
/* The NO_REGS case is primarily for the benefit of rws_access_reg, which
|
||
may call here with private (invalid) register numbers, such as
|
||
REG_VOLATILE. */
|
||
#define REGNO_REG_CLASS(REGNO) \
|
||
(ADDL_REGNO_P (REGNO) ? ADDL_REGS \
|
||
: GENERAL_REGNO_P (REGNO) ? GR_REGS \
|
||
: FR_REGNO_P (REGNO) ? FR_REGS \
|
||
: PR_REGNO_P (REGNO) ? PR_REGS \
|
||
: BR_REGNO_P (REGNO) ? BR_REGS \
|
||
: AR_M_REGNO_P (REGNO) ? AR_M_REGS \
|
||
: AR_I_REGNO_P (REGNO) ? AR_I_REGS \
|
||
: NO_REGS)
|
||
|
||
/* A macro whose definition is the name of the class to which a valid base
|
||
register must belong. A base register is one used in an address which is
|
||
the register value plus a displacement. */
|
||
#define BASE_REG_CLASS GENERAL_REGS
|
||
|
||
/* A macro whose definition is the name of the class to which a valid index
|
||
register must belong. An index register is one used in an address where its
|
||
value is either multiplied by a scale factor or added to another register
|
||
(as well as added to a displacement). This is needed for POST_MODIFY. */
|
||
#define INDEX_REG_CLASS GENERAL_REGS
|
||
|
||
/* A C expression which defines the machine-dependent operand constraint
|
||
letters for register classes. If CHAR is such a letter, the value should be
|
||
the register class corresponding to it. Otherwise, the value should be
|
||
`NO_REGS'. The register letter `r', corresponding to class `GENERAL_REGS',
|
||
will not be passed to this macro; you do not need to handle it. */
|
||
|
||
#define REG_CLASS_FROM_LETTER(CHAR) \
|
||
((CHAR) == 'f' ? FR_REGS \
|
||
: (CHAR) == 'a' ? ADDL_REGS \
|
||
: (CHAR) == 'b' ? BR_REGS \
|
||
: (CHAR) == 'c' ? PR_REGS \
|
||
: (CHAR) == 'd' ? AR_M_REGS \
|
||
: (CHAR) == 'e' ? AR_I_REGS \
|
||
: NO_REGS)
|
||
|
||
/* A C expression which is nonzero if register number NUM is suitable for use
|
||
as a base register in operand addresses. It may be either a suitable hard
|
||
register or a pseudo register that has been allocated such a hard reg. */
|
||
#define REGNO_OK_FOR_BASE_P(REGNO) \
|
||
(GENERAL_REGNO_P (REGNO) || GENERAL_REGNO_P (reg_renumber[REGNO]))
|
||
|
||
/* A C expression which is nonzero if register number NUM is suitable for use
|
||
as an index register in operand addresses. It may be either a suitable hard
|
||
register or a pseudo register that has been allocated such a hard reg.
|
||
This is needed for POST_MODIFY. */
|
||
#define REGNO_OK_FOR_INDEX_P(NUM) REGNO_OK_FOR_BASE_P (NUM)
|
||
|
||
/* A C expression that places additional restrictions on the register class to
|
||
use when it is necessary to copy value X into a register in class CLASS.
|
||
The value is a register class; perhaps CLASS, or perhaps another, smaller
|
||
class. */
|
||
|
||
/* Don't allow volatile mem reloads into floating point registers. This
|
||
is defined to force reload to choose the r/m case instead of the f/f case
|
||
when reloading (set (reg fX) (mem/v)).
|
||
|
||
Do not reload expressions into AR regs. */
|
||
|
||
#define PREFERRED_RELOAD_CLASS(X, CLASS) \
|
||
(CLASS == FR_REGS && GET_CODE (X) == MEM && MEM_VOLATILE_P (X) ? NO_REGS \
|
||
: CLASS == FR_REGS && GET_CODE (X) == CONST_DOUBLE ? NO_REGS \
|
||
: GET_RTX_CLASS (GET_CODE (X)) != 'o' \
|
||
&& (CLASS == AR_M_REGS || CLASS == AR_I_REGS) ? NO_REGS \
|
||
: CLASS)
|
||
|
||
/* You should define this macro to indicate to the reload phase that it may
|
||
need to allocate at least one register for a reload in addition to the
|
||
register to contain the data. Specifically, if copying X to a register
|
||
CLASS in MODE requires an intermediate register, you should define this
|
||
to return the largest register class all of whose registers can be used
|
||
as intermediate registers or scratch registers. */
|
||
|
||
#define SECONDARY_RELOAD_CLASS(CLASS, MODE, X) \
|
||
ia64_secondary_reload_class (CLASS, MODE, X)
|
||
|
||
/* Certain machines have the property that some registers cannot be copied to
|
||
some other registers without using memory. Define this macro on those
|
||
machines to be a C expression that is non-zero if objects of mode M in
|
||
registers of CLASS1 can only be copied to registers of class CLASS2 by
|
||
storing a register of CLASS1 into memory and loading that memory location
|
||
into a register of CLASS2. */
|
||
|
||
#if 0
|
||
/* ??? May need this, but since we've disallowed TFmode in GR_REGS,
|
||
I'm not quite sure how it could be invoked. The normal problems
|
||
with unions should be solved with the addressof fiddling done by
|
||
movtf and friends. */
|
||
#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
|
||
((MODE) == TFmode && (((CLASS1) == GR_REGS && (CLASS2) == FR_REGS) \
|
||
|| ((CLASS1) == FR_REGS && (CLASS2) == GR_REGS)))
|
||
#endif
|
||
|
||
/* A C expression for the maximum number of consecutive registers of
|
||
class CLASS needed to hold a value of mode MODE.
|
||
This is closely related to the macro `HARD_REGNO_NREGS'. */
|
||
|
||
#define CLASS_MAX_NREGS(CLASS, MODE) \
|
||
((MODE) == BImode && (CLASS) == PR_REGS ? 2 \
|
||
: ((CLASS) == FR_REGS && (MODE) == TFmode) ? 1 \
|
||
: (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
|
||
|
||
/* If defined, gives a class of registers that cannot be used as the
|
||
operand of a SUBREG that changes the mode of the object illegally. */
|
||
|
||
#define CLASS_CANNOT_CHANGE_MODE FR_REGS
|
||
|
||
/* Defines illegal mode changes for CLASS_CANNOT_CHANGE_MODE.
|
||
In FP regs, we can't change FP values to integer values and vice
|
||
versa, but we can change e.g. DImode to SImode. */
|
||
|
||
#define CLASS_CANNOT_CHANGE_MODE_P(FROM,TO) \
|
||
(GET_MODE_CLASS (FROM) != GET_MODE_CLASS (TO))
|
||
|
||
/* A C expression that defines the machine-dependent operand constraint
|
||
letters (`I', `J', `K', .. 'P') that specify particular ranges of
|
||
integer values. */
|
||
|
||
/* 14 bit signed immediate for arithmetic instructions. */
|
||
#define CONST_OK_FOR_I(VALUE) \
|
||
((unsigned HOST_WIDE_INT)(VALUE) + 0x2000 < 0x4000)
|
||
/* 22 bit signed immediate for arith instructions with r0/r1/r2/r3 source. */
|
||
#define CONST_OK_FOR_J(VALUE) \
|
||
((unsigned HOST_WIDE_INT)(VALUE) + 0x200000 < 0x400000)
|
||
/* 8 bit signed immediate for logical instructions. */
|
||
#define CONST_OK_FOR_K(VALUE) ((unsigned HOST_WIDE_INT)(VALUE) + 0x80 < 0x100)
|
||
/* 8 bit adjusted signed immediate for compare pseudo-ops. */
|
||
#define CONST_OK_FOR_L(VALUE) ((unsigned HOST_WIDE_INT)(VALUE) + 0x7F < 0x100)
|
||
/* 6 bit unsigned immediate for shift counts. */
|
||
#define CONST_OK_FOR_M(VALUE) ((unsigned HOST_WIDE_INT)(VALUE) < 0x40)
|
||
/* 9 bit signed immediate for load/store post-increments. */
|
||
#define CONST_OK_FOR_N(VALUE) ((unsigned HOST_WIDE_INT)(VALUE) + 0x100 < 0x200)
|
||
/* 0 for r0. Used by Linux kernel, do not change. */
|
||
#define CONST_OK_FOR_O(VALUE) ((VALUE) == 0)
|
||
/* 0 or -1 for dep instruction. */
|
||
#define CONST_OK_FOR_P(VALUE) ((VALUE) == 0 || (VALUE) == -1)
|
||
|
||
#define CONST_OK_FOR_LETTER_P(VALUE, C) \
|
||
((C) == 'I' ? CONST_OK_FOR_I (VALUE) \
|
||
: (C) == 'J' ? CONST_OK_FOR_J (VALUE) \
|
||
: (C) == 'K' ? CONST_OK_FOR_K (VALUE) \
|
||
: (C) == 'L' ? CONST_OK_FOR_L (VALUE) \
|
||
: (C) == 'M' ? CONST_OK_FOR_M (VALUE) \
|
||
: (C) == 'N' ? CONST_OK_FOR_N (VALUE) \
|
||
: (C) == 'O' ? CONST_OK_FOR_O (VALUE) \
|
||
: (C) == 'P' ? CONST_OK_FOR_P (VALUE) \
|
||
: 0)
|
||
|
||
/* A C expression that defines the machine-dependent operand constraint letters
|
||
(`G', `H') that specify particular ranges of `const_double' values. */
|
||
|
||
/* 0.0 and 1.0 for fr0 and fr1. */
|
||
#define CONST_DOUBLE_OK_FOR_G(VALUE) \
|
||
((VALUE) == CONST0_RTX (GET_MODE (VALUE)) \
|
||
|| (VALUE) == CONST1_RTX (GET_MODE (VALUE)))
|
||
|
||
#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
|
||
((C) == 'G' ? CONST_DOUBLE_OK_FOR_G (VALUE) : 0)
|
||
|
||
/* A C expression that defines the optional machine-dependent constraint
|
||
letters (`Q', `R', `S', `T', `U') that can be used to segregate specific
|
||
types of operands, usually memory references, for the target machine. */
|
||
|
||
/* Non-volatile memory for FP_REG loads/stores. */
|
||
#define CONSTRAINT_OK_FOR_Q(VALUE) \
|
||
(memory_operand((VALUE), VOIDmode) && ! MEM_VOLATILE_P (VALUE))
|
||
/* 1..4 for shladd arguments. */
|
||
#define CONSTRAINT_OK_FOR_R(VALUE) \
|
||
(GET_CODE (VALUE) == CONST_INT && INTVAL (VALUE) >= 1 && INTVAL (VALUE) <= 4)
|
||
/* Non-post-inc memory for asms and other unsavory creatures. */
|
||
#define CONSTRAINT_OK_FOR_S(VALUE) \
|
||
(GET_CODE (VALUE) == MEM \
|
||
&& GET_RTX_CLASS (GET_CODE (XEXP ((VALUE), 0))) != 'a' \
|
||
&& (reload_in_progress || memory_operand ((VALUE), VOIDmode)))
|
||
|
||
#define EXTRA_CONSTRAINT(VALUE, C) \
|
||
((C) == 'Q' ? CONSTRAINT_OK_FOR_Q (VALUE) \
|
||
: (C) == 'R' ? CONSTRAINT_OK_FOR_R (VALUE) \
|
||
: (C) == 'S' ? CONSTRAINT_OK_FOR_S (VALUE) \
|
||
: 0)
|
||
|
||
/* Basic Stack Layout */
|
||
|
||
/* Define this macro if pushing a word onto the stack moves the stack pointer
|
||
to a smaller address. */
|
||
#define STACK_GROWS_DOWNWARD 1
|
||
|
||
/* Define this macro if the addresses of local variable slots are at negative
|
||
offsets from the frame pointer. */
|
||
/* #define FRAME_GROWS_DOWNWARD */
|
||
|
||
/* Offset from the frame pointer to the first local variable slot to
|
||
be allocated. */
|
||
#define STARTING_FRAME_OFFSET 0
|
||
|
||
/* Offset from the stack pointer register to the first location at which
|
||
outgoing arguments are placed. If not specified, the default value of zero
|
||
is used. This is the proper value for most machines. */
|
||
/* IA64 has a 16 byte scratch area that is at the bottom of the stack. */
|
||
#define STACK_POINTER_OFFSET 16
|
||
|
||
/* Offset from the argument pointer register to the first argument's address.
