freebsd-nq/sys/powerpc/aim/mmu_oea64.c
Justin Hibbits 95a8fce118 [PowerPC64] fix crash when using machdep.moea64_bpvo_pool_size tunable
Summary:
This fixes kernel crashing when tunable "machdep.moea64_bpvo_pool_size" is
set to a value higher then 327680 (default value).  Function
moea64_mid_bootstrap() relies on moea64_bpvo_pool_size, but at time of the
use the variable wan't yet updated with the new value provided by user.

Problem was detected after trying to use a VM with 64GB of RAM, and default
moea64_bpvo_pool_size is insufficient (kernel boot used more than 470000) .
I think default value must be discussed to address this use case, or find a
way to calculate pool size automatically based on amount of memory detected.

Test Plan: Tested on QEMU VM with 64GB of RAM using "set
machdep.moea64_bpvo_pool_size=655360" on loader prompt

Submitted by:	Alfredo Dal'Ava Júnior (alfredo.junior_eldorado.org.br)
Differential Revision:	https://reviews.freebsd.org/D23233
2020-01-19 21:17:57 +00:00

3130 lines
79 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 2008-2015 Nathan Whitehorn
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* Manages physical address maps.
*
* Since the information managed by this module is also stored by the
* logical address mapping module, this module may throw away valid virtual
* to physical mappings at almost any time. However, invalidations of
* mappings must be done as requested.
*
* In order to cope with hardware architectures which make virtual to
* physical map invalidates expensive, this module may delay invalidate
* reduced protection operations until such time as they are actually
* necessary. This module is given full information as to which processors
* are currently using which maps, and to when physical maps must be made
* correct.
*/
#include "opt_kstack_pages.h"
#include <sys/param.h>
#include <sys/kernel.h>
#include <sys/conf.h>
#include <sys/queue.h>
#include <sys/cpuset.h>
#include <sys/kerneldump.h>
#include <sys/ktr.h>
#include <sys/lock.h>
#include <sys/msgbuf.h>
#include <sys/malloc.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/rwlock.h>
#include <sys/sched.h>
#include <sys/sysctl.h>
#include <sys/systm.h>
#include <sys/vmmeter.h>
#include <sys/smp.h>
#include <sys/kdb.h>
#include <dev/ofw/openfirm.h>
#include <vm/vm.h>
#include <vm/vm_param.h>
#include <vm/vm_kern.h>
#include <vm/vm_page.h>
#include <vm/vm_phys.h>
#include <vm/vm_map.h>
#include <vm/vm_object.h>
#include <vm/vm_extern.h>
#include <vm/vm_pageout.h>
#include <vm/uma.h>
#include <machine/_inttypes.h>
#include <machine/cpu.h>
#include <machine/platform.h>
#include <machine/frame.h>
#include <machine/md_var.h>
#include <machine/psl.h>
#include <machine/bat.h>
#include <machine/hid.h>
#include <machine/pte.h>
#include <machine/sr.h>
#include <machine/trap.h>
#include <machine/mmuvar.h>
#include "mmu_oea64.h"
#include "mmu_if.h"
#include "moea64_if.h"
void moea64_release_vsid(uint64_t vsid);
uintptr_t moea64_get_unique_vsid(void);
#define DISABLE_TRANS(msr) msr = mfmsr(); mtmsr(msr & ~PSL_DR)
#define ENABLE_TRANS(msr) mtmsr(msr)
#define VSID_MAKE(sr, hash) ((sr) | (((hash) & 0xfffff) << 4))
#define VSID_TO_HASH(vsid) (((vsid) >> 4) & 0xfffff)
#define VSID_HASH_MASK 0x0000007fffffffffULL
/*
* Locking semantics:
*
* There are two locks of interest: the page locks and the pmap locks, which
* protect their individual PVO lists and are locked in that order. The contents
* of all PVO entries are protected by the locks of their respective pmaps.
* The pmap of any PVO is guaranteed not to change so long as the PVO is linked
* into any list.
*
*/
#define PV_LOCK_PER_DOM (PA_LOCK_COUNT * 3)
#define PV_LOCK_COUNT (PV_LOCK_PER_DOM * MAXMEMDOM)
static struct mtx_padalign pv_lock[PV_LOCK_COUNT];
/*
* Cheap NUMA-izing of the pv locks, to reduce contention across domains.
* NUMA domains on POWER9 appear to be indexed as sparse memory spaces, with the
* index at (N << 45).
*/
#ifdef __powerpc64__
#define PV_LOCK_IDX(pa) (pa_index(pa) % PV_LOCK_PER_DOM + \
(((pa) >> 45) % MAXMEMDOM) * PV_LOCK_PER_DOM)
#else
#define PV_LOCK_IDX(pa) (pa_index(pa) % PV_LOCK_COUNT)
#endif
#define PV_LOCKPTR(pa) ((struct mtx *)(&pv_lock[PV_LOCK_IDX(pa)]))
#define PV_LOCK(pa) mtx_lock(PV_LOCKPTR(pa))
#define PV_UNLOCK(pa) mtx_unlock(PV_LOCKPTR(pa))
#define PV_LOCKASSERT(pa) mtx_assert(PV_LOCKPTR(pa), MA_OWNED)
#define PV_PAGE_LOCK(m) PV_LOCK(VM_PAGE_TO_PHYS(m))
#define PV_PAGE_UNLOCK(m) PV_UNLOCK(VM_PAGE_TO_PHYS(m))
#define PV_PAGE_LOCKASSERT(m) PV_LOCKASSERT(VM_PAGE_TO_PHYS(m))
struct ofw_map {
cell_t om_va;
cell_t om_len;
uint64_t om_pa;
cell_t om_mode;
};
extern unsigned char _etext[];
extern unsigned char _end[];
extern void *slbtrap, *slbtrapend;
/*
* Map of physical memory regions.
*/
static struct mem_region *regions;
static struct mem_region *pregions;
static struct numa_mem_region *numa_pregions;
static u_int phys_avail_count;
static int regions_sz, pregions_sz, numapregions_sz;
extern void bs_remap_earlyboot(void);
/*
* Lock for the SLB tables.
*/
struct mtx moea64_slb_mutex;
/*
* PTEG data.
*/
u_long moea64_pteg_count;
u_long moea64_pteg_mask;
/*
* PVO data.
*/
uma_zone_t moea64_pvo_zone; /* zone for pvo entries */
static struct pvo_entry *moea64_bpvo_pool;
static int moea64_bpvo_pool_index = 0;
static int moea64_bpvo_pool_size = 327680;
SYSCTL_INT(_machdep, OID_AUTO, moea64_allocated_bpvo_entries, CTLFLAG_RD,
&moea64_bpvo_pool_index, 0, "");
#define VSID_NBPW (sizeof(u_int32_t) * 8)
#ifdef __powerpc64__
#define NVSIDS (NPMAPS * 16)
#define VSID_HASHMASK 0xffffffffUL
#else
#define NVSIDS NPMAPS
#define VSID_HASHMASK 0xfffffUL
#endif
static u_int moea64_vsid_bitmap[NVSIDS / VSID_NBPW];
static boolean_t moea64_initialized = FALSE;
#ifdef MOEA64_STATS
/*
* Statistics.
*/
u_int moea64_pte_valid = 0;
u_int moea64_pte_overflow = 0;
u_int moea64_pvo_entries = 0;
u_int moea64_pvo_enter_calls = 0;
u_int moea64_pvo_remove_calls = 0;
SYSCTL_INT(_machdep, OID_AUTO, moea64_pte_valid, CTLFLAG_RD,
&moea64_pte_valid, 0, "");
SYSCTL_INT(_machdep, OID_AUTO, moea64_pte_overflow, CTLFLAG_RD,
&moea64_pte_overflow, 0, "");
SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_entries, CTLFLAG_RD,
&moea64_pvo_entries, 0, "");
SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_enter_calls, CTLFLAG_RD,
&moea64_pvo_enter_calls, 0, "");
SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_remove_calls, CTLFLAG_RD,
&moea64_pvo_remove_calls, 0, "");
#endif
vm_offset_t moea64_scratchpage_va[2];
struct pvo_entry *moea64_scratchpage_pvo[2];
struct mtx moea64_scratchpage_mtx;
uint64_t moea64_large_page_mask = 0;
uint64_t moea64_large_page_size = 0;
int moea64_large_page_shift = 0;
/*
* PVO calls.
*/
static int moea64_pvo_enter(mmu_t mmu, struct pvo_entry *pvo,
struct pvo_head *pvo_head, struct pvo_entry **oldpvo);
static void moea64_pvo_remove_from_pmap(mmu_t mmu, struct pvo_entry *pvo);
static void moea64_pvo_remove_from_page(mmu_t mmu, struct pvo_entry *pvo);
static void moea64_pvo_remove_from_page_locked(mmu_t mmu,
struct pvo_entry *pvo, vm_page_t m);
static struct pvo_entry *moea64_pvo_find_va(pmap_t, vm_offset_t);
/*
* Utility routines.
*/
static boolean_t moea64_query_bit(mmu_t, vm_page_t, uint64_t);
static u_int moea64_clear_bit(mmu_t, vm_page_t, uint64_t);
static void moea64_kremove(mmu_t, vm_offset_t);
static void moea64_syncicache(mmu_t, pmap_t pmap, vm_offset_t va,
vm_paddr_t pa, vm_size_t sz);
static void moea64_pmap_init_qpages(void);
/*
* Kernel MMU interface
*/
void moea64_clear_modify(mmu_t, vm_page_t);
void moea64_copy_page(mmu_t, vm_page_t, vm_page_t);
void moea64_copy_pages(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
vm_page_t *mb, vm_offset_t b_offset, int xfersize);
int moea64_enter(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t,
u_int flags, int8_t psind);
void moea64_enter_object(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_page_t,
vm_prot_t);
void moea64_enter_quick(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t);
vm_paddr_t moea64_extract(mmu_t, pmap_t, vm_offset_t);
vm_page_t moea64_extract_and_hold(mmu_t, pmap_t, vm_offset_t, vm_prot_t);
void moea64_init(mmu_t);
boolean_t moea64_is_modified(mmu_t, vm_page_t);
boolean_t moea64_is_prefaultable(mmu_t, pmap_t, vm_offset_t);
boolean_t moea64_is_referenced(mmu_t, vm_page_t);
int moea64_ts_referenced(mmu_t, vm_page_t);
vm_offset_t moea64_map(mmu_t, vm_offset_t *, vm_paddr_t, vm_paddr_t, int);
boolean_t moea64_page_exists_quick(mmu_t, pmap_t, vm_page_t);
void moea64_page_init(mmu_t, vm_page_t);
int moea64_page_wired_mappings(mmu_t, vm_page_t);
void moea64_pinit(mmu_t, pmap_t);
void moea64_pinit0(mmu_t, pmap_t);
void moea64_protect(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_prot_t);
void moea64_qenter(mmu_t, vm_offset_t, vm_page_t *, int);
void moea64_qremove(mmu_t, vm_offset_t, int);
void moea64_release(mmu_t, pmap_t);
void moea64_remove(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
void moea64_remove_pages(mmu_t, pmap_t);
void moea64_remove_all(mmu_t, vm_page_t);
void moea64_remove_write(mmu_t, vm_page_t);
void moea64_unwire(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
void moea64_zero_page(mmu_t, vm_page_t);
void moea64_zero_page_area(mmu_t, vm_page_t, int, int);
void moea64_activate(mmu_t, struct thread *);
void moea64_deactivate(mmu_t, struct thread *);
void *moea64_mapdev(mmu_t, vm_paddr_t, vm_size_t);
void *moea64_mapdev_attr(mmu_t, vm_paddr_t, vm_size_t, vm_memattr_t);
void moea64_unmapdev(mmu_t, vm_offset_t, vm_size_t);
vm_paddr_t moea64_kextract(mmu_t, vm_offset_t);
void moea64_page_set_memattr(mmu_t, vm_page_t m, vm_memattr_t ma);
void moea64_kenter_attr(mmu_t, vm_offset_t, vm_paddr_t, vm_memattr_t ma);
void moea64_kenter(mmu_t, vm_offset_t, vm_paddr_t);
boolean_t moea64_dev_direct_mapped(mmu_t, vm_paddr_t, vm_size_t);
static void moea64_sync_icache(mmu_t, pmap_t, vm_offset_t, vm_size_t);
void moea64_dumpsys_map(mmu_t mmu, vm_paddr_t pa, size_t sz,
void **va);
void moea64_scan_init(mmu_t mmu);
vm_offset_t moea64_quick_enter_page(mmu_t mmu, vm_page_t m);
void moea64_quick_remove_page(mmu_t mmu, vm_offset_t addr);
static int moea64_map_user_ptr(mmu_t mmu, pmap_t pm,
volatile const void *uaddr, void **kaddr, size_t ulen, size_t *klen);
static int moea64_decode_kernel_ptr(mmu_t mmu, vm_offset_t addr,