|
||
On some machines it may depend on the data type of the function. */
|
||
#define FIRST_PARM_OFFSET(FUNDECL) 0
|
||
|
||
/* A C expression whose value is RTL representing the value of the return
|
||
address for the frame COUNT steps up from the current frame, after the
|
||
prologue. */
|
||
|
||
/* ??? Frames other than zero would likely require interpreting the frame
|
||
unwind info, so we don't try to support them. We would also need to define
|
||
DYNAMIC_CHAIN_ADDRESS and SETUP_FRAME_ADDRESS (for the reg stack flush). */
|
||
|
||
#define RETURN_ADDR_RTX(COUNT, FRAME) \
|
||
((COUNT) == 0 ? return_address_pointer_rtx : const0_rtx)
|
||
|
||
/* A C expression whose value is RTL representing the location of the incoming
|
||
return address at the beginning of any function, before the prologue. This
|
||
RTL is either a `REG', indicating that the return value is saved in `REG',
|
||
or a `MEM' representing a location in the stack. This enables DWARF2
|
||
unwind info for C++ EH. */
|
||
#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (VOIDmode, BR_REG (0))
|
||
|
||
/* ??? This is not defined because of three problems.
|
||
1) dwarf2out.c assumes that DWARF_FRAME_RETURN_COLUMN fits in one byte.
|
||
The default value is FIRST_PSEUDO_REGISTER which doesn't. This can be
|
||
worked around by setting PC_REGNUM to FR_REG (0) which is an otherwise
|
||
unused register number.
|
||
2) dwarf2out_frame_debug core dumps while processing prologue insns. We
|
||
need to refine which insns have RTX_FRAME_RELATED_P set and which don't.
|
||
3) It isn't possible to turn off EH frame info by defining DWARF2_UNIND_INFO
|
||
to zero, despite what the documentation implies, because it is tested in
|
||
a few places with #ifdef instead of #if. */
|
||
#undef INCOMING_RETURN_ADDR_RTX
|
||
|
||
/* A C expression whose value is an integer giving the offset, in bytes, from
|
||
the value of the stack pointer register to the top of the stack frame at the
|
||
beginning of any function, before the prologue. The top of the frame is
|
||
defined to be the value of the stack pointer in the previous frame, just
|
||
before the call instruction. */
|
||
#define INCOMING_FRAME_SP_OFFSET 0
|
||
|
||
|
||
/* Register That Address the Stack Frame. */
|
||
|
||
/* The register number of the stack pointer register, which must also be a
|
||
fixed register according to `FIXED_REGISTERS'. On most machines, the
|
||
hardware determines which register this is. */
|
||
|
||
#define STACK_POINTER_REGNUM 12
|
||
|
||
/* The register number of the frame pointer register, which is used to access
|
||
automatic variables in the stack frame. On some machines, the hardware
|
||
determines which register this is. On other machines, you can choose any
|
||
register you wish for this purpose. */
|
||
|
||
#define FRAME_POINTER_REGNUM 328
|
||
|
||
/* Base register for access to local variables of the function. */
|
||
#define HARD_FRAME_POINTER_REGNUM LOC_REG (79)
|
||
|
||
/* The register number of the arg pointer register, which is used to access the
|
||
function's argument list. */
|
||
/* r0 won't otherwise be used, so put the always eliminated argument pointer
|
||
in it. */
|
||
#define ARG_POINTER_REGNUM R_GR(0)
|
||
|
||
/* Due to the way varargs and argument spilling happens, the argument
|
||
pointer is not 16-byte aligned like the stack pointer. */
|
||
#define INIT_EXPANDERS \
|
||
do { \
|
||
if (cfun && cfun->emit->regno_pointer_align) \
|
||
REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = 64; \
|
||
} while (0)
|
||
|
||
/* The register number for the return address register. For IA-64, this
|
||
is not actually a pointer as the name suggests, but that's a name that
|
||
gen_rtx_REG already takes care to keep unique. We modify
|
||
return_address_pointer_rtx in ia64_expand_prologue to reference the
|
||
final output regnum. */
|
||
#define RETURN_ADDRESS_POINTER_REGNUM 329
|
||
|
||
/* Register numbers used for passing a function's static chain pointer. */
|
||
/* ??? The ABI sez the static chain should be passed as a normal parameter. */
|
||
#define STATIC_CHAIN_REGNUM 15
|
||
|
||
/* Eliminating the Frame Pointer and the Arg Pointer */
|
||
|
||
/* A C expression which is nonzero if a function must have and use a frame
|
||
pointer. This expression is evaluated in the reload pass. If its value is
|
||
nonzero the function will have a frame pointer. */
|
||
#define FRAME_POINTER_REQUIRED 0
|
||
|
||
/* Show we can debug even without a frame pointer. */
|
||
#define CAN_DEBUG_WITHOUT_FP
|
||
|
||
/* If defined, this macro specifies a table of register pairs used to eliminate
|
||
unneeded registers that point into the stack frame. */
|
||
|
||
#define ELIMINABLE_REGS \
|
||
{ \
|
||
{ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
|
||
{ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
|
||
{FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
|
||
{FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
|
||
{RETURN_ADDRESS_POINTER_REGNUM, BR_REG (0)}, \
|
||
}
|
||
|
||
/* A C expression that returns non-zero if the compiler is allowed to try to
|
||
replace register number FROM with register number TO. The frame pointer
|
||
is automatically handled. */
|
||
|
||
#define CAN_ELIMINATE(FROM, TO) \
|
||
(TO == BR_REG (0) ? current_function_is_leaf : 1)
|
||
|
||
/* This macro is similar to `INITIAL_FRAME_POINTER_OFFSET'. It
|
||
specifies the initial difference between the specified pair of
|
||
registers. This macro must be defined if `ELIMINABLE_REGS' is
|
||
defined. */
|
||
#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
|
||
((OFFSET) = ia64_initial_elimination_offset ((FROM), (TO)))
|
||
|
||
/* Passing Function Arguments on the Stack */
|
||
|
||
/* Define this macro if an argument declared in a prototype as an integral type
|
||
smaller than `int' should actually be passed as an `int'. In addition to
|
||
avoiding errors in certain cases of mismatch, it also makes for better code
|
||
on certain machines. */
|
||
/* ??? Investigate. */
|
||
/* #define PROMOTE_PROTOTYPES */
|
||
|
||
/* If defined, the maximum amount of space required for outgoing arguments will
|
||
be computed and placed into the variable
|
||
`current_function_outgoing_args_size'. */
|
||
|
||
#define ACCUMULATE_OUTGOING_ARGS 1
|
||
|
||
/* A C expression that should indicate the number of bytes of its own arguments
|
||
that a function pops on returning, or 0 if the function pops no arguments
|
||
and the caller must therefore pop them all after the function returns. */
|
||
|
||
#define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, STACK_SIZE) 0
|
||
|
||
|
||
/* Function Arguments in Registers */
|
||
|
||
#define MAX_ARGUMENT_SLOTS 8
|
||
#define MAX_INT_RETURN_SLOTS 4
|
||
#define GR_ARG_FIRST IN_REG (0)
|
||
#define GR_RET_FIRST GR_REG (8)
|
||
#define GR_RET_LAST GR_REG (11)
|
||
#define FR_ARG_FIRST FR_REG (8)
|
||
#define FR_RET_FIRST FR_REG (8)
|
||
#define FR_RET_LAST FR_REG (15)
|
||
#define AR_ARG_FIRST OUT_REG (0)
|
||
|
||
/* A C expression that controls whether a function argument is passed in a
|
||
register, and which register. */
|
||
|
||
#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
|
||
ia64_function_arg (&CUM, MODE, TYPE, NAMED, 0)
|
||
|
||
/* Define this macro if the target machine has "register windows", so that the
|
||
register in which a function sees an arguments is not necessarily the same
|
||
as the one in which the caller passed the argument. */
|
||
|
||
#define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \
|
||
ia64_function_arg (&CUM, MODE, TYPE, NAMED, 1)
|
||
|
||
/* A C expression for the number of words, at the beginning of an argument,
|
||
must be put in registers. The value must be zero for arguments that are
|
||
passed entirely in registers or that are entirely pushed on the stack. */
|
||
|
||
#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
|
||
ia64_function_arg_partial_nregs (&CUM, MODE, TYPE, NAMED)
|
||
|
||
/* A C expression that indicates when an argument must be passed by reference.
|
||
If nonzero for an argument, a copy of that argument is made in memory and a
|
||
pointer to the argument is passed instead of the argument itself. The
|
||
pointer is passed in whatever way is appropriate for passing a pointer to
|
||
that type. */
|
||
|
||
#define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
|
||
ia64_function_arg_pass_by_reference (&CUM, MODE, TYPE, NAMED)
|
||
|
||
/* A C type for declaring a variable that is used as the first argument of
|
||
`FUNCTION_ARG' and other related values. For some target machines, the type
|
||
`int' suffices and can hold the number of bytes of argument so far. */
|
||
|
||
typedef struct ia64_args
|
||
{
|
||
int words; /* # words of arguments so far */
|
||
int int_regs; /* # GR registers used so far */
|
||
int fp_regs; /* # FR registers used so far */
|
||
int prototype; /* whether function prototyped */
|
||
} CUMULATIVE_ARGS;
|
||
|
||
/* A C statement (sans semicolon) for initializing the variable CUM for the
|
||
state at the beginning of the argument list. */
|
||
|
||
#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT) \
|
||
do { \
|
||
(CUM).words = 0; \
|
||
(CUM).int_regs = 0; \
|
||
(CUM).fp_regs = 0; \
|
||
(CUM).prototype = ((FNTYPE) && TYPE_ARG_TYPES (FNTYPE)) || (LIBNAME); \
|
||
} while (0)
|
||
|
||
/* Like `INIT_CUMULATIVE_ARGS' but overrides it for the purposes of finding the
|
||
arguments for the function being compiled. If this macro is undefined,
|
||
`INIT_CUMULATIVE_ARGS' is used instead. */
|
||
|
||
/* We set prototype to true so that we never try to return a PARALLEL from
|
||
function_arg. */
|
||
#define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \
|
||
do { \
|
||
(CUM).words = 0; \
|
||
(CUM).int_regs = 0; \
|
||
(CUM).fp_regs = 0; \
|
||
(CUM).prototype = 1; \
|
||
} while (0)
|
||
|
||
/* A C statement (sans semicolon) to update the summarizer variable CUM to
|
||
advance past an argument in the argument list. The values MODE, TYPE and
|
||
NAMED describe that argument. Once this is done, the variable CUM is
|
||
suitable for analyzing the *following* argument with `FUNCTION_ARG'. */
|
||
|
||
#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
|
||
ia64_function_arg_advance (&CUM, MODE, TYPE, NAMED)
|
||
|
||
/* If defined, a C expression that gives the alignment boundary, in bits, of an
|
||
argument with the specified mode and type. */
|
||
|
||
/* Arguments with alignment larger than 8 bytes start at the next even
|
||
boundary. See ia64_function_arg. */
|
||
|
||
#define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
|
||
(((TYPE) ? (TYPE_ALIGN (TYPE) > 8 * BITS_PER_UNIT) \
|
||
: (((((MODE) == BLKmode \
|
||
? int_size_in_bytes (TYPE) : GET_MODE_SIZE (MODE)) \
|
||
+ UNITS_PER_WORD - 1) / UNITS_PER_WORD) > 1)) \
|
||
? 128 : PARM_BOUNDARY)
|
||
|
||
/* A C expression that is nonzero if REGNO is the number of a hard register in
|
||
which function arguments are sometimes passed. This does *not* include
|
||
implicit arguments such as the static chain and the structure-value address.
|
||
On many machines, no registers can be used for this purpose since all
|
||
function arguments are pushed on the stack. */
|
||
#define FUNCTION_ARG_REGNO_P(REGNO) \
|
||
(((REGNO) >= GR_ARG_FIRST && (REGNO) < (GR_ARG_FIRST + MAX_ARGUMENT_SLOTS)) \
|
||
|| ((REGNO) >= FR_ARG_FIRST && (REGNO) < (FR_ARG_FIRST + MAX_ARGUMENT_SLOTS)))
|
||
|
||
/* Implement `va_start' for varargs and stdarg. */
|
||
#define EXPAND_BUILTIN_VA_START(stdarg, valist, nextarg) \
|
||
ia64_va_start (stdarg, valist, nextarg)
|
||
|
||
/* Implement `va_arg'. */
|
||
#define EXPAND_BUILTIN_VA_ARG(valist, type) \
|
||
ia64_va_arg (valist, type)
|
||
|
||
/* How Scalar Function Values are Returned */
|
||
|
||
/* A C expression to create an RTX representing the place where a function
|
||
returns a value of data type VALTYPE. */
|
||
|
||
#define FUNCTION_VALUE(VALTYPE, FUNC) \
|
||
ia64_function_value (VALTYPE, FUNC)
|
||
|
||
/* A C expression to create an RTX representing the place where a library
|
||
function returns a value of mode MODE. */
|
||
|
||
#define LIBCALL_VALUE(MODE) \
|
||
gen_rtx_REG (MODE, \
|
||
(((GET_MODE_CLASS (MODE) == MODE_FLOAT \
|
||
|| GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT) && \
|
||
((MODE) != TFmode || INTEL_EXTENDED_IEEE_FORMAT)) \
|
||
? FR_RET_FIRST : GR_RET_FIRST))
|
||
|
||
/* A C expression that is nonzero if REGNO is the number of a hard register in
|
||
which the values of called function may come back. */
|
||
|
||
#define FUNCTION_VALUE_REGNO_P(REGNO) \
|
||
(((REGNO) >= GR_RET_FIRST && (REGNO) <= GR_RET_LAST) \
|
||
|| ((REGNO) >= FR_RET_FIRST && (REGNO) <= FR_RET_LAST))
|
||
|
||
|
||
/* How Large Values are Returned */
|
||
|
||
/* A nonzero value says to return the function value in memory, just as large
|
||
structures are always returned. */
|
||
|
||
#define RETURN_IN_MEMORY(TYPE) \
|
||
ia64_return_in_memory (TYPE)
|
||
|
||
/* If you define this macro to be 0, then the conventions used for structure
|
||
and union return values are decided by the `RETURN_IN_MEMORY' macro. */
|
||
|
||
#define DEFAULT_PCC_STRUCT_RETURN 0
|
||
|
||
/* If the structure value address is passed in a register, then
|
||
`STRUCT_VALUE_REGNUM' should be the number of that register. */
|
||
|
||
#define STRUCT_VALUE_REGNUM GR_REG (8)
|
||
|
||
|
||
/* Caller-Saves Register Allocation */
|
||
|
||
/* A C expression to determine whether it is worthwhile to consider placing a
|
||
pseudo-register in a call-clobbered hard register and saving and restoring
|
||
it around each function call. The expression should be 1 when this is worth
|
||
doing, and 0 otherwise.
|
||
|
||
If you don't define this macro, a default is used which is good on most
|
||
machines: `4 * CALLS < REFS'. */
|
||
/* ??? Investigate. */
|
||
/* #define CALLER_SAVE_PROFITABLE(REFS, CALLS) */
|
||
|
||
|
||
/* Function Entry and Exit */
|
||
|
||
/* Define this macro as a C expression that is nonzero if the return
|
||
instruction or the function epilogue ignores the value of the stack pointer;
|
||
in other words, if it is safe to delete an instruction to adjust the stack
|
||
pointer before a return from the function. */
|
||
|
||
#define EXIT_IGNORE_STACK 1
|
||
|
||
/* Define this macro as a C expression that is nonzero for registers
|
||
used by the epilogue or the `return' pattern. */
|
||
|
||
#define EPILOGUE_USES(REGNO) ia64_epilogue_uses (REGNO)
|
||
|
||
/* Nonzero for registers used by the exception handling mechanism. */
|
||
|
||
#define EH_USES(REGNO) ia64_eh_uses (REGNO)
|
||
|
||
/* Output at beginning of assembler file. */
|
||
|
||
#define ASM_FILE_START(FILE) \
|
||
emit_safe_across_calls (FILE)
|
||
|
||
/* A C compound statement that outputs the assembler code for a thunk function,
|
||
used to implement C++ virtual function calls with multiple inheritance. */
|
||
|
||
#define ASM_OUTPUT_MI_THUNK(FILE, THUNK_FNDECL, DELTA, FUNCTION) \
|
||
do { \
|
||
if (CONST_OK_FOR_I (DELTA)) \
|
||
{ \
|
||
fprintf (FILE, "\tadds r32 = "); \
|
||
fprintf (FILE, HOST_WIDE_INT_PRINT_DEC, (DELTA)); \
|
||
fprintf (FILE, ", r32\n"); \
|
||
} \
|
||
else \
|
||
{ \
|
||
if (CONST_OK_FOR_J (DELTA)) \
|
||
{ \
|
||
fprintf (FILE, "\taddl r2 = "); \
|
||
fprintf (FILE, HOST_WIDE_INT_PRINT_DEC, (DELTA)); \
|
||
fprintf (FILE, ", r0\n"); \
|
||
} \
|
||
else \
|
||
{ \
|
||
fprintf (FILE, "\tmovl r2 = "); \
|
||
fprintf (FILE, HOST_WIDE_INT_PRINT_DEC, (DELTA)); \
|
||
fprintf (FILE, "\n"); \
|
||
} \
|
||
fprintf (FILE, "\t;;\n"); \
|
||
fprintf (FILE, "\tadd r32 = r2, r32\n"); \
|
||
} \
|
||
fprintf (FILE, "\tbr "); \
|
||
assemble_name (FILE, XSTR (XEXP (DECL_RTL (FUNCTION), 0), 0)); \
|
||
fprintf (FILE, "\n"); \
|
||
} while (0)
|
||
|
||
/* Output part N of a function descriptor for DECL. For ia64, both
|
||
words are emitted with a single relocation, so ignore N > 0. */
|
||
#define ASM_OUTPUT_FDESC(FILE, DECL, PART) \
|
||
do { \
|
||
if ((PART) == 0) \
|
||
{ \
|
||
fputs ("\tdata16.ua @iplt(", FILE); \
|
||
assemble_name (FILE, XSTR (XEXP (DECL_RTL (DECL), 0), 0)); \
|
||
fputs (")\n", FILE); \
|
||
} \
|
||
} while (0)
|
||
|
||
/* Generating Code for Profiling. */
|
||
|
||
/* A C statement or compound statement to output to FILE some assembler code to
|
||
call the profiling subroutine `mcount'. */
|
||
|
||
#undef FUNCTION_PROFILER
|
||
#define FUNCTION_PROFILER(FILE, LABELNO) \
|
||
do { \
|
||
char buf[20]; \
|
||
ASM_GENERATE_INTERNAL_LABEL (buf, "LP", LABELNO); \
|
||
fputs ("\talloc out0 = ar.pfs, 8, 0, 4, 0\n", FILE); \
|
||
if (TARGET_AUTO_PIC) \
|
||
fputs ("\tmovl out3 = @gprel(", FILE); \
|
||
else \
|
||
fputs ("\taddl out3 = @ltoff(", FILE); \
|
||
assemble_name (FILE, buf); \
|
||
if (TARGET_AUTO_PIC) \
|
||
fputs (");;\n", FILE); \
|
||
else \
|
||
fputs ("), r1;;\n", FILE); \
|
||
fputs ("\tmov out1 = r1\n", FILE); \
|
||
fputs ("\tmov out2 = b0\n", FILE); \
|
||
fputs ("\tbr.call.sptk.many b0 = _mcount;;\n", FILE); \
|
||
} while (0)
|
||
|
||
/* Implementing the Varargs Macros. */
|
||
|
||
/* Define this macro to store the anonymous register arguments into the stack
|
||
so that all the arguments appear to have been passed consecutively on the
|
||
stack. */
|
||
|
||
#define SETUP_INCOMING_VARARGS(ARGS_SO_FAR, MODE, TYPE, PRETEND_ARGS_SIZE, SECOND_TIME) \
|
||
ia64_setup_incoming_varargs (ARGS_SO_FAR, MODE, TYPE, & PRETEND_ARGS_SIZE, SECOND_TIME)
|
||
|
||
/* Define this macro if the location where a function argument is passed
|
||
depends on whether or not it is a named argument. */
|
||
|
||
#define STRICT_ARGUMENT_NAMING 1
|
||
|
||
|
||
/* Trampolines for Nested Functions. */
|
||
|
||
/* We need 32 bytes, so we can save the sp, ar.rnat, ar.bsp, and ar.pfs of
|
||
the function containing a non-local goto target. */
|
||
|
||
#define STACK_SAVEAREA_MODE(LEVEL) \
|
||
((LEVEL) == SAVE_NONLOCAL ? OImode : Pmode)
|
||
|
||
/* Output assembler code for a block containing the constant parts of
|
||
a trampoline, leaving space for the variable parts.