int *is_user, vm_offset_t *decoded_addr);
static size_t moea64_scan_pmap(mmu_t mmu);
static void *moea64_dump_pmap_init(mmu_t mmu, unsigned blkpgs);
#ifdef __powerpc64__
static void moea64_page_array_startup(mmu_t, long);
#endif
static mmu_method_t moea64_methods[] = {
MMUMETHOD(mmu_clear_modify, moea64_clear_modify),
MMUMETHOD(mmu_copy_page, moea64_copy_page),
MMUMETHOD(mmu_copy_pages, moea64_copy_pages),
MMUMETHOD(mmu_enter, moea64_enter),
MMUMETHOD(mmu_enter_object, moea64_enter_object),
MMUMETHOD(mmu_enter_quick, moea64_enter_quick),
MMUMETHOD(mmu_extract, moea64_extract),
MMUMETHOD(mmu_extract_and_hold, moea64_extract_and_hold),
MMUMETHOD(mmu_init, moea64_init),
MMUMETHOD(mmu_is_modified, moea64_is_modified),
MMUMETHOD(mmu_is_prefaultable, moea64_is_prefaultable),
MMUMETHOD(mmu_is_referenced, moea64_is_referenced),
MMUMETHOD(mmu_ts_referenced, moea64_ts_referenced),
MMUMETHOD(mmu_map, moea64_map),
MMUMETHOD(mmu_page_exists_quick,moea64_page_exists_quick),
MMUMETHOD(mmu_page_init, moea64_page_init),
MMUMETHOD(mmu_page_wired_mappings,moea64_page_wired_mappings),
MMUMETHOD(mmu_pinit, moea64_pinit),
MMUMETHOD(mmu_pinit0, moea64_pinit0),
MMUMETHOD(mmu_protect, moea64_protect),
MMUMETHOD(mmu_qenter, moea64_qenter),
MMUMETHOD(mmu_qremove, moea64_qremove),
MMUMETHOD(mmu_release, moea64_release),
MMUMETHOD(mmu_remove, moea64_remove),
MMUMETHOD(mmu_remove_pages, moea64_remove_pages),
MMUMETHOD(mmu_remove_all, moea64_remove_all),
MMUMETHOD(mmu_remove_write, moea64_remove_write),
MMUMETHOD(mmu_sync_icache, moea64_sync_icache),
MMUMETHOD(mmu_unwire, moea64_unwire),
MMUMETHOD(mmu_zero_page, moea64_zero_page),
MMUMETHOD(mmu_zero_page_area, moea64_zero_page_area),
MMUMETHOD(mmu_activate, moea64_activate),
MMUMETHOD(mmu_deactivate, moea64_deactivate),
MMUMETHOD(mmu_page_set_memattr, moea64_page_set_memattr),
MMUMETHOD(mmu_quick_enter_page, moea64_quick_enter_page),
MMUMETHOD(mmu_quick_remove_page, moea64_quick_remove_page),
#ifdef __powerpc64__
MMUMETHOD(mmu_page_array_startup, moea64_page_array_startup),
#endif
/* Internal interfaces */
MMUMETHOD(mmu_mapdev, moea64_mapdev),
MMUMETHOD(mmu_mapdev_attr, moea64_mapdev_attr),
MMUMETHOD(mmu_unmapdev, moea64_unmapdev),
MMUMETHOD(mmu_kextract, moea64_kextract),
MMUMETHOD(mmu_kenter, moea64_kenter),
MMUMETHOD(mmu_kenter_attr, moea64_kenter_attr),
MMUMETHOD(mmu_dev_direct_mapped,moea64_dev_direct_mapped),
MMUMETHOD(mmu_scan_init, moea64_scan_init),
MMUMETHOD(mmu_scan_pmap, moea64_scan_pmap),
MMUMETHOD(mmu_dump_pmap_init, moea64_dump_pmap_init),
MMUMETHOD(mmu_dumpsys_map, moea64_dumpsys_map),
MMUMETHOD(mmu_map_user_ptr, moea64_map_user_ptr),
MMUMETHOD(mmu_decode_kernel_ptr, moea64_decode_kernel_ptr),
{ 0, 0 }
};
MMU_DEF(oea64_mmu, "mmu_oea64_base", moea64_methods, 0);
static struct pvo_head *
vm_page_to_pvoh(vm_page_t m)
{
mtx_assert(PV_LOCKPTR(VM_PAGE_TO_PHYS(m)), MA_OWNED);
return (&m->md.mdpg_pvoh);
}
static struct pvo_entry *
alloc_pvo_entry(int bootstrap)
{
struct pvo_entry *pvo;
if (!moea64_initialized || bootstrap) {
if (moea64_bpvo_pool_index >= moea64_bpvo_pool_size) {
panic("%s: bpvo pool exhausted, index=%d, size=%d, bytes=%zd."
"Try setting machdep.moea64_bpvo_pool_size tunable",
__func__, moea64_bpvo_pool_index,
moea64_bpvo_pool_size,
moea64_bpvo_pool_size * sizeof(struct pvo_entry));
}
pvo = &moea64_bpvo_pool[
atomic_fetchadd_int(&moea64_bpvo_pool_index, 1)];
bzero(pvo, sizeof(*pvo));
pvo->pvo_vaddr = PVO_BOOTSTRAP;
} else
pvo = uma_zalloc(moea64_pvo_zone, M_NOWAIT | M_ZERO);
return (pvo);
}
static void
init_pvo_entry(struct pvo_entry *pvo, pmap_t pmap, vm_offset_t va)
{
uint64_t vsid;
uint64_t hash;
int shift;
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
pvo->pvo_pmap = pmap;
va &= ~ADDR_POFF;
pvo->pvo_vaddr |= va;
vsid = va_to_vsid(pmap, va);
pvo->pvo_vpn = (uint64_t)((va & ADDR_PIDX) >> ADDR_PIDX_SHFT)
| (vsid << 16);
shift = (pvo->pvo_vaddr & PVO_LARGE) ? moea64_large_page_shift :
ADDR_PIDX_SHFT;
hash = (vsid & VSID_HASH_MASK) ^ (((uint64_t)va & ADDR_PIDX) >> shift);
pvo->pvo_pte.slot = (hash & moea64_pteg_mask) << 3;
}
static void
free_pvo_entry(struct pvo_entry *pvo)
{
if (!(pvo->pvo_vaddr & PVO_BOOTSTRAP))
uma_zfree(moea64_pvo_zone, pvo);
}
void
moea64_pte_from_pvo(const struct pvo_entry *pvo, struct lpte *lpte)
{
lpte->pte_hi = moea64_pte_vpn_from_pvo_vpn(pvo);
lpte->pte_hi |= LPTE_VALID;
if (pvo->pvo_vaddr & PVO_LARGE)
lpte->pte_hi |= LPTE_BIG;
if (pvo->pvo_vaddr & PVO_WIRED)
lpte->pte_hi |= LPTE_WIRED;
if (pvo->pvo_vaddr & PVO_HID)
lpte->pte_hi |= LPTE_HID;
lpte->pte_lo = pvo->pvo_pte.pa; /* Includes WIMG bits */
if (pvo->pvo_pte.prot & VM_PROT_WRITE)
lpte->pte_lo |= LPTE_BW;
else
lpte->pte_lo |= LPTE_BR;
if (!(pvo->pvo_pte.prot & VM_PROT_EXECUTE))
lpte->pte_lo |= LPTE_NOEXEC;
}
static __inline uint64_t
moea64_calc_wimg(vm_paddr_t pa, vm_memattr_t ma)
{
uint64_t pte_lo;
int i;
if (ma != VM_MEMATTR_DEFAULT) {
switch (ma) {
case VM_MEMATTR_UNCACHEABLE:
return (LPTE_I | LPTE_G);
case VM_MEMATTR_CACHEABLE:
return (LPTE_M);
case VM_MEMATTR_WRITE_COMBINING:
case VM_MEMATTR_WRITE_BACK:
case VM_MEMATTR_PREFETCHABLE:
return (LPTE_I);
case VM_MEMATTR_WRITE_THROUGH:
return (LPTE_W | LPTE_M);
}
}
/*
* Assume the page is cache inhibited and access is guarded unless
* it's in our available memory array.
*/
pte_lo = LPTE_I | LPTE_G;
for (i = 0; i < pregions_sz; i++) {
if ((pa >= pregions[i].mr_start) &&
(pa < (pregions[i].mr_start + pregions[i].mr_size))) {
pte_lo &= ~(LPTE_I | LPTE_G);
pte_lo |= LPTE_M;
break;
}
}
return pte_lo;
}
/*
* Quick sort callout for comparing memory regions.
*/
static int om_cmp(const void *a, const void *b);
static int
om_cmp(const void *a, const void *b)
{
const struct ofw_map *mapa;
const struct ofw_map *mapb;
mapa = a;
mapb = b;
if (mapa->om_pa < mapb->om_pa)
return (-1);
else if (mapa->om_pa > mapb->om_pa)
return (1);
else
return (0);
}
static void
moea64_add_ofw_mappings(mmu_t mmup, phandle_t mmu, size_t sz)
{
struct ofw_map translations[sz/(4*sizeof(cell_t))]; /*>= 4 cells per */
pcell_t acells, trans_cells[sz/sizeof(cell_t)];
struct pvo_entry *pvo;
register_t msr;
vm_offset_t off;
vm_paddr_t pa_base;
int i, j;
bzero(translations, sz);
OF_getencprop(OF_finddevice("/"), "#address-cells", &acells,
sizeof(acells));
if (OF_getencprop(mmu, "translations", trans_cells, sz) == -1)
panic("moea64_bootstrap: can't get ofw translations");
CTR0(KTR_PMAP, "moea64_add_ofw_mappings: translations");
sz /= sizeof(cell_t);
for (i = 0, j = 0; i < sz; j++) {
translations[j].om_va = trans_cells[i++];
translations[j].om_len = trans_cells[i++];
translations[j].om_pa = trans_cells[i++];
if (acells == 2) {
translations[j].om_pa <<= 32;
translations[j].om_pa |= trans_cells[i++];
}
translations[j].om_mode = trans_cells[i++];
}
KASSERT(i == sz, ("Translations map has incorrect cell count (%d/%zd)",
i, sz));
sz = j;
qsort(translations, sz, sizeof (*translations), om_cmp);
for (i = 0; i < sz; i++) {
pa_base = translations[i].om_pa;
#ifndef __powerpc64__
if ((translations[i].om_pa >> 32) != 0)
panic("OFW translations above 32-bit boundary!");
#endif
if (pa_base % PAGE_SIZE)
panic("OFW translation not page-aligned (phys)!");
if (translations[i].om_va % PAGE_SIZE)
panic("OFW translation not page-aligned (virt)!");
CTR3(KTR_PMAP, "translation: pa=%#zx va=%#x len=%#x",
pa_base, translations[i].om_va, translations[i].om_len);
/* Now enter the pages for this mapping */
DISABLE_TRANS(msr);
for (off = 0; off < translations[i].om_len; off += PAGE_SIZE) {
/* If this address is direct-mapped, skip remapping */
if (hw_direct_map &&
translations[i].om_va == PHYS_TO_DMAP(pa_base) &&
moea64_calc_wimg(pa_base + off, VM_MEMATTR_DEFAULT)
== LPTE_M)
continue;
PMAP_LOCK(kernel_pmap);
pvo = moea64_pvo_find_va(kernel_pmap,
translations[i].om_va + off);
PMAP_UNLOCK(kernel_pmap);
if (pvo != NULL)
continue;
moea64_kenter(mmup, translations[i].om_va + off,
pa_base + off);
}
ENABLE_TRANS(msr);
}
}
#ifdef __powerpc64__
static void
moea64_probe_large_page(void)
{
uint16_t pvr = mfpvr() >> 16;
switch (pvr) {
case IBM970:
case IBM970FX:
case IBM970MP:
powerpc_sync(); isync();
mtspr(SPR_HID4, mfspr(SPR_HID4) & ~HID4_970_DISABLE_LG_PG);
powerpc_sync(); isync();
/* FALLTHROUGH */
default:
if (moea64_large_page_size == 0) {
moea64_large_page_size = 0x1000000; /* 16 MB */
moea64_large_page_shift = 24;
}
}
moea64_large_page_mask = moea64_large_page_size - 1;
}
static void
moea64_bootstrap_slb_prefault(vm_offset_t va, int large)
{
struct slb *cache;
struct slb entry;
uint64_t esid, slbe;
uint64_t i;
cache = PCPU_GET(aim.slb);
esid = va >> ADDR_SR_SHFT;
slbe = (esid << SLBE_ESID_SHIFT) | SLBE_VALID;
for (i = 0; i < 64; i++) {
if (cache[i].slbe == (slbe | i))
return;
}
entry.slbe = slbe;
entry.slbv = KERNEL_VSID(esid) << SLBV_VSID_SHIFT;
if (large)
entry.slbv |= SLBV_L;
slb_insert_kernel(entry.slbe, entry.slbv);
}
#endif
static int
moea64_kenter_large(mmu_t mmup, vm_offset_t va, vm_paddr_t pa, uint64_t attr, int bootstrap)
{
struct pvo_entry *pvo;
uint64_t pte_lo;
int error;
pte_lo = LPTE_M;
pte_lo |= attr;
pvo = alloc_pvo_entry(bootstrap);
pvo->pvo_vaddr |= PVO_WIRED | PVO_LARGE;
init_pvo_entry(pvo, kernel_pmap, va);
pvo->pvo_pte.prot = VM_PROT_READ | VM_PROT_WRITE |
VM_PROT_EXECUTE;
pvo->pvo_pte.pa = pa | pte_lo;
error = moea64_pvo_enter(mmup, pvo, NULL, NULL);
if (error != 0)
panic("Error %d inserting large page\n", error);
return (0);
}
static void
moea64_setup_direct_map(mmu_t mmup, vm_offset_t kernelstart,
vm_offset_t kernelend)
{
register_t msr;
vm_paddr_t pa, pkernelstart, pkernelend;
vm_offset_t size, off;
uint64_t pte_lo;
int i;
if (moea64_large_page_size == 0)
hw_direct_map = 0;
DISABLE_TRANS(msr);
if (hw_direct_map) {
PMAP_LOCK(kernel_pmap);
for (i = 0; i < pregions_sz; i++) {
for (pa = pregions[i].mr_start; pa < pregions[i].mr_start +
pregions[i].mr_size; pa += moea64_large_page_size) {
pte_lo = LPTE_M;
if (pa & moea64_large_page_mask) {
pa &= moea64_large_page_mask;
pte_lo |= LPTE_G;
}
if (pa + moea64_large_page_size >
pregions[i].mr_start + pregions[i].mr_size)
pte_lo |= LPTE_G;
moea64_kenter_large(mmup, PHYS_TO_DMAP(pa), pa, pte_lo, 1);
}
}
PMAP_UNLOCK(kernel_pmap);
}
/*
* Make sure the kernel and BPVO pool stay mapped on systems either
* without a direct map or on which the kernel is not already executing
* out of the direct-mapped region.