|
||
|
||
The trampoline should set the static chain pointer to value placed
|
||
into the trampoline and should branch to the specified routine.
|
||
To make the normal indirect-subroutine calling convention work,
|
||
the trampoline must look like a function descriptor; the first
|
||
word being the target address and the second being the target's
|
||
global pointer.
|
||
|
||
We abuse the concept of a global pointer by arranging for it
|
||
to point to the data we need to load. The complete trampoline
|
||
has the following form:
|
||
|
||
+-------------------+ \
|
||
TRAMP: | __ia64_trampoline | |
|
||
+-------------------+ > fake function descriptor
|
||
| TRAMP+16 | |
|
||
+-------------------+ /
|
||
| target descriptor |
|
||
+-------------------+
|
||
| static link |
|
||
+-------------------+
|
||
*/
|
||
|
||
/* A C expression for the size in bytes of the trampoline, as an integer. */
|
||
|
||
#define TRAMPOLINE_SIZE 32
|
||
|
||
/* Alignment required for trampolines, in bits. */
|
||
|
||
#define TRAMPOLINE_ALIGNMENT 64
|
||
|
||
/* A C statement to initialize the variable parts of a trampoline. */
|
||
|
||
#define INITIALIZE_TRAMPOLINE(ADDR, FNADDR, STATIC_CHAIN) \
|
||
ia64_initialize_trampoline((ADDR), (FNADDR), (STATIC_CHAIN))
|
||
|
||
/* Implicit Calls to Library Routines */
|
||
|
||
/* Define this macro if GNU CC should generate calls to the System V (and ANSI
|
||
C) library functions `memcpy' and `memset' rather than the BSD functions
|
||
`bcopy' and `bzero'. */
|
||
|
||
#define TARGET_MEM_FUNCTIONS
|
||
|
||
|
||
/* Addressing Modes */
|
||
|
||
/* Define this macro if the machine supports post-increment addressing. */
|
||
|
||
#define HAVE_POST_INCREMENT 1
|
||
#define HAVE_POST_DECREMENT 1
|
||
#define HAVE_POST_MODIFY_DISP 1
|
||
#define HAVE_POST_MODIFY_REG 1
|
||
|
||
/* A C expression that is 1 if the RTX X is a constant which is a valid
|
||
address. */
|
||
|
||
#define CONSTANT_ADDRESS_P(X) 0
|
||
|
||
/* The max number of registers that can appear in a valid memory address. */
|
||
|
||
#define MAX_REGS_PER_ADDRESS 2
|
||
|
||
/* A C compound statement with a conditional `goto LABEL;' executed if X (an
|
||
RTX) is a legitimate memory address on the target machine for a memory
|
||
operand of mode MODE. */
|
||
|
||
#define LEGITIMATE_ADDRESS_REG(X) \
|
||
((GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \
|
||
|| (GET_CODE (X) == SUBREG && GET_CODE (XEXP (X, 0)) == REG \
|
||
&& REG_OK_FOR_BASE_P (XEXP (X, 0))))
|
||
|
||
#define LEGITIMATE_ADDRESS_DISP(R, X) \
|
||
(GET_CODE (X) == PLUS \
|
||
&& rtx_equal_p (R, XEXP (X, 0)) \
|
||
&& (LEGITIMATE_ADDRESS_REG (XEXP (X, 1)) \
|
||
|| (GET_CODE (XEXP (X, 1)) == CONST_INT \
|
||
&& INTVAL (XEXP (X, 1)) >= -256 \
|
||
&& INTVAL (XEXP (X, 1)) < 256)))
|
||
|
||
#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, LABEL) \
|
||
do { \
|
||
if (LEGITIMATE_ADDRESS_REG (X)) \
|
||
goto LABEL; \
|
||
else if ((GET_CODE (X) == POST_INC || GET_CODE (X) == POST_DEC) \
|
||
&& LEGITIMATE_ADDRESS_REG (XEXP (X, 0)) \
|
||
&& XEXP (X, 0) != arg_pointer_rtx) \
|
||
goto LABEL; \
|
||
else if (GET_CODE (X) == POST_MODIFY \
|
||
&& LEGITIMATE_ADDRESS_REG (XEXP (X, 0)) \
|
||
&& XEXP (X, 0) != arg_pointer_rtx \
|
||
&& LEGITIMATE_ADDRESS_DISP (XEXP (X, 0), XEXP (X, 1))) \
|
||
goto LABEL; \
|
||
} while (0)
|
||
|
||
/* A C expression that is nonzero if X (assumed to be a `reg' RTX) is valid for
|
||
use as a base register. */
|
||
|
||
#ifdef REG_OK_STRICT
|
||
#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
|
||
#else
|
||
#define REG_OK_FOR_BASE_P(X) \
|
||
(GENERAL_REGNO_P (REGNO (X)) || (REGNO (X) >= FIRST_PSEUDO_REGISTER))
|
||
#endif
|
||
|
||
/* A C expression that is nonzero if X (assumed to be a `reg' RTX) is valid for
|
||
use as an index register. This is needed for POST_MODIFY. */
|
||
|
||
#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_BASE_P (X)
|
||
|
||
/* A C compound statement that attempts to replace X with a valid memory
|
||
address for an operand of mode MODE.
|
||
|
||
This must be present, but there is nothing useful to be done here. */
|
||
|
||
#define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN)
|
||
|
||
/* A C statement or compound statement with a conditional `goto LABEL;'
|
||
executed if memory address X (an RTX) can have different meanings depending
|
||
on the machine mode of the memory reference it is used for or if the address
|
||
is valid for some modes but not others. */
|
||
|
||
#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL) \
|
||
if (GET_CODE (ADDR) == POST_DEC || GET_CODE (ADDR) == POST_INC) \
|
||
goto LABEL;
|
||
|
||
/* A C expression that is nonzero if X is a legitimate constant for an
|
||
immediate operand on the target machine. */
|
||
|
||
#define LEGITIMATE_CONSTANT_P(X) \
|
||
(GET_CODE (X) != CONST_DOUBLE || GET_MODE (X) == VOIDmode \
|
||
|| GET_MODE (X) == DImode || CONST_DOUBLE_OK_FOR_G (X)) \
|
||
|
||
|
||
/* Condition Code Status */
|
||
|
||
/* One some machines not all possible comparisons are defined, but you can
|
||
convert an invalid comparison into a valid one. */
|
||
/* ??? Investigate. See the alpha definition. */
|
||
/* #define CANONICALIZE_COMPARISON(CODE, OP0, OP1) */
|
||
|
||
|
||
/* Describing Relative Costs of Operations */
|
||
|
||
/* A part of a C `switch' statement that describes the relative costs of
|
||
constant RTL expressions. */
|
||
|
||
/* ??? This is incomplete. */
|
||
|
||
#define CONST_COSTS(X, CODE, OUTER_CODE) \
|
||
case CONST_INT: \
|
||
if ((X) == const0_rtx) \
|
||
return 0; \
|
||
switch (OUTER_CODE) \
|
||
{ \
|
||
case SET: \
|
||
return CONST_OK_FOR_J (INTVAL (X)) ? 0 : COSTS_N_INSNS (1); \
|
||
case PLUS: \
|
||
if (CONST_OK_FOR_I (INTVAL (X))) \
|
||
return 0; \
|
||
if (CONST_OK_FOR_J (INTVAL (X))) \
|
||
return 1; \
|
||
return COSTS_N_INSNS (1); \
|
||
default: \
|
||
if (CONST_OK_FOR_K (INTVAL (X)) || CONST_OK_FOR_L (INTVAL (X))) \
|
||
return 0; \
|
||
return COSTS_N_INSNS (1); \
|
||
} \
|
||
case CONST_DOUBLE: \
|
||
return COSTS_N_INSNS (1); \
|
||
case CONST: \
|
||
case SYMBOL_REF: \
|
||
case LABEL_REF: \
|
||
return COSTS_N_INSNS (3);
|
||
|
||
/* Like `CONST_COSTS' but applies to nonconstant RTL expressions. */
|
||
|
||
#define RTX_COSTS(X, CODE, OUTER_CODE) \
|
||
case MULT: \
|
||
/* For multiplies wider than HImode, we have to go to the FPU, \
|
||
which normally involves copies. Plus there's the latency \
|
||
of the multiply itself, and the latency of the instructions to \
|
||
transfer integer regs to FP regs. */ \
|
||
if (GET_MODE_SIZE (GET_MODE (X)) > 2) \
|
||
return COSTS_N_INSNS (10); \
|
||
return COSTS_N_INSNS (2); \
|
||
case PLUS: \
|
||
case MINUS: \
|
||
case ASHIFT: \
|
||
case ASHIFTRT: \
|
||
case LSHIFTRT: \
|
||
return COSTS_N_INSNS (1); \
|
||
case DIV: \
|
||
case UDIV: \
|
||
case MOD: \
|
||
case UMOD: \
|
||
/* We make divide expensive, so that divide-by-constant will be \
|
||
optimized to a multiply. */ \
|
||
return COSTS_N_INSNS (60);
|
||
|
||
/* An expression giving the cost of an addressing mode that contains ADDRESS.
|
||
If not defined, the cost is computed from the ADDRESS expression and the
|
||
`CONST_COSTS' values. */
|
||
|
||
#define ADDRESS_COST(ADDRESS) 0
|
||
|
||
/* A C expression for the cost of moving data from a register in class FROM to
|
||
one in class TO, using MODE. */
|
||
|
||
#define REGISTER_MOVE_COST ia64_register_move_cost
|
||
|
||
/* A C expression for the cost of moving data of mode M between a
|
||
register and memory. */
|
||
#define MEMORY_MOVE_COST(MODE,CLASS,IN) \
|
||
((CLASS) == GENERAL_REGS || (CLASS) == FR_REGS \
|
||
|| (CLASS) == GR_AND_FR_REGS ? 4 : 10)
|
||
|
||
/* A C expression for the cost of a branch instruction. A value of 1 is the
|
||
default; other values are interpreted relative to that. Used by the
|
||
if-conversion code as max instruction count. */
|
||
/* ??? This requires investigation. The primary effect might be how
|
||
many additional insn groups we run into, vs how good the dynamic
|
||
branch predictor is. */
|
||
|
||
#define BRANCH_COST 6
|
||
|
||
/* Define this macro as a C expression which is nonzero if accessing less than
|
||
a word of memory (i.e. a `char' or a `short') is no faster than accessing a
|
||
word of memory. */
|
||
|
||
#define SLOW_BYTE_ACCESS 1
|
||
|
||
/* Define this macro if it is as good or better to call a constant function
|
||
address than to call an address kept in a register.
|
||
|
||
Indirect function calls are more expensive that direct function calls, so
|
||
don't cse function addresses. */
|
||
|
||
#define NO_FUNCTION_CSE
|
||
|
||
|
||
/* Dividing the output into sections. */
|
||
|
||
/* A C expression whose value is a string containing the assembler operation
|
||
that should precede instructions and read-only data. */
|
||
|
||
#define TEXT_SECTION_ASM_OP "\t.text"
|
||
|
||
/* A C expression whose value is a string containing the assembler operation to
|
||
identify the following data as writable initialized data. */
|
||
|
||
#define DATA_SECTION_ASM_OP "\t.data"
|
||
|
||
/* If defined, a C expression whose value is a string containing the assembler
|
||
operation to identify the following data as uninitialized global data. */
|
||
|
||
#define BSS_SECTION_ASM_OP "\t.bss"
|
||
|
||
/* Define this macro if references to a symbol must be treated differently
|
||
depending on something about the variable or function named by the symbol
|
||
(such as what section it is in). */
|
||
|
||
#define ENCODE_SECTION_INFO(DECL) ia64_encode_section_info (DECL)
|
||
|
||
/* If a variable is weakened, made one only or moved into a different
|
||
section, it may be necessary to redo the section info to move the
|
||
variable out of sdata. */
|
||
|
||
#define REDO_SECTION_INFO_P(DECL) \
|
||
((TREE_CODE (DECL) == VAR_DECL) \
|
||
&& (DECL_ONE_ONLY (DECL) || DECL_WEAK (DECL) || DECL_COMMON (DECL) \
|
||
|| DECL_SECTION_NAME (DECL) != 0))
|
||
|
||
#define SDATA_NAME_FLAG_CHAR '@'
|
||
|
||
#define IA64_DEFAULT_GVALUE 8
|
||
|
||
/* Decode SYM_NAME and store the real name part in VAR, sans the characters
|
||
that encode section info. */
|
||
|
||
#define STRIP_NAME_ENCODING(VAR, SYMBOL_NAME) \
|
||
do { \
|
||
(VAR) = (SYMBOL_NAME); \
|
||
if ((VAR)[0] == SDATA_NAME_FLAG_CHAR) \
|
||
(VAR)++; \
|
||
if ((VAR)[0] == '*') \
|
||
(VAR)++; \
|
||
} while (0)
|
||
|
||
/* Position Independent Code. */
|
||
|
||
/* The register number of the register used to address a table of static data
|
||
addresses in memory. */
|
||
|
||
/* ??? Should modify ia64.md to use pic_offset_table_rtx instead of
|
||
gen_rtx_REG (DImode, 1). */
|
||
|
||
/* ??? Should we set flag_pic? Probably need to define
|
||
LEGITIMIZE_PIC_OPERAND_P to make that work. */
|
||
|
||
#define PIC_OFFSET_TABLE_REGNUM GR_REG (1)
|
||
|
||
/* Define this macro if the register defined by `PIC_OFFSET_TABLE_REGNUM' is
|
||
clobbered by calls. */
|
||
|
||
#define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
|
||
|
||
|
||
/* The Overall Framework of an Assembler File. */
|
||
|
||
/* A C string constant describing how to begin a comment in the target
|
||
assembler language. The compiler assumes that the comment will end at the
|
||
end of the line. */
|
||
|
||
#define ASM_COMMENT_START "//"
|
||
|
||
/* A C string constant for text to be output before each `asm' statement or
|
||
group of consecutive ones. */
|
||
|
||
/* ??? This won't work with the Intel assembler, because it does not accept
|
||
# as a comment start character. However, //APP does not work in gas, so we
|
||
can't use that either. Same problem for ASM_APP_OFF below. */
|
||
|
||
#define ASM_APP_ON "#APP\n"
|
||
|
||
/* A C string constant for text to be output after each `asm' statement or
|
||
group of consecutive ones. */
|
||
|
||
#define ASM_APP_OFF "#NO_APP\n"
|
||
|
||
|
||
/* Output of Data. */
|
||
|
||
/* This is how to output an assembler line defining a `char' constant
|
||
to an xdata segment. */
|
||
|
||
#define ASM_OUTPUT_XDATA_CHAR(FILE, SECTION, VALUE) \
|
||
do { \
|
||
fprintf (FILE, "\t.xdata1\t\"%s\", ", SECTION); \
|
||
output_addr_const (FILE, (VALUE)); \
|
||
fprintf (FILE, "\n"); \
|
||
} while (0)
|
||
|
||
/* This is how to output an assembler line defining a `short' constant
|
||
to an xdata segment. */
|
||
|
||
#define ASM_OUTPUT_XDATA_SHORT(FILE, SECTION, VALUE) \
|
||
do { \
|
||
fprintf (FILE, "\t.xdata2\t\"%s\", ", SECTION); \
|
||
output_addr_const (FILE, (VALUE)); \
|
||
fprintf (FILE, "\n"); \
|
||
} while (0)
|
||
|
||
/* This is how to output an assembler line defining an `int' constant
|
||
to an xdata segment. We also handle symbol output here. */
|
||
|
||
/* ??? For ILP32, also need to handle function addresses here. */
|
||
|
||
#define ASM_OUTPUT_XDATA_INT(FILE, SECTION, VALUE) \
|
||
do { \
|
||
fprintf (FILE, "\t.xdata4\t\"%s\", ", SECTION); \
|
||
output_addr_const (FILE, (VALUE)); \
|
||
fprintf (FILE, "\n"); \
|
||
} while (0)
|
||
|
||
/* This is how to output an assembler line defining a `long' constant
|
||
to an xdata segment. We also handle symbol output here. */
|
||
|
||
#define ASM_OUTPUT_XDATA_DOUBLE_INT(FILE, SECTION, VALUE) \
|
||
do { \
|
||
int need_closing_paren = 0; \
|
||
fprintf (FILE, "\t.xdata8\t\"%s\", ", SECTION); \
|
||
if (!(TARGET_NO_PIC || TARGET_AUTO_PIC) \
|
||
&& GET_CODE (VALUE) == SYMBOL_REF) \
|
||
{ \
|
||
fprintf (FILE, SYMBOL_REF_FLAG (VALUE) ? "@fptr(" : "@segrel("); \
|
||
need_closing_paren = 1; \
|
||
} \
|
||
output_addr_const (FILE, VALUE); \
|
||
if (need_closing_paren) \
|
||
fprintf (FILE, ")"); \
|
||
fprintf (FILE, "\n"); \
|
||
} while (0)
|
||
|
||
|
||
|
||
/* Output of Uninitialized Variables. */
|
||
|
||
/* This is all handled by svr4.h. */
|
||
|
||
|
||
/* Output and Generation of Labels. */
|
||
|
||
/* A C statement (sans semicolon) to output to the stdio stream STREAM the
|
||
assembler definition of a label named NAME. */
|
||
|
||
/* See the ASM_OUTPUT_LABELREF definition in sysv4.h for an explanation of
|
||
why ia64_asm_output_label exists. */
|
||
|
||
extern int ia64_asm_output_label;
|
||
#define ASM_OUTPUT_LABEL(STREAM, NAME) \
|
||
do { \
|
||
ia64_asm_output_label = 1; \
|
||
assemble_name (STREAM, NAME); \
|
||
fputs (":\n", STREAM); \
|
||
ia64_asm_output_label = 0; \
|
||
} while (0)
|
||
|
||
/* A C statement (sans semicolon) to output to the stdio stream STREAM some
|
||
commands that will make the label NAME global; that is, available for
|
||
reference from other files. */
|
||
|
||
#define ASM_GLOBALIZE_LABEL(STREAM,NAME) \
|
||
do { \
|
||
fputs ("\t.global ", STREAM); \
|
||
assemble_name (STREAM, NAME); \
|
||
fputs ("\n", STREAM); \
|
||
} while (0)
|
||
|
||
/* A C statement (sans semicolon) to output to the stdio stream STREAM any text
|
||
necessary for declaring the name of an external symbol named NAME which is
|
||
referenced in this compilation but not defined. */
|
||
|
||
#define ASM_OUTPUT_EXTERNAL(FILE, DECL, NAME) \
|
||
ia64_asm_output_external (FILE, DECL, NAME)
|
||
|
||
/* A C statement to store into the string STRING a label whose name is made
|
||
from the string PREFIX and the number NUM. */
|
||
|
||
#define ASM_GENERATE_INTERNAL_LABEL(LABEL, PREFIX, NUM) \
|
||
do { \
|
||
sprintf (LABEL, "*.%s%d", PREFIX, NUM); \
|
||
} while (0)
|
||
|
||
/* A C expression to assign to OUTVAR (which is a variable of type `char *') a
|
||
newly allocated string made from the string NAME and the number NUMBER, with
|
||
some suitable punctuation added. */
|
||
|
||
/* ??? Not sure if using a ? in the name for Intel as is safe. */
|
||
|
||
#define ASM_FORMAT_PRIVATE_NAME(OUTVAR, NAME, NUMBER) \