*/
if (kernelstart < DMAP_BASE_ADDRESS) {
/*
* For pre-dmap execution, we need to use identity mapping
* because we will be operating with the mmu on but in the
* wrong address configuration until we __restartkernel().
*/
for (pa = kernelstart & ~PAGE_MASK; pa < kernelend;
pa += PAGE_SIZE)
moea64_kenter(mmup, pa, pa);
} else if (!hw_direct_map) {
pkernelstart = kernelstart & ~DMAP_BASE_ADDRESS;
pkernelend = kernelend & ~DMAP_BASE_ADDRESS;
for (pa = pkernelstart & ~PAGE_MASK; pa < pkernelend;
pa += PAGE_SIZE)
moea64_kenter(mmup, pa | DMAP_BASE_ADDRESS, pa);
}
if (!hw_direct_map) {
size = moea64_bpvo_pool_size*sizeof(struct pvo_entry);
off = (vm_offset_t)(moea64_bpvo_pool);
for (pa = off; pa < off + size; pa += PAGE_SIZE)
moea64_kenter(mmup, pa, pa);
/* Map exception vectors */
for (pa = EXC_RSVD; pa < EXC_LAST; pa += PAGE_SIZE)
moea64_kenter(mmup, pa | DMAP_BASE_ADDRESS, pa);
}
ENABLE_TRANS(msr);
/*
* Allow user to override unmapped_buf_allowed for testing.
* XXXKIB Only direct map implementation was tested.
*/
if (!TUNABLE_INT_FETCH("vfs.unmapped_buf_allowed",
&unmapped_buf_allowed))
unmapped_buf_allowed = hw_direct_map;
}
/* Quick sort callout for comparing physical addresses. */
static int
pa_cmp(const void *a, const void *b)
{
const vm_paddr_t *pa = a, *pb = b;
if (*pa < *pb)
return (-1);
else if (*pa > *pb)
return (1);
else
return (0);
}
void
moea64_early_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
{
int i, j;
vm_size_t physsz, hwphyssz;
vm_paddr_t kernelphysstart, kernelphysend;
int rm_pavail;
#ifndef __powerpc64__
/* We don't have a direct map since there is no BAT */
hw_direct_map = 0;
/* Make sure battable is zero, since we have no BAT */
for (i = 0; i < 16; i++) {
battable[i].batu = 0;
battable[i].batl = 0;
}
#else
moea64_probe_large_page();
/* Use a direct map if we have large page support */
if (moea64_large_page_size > 0)
hw_direct_map = 1;
else
hw_direct_map = 0;
/* Install trap handlers for SLBs */
bcopy(&slbtrap, (void *)EXC_DSE,(size_t)&slbtrapend - (size_t)&slbtrap);
bcopy(&slbtrap, (void *)EXC_ISE,(size_t)&slbtrapend - (size_t)&slbtrap);
__syncicache((void *)EXC_DSE, 0x80);
__syncicache((void *)EXC_ISE, 0x80);
#endif
kernelphysstart = kernelstart & ~DMAP_BASE_ADDRESS;
kernelphysend = kernelend & ~DMAP_BASE_ADDRESS;
/* Get physical memory regions from firmware */
mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
CTR0(KTR_PMAP, "moea64_bootstrap: physical memory");
if (PHYS_AVAIL_ENTRIES < regions_sz)
panic("moea64_bootstrap: phys_avail too small");
phys_avail_count = 0;
physsz = 0;
hwphyssz = 0;
TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
for (i = 0, j = 0; i < regions_sz; i++, j += 2) {
CTR3(KTR_PMAP, "region: %#zx - %#zx (%#zx)",
regions[i].mr_start, regions[i].mr_start +
regions[i].mr_size, regions[i].mr_size);
if (hwphyssz != 0 &&
(physsz + regions[i].mr_size) >= hwphyssz) {
if (physsz < hwphyssz) {
phys_avail[j] = regions[i].mr_start;
phys_avail[j + 1] = regions[i].mr_start +
hwphyssz - physsz;
physsz = hwphyssz;
phys_avail_count++;
dump_avail[j] = phys_avail[j];
dump_avail[j + 1] = phys_avail[j + 1];
}
break;
}
phys_avail[j] = regions[i].mr_start;
phys_avail[j + 1] = regions[i].mr_start + regions[i].mr_size;
phys_avail_count++;
physsz += regions[i].mr_size;
dump_avail[j] = phys_avail[j];
dump_avail[j + 1] = phys_avail[j + 1];
}
/* Check for overlap with the kernel and exception vectors */
rm_pavail = 0;
for (j = 0; j < 2*phys_avail_count; j+=2) {
if (phys_avail[j] < EXC_LAST)
phys_avail[j] += EXC_LAST;
if (phys_avail[j] >= kernelphysstart &&
phys_avail[j+1] <= kernelphysend) {
phys_avail[j] = phys_avail[j+1] = ~0;
rm_pavail++;
continue;
}
if (kernelphysstart >= phys_avail[j] &&
kernelphysstart < phys_avail[j+1]) {
if (kernelphysend < phys_avail[j+1]) {
phys_avail[2*phys_avail_count] =
(kernelphysend & ~PAGE_MASK) + PAGE_SIZE;
phys_avail[2*phys_avail_count + 1] =
phys_avail[j+1];
phys_avail_count++;
}
phys_avail[j+1] = kernelphysstart & ~PAGE_MASK;
}
if (kernelphysend >= phys_avail[j] &&
kernelphysend < phys_avail[j+1]) {
if (kernelphysstart > phys_avail[j]) {
phys_avail[2*phys_avail_count] = phys_avail[j];
phys_avail[2*phys_avail_count + 1] =
kernelphysstart & ~PAGE_MASK;
phys_avail_count++;
}
phys_avail[j] = (kernelphysend & ~PAGE_MASK) +
PAGE_SIZE;
}
}
/* Remove physical available regions marked for removal (~0) */
if (rm_pavail) {
qsort(phys_avail, 2*phys_avail_count, sizeof(phys_avail[0]),
pa_cmp);
phys_avail_count -= rm_pavail;
for (i = 2*phys_avail_count;
i < 2*(phys_avail_count + rm_pavail); i+=2)
phys_avail[i] = phys_avail[i+1] = 0;
}
physmem = btoc(physsz);
#ifdef PTEGCOUNT
moea64_pteg_count = PTEGCOUNT;
#else
moea64_pteg_count = 0x1000;
while (moea64_pteg_count < physmem)
moea64_pteg_count <<= 1;
moea64_pteg_count >>= 1;
#endif /* PTEGCOUNT */
}
void
moea64_mid_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
{
int i;
/*
* Set PTEG mask
*/
moea64_pteg_mask = moea64_pteg_count - 1;
/*
* Initialize SLB table lock and page locks
*/
mtx_init(&moea64_slb_mutex, "SLB table", NULL, MTX_DEF);
for (i = 0; i < PV_LOCK_COUNT; i++)
mtx_init(&pv_lock[i], "page pv", NULL, MTX_DEF);
/*
* Initialise the bootstrap pvo pool.
*/
TUNABLE_INT_FETCH("machdep.moea64_bpvo_pool_size", &moea64_bpvo_pool_size);
moea64_bpvo_pool = (struct pvo_entry *)moea64_bootstrap_alloc(
moea64_bpvo_pool_size*sizeof(struct pvo_entry), PAGE_SIZE);
moea64_bpvo_pool_index = 0;
/* Place at address usable through the direct map */
if (hw_direct_map)
moea64_bpvo_pool = (struct pvo_entry *)
PHYS_TO_DMAP((uintptr_t)moea64_bpvo_pool);
/*
* Make sure kernel vsid is allocated as well as VSID 0.
*/
#ifndef __powerpc64__
moea64_vsid_bitmap[(KERNEL_VSIDBITS & (NVSIDS - 1)) / VSID_NBPW]
|= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
moea64_vsid_bitmap[0] |= 1;
#endif
/*
* Initialize the kernel pmap (which is statically allocated).
*/
#ifdef __powerpc64__
for (i = 0; i < 64; i++) {
pcpup->pc_aim.slb[i].slbv = 0;
pcpup->pc_aim.slb[i].slbe = 0;
}
#else
for (i = 0; i < 16; i++)
kernel_pmap->pm_sr[i] = EMPTY_SEGMENT + i;
#endif
kernel_pmap->pmap_phys = kernel_pmap;
CPU_FILL(&kernel_pmap->pm_active);
RB_INIT(&kernel_pmap->pmap_pvo);
PMAP_LOCK_INIT(kernel_pmap);
/*
* Now map in all the other buffers we allocated earlier
*/
moea64_setup_direct_map(mmup, kernelstart, kernelend);
}
void
moea64_late_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
{
ihandle_t mmui;
phandle_t chosen;
phandle_t mmu;
ssize_t sz;
int i;
vm_offset_t pa, va;
void *dpcpu;
/*
* Set up the Open Firmware pmap and add its mappings if not in real
* mode.
*/
chosen = OF_finddevice("/chosen");
if (chosen != -1 && OF_getencprop(chosen, "mmu", &mmui, 4) != -1) {
mmu = OF_instance_to_package(mmui);
if (mmu == -1 ||
(sz = OF_getproplen(mmu, "translations")) == -1)
sz = 0;
if (sz > 6144 /* tmpstksz - 2 KB headroom */)
panic("moea64_bootstrap: too many ofw translations");
if (sz > 0)
moea64_add_ofw_mappings(mmup, mmu, sz);
}
/*
* Calculate the last available physical address.
*/
Maxmem = 0;
for (i = 0; phys_avail[i + 2] != 0; i += 2)
Maxmem = MAX(Maxmem, powerpc_btop(phys_avail[i + 1]));
/*
* Initialize MMU.
*/
MMU_CPU_BOOTSTRAP(mmup,0);
mtmsr(mfmsr() | PSL_DR | PSL_IR);
pmap_bootstrapped++;
/*
* Set the start and end of kva.
*/
virtual_avail = VM_MIN_KERNEL_ADDRESS;
virtual_end = VM_MAX_SAFE_KERNEL_ADDRESS;
/*
* Map the entire KVA range into the SLB. We must not fault there.
*/
#ifdef __powerpc64__
for (va = virtual_avail; va < virtual_end; va += SEGMENT_LENGTH)
moea64_bootstrap_slb_prefault(va, 0);
#endif
/*
* Remap any early IO mappings (console framebuffer, etc.)
*/
bs_remap_earlyboot();
/*
* Figure out how far we can extend virtual_end into segment 16
* without running into existing mappings. Segment 16 is guaranteed
* to contain neither RAM nor devices (at least on Apple hardware),
* but will generally contain some OFW mappings we should not
* step on.
*/
#ifndef __powerpc64__ /* KVA is in high memory on PPC64 */
PMAP_LOCK(kernel_pmap);
while (virtual_end < VM_MAX_KERNEL_ADDRESS &&
moea64_pvo_find_va(kernel_pmap, virtual_end+1) == NULL)
virtual_end += PAGE_SIZE;
PMAP_UNLOCK(kernel_pmap);
#endif
/*
* Allocate a kernel stack with a guard page for thread0 and map it
* into the kernel page map.
*/
pa = moea64_bootstrap_alloc(kstack_pages * PAGE_SIZE, PAGE_SIZE);
va = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
virtual_avail = va + kstack_pages * PAGE_SIZE;
CTR2(KTR_PMAP, "moea64_bootstrap: kstack0 at %#x (%#x)", pa, va);
thread0.td_kstack = va;
thread0.td_kstack_pages = kstack_pages;
for (i = 0; i < kstack_pages; i++) {
moea64_kenter(mmup, va, pa);
pa += PAGE_SIZE;
va += PAGE_SIZE;
}
/*
* Allocate virtual address space for the message buffer.