|
||
do { \
|
||
(OUTVAR) = (char *) alloca (strlen (NAME) + 12); \
|
||
sprintf (OUTVAR, "%s%c%ld", (NAME), (TARGET_GNU_AS ? '.' : '?'), \
|
||
(long)(NUMBER)); \
|
||
} while (0)
|
||
|
||
/* A C statement to output to the stdio stream STREAM assembler code which
|
||
defines (equates) the symbol NAME to have the value VALUE. */
|
||
|
||
#define ASM_OUTPUT_DEF(STREAM, NAME, VALUE) \
|
||
do { \
|
||
assemble_name (STREAM, NAME); \
|
||
fputs (" = ", STREAM); \
|
||
assemble_name (STREAM, VALUE); \
|
||
fputc ('\n', STREAM); \
|
||
} while (0)
|
||
|
||
|
||
/* Macros Controlling Initialization Routines. */
|
||
|
||
/* This is handled by svr4.h and sysv4.h. */
|
||
|
||
|
||
/* Output of Assembler Instructions. */
|
||
|
||
/* A C initializer containing the assembler's names for the machine registers,
|
||
each one as a C string constant. */
|
||
|
||
#define REGISTER_NAMES \
|
||
{ \
|
||
/* General registers. */ \
|
||
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", "r8", "r9", \
|
||
"r10", "r11", "r12", "r13", "r14", "r15", "r16", "r17", "r18", "r19", \
|
||
"r20", "r21", "r22", "r23", "r24", "r25", "r26", "r27", "r28", "r29", \
|
||
"r30", "r31", \
|
||
/* Local registers. */ \
|
||
"loc0", "loc1", "loc2", "loc3", "loc4", "loc5", "loc6", "loc7", \
|
||
"loc8", "loc9", "loc10","loc11","loc12","loc13","loc14","loc15", \
|
||
"loc16","loc17","loc18","loc19","loc20","loc21","loc22","loc23", \
|
||
"loc24","loc25","loc26","loc27","loc28","loc29","loc30","loc31", \
|
||
"loc32","loc33","loc34","loc35","loc36","loc37","loc38","loc39", \
|
||
"loc40","loc41","loc42","loc43","loc44","loc45","loc46","loc47", \
|
||
"loc48","loc49","loc50","loc51","loc52","loc53","loc54","loc55", \
|
||
"loc56","loc57","loc58","loc59","loc60","loc61","loc62","loc63", \
|
||
"loc64","loc65","loc66","loc67","loc68","loc69","loc70","loc71", \
|
||
"loc72","loc73","loc74","loc75","loc76","loc77","loc78","loc79", \
|
||
/* Input registers. */ \
|
||
"in0", "in1", "in2", "in3", "in4", "in5", "in6", "in7", \
|
||
/* Output registers. */ \
|
||
"out0", "out1", "out2", "out3", "out4", "out5", "out6", "out7", \
|
||
/* Floating-point registers. */ \
|
||
"f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", "f8", "f9", \
|
||
"f10", "f11", "f12", "f13", "f14", "f15", "f16", "f17", "f18", "f19", \
|
||
"f20", "f21", "f22", "f23", "f24", "f25", "f26", "f27", "f28", "f29", \
|
||
"f30", "f31", "f32", "f33", "f34", "f35", "f36", "f37", "f38", "f39", \
|
||
"f40", "f41", "f42", "f43", "f44", "f45", "f46", "f47", "f48", "f49", \
|
||
"f50", "f51", "f52", "f53", "f54", "f55", "f56", "f57", "f58", "f59", \
|
||
"f60", "f61", "f62", "f63", "f64", "f65", "f66", "f67", "f68", "f69", \
|
||
"f70", "f71", "f72", "f73", "f74", "f75", "f76", "f77", "f78", "f79", \
|
||
"f80", "f81", "f82", "f83", "f84", "f85", "f86", "f87", "f88", "f89", \
|
||
"f90", "f91", "f92", "f93", "f94", "f95", "f96", "f97", "f98", "f99", \
|
||
"f100","f101","f102","f103","f104","f105","f106","f107","f108","f109",\
|
||
"f110","f111","f112","f113","f114","f115","f116","f117","f118","f119",\
|
||
"f120","f121","f122","f123","f124","f125","f126","f127", \
|
||
/* Predicate registers. */ \
|
||
"p0", "p1", "p2", "p3", "p4", "p5", "p6", "p7", "p8", "p9", \
|
||
"p10", "p11", "p12", "p13", "p14", "p15", "p16", "p17", "p18", "p19", \
|
||
"p20", "p21", "p22", "p23", "p24", "p25", "p26", "p27", "p28", "p29", \
|
||
"p30", "p31", "p32", "p33", "p34", "p35", "p36", "p37", "p38", "p39", \
|
||
"p40", "p41", "p42", "p43", "p44", "p45", "p46", "p47", "p48", "p49", \
|
||
"p50", "p51", "p52", "p53", "p54", "p55", "p56", "p57", "p58", "p59", \
|
||
"p60", "p61", "p62", "p63", \
|
||
/* Branch registers. */ \
|
||
"b0", "b1", "b2", "b3", "b4", "b5", "b6", "b7", \
|
||
/* Frame pointer. Return address. */ \
|
||
"sfp", "retaddr", "ar.ccv", "ar.unat", "ar.pfs", "ar.lc", "ar.ec", \
|
||
}
|
||
|
||
/* If defined, a C initializer for an array of structures containing a name and
|
||
a register number. This macro defines additional names for hard registers,
|
||
thus allowing the `asm' option in declarations to refer to registers using
|
||
alternate names. */
|
||
|
||
#define ADDITIONAL_REGISTER_NAMES \
|
||
{ \
|
||
{ "gp", R_GR (1) }, \
|
||
{ "sp", R_GR (12) }, \
|
||
{ "in0", IN_REG (0) }, \
|
||
{ "in1", IN_REG (1) }, \
|
||
{ "in2", IN_REG (2) }, \
|
||
{ "in3", IN_REG (3) }, \
|
||
{ "in4", IN_REG (4) }, \
|
||
{ "in5", IN_REG (5) }, \
|
||
{ "in6", IN_REG (6) }, \
|
||
{ "in7", IN_REG (7) }, \
|
||
{ "out0", OUT_REG (0) }, \
|
||
{ "out1", OUT_REG (1) }, \
|
||
{ "out2", OUT_REG (2) }, \
|
||
{ "out3", OUT_REG (3) }, \
|
||
{ "out4", OUT_REG (4) }, \
|
||
{ "out5", OUT_REG (5) }, \
|
||
{ "out6", OUT_REG (6) }, \
|
||
{ "out7", OUT_REG (7) }, \
|
||
{ "loc0", LOC_REG (0) }, \
|
||
{ "loc1", LOC_REG (1) }, \
|
||
{ "loc2", LOC_REG (2) }, \
|
||
{ "loc3", LOC_REG (3) }, \
|
||
{ "loc4", LOC_REG (4) }, \
|
||
{ "loc5", LOC_REG (5) }, \
|
||
{ "loc6", LOC_REG (6) }, \
|
||
{ "loc7", LOC_REG (7) }, \
|
||
{ "loc8", LOC_REG (8) }, \
|
||
{ "loc9", LOC_REG (9) }, \
|
||
{ "loc10", LOC_REG (10) }, \
|
||
{ "loc11", LOC_REG (11) }, \
|
||
{ "loc12", LOC_REG (12) }, \
|
||
{ "loc13", LOC_REG (13) }, \
|
||
{ "loc14", LOC_REG (14) }, \
|
||
{ "loc15", LOC_REG (15) }, \
|
||
{ "loc16", LOC_REG (16) }, \
|
||
{ "loc17", LOC_REG (17) }, \
|
||
{ "loc18", LOC_REG (18) }, \
|
||
{ "loc19", LOC_REG (19) }, \
|
||
{ "loc20", LOC_REG (20) }, \
|
||
{ "loc21", LOC_REG (21) }, \
|
||
{ "loc22", LOC_REG (22) }, \
|
||
{ "loc23", LOC_REG (23) }, \
|
||
{ "loc24", LOC_REG (24) }, \
|
||
{ "loc25", LOC_REG (25) }, \
|
||
{ "loc26", LOC_REG (26) }, \
|
||
{ "loc27", LOC_REG (27) }, \
|
||
{ "loc28", LOC_REG (28) }, \
|
||
{ "loc29", LOC_REG (29) }, \
|
||
{ "loc30", LOC_REG (30) }, \
|
||
{ "loc31", LOC_REG (31) }, \
|
||
{ "loc32", LOC_REG (32) }, \
|
||
{ "loc33", LOC_REG (33) }, \
|
||
{ "loc34", LOC_REG (34) }, \
|
||
{ "loc35", LOC_REG (35) }, \
|
||
{ "loc36", LOC_REG (36) }, \
|
||
{ "loc37", LOC_REG (37) }, \
|
||
{ "loc38", LOC_REG (38) }, \
|
||
{ "loc39", LOC_REG (39) }, \
|
||
{ "loc40", LOC_REG (40) }, \
|
||
{ "loc41", LOC_REG (41) }, \
|
||
{ "loc42", LOC_REG (42) }, \
|
||
{ "loc43", LOC_REG (43) }, \
|
||
{ "loc44", LOC_REG (44) }, \
|
||
{ "loc45", LOC_REG (45) }, \
|
||
{ "loc46", LOC_REG (46) }, \
|
||
{ "loc47", LOC_REG (47) }, \
|
||
{ "loc48", LOC_REG (48) }, \
|
||
{ "loc49", LOC_REG (49) }, \
|
||
{ "loc50", LOC_REG (50) }, \
|
||
{ "loc51", LOC_REG (51) }, \
|
||
{ "loc52", LOC_REG (52) }, \
|
||
{ "loc53", LOC_REG (53) }, \
|
||
{ "loc54", LOC_REG (54) }, \
|
||
{ "loc55", LOC_REG (55) }, \
|
||
{ "loc56", LOC_REG (56) }, \
|
||
{ "loc57", LOC_REG (57) }, \
|
||
{ "loc58", LOC_REG (58) }, \
|
||
{ "loc59", LOC_REG (59) }, \
|
||
{ "loc60", LOC_REG (60) }, \
|
||
{ "loc61", LOC_REG (61) }, \
|
||
{ "loc62", LOC_REG (62) }, \
|
||
{ "loc63", LOC_REG (63) }, \
|
||
{ "loc64", LOC_REG (64) }, \
|
||
{ "loc65", LOC_REG (65) }, \
|
||
{ "loc66", LOC_REG (66) }, \
|
||
{ "loc67", LOC_REG (67) }, \
|
||
{ "loc68", LOC_REG (68) }, \
|
||
{ "loc69", LOC_REG (69) }, \
|
||
{ "loc70", LOC_REG (70) }, \
|
||
{ "loc71", LOC_REG (71) }, \
|
||
{ "loc72", LOC_REG (72) }, \
|
||
{ "loc73", LOC_REG (73) }, \
|
||
{ "loc74", LOC_REG (74) }, \
|
||
{ "loc75", LOC_REG (75) }, \
|
||
{ "loc76", LOC_REG (76) }, \
|
||
{ "loc77", LOC_REG (77) }, \
|
||
{ "loc78", LOC_REG (78) }, \
|
||
{ "loc79", LOC_REG (79) }, \
|
||
}
|
||
|
||
/* A C compound statement to output to stdio stream STREAM the assembler syntax
|
||
for an instruction operand X. X is an RTL expression. */
|
||
|
||
#define PRINT_OPERAND(STREAM, X, CODE) \
|
||
ia64_print_operand (STREAM, X, CODE)
|
||
|
||
/* A C expression which evaluates to true if CODE is a valid punctuation
|
||
character for use in the `PRINT_OPERAND' macro. */
|
||
|
||
/* ??? Keep this around for now, as we might need it later. */
|
||
|
||
#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
|
||
((CODE) == '+' || (CODE) == ',')
|
||
|
||
/* A C compound statement to output to stdio stream STREAM the assembler syntax
|
||
for an instruction operand that is a memory reference whose address is X. X
|
||
is an RTL expression. */
|
||
|
||
#define PRINT_OPERAND_ADDRESS(STREAM, X) \
|
||
ia64_print_operand_address (STREAM, X)
|
||
|
||
/* If defined, C string expressions to be used for the `%R', `%L', `%U', and
|
||
`%I' options of `asm_fprintf' (see `final.c'). */
|
||
|
||
#define REGISTER_PREFIX ""
|
||
#define LOCAL_LABEL_PREFIX "."
|
||
#define USER_LABEL_PREFIX ""
|
||
#define IMMEDIATE_PREFIX ""
|
||
|
||
|
||
/* Output of dispatch tables. */
|
||
|
||
/* This macro should be provided on machines where the addresses in a dispatch
|
||
table are relative to the table's own address. */
|
||
|
||
/* ??? Depends on the pointer size. */
|
||
|
||
#define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \
|
||
fprintf (STREAM, "\tdata8 @pcrel(.L%d)\n", VALUE)
|
||
|
||
/* This is how to output an element of a case-vector that is absolute.
|
||
(Ia64 does not use such vectors, but we must define this macro anyway.) */
|
||
|
||
#define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) abort ()
|
||
|
||
/* Jump tables only need 8 byte alignment. */
|
||
|
||
#define ADDR_VEC_ALIGN(ADDR_VEC) 3
|
||
|
||
|
||
/* Assembler Commands for Exception Regions. */
|
||
|
||
/* Select a format to encode pointers in exception handling data. CODE
|
||
is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
|
||
true if the symbol may be affected by dynamic relocations. */
|
||
#define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL) \
|
||
(((CODE) == 1 ? DW_EH_PE_textrel : DW_EH_PE_datarel) \
|
||
| ((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_udata8)
|
||
|
||
/* Handle special EH pointer encodings. Absolute, pc-relative, and
|
||
indirect are handled automatically. */
|
||
#define ASM_MAYBE_OUTPUT_ENCODED_ADDR_RTX(FILE, ENCODING, SIZE, ADDR, DONE) \
|
||
do { \
|
||
const char *reltag = NULL; \
|
||
if (((ENCODING) & 0xF0) == DW_EH_PE_textrel) \
|
||
reltag = "@segrel("; \
|
||
else if (((ENCODING) & 0xF0) == DW_EH_PE_datarel) \
|
||
reltag = "@gprel("; \
|
||
if (reltag) \
|
||
{ \
|
||
fputs (integer_asm_op (SIZE, FALSE), FILE); \
|
||
fputs (reltag, FILE); \
|
||
assemble_name (FILE, XSTR (ADDR, 0)); \
|
||
fputc (')', FILE); \
|
||
goto DONE; \
|
||
} \
|
||
} while (0)
|
||
|
||
|
||
/* Assembler Commands for Alignment. */
|
||
|
||
/* ??? Investigate. */
|
||
|
||
/* The alignment (log base 2) to put in front of LABEL, which follows
|
||
a BARRIER. */
|
||
|
||
/* #define LABEL_ALIGN_AFTER_BARRIER(LABEL) */
|
||
|
||
/* The desired alignment for the location counter at the beginning
|
||
of a loop. */
|
||
|
||
/* #define LOOP_ALIGN(LABEL) */
|
||
|
||
/* Define this macro if `ASM_OUTPUT_SKIP' should not be used in the text
|
||
section because it fails put zeros in the bytes that are skipped. */
|
||
|
||
#define ASM_NO_SKIP_IN_TEXT 1
|
||
|
||
/* A C statement to output to the stdio stream STREAM an assembler command to
|
||
advance the location counter to a multiple of 2 to the POWER bytes. */
|
||
|
||
#define ASM_OUTPUT_ALIGN(STREAM, POWER) \
|
||
fprintf (STREAM, "\t.align %d\n", 1<<(POWER))
|
||
|
||
|
||
/* Macros Affecting all Debug Formats. */
|
||
|
||
/* This is handled in svr4.h and sysv4.h. */
|
||
|
||
|
||
/* Specific Options for DBX Output. */
|
||
|
||
/* This is handled by dbxelf.h which is included by svr4.h. */
|
||
|
||
|
||
/* Open ended Hooks for DBX Output. */
|
||
|
||
/* Likewise. */
|
||
|
||
|
||
/* File names in DBX format. */
|
||
|
||
/* Likewise. */
|
||
|
||
|
||
/* Macros for SDB and Dwarf Output. */
|
||
|
||
/* Define this macro if GNU CC should produce dwarf version 2 format debugging
|
||
output in response to the `-g' option. */
|
||
|
||
#define DWARF2_DEBUGGING_INFO
|
||
|
||
#define DWARF2_ASM_LINE_DEBUG_INFO (TARGET_DWARF2_ASM)
|
||
|
||
/* Use tags for debug info labels, so that they don't break instruction
|
||
bundles. This also avoids getting spurious DV warnings from the
|
||
assembler. This is similar to ASM_OUTPUT_INTERNAL_LABEL, except that we
|
||
add brackets around the label. */
|
||
|
||
#define ASM_OUTPUT_DEBUG_LABEL(FILE, PREFIX, NUM) \
|
||
fprintf (FILE, "[.%s%d:]\n", PREFIX, NUM)
|
||
|
||
/* Use section-relative relocations for debugging offsets. Unlike other
|
||
targets that fake this by putting the section VMA at 0, IA-64 has
|
||
proper relocations for them. */
|
||
#define ASM_OUTPUT_DWARF_OFFSET(FILE, SIZE, LABEL) \
|
||
do { \
|
||
fputs (integer_asm_op (SIZE, FALSE), FILE); \
|
||
fputs ("@secrel(", FILE); \
|
||
assemble_name (FILE, LABEL); \
|
||
fputc (')', FILE); \
|
||
} while (0)
|
||
|
||
/* Emit a PC-relative relocation. */
|
||
#define ASM_OUTPUT_DWARF_PCREL(FILE, SIZE, LABEL) \
|
||
do { \
|
||
fputs (integer_asm_op (SIZE, FALSE), FILE); \
|
||
fputs ("@pcrel(", FILE); \
|
||
assemble_name (FILE, LABEL); \
|
||
fputc (')', FILE); \
|
||
} while (0)
|
||
|
||
/* Cross Compilation and Floating Point. */
|
||
|
||
/* Define to enable software floating point emulation. */
|
||
#define REAL_ARITHMETIC
|
||
|
||
|
||
/* Register Renaming Parameters. */
|
||
|
||
/* A C expression that is nonzero if hard register number REGNO2 can be
|
||
considered for use as a rename register for REGNO1 */
|
||
|
||
#define HARD_REGNO_RENAME_OK(REGNO1,REGNO2) \
|
||
ia64_hard_regno_rename_ok((REGNO1), (REGNO2))
|
||
|
||
|
||
/* Miscellaneous Parameters. */
|
||
|
||
/* Define this if you have defined special-purpose predicates in the file
|
||
`MACHINE.c'. For each predicate, list all rtl codes that can be in
|
||
expressions matched by the predicate. */
|
||
|
||
#define PREDICATE_CODES \
|
||
{ "call_operand", {SUBREG, REG, SYMBOL_REF}}, \
|
||
{ "got_symbolic_operand", {SYMBOL_REF, CONST, LABEL_REF}}, \
|
||
{ "sdata_symbolic_operand", {SYMBOL_REF, CONST}}, \
|
||
{ "symbolic_operand", {SYMBOL_REF, CONST, LABEL_REF}}, \
|
||
{ "function_operand", {SYMBOL_REF}}, \
|
||
{ "setjmp_operand", {SYMBOL_REF}}, \
|
||
{ "destination_operand", {SUBREG, REG, MEM}}, \
|
||
{ "not_postinc_memory_operand", {MEM}}, \
|
||
{ "move_operand", {SUBREG, REG, MEM, CONST_INT, CONST_DOUBLE, \
|
||
CONSTANT_P_RTX, SYMBOL_REF, CONST, LABEL_REF}}, \
|
||
{ "gr_register_operand", {SUBREG, REG}}, \
|
||
{ "fr_register_operand", {SUBREG, REG}}, \
|
||
{ "grfr_register_operand", {SUBREG, REG}}, \
|
||
{ "gr_nonimmediate_operand", {SUBREG, REG, MEM}}, \
|
||
{ "fr_nonimmediate_operand", {SUBREG, REG, MEM}}, \
|
||
{ "grfr_nonimmediate_operand", {SUBREG, REG, MEM}}, \
|
||
{ "gr_reg_or_0_operand", {SUBREG, REG, CONST_INT}}, \
|
||
{ "gr_reg_or_5bit_operand", {SUBREG, REG, CONST_INT, CONSTANT_P_RTX}}, \
|
||
{ "gr_reg_or_6bit_operand", {SUBREG, REG, CONST_INT, CONSTANT_P_RTX}}, \
|
||
{ "gr_reg_or_8bit_operand", {SUBREG, REG, CONST_INT, CONSTANT_P_RTX}}, \
|
||
{ "grfr_reg_or_8bit_operand", {SUBREG, REG, CONST_INT, CONSTANT_P_RTX}}, \
|
||
{ "gr_reg_or_8bit_adjusted_operand", {SUBREG, REG, CONST_INT, \
|
||
CONSTANT_P_RTX}}, \
|
||
{ "gr_reg_or_8bit_and_adjusted_operand", {SUBREG, REG, CONST_INT, \
|
||
CONSTANT_P_RTX}}, \
|
||
{ "gr_reg_or_14bit_operand", {SUBREG, REG, CONST_INT, CONSTANT_P_RTX}}, \
|
||
{ "gr_reg_or_22bit_operand", {SUBREG, REG, CONST_INT, CONSTANT_P_RTX}}, \