*/
pa = msgbuf_phys = moea64_bootstrap_alloc(msgbufsize, PAGE_SIZE);
msgbufp = (struct msgbuf *)virtual_avail;
va = virtual_avail;
virtual_avail += round_page(msgbufsize);
while (va < virtual_avail) {
moea64_kenter(mmup, va, pa);
pa += PAGE_SIZE;
va += PAGE_SIZE;
}
/*
* Allocate virtual address space for the dynamic percpu area.
*/
pa = moea64_bootstrap_alloc(DPCPU_SIZE, PAGE_SIZE);
dpcpu = (void *)virtual_avail;
va = virtual_avail;
virtual_avail += DPCPU_SIZE;
while (va < virtual_avail) {
moea64_kenter(mmup, va, pa);
pa += PAGE_SIZE;
va += PAGE_SIZE;
}
dpcpu_init(dpcpu, curcpu);
crashdumpmap = (caddr_t)virtual_avail;
virtual_avail += MAXDUMPPGS * PAGE_SIZE;
/*
* Allocate some things for page zeroing. We put this directly
* in the page table and use MOEA64_PTE_REPLACE to avoid any
* of the PVO book-keeping or other parts of the VM system
* from even knowing that this hack exists.
*/
if (!hw_direct_map) {
mtx_init(&moea64_scratchpage_mtx, "pvo zero page", NULL,
MTX_DEF);
for (i = 0; i < 2; i++) {
moea64_scratchpage_va[i] = (virtual_end+1) - PAGE_SIZE;
virtual_end -= PAGE_SIZE;
moea64_kenter(mmup, moea64_scratchpage_va[i], 0);
PMAP_LOCK(kernel_pmap);
moea64_scratchpage_pvo[i] = moea64_pvo_find_va(
kernel_pmap, (vm_offset_t)moea64_scratchpage_va[i]);
PMAP_UNLOCK(kernel_pmap);
}
}
numa_mem_regions(&numa_pregions, &numapregions_sz);
}
static void
moea64_pmap_init_qpages(void)
{
struct pcpu *pc;
int i;
if (hw_direct_map)
return;
CPU_FOREACH(i) {
pc = pcpu_find(i);
pc->pc_qmap_addr = kva_alloc(PAGE_SIZE);
if (pc->pc_qmap_addr == 0)
panic("pmap_init_qpages: unable to allocate KVA");
PMAP_LOCK(kernel_pmap);
pc->pc_aim.qmap_pvo =
moea64_pvo_find_va(kernel_pmap, pc->pc_qmap_addr);
PMAP_UNLOCK(kernel_pmap);
mtx_init(&pc->pc_aim.qmap_lock, "qmap lock", NULL, MTX_DEF);
}
}
SYSINIT(qpages_init, SI_SUB_CPU, SI_ORDER_ANY, moea64_pmap_init_qpages, NULL);
/*
* Activate a user pmap. This mostly involves setting some non-CPU
* state.
*/
void
moea64_activate(mmu_t mmu, struct thread *td)
{
pmap_t pm;
pm = &td->td_proc->p_vmspace->vm_pmap;
CPU_SET(PCPU_GET(cpuid), &pm->pm_active);
#ifdef __powerpc64__
PCPU_SET(aim.userslb, pm->pm_slb);
__asm __volatile("slbmte %0, %1; isync" ::
"r"(td->td_pcb->pcb_cpu.aim.usr_vsid), "r"(USER_SLB_SLBE));
#else
PCPU_SET(curpmap, pm->pmap_phys);
mtsrin(USER_SR << ADDR_SR_SHFT, td->td_pcb->pcb_cpu.aim.usr_vsid);
#endif
}
void
moea64_deactivate(mmu_t mmu, struct thread *td)
{
pmap_t pm;
__asm __volatile("isync; slbie %0" :: "r"(USER_ADDR));
pm = &td->td_proc->p_vmspace->vm_pmap;
CPU_CLR(PCPU_GET(cpuid), &pm->pm_active);
#ifdef __powerpc64__
PCPU_SET(aim.userslb, NULL);
#else
PCPU_SET(curpmap, NULL);
#endif
}
void
moea64_unwire(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva)
{
struct pvo_entry key, *pvo;
vm_page_t m;
int64_t refchg;
key.pvo_vaddr = sva;
PMAP_LOCK(pm);
for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
pvo != NULL && PVO_VADDR(pvo) < eva;
pvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo)) {
if ((pvo->pvo_vaddr & PVO_WIRED) == 0)
panic("moea64_unwire: pvo %p is missing PVO_WIRED",
pvo);
pvo->pvo_vaddr &= ~PVO_WIRED;
refchg = MOEA64_PTE_REPLACE(mmu, pvo, 0 /* No invalidation */);
if ((pvo->pvo_vaddr & PVO_MANAGED) &&
(pvo->pvo_pte.prot & VM_PROT_WRITE)) {
if (refchg < 0)
refchg = LPTE_CHG;
m = PHYS_TO_VM_PAGE(pvo->pvo_pte.pa & LPTE_RPGN);
refchg |= atomic_readandclear_32(&m->md.mdpg_attrs);
if (refchg & LPTE_CHG)
vm_page_dirty(m);
if (refchg & LPTE_REF)
vm_page_aflag_set(m, PGA_REFERENCED);
}
pm->pm_stats.wired_count--;
}
PMAP_UNLOCK(pm);
}
/*
* This goes through and sets the physical address of our
* special scratch PTE to the PA we want to zero or copy. Because
* of locking issues (this can get called in pvo_enter() by
* the UMA allocator), we can't use most other utility functions here
*/
static __inline
void moea64_set_scratchpage_pa(mmu_t mmup, int which, vm_paddr_t pa)
{
struct pvo_entry *pvo;
KASSERT(!hw_direct_map, ("Using OEA64 scratchpage with a direct map!"));
mtx_assert(&moea64_scratchpage_mtx, MA_OWNED);
pvo = moea64_scratchpage_pvo[which];
PMAP_LOCK(pvo->pvo_pmap);
pvo->pvo_pte.pa =
moea64_calc_wimg(pa, VM_MEMATTR_DEFAULT) | (uint64_t)pa;
MOEA64_PTE_REPLACE(mmup, pvo, MOEA64_PTE_INVALIDATE);
PMAP_UNLOCK(pvo->pvo_pmap);
isync();
}
void
moea64_copy_page(mmu_t mmu, vm_page_t msrc, vm_page_t mdst)
{
vm_offset_t dst;
vm_offset_t src;
dst = VM_PAGE_TO_PHYS(mdst);
src = VM_PAGE_TO_PHYS(msrc);
if (hw_direct_map) {
bcopy((void *)PHYS_TO_DMAP(src), (void *)PHYS_TO_DMAP(dst),
PAGE_SIZE);
} else {
mtx_lock(&moea64_scratchpage_mtx);
moea64_set_scratchpage_pa(mmu, 0, src);
moea64_set_scratchpage_pa(mmu, 1, dst);
bcopy((void *)moea64_scratchpage_va[0],
(void *)moea64_scratchpage_va[1], PAGE_SIZE);
mtx_unlock(&moea64_scratchpage_mtx);
}
}
static inline void
moea64_copy_pages_dmap(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
vm_page_t *mb, vm_offset_t b_offset, int xfersize)
{
void *a_cp, *b_cp;
vm_offset_t a_pg_offset, b_pg_offset;
int cnt;
while (xfersize > 0) {
a_pg_offset = a_offset & PAGE_MASK;
cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
a_cp = (char *)(uintptr_t)PHYS_TO_DMAP(
VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT])) +
a_pg_offset;
b_pg_offset = b_offset & PAGE_MASK;
cnt = min(cnt, PAGE_SIZE - b_pg_offset);
b_cp = (char *)(uintptr_t)PHYS_TO_DMAP(
VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT])) +
b_pg_offset;
bcopy(a_cp, b_cp, cnt);
a_offset += cnt;
b_offset += cnt;
xfersize -= cnt;
}
}
static inline void
moea64_copy_pages_nodmap(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
vm_page_t *mb, vm_offset_t b_offset, int xfersize)
{
void *a_cp, *b_cp;
vm_offset_t a_pg_offset, b_pg_offset;
int cnt;
mtx_lock(&moea64_scratchpage_mtx);
while (xfersize > 0) {
a_pg_offset = a_offset & PAGE_MASK;
cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
moea64_set_scratchpage_pa(mmu, 0,
VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT]));
a_cp = (char *)moea64_scratchpage_va[0] + a_pg_offset;
b_pg_offset = b_offset & PAGE_MASK;
cnt = min(cnt, PAGE_SIZE - b_pg_offset);
moea64_set_scratchpage_pa(mmu, 1,
VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT]));
b_cp = (char *)moea64_scratchpage_va[1] + b_pg_offset;
bcopy(a_cp, b_cp, cnt);
a_offset += cnt;
b_offset += cnt;
xfersize -= cnt;
}
mtx_unlock(&moea64_scratchpage_mtx);
}
void
moea64_copy_pages(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
vm_page_t *mb, vm_offset_t b_offset, int xfersize)
{
if (hw_direct_map) {
moea64_copy_pages_dmap(mmu, ma, a_offset, mb, b_offset,
xfersize);
} else {
moea64_copy_pages_nodmap(mmu, ma, a_offset, mb, b_offset,
xfersize);
}
}
void
moea64_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size)
{
vm_paddr_t pa = VM_PAGE_TO_PHYS(m);
if (size + off > PAGE_SIZE)
panic("moea64_zero_page: size + off > PAGE_SIZE");
if (hw_direct_map) {
bzero((caddr_t)(uintptr_t)PHYS_TO_DMAP(pa) + off, size);
} else {
mtx_lock(&moea64_scratchpage_mtx);
moea64_set_scratchpage_pa(mmu, 0, pa);
bzero((caddr_t)moea64_scratchpage_va[0] + off, size);
mtx_unlock(&moea64_scratchpage_mtx);
}
}
/*
* Zero a page of physical memory by temporarily mapping it
*/
void
moea64_zero_page(mmu_t mmu, vm_page_t m)
{
vm_paddr_t pa = VM_PAGE_TO_PHYS(m);
vm_offset_t va, off;
if (!hw_direct_map) {
mtx_lock(&moea64_scratchpage_mtx);
moea64_set_scratchpage_pa(mmu, 0, pa);
va = moea64_scratchpage_va[0];
} else {
va = PHYS_TO_DMAP(pa);
}
for (off = 0; off < PAGE_SIZE; off += cacheline_size)
__asm __volatile("dcbz 0,%0" :: "r"(va + off));
if (!hw_direct_map)
mtx_unlock(&moea64_scratchpage_mtx);
}
vm_offset_t
moea64_quick_enter_page(mmu_t mmu, vm_page_t m)
{
struct pvo_entry *pvo;
vm_paddr_t pa = VM_PAGE_TO_PHYS(m);
if (hw_direct_map)
return (PHYS_TO_DMAP(pa));
/*
* MOEA64_PTE_REPLACE does some locking, so we can't just grab
* a critical section and access the PCPU data like on i386.
* Instead, pin the thread and grab the PCPU lock to prevent
* a preempting thread from using the same PCPU data.
*/
sched_pin();
mtx_assert(PCPU_PTR(aim.qmap_lock), MA_NOTOWNED);
pvo = PCPU_GET(aim.qmap_pvo);
mtx_lock(PCPU_PTR(aim.qmap_lock));
pvo->pvo_pte.pa = moea64_calc_wimg(pa, pmap_page_get_memattr(m)) |
(uint64_t)pa;
MOEA64_PTE_REPLACE(mmu, pvo, MOEA64_PTE_INVALIDATE);
isync();
return (PCPU_GET(qmap_addr));
}
void
moea64_quick_remove_page(mmu_t mmu, vm_offset_t addr)
{
if (hw_direct_map)
return;
mtx_assert(PCPU_PTR(aim.qmap_lock), MA_OWNED);
KASSERT(PCPU_GET(qmap_addr) == addr,
("moea64_quick_remove_page: invalid address"));
mtx_unlock(PCPU_PTR(aim.qmap_lock));
sched_unpin();
}
/*
* Map the given physical page at the specified virtual address in the
* target pmap with the protection requested. If specified the page
* will be wired down.
*/
int
moea64_enter(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
vm_prot_t prot, u_int flags, int8_t psind)
{
struct pvo_entry *pvo, *oldpvo;
struct pvo_head *pvo_head;
uint64_t pte_lo;
int error;
if ((m->oflags & VPO_UNMANAGED) == 0) {
if ((flags & PMAP_ENTER_QUICK_LOCKED) == 0)
VM_PAGE_OBJECT_BUSY_ASSERT(m);
else
VM_OBJECT_ASSERT_LOCKED(m->object);
}
pvo = alloc_pvo_entry(0);
if (pvo == NULL)
return (KERN_RESOURCE_SHORTAGE);
pvo->pvo_pmap = NULL; /* to be filled in later */
pvo->pvo_pte.prot = prot;
pte_lo = moea64_calc_wimg(VM_PAGE_TO_PHYS(m), pmap_page_get_memattr(m));
pvo->pvo_pte.pa = VM_PAGE_TO_PHYS(m) | pte_lo;
if ((flags & PMAP_ENTER_WIRED) != 0)
pvo->pvo_vaddr |= PVO_WIRED;
if ((m->oflags & VPO_UNMANAGED) != 0 || !moea64_initialized) {
pvo_head = NULL;
} else {
pvo_head = &m->md.mdpg_pvoh;
pvo->pvo_vaddr |= PVO_MANAGED;
}
PV_PAGE_LOCK(m);
PMAP_LOCK(pmap);
if (pvo->pvo_pmap == NULL)
init_pvo_entry(pvo, pmap, va);
if (prot & VM_PROT_WRITE)
if (pmap_bootstrapped &&
(m->oflags & VPO_UNMANAGED) == 0)
vm_page_aflag_set(m, PGA_WRITEABLE);
error = moea64_pvo_enter(mmu, pvo, pvo_head, &oldpvo);
if (error == EEXIST) {
if (oldpvo->pvo_vaddr == pvo->pvo_vaddr &&
oldpvo->pvo_pte.pa == pvo->pvo_pte.pa &&
oldpvo->pvo_pte.prot == prot) {
/* Identical mapping already exists */
error = 0;
/* If not in page table, reinsert it */
if (MOEA64_PTE_SYNCH(mmu, oldpvo) < 0) {
STAT_MOEA64(moea64_pte_overflow--);
MOEA64_PTE_INSERT(mmu, oldpvo);
}
/* Then just clean up and go home */
PV_PAGE_UNLOCK(m);
PMAP_UNLOCK(pmap);
free_pvo_entry(pvo);
goto out;
} else {
/* Otherwise, need to kill it first */
KASSERT(oldpvo->pvo_pmap == pmap, ("pmap of old "
"mapping does not match new mapping"));
moea64_pvo_remove_from_pmap(mmu, oldpvo);
moea64_pvo_enter(mmu, pvo, pvo_head, NULL);
}
}
PMAP_UNLOCK(pmap);
PV_PAGE_UNLOCK(m);
/* Free any dead pages */
if (error == EEXIST) {
moea64_pvo_remove_from_page(mmu, oldpvo);
free_pvo_entry(oldpvo);
}
out:
/*
* Flush the page from the instruction cache if this page is
* mapped executable and cacheable.
*/
if (pmap != kernel_pmap && (m->a.flags & PGA_EXECUTABLE) == 0 &&
(pte_lo & (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0) {
vm_page_aflag_set(m, PGA_EXECUTABLE);
moea64_syncicache(mmu, pmap, va, VM_PAGE_TO_PHYS(m), PAGE_SIZE);
}
return (KERN_SUCCESS);
}
static void
moea64_syncicache(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
vm_size_t sz)
{
/*
* This is much trickier than on older systems because
* we can't sync the icache on physical addresses directly
* without a direct map. Instead we check a couple of cases
* where the memory is already mapped in and, failing that,
* use the same trick we use for page zeroing to create
* a temporary mapping for this physical address.
*/
if (!pmap_bootstrapped) {
/*
* If PMAP is not bootstrapped, we are likely to be
* in real mode.
*/
__syncicache((void *)(uintptr_t)pa, sz);
} else if (pmap == kernel_pmap) {
__syncicache((void *)va, sz);
} else if (hw_direct_map) {
__syncicache((void *)(uintptr_t)PHYS_TO_DMAP(pa), sz);
} else {
/* Use the scratch page to set up a temp mapping */
mtx_lock(&moea64_scratchpage_mtx);
moea64_set_scratchpage_pa(mmu, 1, pa & ~ADDR_POFF);
__syncicache((void *)(moea64_scratchpage_va[1] +
(va & ADDR_POFF)), sz);
mtx_unlock(&moea64_scratchpage_mtx);
}
}
/*
* Maps a sequence of resident pages belonging to the same object.
* The sequence begins with the given page m_start. This page is
* mapped at the given virtual address start. Each subsequent page is
* mapped at a virtual address that is offset from start by the same
* amount as the page is offset from m_start within the object. The
* last page in the sequence is the page with the largest offset from
* m_start that can be mapped at a virtual address less than the given
* virtual address end. Not every virtual page between start and end
* is mapped; only those for which a resident page exists with the
* corresponding offset from m_start are mapped.
*/
void
moea64_enter_object(mmu_t mmu, pmap_t pm, vm_offset_t start, vm_offset_t end,
vm_page_t m_start, vm_prot_t prot)
{
vm_page_t m;
vm_pindex_t diff, psize;
VM_OBJECT_ASSERT_LOCKED(m_start->object);
psize = atop(end - start);
m = m_start;
while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
moea64_enter(mmu, pm, start + ptoa(diff), m, prot &
(VM_PROT_READ | VM_PROT_EXECUTE), PMAP_ENTER_NOSLEEP |
PMAP_ENTER_QUICK_LOCKED, 0);
m = TAILQ_NEXT(m, listq);
}
}
void
moea64_enter_quick(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_page_t m,
vm_prot_t prot)
{
moea64_enter(mmu, pm, va, m, prot & (VM_PROT_READ | VM_PROT_EXECUTE),
PMAP_ENTER_NOSLEEP | PMAP_ENTER_QUICK_LOCKED, 0);
}
vm_paddr_t
moea64_extract(mmu_t mmu, pmap_t pm, vm_offset_t va)
{
struct pvo_entry *pvo;
vm_paddr_t pa;
PMAP_LOCK(pm);
pvo = moea64_pvo_find_va(pm, va);
if (pvo == NULL)
pa = 0;
else
pa = (pvo->pvo_pte.pa & LPTE_RPGN) | (va - PVO_VADDR(pvo));
PMAP_UNLOCK(pm);
return (pa);
}
/*
* Atomically extract and hold the physical page with the given
* pmap and virtual address pair if that mapping permits the given
* protection.
*/
vm_page_t
moea64_extract_and_hold(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_prot_t prot)
{
struct pvo_entry *pvo;
vm_page_t m;
m = NULL;
PMAP_LOCK(pmap);
pvo = moea64_pvo_find_va(pmap, va & ~ADDR_POFF);
if (pvo != NULL && (pvo->pvo_pte.prot & prot) == prot) {
m = PHYS_TO_VM_PAGE(pvo->pvo_pte.pa & LPTE_RPGN);
if (!vm_page_wire_mapped(m))
m = NULL;
}
PMAP_UNLOCK(pmap);
return (m);
}
static mmu_t installed_mmu;
static void *
moea64_uma_page_alloc(uma_zone_t zone, vm_size_t bytes, int domain,
uint8_t *flags, int wait)
{
struct pvo_entry *pvo;
vm_offset_t va;
vm_page_t m;
int needed_lock;
/*
* This entire routine is a horrible hack to avoid bothering kmem
* for new KVA addresses. Because this can get called from inside
* kmem allocation routines, calling kmem for a new address here
* can lead to multiply locking non-recursive mutexes.
*/
*flags = UMA_SLAB_PRIV;
needed_lock = !PMAP_LOCKED(kernel_pmap);
m = vm_page_alloc_domain(NULL, 0, domain,
malloc2vm_flags(wait) | VM_ALLOC_WIRED | VM_ALLOC_NOOBJ);
if (m == NULL)
return (NULL);
va = VM_PAGE_TO_PHYS(m);
pvo = alloc_pvo_entry(1 /* bootstrap */);
pvo->pvo_pte.prot = VM_PROT_READ | VM_PROT_WRITE;
pvo->pvo_pte.pa = VM_PAGE_TO_PHYS(m) | LPTE_M;
if (needed_lock)
PMAP_LOCK(kernel_pmap);
init_pvo_entry(pvo, kernel_pmap, va);
pvo->pvo_vaddr |= PVO_WIRED;
moea64_pvo_enter(installed_mmu, pvo, NULL, NULL);
if (needed_lock)
PMAP_UNLOCK(kernel_pmap);
if ((wait & M_ZERO) && (m->flags & PG_ZERO) == 0)
bzero((void *)va, PAGE_SIZE);
return (void *)va;
}
extern int elf32_nxstack;
void
moea64_init(mmu_t mmu)
{
CTR0(KTR_PMAP, "moea64_init");
moea64_pvo_zone = uma_zcreate("UPVO entry", sizeof (struct pvo_entry),
NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
UMA_ZONE_VM | UMA_ZONE_NOFREE);
if (!hw_direct_map) {
installed_mmu = mmu;
uma_zone_set_allocf(moea64_pvo_zone, moea64_uma_page_alloc);
}
#ifdef COMPAT_FREEBSD32
elf32_nxstack = 1;
#endif
moea64_initialized = TRUE;
}
boolean_t
moea64_is_referenced(mmu_t mmu, vm_page_t m)
{
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
("moea64_is_referenced: page %p is not managed", m));
return (moea64_query_bit(mmu, m, LPTE_REF));
}
boolean_t
moea64_is_modified(mmu_t mmu, vm_page_t m)
{
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
("moea64_is_modified: page %p is not managed", m));
/*
* If the page is not busied then this check is racy.
*/
if (!pmap_page_is_write_mapped(m))
return (FALSE);
return (moea64_query_bit(mmu, m, LPTE_CHG));
}
boolean_t
moea64_is_prefaultable(mmu_t mmu, pmap_t pmap, vm_offset_t va)
{
struct pvo_entry *pvo;
boolean_t rv = TRUE;
PMAP_LOCK(pmap);
pvo = moea64_pvo_find_va(pmap, va & ~ADDR_POFF);
if (pvo != NULL)
rv = FALSE;
PMAP_UNLOCK(pmap);
return (rv);
}
void
moea64_clear_modify(mmu_t mmu, vm_page_t m)
{
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
("moea64_clear_modify: page %p is not managed", m));
vm_page_assert_busied(m);
if (!pmap_page_is_write_mapped(m))
return;
moea64_clear_bit(mmu, m, LPTE_CHG);
}
/*
* Clear the write and modified bits in each of the given page's mappings.
*/
void
moea64_remove_write(mmu_t mmu, vm_page_t m)
{
struct pvo_entry *pvo;
int64_t refchg, ret;
pmap_t pmap;
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
("moea64_remove_write: page %p is not managed", m));
vm_page_assert_busied(m);
if (!pmap_page_is_write_mapped(m))
return
powerpc_sync();
PV_PAGE_LOCK(m);
refchg = 0;
LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
pmap = pvo->pvo_pmap;
PMAP_LOCK(pmap);
if (!(pvo->pvo_vaddr & PVO_DEAD) &&
(pvo->pvo_pte.prot & VM_PROT_WRITE)) {
pvo->pvo_pte.prot &= ~VM_PROT_WRITE;
ret = MOEA64_PTE_REPLACE(mmu, pvo,
MOEA64_PTE_PROT_UPDATE);
if (ret < 0)
ret = LPTE_CHG;
refchg |= ret;
if (pvo->pvo_pmap == kernel_pmap)
isync();
}
PMAP_UNLOCK(pmap);
}
if ((refchg | atomic_readandclear_32(&m->md.mdpg_attrs)) & LPTE_CHG)
vm_page_dirty(m);
vm_page_aflag_clear(m, PGA_WRITEABLE);
PV_PAGE_UNLOCK(m);
}
/*
* moea64_ts_referenced:
*
* Return a count of reference bits for a page, clearing those bits.
* It is not necessary for every reference bit to be cleared, but it
* is necessary that 0 only be returned when there are truly no
* reference bits set.
*
* XXX: The exact number of bits to check and clear is a matter that
* should be tested and standardized at some point in the future for
* optimal aging of shared pages.
*/
int
moea64_ts_referenced(mmu_t mmu, vm_page_t m)
{
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
("moea64_ts_referenced: page %p is not managed", m));
return (moea64_clear_bit(mmu, m, LPTE_REF));
}
/*
* Modify the WIMG settings of all mappings for a page.
*/
void
moea64_page_set_memattr(mmu_t mmu, vm_page_t m, vm_memattr_t ma)
{
struct pvo_entry *pvo;
int64_t refchg;
pmap_t pmap;
uint64_t lo;
if ((m->oflags & VPO_UNMANAGED) != 0) {
m->md.mdpg_cache_attrs = ma;
return;
}
lo = moea64_calc_wimg(VM_PAGE_TO_PHYS(m), ma);
PV_PAGE_LOCK(m);
LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
pmap = pvo->pvo_pmap;
PMAP_LOCK(pmap);
if (!(pvo->pvo_vaddr & PVO_DEAD)) {
pvo->pvo_pte.pa &= ~LPTE_WIMG;
pvo->pvo_pte.pa |= lo;
refchg = MOEA64_PTE_REPLACE(mmu, pvo,
MOEA64_PTE_INVALIDATE);
if (refchg < 0)
refchg = (pvo->pvo_pte.prot & VM_PROT_WRITE) ?