|
||
{ "shift_count_operand", {SUBREG, REG, CONST_INT, CONSTANT_P_RTX}}, \
|
||
{ "shift_32bit_count_operand", {SUBREG, REG, CONST_INT, \
|
||
CONSTANT_P_RTX}}, \
|
||
{ "shladd_operand", {CONST_INT}}, \
|
||
{ "fetchadd_operand", {CONST_INT}}, \
|
||
{ "fr_reg_or_fp01_operand", {SUBREG, REG, CONST_DOUBLE}}, \
|
||
{ "normal_comparison_operator", {EQ, NE, GT, LE, GTU, LEU}}, \
|
||
{ "adjusted_comparison_operator", {LT, GE, LTU, GEU}}, \
|
||
{ "signed_inequality_operator", {GE, GT, LE, LT}}, \
|
||
{ "predicate_operator", {NE, EQ}}, \
|
||
{ "condop_operator", {PLUS, MINUS, IOR, XOR, AND}}, \
|
||
{ "ar_lc_reg_operand", {REG}}, \
|
||
{ "ar_ccv_reg_operand", {REG}}, \
|
||
{ "ar_pfs_reg_operand", {REG}}, \
|
||
{ "general_tfmode_operand", {SUBREG, REG, CONST_DOUBLE, MEM}}, \
|
||
{ "destination_tfmode_operand", {SUBREG, REG, MEM}}, \
|
||
{ "tfreg_or_fp01_operand", {REG, CONST_DOUBLE}},
|
||
|
||
/* An alias for a machine mode name. This is the machine mode that elements of
|
||
a jump-table should have. */
|
||
|
||
#define CASE_VECTOR_MODE Pmode
|
||
|
||
/* Define as C expression which evaluates to nonzero if the tablejump
|
||
instruction expects the table to contain offsets from the address of the
|
||
table. */
|
||
|
||
#define CASE_VECTOR_PC_RELATIVE 1
|
||
|
||
/* Define this macro if operations between registers with integral mode smaller
|
||
than a word are always performed on the entire register. */
|
||
|
||
#define WORD_REGISTER_OPERATIONS
|
||
|
||
/* Define this macro to be a C expression indicating when insns that read
|
||
memory in MODE, an integral mode narrower than a word, set the bits outside
|
||
of MODE to be either the sign-extension or the zero-extension of the data
|
||
read. */
|
||
|
||
#define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
|
||
|
||
/* The maximum number of bytes that a single instruction can move quickly from
|
||
memory to memory. */
|
||
#define MOVE_MAX 8
|
||
|
||
/* A C expression which is nonzero if on this machine it is safe to "convert"
|
||
an integer of INPREC bits to one of OUTPREC bits (where OUTPREC is smaller
|
||
than INPREC) by merely operating on it as if it had only OUTPREC bits. */
|
||
|
||
#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
|
||
|
||
/* A C expression describing the value returned by a comparison operator with
|
||
an integral mode and stored by a store-flag instruction (`sCOND') when the
|
||
condition is true. */
|
||
|
||
/* ??? Investigate using -1 instead of 1. */
|
||
|
||
#define STORE_FLAG_VALUE 1
|
||
|
||
/* An alias for the machine mode for pointers. */
|
||
|
||
/* ??? This would change if we had ILP32 support. */
|
||
|
||
#define Pmode DImode
|
||
|
||
/* An alias for the machine mode used for memory references to functions being
|
||
called, in `call' RTL expressions. */
|
||
|
||
#define FUNCTION_MODE Pmode
|
||
|
||
/* Define this macro to handle System V style pragmas: #pragma pack and
|
||
#pragma weak. Note, #pragma weak will only be supported if SUPPORT_WEAK is
|
||
defined. */
|
||
|
||
/* If this architecture supports prefetch, define this to be the number of
|
||
prefetch commands that can be executed in parallel.
|
||
|
||
??? This number is bogus and needs to be replaced before the value is
|
||
actually used in optimizations. */
|
||
|
||
#define SIMULTANEOUS_PREFETCHES 6
|
||
|
||
/* If this architecture supports prefetch, define this to be the size of
|
||
the cache line that is prefetched. */
|
||
|
||
#define PREFETCH_BLOCK 32
|
||
|
||
#define HANDLE_SYSV_PRAGMA
|
||
|
||
/* In rare cases, correct code generation requires extra machine dependent
|
||
processing between the second jump optimization pass and delayed branch
|
||
scheduling. On those machines, define this macro as a C statement to act on
|
||
the code starting at INSN. */
|
||
|
||
#define MACHINE_DEPENDENT_REORG(INSN) ia64_reorg (INSN)
|
||
|
||
/* A C expression for the maximum number of instructions to execute via
|
||
conditional execution instructions instead of a branch. A value of
|
||
BRANCH_COST+1 is the default if the machine does not use
|
||
cc0, and 1 if it does use cc0. */
|
||
/* ??? Investigate. */
|
||
#define MAX_CONDITIONAL_EXECUTE 12
|
||
|
||
extern int ia64_final_schedule;
|
||
|
||
#define IA64_UNWIND_INFO 1
|
||
#define IA64_UNWIND_EMIT(f,i) process_for_unwind_directive (f,i)
|
||
|
||
#define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 15 : INVALID_REGNUM)
|
||
|
||
/* This function contains machine specific function data. */
|
||
struct machine_function
|
||
{
|
||
/* The new stack pointer when unwinding from EH. */
|
||
struct rtx_def* ia64_eh_epilogue_sp;
|
||
|
||
/* The new bsp value when unwinding from EH. */
|
||
struct rtx_def* ia64_eh_epilogue_bsp;
|
||
|
||
/* The GP value save register. */
|
||
struct rtx_def* ia64_gp_save;
|
||
|
||
/* The number of varargs registers to save. */
|
||
int n_varargs;
|
||
};
|
||
|
||
|
||
enum ia64_builtins
|
||
{
|
||
IA64_BUILTIN_SYNCHRONIZE,
|
||
|
||
IA64_BUILTIN_FETCH_AND_ADD_SI,
|
||
IA64_BUILTIN_FETCH_AND_SUB_SI,
|
||
IA64_BUILTIN_FETCH_AND_OR_SI,
|
||
IA64_BUILTIN_FETCH_AND_AND_SI,
|
||
IA64_BUILTIN_FETCH_AND_XOR_SI,
|
||
IA64_BUILTIN_FETCH_AND_NAND_SI,
|
||
|
||
IA64_BUILTIN_ADD_AND_FETCH_SI,
|
||
IA64_BUILTIN_SUB_AND_FETCH_SI,
|
||
IA64_BUILTIN_OR_AND_FETCH_SI,
|
||
IA64_BUILTIN_AND_AND_FETCH_SI,
|
||
IA64_BUILTIN_XOR_AND_FETCH_SI,
|
||
IA64_BUILTIN_NAND_AND_FETCH_SI,
|
||
|
||
IA64_BUILTIN_BOOL_COMPARE_AND_SWAP_SI,
|
||
IA64_BUILTIN_VAL_COMPARE_AND_SWAP_SI,
|
||
|
||
IA64_BUILTIN_SYNCHRONIZE_SI,
|
||
|
||
IA64_BUILTIN_LOCK_TEST_AND_SET_SI,
|
||
|
||
IA64_BUILTIN_LOCK_RELEASE_SI,
|
||
|
||
IA64_BUILTIN_FETCH_AND_ADD_DI,
|
||
IA64_BUILTIN_FETCH_AND_SUB_DI,
|
||
IA64_BUILTIN_FETCH_AND_OR_DI,
|
||
IA64_BUILTIN_FETCH_AND_AND_DI,
|
||
IA64_BUILTIN_FETCH_AND_XOR_DI,
|
||
IA64_BUILTIN_FETCH_AND_NAND_DI,
|
||
|
||
IA64_BUILTIN_ADD_AND_FETCH_DI,
|
||
IA64_BUILTIN_SUB_AND_FETCH_DI,
|
||
IA64_BUILTIN_OR_AND_FETCH_DI,
|
||
IA64_BUILTIN_AND_AND_FETCH_DI,
|
||
IA64_BUILTIN_XOR_AND_FETCH_DI,
|
||
IA64_BUILTIN_NAND_AND_FETCH_DI,
|
||
|
||
IA64_BUILTIN_BOOL_COMPARE_AND_SWAP_DI,
|
||
IA64_BUILTIN_VAL_COMPARE_AND_SWAP_DI,
|
||
|
||
IA64_BUILTIN_SYNCHRONIZE_DI,
|
||
|
||
IA64_BUILTIN_LOCK_TEST_AND_SET_DI,
|
||
|
||
IA64_BUILTIN_LOCK_RELEASE_DI,
|
||
|
||
IA64_BUILTIN_BSP,
|
||
IA64_BUILTIN_FLUSHRS
|
||
};
|
||
|
||
/* Codes for expand_compare_and_swap and expand_swap_and_compare. */
|
||
enum fetchop_code {
|
||
IA64_ADD_OP, IA64_SUB_OP, IA64_OR_OP, IA64_AND_OP, IA64_XOR_OP, IA64_NAND_OP
|
||
};
|
||
|
||
#define DONT_USE_BUILTIN_SETJMP
|
||
|
||
/* Output any profiling code before the prologue. */
|
||
|
||
#undef PROFILE_BEFORE_PROLOGUE
|
||
#define PROFILE_BEFORE_PROLOGUE 1
|
||
|
||
/* End of ia64.h */
|