LPTE_CHG : 0;
if ((pvo->pvo_vaddr & PVO_MANAGED) &&
(pvo->pvo_pte.prot & VM_PROT_WRITE)) {
refchg |=
atomic_readandclear_32(&m->md.mdpg_attrs);
if (refchg & LPTE_CHG)
vm_page_dirty(m);
if (refchg & LPTE_REF)
vm_page_aflag_set(m, PGA_REFERENCED);
}
if (pvo->pvo_pmap == kernel_pmap)
isync();
}
PMAP_UNLOCK(pmap);
}
m->md.mdpg_cache_attrs = ma;
PV_PAGE_UNLOCK(m);
}
/*
* Map a wired page into kernel virtual address space.
*/
void
moea64_kenter_attr(mmu_t mmu, vm_offset_t va, vm_paddr_t pa, vm_memattr_t ma)
{
int error;
struct pvo_entry *pvo, *oldpvo;
do {
pvo = alloc_pvo_entry(0);
if (pvo == NULL)
vm_wait(NULL);
} while (pvo == NULL);
pvo->pvo_pte.prot = VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
pvo->pvo_pte.pa = (pa & ~ADDR_POFF) | moea64_calc_wimg(pa, ma);
pvo->pvo_vaddr |= PVO_WIRED;
PMAP_LOCK(kernel_pmap);
oldpvo = moea64_pvo_find_va(kernel_pmap, va);
if (oldpvo != NULL)
moea64_pvo_remove_from_pmap(mmu, oldpvo);
init_pvo_entry(pvo, kernel_pmap, va);
error = moea64_pvo_enter(mmu, pvo, NULL, NULL);
PMAP_UNLOCK(kernel_pmap);
/* Free any dead pages */
if (oldpvo != NULL) {
moea64_pvo_remove_from_page(mmu, oldpvo);
free_pvo_entry(oldpvo);
}
if (error != 0)
panic("moea64_kenter: failed to enter va %#zx pa %#jx: %d", va,
(uintmax_t)pa, error);
}
void
moea64_kenter(mmu_t mmu, vm_offset_t va, vm_paddr_t pa)
{
moea64_kenter_attr(mmu, va, pa, VM_MEMATTR_DEFAULT);
}
/*
* Extract the physical page address associated with the given kernel virtual
* address.
*/
vm_paddr_t
moea64_kextract(mmu_t mmu, vm_offset_t va)
{
struct pvo_entry *pvo;
vm_paddr_t pa;
/*
* Shortcut the direct-mapped case when applicable. We never put
* anything but 1:1 (or 62-bit aliased) mappings below
* VM_MIN_KERNEL_ADDRESS.
*/
if (va < VM_MIN_KERNEL_ADDRESS)
return (va & ~DMAP_BASE_ADDRESS);
PMAP_LOCK(kernel_pmap);
pvo = moea64_pvo_find_va(kernel_pmap, va);
KASSERT(pvo != NULL, ("moea64_kextract: no addr found for %#" PRIxPTR,
va));
pa = (pvo->pvo_pte.pa & LPTE_RPGN) | (va - PVO_VADDR(pvo));
PMAP_UNLOCK(kernel_pmap);
return (pa);
}
/*
* Remove a wired page from kernel virtual address space.
*/
void
moea64_kremove(mmu_t mmu, vm_offset_t va)
{
moea64_remove(mmu, kernel_pmap, va, va + PAGE_SIZE);
}
/*
* Provide a kernel pointer corresponding to a given userland pointer.
* The returned pointer is valid until the next time this function is
* called in this thread. This is used internally in copyin/copyout.
*/
static int
moea64_map_user_ptr(mmu_t mmu, pmap_t pm, volatile const void *uaddr,
void **kaddr, size_t ulen, size_t *klen)
{
size_t l;
#ifdef __powerpc64__
struct slb *slb;
#endif
register_t slbv;
*kaddr = (char *)USER_ADDR + ((uintptr_t)uaddr & ~SEGMENT_MASK);
l = ((char *)USER_ADDR + SEGMENT_LENGTH) - (char *)(*kaddr);
if (l > ulen)
l = ulen;
if (klen)
*klen = l;
else if (l != ulen)
return (EFAULT);
#ifdef __powerpc64__
/* Try lockless look-up first */
slb = user_va_to_slb_entry(pm, (vm_offset_t)uaddr);
if (slb == NULL) {
/* If it isn't there, we need to pre-fault the VSID */
PMAP_LOCK(pm);
slbv = va_to_vsid(pm, (vm_offset_t)uaddr) << SLBV_VSID_SHIFT;
PMAP_UNLOCK(pm);
} else {
slbv = slb->slbv;
}
/* Mark segment no-execute */
slbv |= SLBV_N;
#else
slbv = va_to_vsid(pm, (vm_offset_t)uaddr);
/* Mark segment no-execute */
slbv |= SR_N;
#endif
/* If we have already set this VSID, we can just return */
if (curthread->td_pcb->pcb_cpu.aim.usr_vsid == slbv)
return (0);
__asm __volatile("isync");
curthread->td_pcb->pcb_cpu.aim.usr_segm =
(uintptr_t)uaddr >> ADDR_SR_SHFT;
curthread->td_pcb->pcb_cpu.aim.usr_vsid = slbv;
#ifdef __powerpc64__
__asm __volatile ("slbie %0; slbmte %1, %2; isync" ::
"r"(USER_ADDR), "r"(slbv), "r"(USER_SLB_SLBE));
#else
__asm __volatile("mtsr %0,%1; isync" :: "n"(USER_SR), "r"(slbv));
#endif
return (0);
}
/*
* Figure out where a given kernel pointer (usually in a fault) points
* to from the VM's perspective, potentially remapping into userland's
* address space.
*/
static int
moea64_decode_kernel_ptr(mmu_t mmu, vm_offset_t addr, int *is_user,
vm_offset_t *decoded_addr)
{
vm_offset_t user_sr;
if ((addr >> ADDR_SR_SHFT) == (USER_ADDR >> ADDR_SR_SHFT)) {
user_sr = curthread->td_pcb->pcb_cpu.aim.usr_segm;
addr &= ADDR_PIDX | ADDR_POFF;
addr |= user_sr << ADDR_SR_SHFT;
*decoded_addr = addr;
*is_user = 1;
} else {
*decoded_addr = addr;
*is_user = 0;
}
return (0);
}
/*
* Map a range of physical addresses into kernel virtual address space.
*
* The value passed in *virt is a suggested virtual address for the mapping.
* Architectures which can support a direct-mapped physical to virtual region
* can return the appropriate address within that region, leaving '*virt'
* unchanged. Other architectures should map the pages starting at '*virt' and
* update '*virt' with the first usable address after the mapped region.
*/
vm_offset_t
moea64_map(mmu_t mmu, vm_offset_t *virt, vm_paddr_t pa_start,
vm_paddr_t pa_end, int prot)
{
vm_offset_t sva, va;
if (hw_direct_map) {
/*
* Check if every page in the region is covered by the direct
* map. The direct map covers all of physical memory. Use
* moea64_calc_wimg() as a shortcut to see if the page is in
* physical memory as a way to see if the direct map covers it.
*/
for (va = pa_start; va < pa_end; va += PAGE_SIZE)
if (moea64_calc_wimg(va, VM_MEMATTR_DEFAULT) != LPTE_M)
break;
if (va == pa_end)
return (PHYS_TO_DMAP(pa_start));
}
sva = *virt;
va = sva;
/* XXX respect prot argument */
for (; pa_start < pa_end; pa_start += PAGE_SIZE, va += PAGE_SIZE)
moea64_kenter(mmu, va, pa_start);
*virt = va;
return (sva);
}
/*
* Returns true if the pmap's pv is one of the first
* 16 pvs linked to from this page. This count may
* be changed upwards or downwards in the future; it
* is only necessary that true be returned for a small
* subset of pmaps for proper page aging.
*/
boolean_t
moea64_page_exists_quick(mmu_t mmu, pmap_t pmap, vm_page_t m)
{
int loops;
struct pvo_entry *pvo;
boolean_t rv;
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
("moea64_page_exists_quick: page %p is not managed", m));
loops = 0;
rv = FALSE;
PV_PAGE_LOCK(m);
LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
if (!(pvo->pvo_vaddr & PVO_DEAD) && pvo->pvo_pmap == pmap) {
rv = TRUE;
break;
}
if (++loops >= 16)
break;
}
PV_PAGE_UNLOCK(m);
return (rv);
}
void
moea64_page_init(mmu_t mmu __unused, vm_page_t m)
{
m->md.mdpg_attrs = 0;
m->md.mdpg_cache_attrs = VM_MEMATTR_DEFAULT;
LIST_INIT(&m->md.mdpg_pvoh);
}
/*
* Return the number of managed mappings to the given physical page
* that are wired.
*/
int
moea64_page_wired_mappings(mmu_t mmu, vm_page_t m)
{
struct pvo_entry *pvo;
int count;
count = 0;
if ((m->oflags & VPO_UNMANAGED) != 0)
return (count);
PV_PAGE_LOCK(m);
LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink)
if ((pvo->pvo_vaddr & (PVO_DEAD | PVO_WIRED)) == PVO_WIRED)
count++;
PV_PAGE_UNLOCK(m);
return (count);
}
static uintptr_t moea64_vsidcontext;
uintptr_t
moea64_get_unique_vsid(void) {
u_int entropy;
register_t hash;
uint32_t mask;
int i;
entropy = 0;
__asm __volatile("mftb %0" : "=r"(entropy));
mtx_lock(&moea64_slb_mutex);
for (i = 0; i < NVSIDS; i += VSID_NBPW) {
u_int n;
/*
* Create a new value by mutiplying by a prime and adding in
* entropy from the timebase register. This is to make the
* VSID more random so that the PT hash function collides
* less often. (Note that the prime casues gcc to do shifts
* instead of a multiply.)
*/
moea64_vsidcontext = (moea64_vsidcontext * 0x1105) + entropy;
hash = moea64_vsidcontext & (NVSIDS - 1);
if (hash == 0) /* 0 is special, avoid it */
continue;
n = hash >> 5;
mask = 1 << (hash & (VSID_NBPW - 1));
hash = (moea64_vsidcontext & VSID_HASHMASK);
if (moea64_vsid_bitmap[n] & mask) { /* collision? */
/* anything free in this bucket? */
if (moea64_vsid_bitmap[n] == 0xffffffff) {
entropy = (moea64_vsidcontext >> 20);
continue;
}
i = ffs(~moea64_vsid_bitmap[n]) - 1;
mask = 1 << i;
hash &= rounddown2(VSID_HASHMASK, VSID_NBPW);
hash |= i;
}
if (hash == VSID_VRMA) /* also special, avoid this too */
continue;
KASSERT(!(moea64_vsid_bitmap[n] & mask),
("Allocating in-use VSID %#zx\n", hash));
moea64_vsid_bitmap[n] |= mask;
mtx_unlock(&moea64_slb_mutex);
return (hash);
}
mtx_unlock(&moea64_slb_mutex);
panic("%s: out of segments",__func__);
}
#ifdef __powerpc64__
void
moea64_pinit(mmu_t mmu, pmap_t pmap)
{
RB_INIT(&pmap->pmap_pvo);
pmap->pm_slb_tree_root = slb_alloc_tree();
pmap->pm_slb = slb_alloc_user_cache();
pmap->pm_slb_len = 0;
}
#else
void
moea64_pinit(mmu_t mmu, pmap_t pmap)
{
int i;
uint32_t hash;
RB_INIT(&pmap->pmap_pvo);
if (pmap_bootstrapped)
pmap->pmap_phys = (pmap_t)moea64_kextract(mmu,
(vm_offset_t)pmap);
else
pmap->pmap_phys = pmap;
/*
* Allocate some segment registers for this pmap.
*/
hash = moea64_get_unique_vsid();
for (i = 0; i < 16; i++)
pmap->pm_sr[i] = VSID_MAKE(i, hash);
KASSERT(pmap->pm_sr[0] != 0, ("moea64_pinit: pm_sr[0] = 0"));
}
#endif
/*
* Initialize the pmap associated with process 0.
*/
void
moea64_pinit0(mmu_t mmu, pmap_t pm)
{
PMAP_LOCK_INIT(pm);
moea64_pinit(mmu, pm);
bzero(&pm->pm_stats, sizeof(pm->pm_stats));
}
/*
* Set the physical protection on the specified range of this map as requested.
*/
static void
moea64_pvo_protect(mmu_t mmu, pmap_t pm, struct pvo_entry *pvo, vm_prot_t prot)
{
struct vm_page *pg;
vm_prot_t oldprot;
int32_t refchg;
PMAP_LOCK_ASSERT(pm, MA_OWNED);
/*
* Change the protection of the page.
*/
oldprot = pvo->pvo_pte.prot;
pvo->pvo_pte.prot = prot;
pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.pa & LPTE_RPGN);
/*
* If the PVO is in the page table, update mapping
*/
refchg = MOEA64_PTE_REPLACE(mmu, pvo, MOEA64_PTE_PROT_UPDATE);
if (refchg < 0)
refchg = (oldprot & VM_PROT_WRITE) ? LPTE_CHG : 0;
if (pm != kernel_pmap && pg != NULL &&
(pg->a.flags & PGA_EXECUTABLE) == 0 &&
(pvo->pvo_pte.pa & (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0) {
if ((pg->oflags & VPO_UNMANAGED) == 0)
vm_page_aflag_set(pg, PGA_EXECUTABLE);
moea64_syncicache(mmu, pm, PVO_VADDR(pvo),
pvo->pvo_pte.pa & LPTE_RPGN, PAGE_SIZE);
}
/*
* Update vm about the REF/CHG bits if the page is managed and we have
* removed write access.
*/
if (pg != NULL && (pvo->pvo_vaddr & PVO_MANAGED) &&
(oldprot & VM_PROT_WRITE)) {
refchg |= atomic_readandclear_32(&pg->md.mdpg_attrs);
if (refchg & LPTE_CHG)
vm_page_dirty(pg);
if (refchg & LPTE_REF)
vm_page_aflag_set(pg, PGA_REFERENCED);
}
}
void
moea64_protect(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva,
vm_prot_t prot)
{
struct pvo_entry *pvo, *tpvo, key;
CTR4(KTR_PMAP, "moea64_protect: pm=%p sva=%#x eva=%#x prot=%#x", pm,
sva, eva, prot);
KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
("moea64_protect: non current pmap"));
if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
moea64_remove(mmu, pm, sva, eva);
return;
}
PMAP_LOCK(pm);
key.pvo_vaddr = sva;
for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) {
tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo);
moea64_pvo_protect(mmu, pm, pvo, prot);
}
PMAP_UNLOCK(pm);
}
/*
* Map a list of wired pages into kernel virtual address space. This is
* intended for temporary mappings which do not need page modification or
* references recorded. Existing mappings in the region are overwritten.
*/
void
moea64_qenter(mmu_t mmu, vm_offset_t va, vm_page_t *m, int count)
{
while (count-- > 0) {
moea64_kenter(mmu, va, VM_PAGE_TO_PHYS(*m));
va += PAGE_SIZE;
m++;
}
}
/*
* Remove page mappings from kernel virtual address space. Intended for
* temporary mappings entered by moea64_qenter.
*/
void
moea64_qremove(mmu_t mmu, vm_offset_t va, int count)
{
while (count-- > 0) {
moea64_kremove(mmu, va);
va += PAGE_SIZE;
}
}
void
moea64_release_vsid(uint64_t vsid)
{
int idx, mask;
mtx_lock(&moea64_slb_mutex);
idx = vsid & (NVSIDS-1);
mask = 1 << (idx % VSID_NBPW);
idx /= VSID_NBPW;
KASSERT(moea64_vsid_bitmap[idx] & mask,
("Freeing unallocated VSID %#jx", vsid));
moea64_vsid_bitmap[idx] &= ~mask;
mtx_unlock(&moea64_slb_mutex);
}
void
moea64_release(mmu_t mmu, pmap_t pmap)
{
/*
* Free segment registers' VSIDs
*/
#ifdef __powerpc64__
slb_free_tree(pmap);
slb_free_user_cache(pmap->pm_slb);
#else
KASSERT(pmap->pm_sr[0] != 0, ("moea64_release: pm_sr[0] = 0"));
moea64_release_vsid(VSID_TO_HASH(pmap->pm_sr[0]));
#endif
}
/*
* Remove all pages mapped by the specified pmap
*/
void
moea64_remove_pages(mmu_t mmu, pmap_t pm)
{
struct pvo_entry *pvo, *tpvo;
struct pvo_dlist tofree;
SLIST_INIT(&tofree);
PMAP_LOCK(pm);
RB_FOREACH_SAFE(pvo, pvo_tree, &pm->pmap_pvo, tpvo) {
if (pvo->pvo_vaddr & PVO_WIRED)
continue;
/*
* For locking reasons, remove this from the page table and
* pmap, but save delinking from the vm_page for a second
* pass
*/
moea64_pvo_remove_from_pmap(mmu, pvo);
SLIST_INSERT_HEAD(&tofree, pvo, pvo_dlink);
}
PMAP_UNLOCK(pm);
while (!SLIST_EMPTY(&tofree)) {
pvo = SLIST_FIRST(&tofree);
SLIST_REMOVE_HEAD(&tofree, pvo_dlink);
moea64_pvo_remove_from_page(mmu, pvo);
free_pvo_entry(pvo);
}
}
/*
* Remove the given range of addresses from the specified map.
*/
void
moea64_remove(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva)
{
struct pvo_entry *pvo, *tpvo, key;
struct pvo_dlist tofree;
/*
* Perform an unsynchronized read. This is, however, safe.
*/
if (pm->pm_stats.resident_count == 0)
return;
key.pvo_vaddr = sva;
SLIST_INIT(&tofree);
PMAP_LOCK(pm);
for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) {
tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo);
/*
* For locking reasons, remove this from the page table and
* pmap, but save delinking from the vm_page for a second
* pass
*/
moea64_pvo_remove_from_pmap(mmu, pvo);
SLIST_INSERT_HEAD(&tofree, pvo, pvo_dlink);
}
PMAP_UNLOCK(pm);
while (!SLIST_EMPTY(&tofree)) {
pvo = SLIST_FIRST(&tofree);
SLIST_REMOVE_HEAD(&tofree, pvo_dlink);
moea64_pvo_remove_from_page(mmu, pvo);
free_pvo_entry(pvo);
}
}
/*
* Remove physical page from all pmaps in which it resides. moea64_pvo_remove()
* will reflect changes in pte's back to the vm_page.
*/
void
moea64_remove_all(mmu_t mmu, vm_page_t m)
{
struct pvo_entry *pvo, *next_pvo;
struct pvo_head freequeue;
int wasdead;
pmap_t pmap;
LIST_INIT(&freequeue);
PV_PAGE_LOCK(m);
LIST_FOREACH_SAFE(pvo, vm_page_to_pvoh(m), pvo_vlink, next_pvo) {
pmap = pvo->pvo_pmap;
PMAP_LOCK(pmap);
wasdead = (pvo->pvo_vaddr & PVO_DEAD);
if (!wasdead)
moea64_pvo_remove_from_pmap(mmu, pvo);
moea64_pvo_remove_from_page_locked(mmu, pvo, m);
if (!wasdead)
LIST_INSERT_HEAD(&freequeue, pvo, pvo_vlink);
PMAP_UNLOCK(pmap);
}
KASSERT(!pmap_page_is_mapped(m), ("Page still has mappings"));
KASSERT((m->a.flags & PGA_WRITEABLE) == 0, ("Page still writable"));
PV_PAGE_UNLOCK(m);
/* Clean up UMA allocations */
LIST_FOREACH_SAFE(pvo, &freequeue, pvo_vlink, next_pvo)
free_pvo_entry(pvo);
}
/*
* Allocate a physical page of memory directly from the phys_avail map.
* Can only be called from moea64_bootstrap before avail start and end are
* calculated.
*/
vm_offset_t
moea64_bootstrap_alloc(vm_size_t size, vm_size_t align)
{
vm_offset_t s, e;
int i, j;
size = round_page(size);
for (i = 0; phys_avail[i + 1] != 0; i += 2) {
if (align != 0)
s = roundup2(phys_avail[i], align);
else
s = phys_avail[i];
e = s + size;
if (s < phys_avail[i] || e > phys_avail[i + 1])
continue;
if (s + size > platform_real_maxaddr())
continue;
if (s == phys_avail[i]) {
phys_avail[i] += size;
} else if (e == phys_avail[i + 1]) {
phys_avail[i + 1] -= size;
} else {
for (j = phys_avail_count * 2; j > i; j -= 2) {
phys_avail[j] = phys_avail[j - 2];
phys_avail[j + 1] = phys_avail[j - 1];
}
phys_avail[i + 3] = phys_avail[i + 1];
phys_avail[i + 1] = s;
phys_avail[i + 2] = e;
phys_avail_count++;
}
return (s);
}
panic("moea64_bootstrap_alloc: could not allocate memory");
}
static int
moea64_pvo_enter(mmu_t mmu, struct pvo_entry *pvo, struct pvo_head *pvo_head,
struct pvo_entry **oldpvop)
{
struct pvo_entry *old_pvo;
int err;
PMAP_LOCK_ASSERT(pvo->pvo_pmap, MA_OWNED);
STAT_MOEA64(moea64_pvo_enter_calls++);
/*
* Add to pmap list
*/
old_pvo = RB_INSERT(pvo_tree, &pvo->pvo_pmap->pmap_pvo, pvo);
if (old_pvo != NULL) {
if (oldpvop != NULL)
*oldpvop = old_pvo;
return (EEXIST);
}
if (pvo_head != NULL) {
LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
}
if (pvo->pvo_vaddr & PVO_WIRED)
pvo->pvo_pmap->pm_stats.wired_count++;
pvo->pvo_pmap->pm_stats.resident_count++;
/*
* Insert it into the hardware page table
*/
err = MOEA64_PTE_INSERT(mmu, pvo);
if (err != 0) {
panic("moea64_pvo_enter: overflow");
}
STAT_MOEA64(moea64_pvo_entries++);
if (pvo->pvo_pmap == kernel_pmap)
isync();
#ifdef __powerpc64__
/*
* Make sure all our bootstrap mappings are in the SLB as soon
* as virtual memory is switched on.
*/
if (!pmap_bootstrapped)
moea64_bootstrap_slb_prefault(PVO_VADDR(pvo),
pvo->pvo_vaddr & PVO_LARGE);
#endif
return (0);
}
static void
moea64_pvo_remove_from_pmap(mmu_t mmu, struct pvo_entry *pvo)
{
struct vm_page *pg;
int32_t refchg;
KASSERT(pvo->pvo_pmap != NULL, ("Trying to remove PVO with no pmap"));
PMAP_LOCK_ASSERT(pvo->pvo_pmap, MA_OWNED);
KASSERT(!(pvo->pvo_vaddr & PVO_DEAD), ("Trying to remove dead PVO"));
/*
* If there is an active pte entry, we need to deactivate it
*/
refchg = MOEA64_PTE_UNSET(mmu, pvo);
if (refchg < 0) {
/*
* If it was evicted from the page table, be pessimistic and
* dirty the page.
*/
if (pvo->pvo_pte.prot & VM_PROT_WRITE)
refchg = LPTE_CHG;
else
refchg = 0;
}
/*
* Update our statistics.
*/
pvo->pvo_pmap->pm_stats.resident_count--;
if (pvo->pvo_vaddr & PVO_WIRED)
pvo->pvo_pmap->pm_stats.wired_count--;
/*
* Remove this PVO from the pmap list.
*/
RB_REMOVE(pvo_tree, &pvo->pvo_pmap->pmap_pvo, pvo);
/*
* Mark this for the next sweep
*/
pvo->pvo_vaddr |= PVO_DEAD;
/* Send RC bits to VM */
if ((pvo->pvo_vaddr & PVO_MANAGED) &&
(pvo->pvo_pte.prot & VM_PROT_WRITE)) {
pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.pa & LPTE_RPGN);
if (pg != NULL) {
refchg |= atomic_readandclear_32(&pg->md.mdpg_attrs);
if (refchg & LPTE_CHG)
vm_page_dirty(pg);
if (refchg & LPTE_REF)
vm_page_aflag_set(pg, PGA_REFERENCED);
}
}
}
static inline void
moea64_pvo_remove_from_page_locked(mmu_t mmu, struct pvo_entry *pvo,
vm_page_t m)
{
KASSERT(pvo->pvo_vaddr & PVO_DEAD, ("Trying to delink live page"));
/* Use NULL pmaps as a sentinel for races in page deletion */
if (pvo->pvo_pmap == NULL)
return;
pvo->pvo_pmap = NULL;
/*
* Update vm about page writeability/executability if managed
*/
PV_LOCKASSERT(pvo->pvo_pte.pa & LPTE_RPGN);
if (pvo->pvo_vaddr & PVO_MANAGED) {
if (m != NULL) {
LIST_REMOVE(pvo, pvo_vlink);
if (LIST_EMPTY(vm_page_to_pvoh(m)))
vm_page_aflag_clear(m,
PGA_WRITEABLE | PGA_EXECUTABLE);
}
}
STAT_MOEA64(moea64_pvo_entries--);
STAT_MOEA64(moea64_pvo_remove_calls++);
}
static void
moea64_pvo_remove_from_page(mmu_t mmu, struct pvo_entry *pvo)
{
vm_page_t pg = NULL;
if (pvo->pvo_vaddr & PVO_MANAGED)
pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.pa & LPTE_RPGN);
PV_LOCK(pvo->pvo_pte.pa & LPTE_RPGN);
moea64_pvo_remove_from_page_locked(mmu, pvo, pg);
PV_UNLOCK(pvo->pvo_pte.pa & LPTE_RPGN);
}
static struct pvo_entry *
moea64_pvo_find_va(pmap_t pm, vm_offset_t va)
{
struct pvo_entry key;
PMAP_LOCK_ASSERT(pm, MA_OWNED);
key.pvo_vaddr = va & ~ADDR_POFF;
return (RB_FIND(pvo_tree, &pm->pmap_pvo, &key));
}
static boolean_t
moea64_query_bit(mmu_t mmu, vm_page_t m, uint64_t ptebit)
{
struct pvo_entry *pvo;
int64_t ret;
boolean_t rv;
/*
* See if this bit is stored in the page already.
*/
if (m->md.mdpg_attrs & ptebit)
return (TRUE);
/*
* Examine each PTE. Sync so that any pending REF/CHG bits are
* flushed to the PTEs.
*/
rv = FALSE;
powerpc_sync();
PV_PAGE_LOCK(m);
LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
ret = 0;
/*
* See if this pvo has a valid PTE. if so, fetch the
* REF/CHG bits from the valid PTE. If the appropriate
* ptebit is set, return success.
*/
PMAP_LOCK(pvo->pvo_pmap);
if (!(pvo->pvo_vaddr & PVO_DEAD))
ret = MOEA64_PTE_SYNCH(mmu, pvo);
PMAP_UNLOCK(pvo->pvo_pmap);
if (ret > 0) {
atomic_set_32(&m->md.mdpg_attrs,
ret & (LPTE_CHG | LPTE_REF));
if (ret & ptebit) {
rv = TRUE;
break;
}
}
}
PV_PAGE_UNLOCK(m);
return (rv);
}
static u_int
moea64_clear_bit(mmu_t mmu, vm_page_t m, u_int64_t ptebit)
{
u_int count;
struct pvo_entry *pvo;
int64_t ret;
/*
* Sync so that any pending REF/CHG bits are flushed to the PTEs (so
* we can reset the right ones).
*/
powerpc_sync();
/*
* For each pvo entry, clear the pte's ptebit.
*/
count = 0;
PV_PAGE_LOCK(m);
LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
ret = 0;
PMAP_LOCK(pvo->pvo_pmap);
if (!(pvo->pvo_vaddr & PVO_DEAD))
ret = MOEA64_PTE_CLEAR(mmu, pvo, ptebit);
PMAP_UNLOCK(pvo->pvo_pmap);
if (ret > 0 && (ret & ptebit))
count++;
}
atomic_clear_32(&m->md.mdpg_attrs, ptebit);
PV_PAGE_UNLOCK(m);
return (count);
}
boolean_t
moea64_dev_direct_mapped(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
{
struct pvo_entry *pvo, key;
vm_offset_t ppa;
int error = 0;
if (hw_direct_map && mem_valid(pa, size) == 0)
return (0);
PMAP_LOCK(kernel_pmap);
ppa = pa & ~ADDR_POFF;
key.pvo_vaddr = DMAP_BASE_ADDRESS + ppa;
for (pvo = RB_FIND(pvo_tree, &kernel_pmap->pmap_pvo, &key);
ppa < pa + size; ppa += PAGE_SIZE,
pvo = RB_NEXT(pvo_tree, &kernel_pmap->pmap_pvo, pvo)) {
if (pvo == NULL || (pvo->pvo_pte.pa & LPTE_RPGN) != ppa) {
error = EFAULT;
break;
}
}
PMAP_UNLOCK(kernel_pmap);
return (error);
}
/*
* Map a set of physical memory pages into the kernel virtual
* address space. Return a pointer to where it is mapped. This
* routine is intended to be used for mapping device memory,
* NOT real memory.
*/
void *
moea64_mapdev_attr(mmu_t mmu, vm_paddr_t pa, vm_size_t size, vm_memattr_t ma)
{
vm_offset_t va, tmpva, ppa, offset;
ppa = trunc_page(pa);
offset = pa & PAGE_MASK;
size = roundup2(offset + size, PAGE_SIZE);
va = kva_alloc(size);
if (!va)
panic("moea64_mapdev: Couldn't alloc kernel virtual memory");
for (tmpva = va; size > 0;) {
moea64_kenter_attr(mmu, tmpva, ppa, ma);
size -= PAGE_SIZE;
tmpva += PAGE_SIZE;
ppa += PAGE_SIZE;
}
return ((void *)(va + offset));
}
void *
moea64_mapdev(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
{
return moea64_mapdev_attr(mmu, pa, size, VM_MEMATTR_DEFAULT);
}
void
moea64_unmapdev(mmu_t mmu, vm_offset_t va, vm_size_t size)
{
vm_offset_t base, offset;
base = trunc_page(va);
offset = va & PAGE_MASK;
size = roundup2(offset + size, PAGE_SIZE);
kva_free(base, size);
}
void
moea64_sync_icache(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_size_t sz)
{
struct pvo_entry *pvo;
vm_offset_t lim;
vm_paddr_t pa;
vm_size_t len;
if (__predict_false(pm == NULL))
pm = &curthread->td_proc->p_vmspace->vm_pmap;
PMAP_LOCK(pm);
while (sz > 0) {
lim = round_page(va+1);
len = MIN(lim - va, sz);
pvo = moea64_pvo_find_va(pm, va & ~ADDR_POFF);
if (pvo != NULL && !(pvo->pvo_pte.pa & LPTE_I)) {
pa = (pvo->pvo_pte.pa & LPTE_RPGN) | (va & ADDR_POFF);
moea64_syncicache(mmu, pm, va, pa, len);
}
va += len;
sz -= len;
}
PMAP_UNLOCK(pm);
}
void
moea64_dumpsys_map(mmu_t mmu, vm_paddr_t pa, size_t sz, void **va)
{
*va = (void *)(uintptr_t)pa;
}
extern struct dump_pa dump_map[PHYS_AVAIL_SZ + 1];
void
moea64_scan_init(mmu_t mmu)
{
struct pvo_entry *pvo;
vm_offset_t va;
int i;
if (!do_minidump) {
/* Initialize phys. segments for dumpsys(). */
memset(&dump_map, 0, sizeof(dump_map));
mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
for (i = 0; i < pregions_sz; i++) {
dump_map[i].pa_start = pregions[i].mr_start;
dump_map[i].pa_size = pregions[i].mr_size;
}
return;
}
/* Virtual segments for minidumps: */
memset(&dump_map, 0, sizeof(dump_map));
/* 1st: kernel .data and .bss. */
dump_map[0].pa_start = trunc_page((uintptr_t)_etext);
dump_map[0].pa_size = round_page((uintptr_t)_end) -
dump_map[0].pa_start;
/* 2nd: msgbuf and tables (see pmap_bootstrap()). */
dump_map[1].pa_start = (vm_paddr_t)(uintptr_t)msgbufp->msg_ptr;
dump_map[1].pa_size = round_page(msgbufp->msg_size);
/* 3rd: kernel VM. */
va = dump_map[1].pa_start + dump_map[1].pa_size;
/* Find start of next chunk (from va). */
while (va < virtual_end) {
/* Don't dump the buffer cache. */
if (va >= kmi.buffer_sva && va < kmi.buffer_eva) {
va = kmi.buffer_eva;
continue;
}
pvo = moea64_pvo_find_va(kernel_pmap, va & ~ADDR_POFF);
if (pvo != NULL && !(pvo->pvo_vaddr & PVO_DEAD))
break;
va += PAGE_SIZE;
}
if (va < virtual_end) {
dump_map[2].pa_start = va;
va += PAGE_SIZE;
/* Find last page in chunk. */
while (va < virtual_end) {
/* Don't run into the buffer cache. */
if (va == kmi.buffer_sva)
break;
pvo = moea64_pvo_find_va(kernel_pmap, va & ~ADDR_POFF);
if (pvo == NULL || (pvo->pvo_vaddr & PVO_DEAD))
break;
va += PAGE_SIZE;
}
dump_map[2].pa_size = va - dump_map[2].pa_start;
}
}
#ifdef __powerpc64__
static size_t
moea64_scan_pmap(mmu_t mmu)
{
struct pvo_entry *pvo;
vm_paddr_t pa, pa_end;
vm_offset_t va, pgva, kstart, kend, kstart_lp, kend_lp;
uint64_t lpsize;
lpsize = moea64_large_page_size;
kstart = trunc_page((vm_offset_t)_etext);
kend = round_page((vm_offset_t)_end);
kstart_lp = kstart & ~moea64_large_page_mask;
kend_lp = (kend + moea64_large_page_mask) & ~moea64_large_page_mask;
CTR4(KTR_PMAP, "moea64_scan_pmap: kstart=0x%016lx, kend=0x%016lx, "
"kstart_lp=0x%016lx, kend_lp=0x%016lx",
kstart, kend, kstart_lp, kend_lp);
PMAP_LOCK(kernel_pmap);
RB_FOREACH(pvo, pvo_tree, &kernel_pmap->pmap_pvo) {
va = pvo->pvo_vaddr;
if (va & PVO_DEAD)
continue;
/* Skip DMAP (except kernel area) */
if (va >= DMAP_BASE_ADDRESS && va <= DMAP_MAX_ADDRESS) {
if (va & PVO_LARGE) {
pgva = va & ~moea64_large_page_mask;
if (pgva < kstart_lp || pgva >= kend_lp)
continue;
} else {
pgva = trunc_page(va);
if (pgva < kstart || pgva >= kend)
continue;
}
}
pa = pvo->pvo_pte.pa & LPTE_RPGN;
if (va & PVO_LARGE) {
pa_end = pa + lpsize;
for (; pa < pa_end; pa += PAGE_SIZE) {
if (is_dumpable(pa))
dump_add_page(pa);
}
} else {
if (is_dumpable(pa))
dump_add_page(pa);
}
}
PMAP_UNLOCK(kernel_pmap);
return (sizeof(struct lpte) * moea64_pteg_count * 8);
}
static struct dump_context dump_ctx;
static void *
moea64_dump_pmap_init(mmu_t mmu, unsigned blkpgs)
{
dump_ctx.ptex = 0;
dump_ctx.ptex_end = moea64_pteg_count * 8;
dump_ctx.blksz = blkpgs * PAGE_SIZE;
return (&dump_ctx);
}
#else
static size_t
moea64_scan_pmap(mmu_t mmu)
{
return (0);
}
static void *
moea64_dump_pmap_init(mmu_t mmu, unsigned blkpgs)
{
return (NULL);
}
#endif
#ifdef __powerpc64__
static void
moea64_map_range(mmu_t mmu, vm_offset_t va, vm_paddr_t pa, vm_size_t npages)
{
for (; npages > 0; --npages) {
if (moea64_large_page_size != 0 &&
(pa & moea64_large_page_mask) == 0 &&
(va & moea64_large_page_mask) == 0 &&
npages >= (moea64_large_page_size >> PAGE_SHIFT)) {
PMAP_LOCK(kernel_pmap);
moea64_kenter_large(mmu, va, pa, 0, 0);
PMAP_UNLOCK(kernel_pmap);
pa += moea64_large_page_size;
va += moea64_large_page_size;
npages -= (moea64_large_page_size >> PAGE_SHIFT) - 1;
} else {
moea64_kenter(mmu, va, pa);
pa += PAGE_SIZE;
va += PAGE_SIZE;
}
}
}
static void
moea64_page_array_startup(mmu_t mmu, long pages)
{
long dom_pages[MAXMEMDOM];
vm_paddr_t pa;
vm_offset_t va, vm_page_base;
vm_size_t needed, size;
long page;
int domain;
int i;
vm_page_base = 0xd000000000000000ULL;
/* Short-circuit single-domain systems. */
if (vm_ndomains == 1) {
size = round_page(pages * sizeof(struct vm_page));
pa = vm_phys_early_alloc(0, size);
vm_page_base = moea64_map(mmu, &vm_page_base,
pa, pa + size, VM_PROT_READ | VM_PROT_WRITE);
vm_page_array_size = pages;
vm_page_array = (vm_page_t)vm_page_base;
return;
}
page = 0;
for (i = 0; i < MAXMEMDOM; i++)
dom_pages[i] = 0;
/* Now get the number of pages required per domain. */
for (i = 0; i < vm_phys_nsegs; i++) {
domain = vm_phys_segs[i].domain;
KASSERT(domain < MAXMEMDOM,
("Invalid vm_phys_segs NUMA domain %d!\n", domain));
/* Get size of vm_page_array needed for this segment. */
size = btoc(vm_phys_segs[i].end - vm_phys_segs[i].start);
dom_pages[domain] += size;
}
for (i = 0; phys_avail[i + 1] != 0; i+= 2) {
domain = _vm_phys_domain(phys_avail[i]);
KASSERT(domain < MAXMEMDOM,
("Invalid phys_avail NUMA domain %d!\n", domain));
size = btoc(phys_avail[i + 1] - phys_avail[i]);
dom_pages[domain] += size;
}
/*
* Map in chunks that can get us all 16MB pages. There will be some
* overlap between domains, but that's acceptable for now.
*/
vm_page_array_size = 0;
va = vm_page_base;
for (i = 0; i < MAXMEMDOM && vm_page_array_size < pages; i++) {
if (dom_pages[i] == 0)
continue;
size = ulmin(pages - vm_page_array_size, dom_pages[i]);
size = round_page(size * sizeof(struct vm_page));
needed = size;
size = roundup2(size, moea64_large_page_size);
pa = vm_phys_early_alloc(i, size);
vm_page_array_size += size / sizeof(struct vm_page);
moea64_map_range(mmu, va, pa, size >> PAGE_SHIFT);
/* Scoot up domain 0, to reduce the domain page overlap. */
if (i == 0)
vm_page_base += size - needed;
va += size;
}
vm_page_array = (vm_page_t)vm_page_base;
vm_page_array_size = pages;
}
#endif