freebsd-nq/contrib/ntp/ntpd/ntp_proto.c
Ollivier Robert ea906c4152 Merge ntpd & friends 4.2.4p5 from vendor/ntp/dist into head. Next commit
will update usr.sbin/ntp to match this.

MFC after:	2 weeks
2008-08-22 15:58:00 +00:00

3451 lines
94 KiB
C

/*
* ntp_proto.c - NTP version 4 protocol machinery
*
* ATTENTION: Get approval from Dave Mills on all changes to this file!
*
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include "ntpd.h"
#include "ntp_stdlib.h"
#include "ntp_unixtime.h"
#include "ntp_control.h"
#include "ntp_string.h"
#include <stdio.h>
#if defined(VMS) && defined(VMS_LOCALUNIT) /*wjm*/
#include "ntp_refclock.h"
#endif
#if defined(__FreeBSD__) && __FreeBSD__ >= 3
#include <sys/sysctl.h>
#endif
/*
* This macro defines the authentication state. If x is 1 authentication
* is required; othewise it is optional.
*/
#define AUTH(x, y) ((x) ? (y) == AUTH_OK : (y) == AUTH_OK || \
(y) == AUTH_NONE)
/*
* System variables are declared here. See Section 3.2 of the
* specification.
*/
u_char sys_leap; /* system leap indicator */
u_char sys_stratum; /* stratum of system */
s_char sys_precision; /* local clock precision (log2 s) */
double sys_rootdelay; /* roundtrip delay to primary source */
double sys_rootdispersion; /* dispersion to primary source */
u_int32 sys_refid; /* source/loop in network byte order */
static double sys_offset; /* current local clock offset */
l_fp sys_reftime; /* time we were last updated */
struct peer *sys_peer; /* our current peer */
struct peer *sys_pps; /* our PPS peer */
struct peer *sys_prefer; /* our cherished peer */
int sys_kod; /* kod credit */
int sys_kod_rate = 2; /* max kod packets per second */
#ifdef OPENSSL
u_long sys_automax; /* maximum session key lifetime */
#endif /* OPENSSL */
/*
* Nonspecified system state variables.
*/
int sys_bclient; /* broadcast client enable */
double sys_bdelay; /* broadcast client default delay */
int sys_calldelay; /* modem callup delay (s) */
int sys_authenticate; /* requre authentication for config */
l_fp sys_authdelay; /* authentication delay */
static u_long sys_authdly[2]; /* authentication delay shift reg */
static double sys_mindisp = MINDISPERSE; /* min disp increment (s) */
static double sys_maxdist = MAXDISTANCE; /* selection threshold (s) */
double sys_jitter; /* system jitter (s) */
static int sys_hopper; /* anticlockhop counter */
static int sys_maxhop = MAXHOP; /* anticlockhop counter threshold */
int leap_next; /* leap consensus */
keyid_t sys_private; /* private value for session seed */
int sys_manycastserver; /* respond to manycast client pkts */
int peer_ntpdate; /* active peers in ntpdate mode */
int sys_survivors; /* truest of the truechimers */
#ifdef OPENSSL
char *sys_hostname; /* gethostname() name */
#endif /* OPENSSL */
/*
* TOS and multicast mapping stuff
*/
int sys_floor = 0; /* cluster stratum floor */
int sys_ceiling = STRATUM_UNSPEC; /* cluster stratum ceiling */
int sys_minsane = 1; /* minimum candidates */
int sys_minclock = NTP_MINCLOCK; /* minimum survivors */
int sys_maxclock = NTP_MAXCLOCK; /* maximum candidates */
int sys_cohort = 0; /* cohort switch */
int sys_orphan = STRATUM_UNSPEC + 1; /* orphan stratum */
double sys_orphandelay = 0; /* orphan root delay */
int sys_beacon = BEACON; /* manycast beacon interval */
int sys_ttlmax; /* max ttl mapping vector index */
u_char sys_ttl[MAX_TTL]; /* ttl mapping vector */
/*
* Statistics counters
*/
u_long sys_stattime; /* time since reset */
u_long sys_received; /* packets received */
u_long sys_processed; /* packets processed */
u_long sys_newversionpkt; /* current version */
u_long sys_oldversionpkt; /* recent version */
u_long sys_unknownversion; /* invalid version */
u_long sys_restricted; /* access denied */
u_long sys_badlength; /* bad length or format */
u_long sys_badauth; /* bad authentication */
u_long sys_limitrejected; /* rate exceeded */
static double root_distance P((struct peer *));
static void clock_combine P((struct peer **, int));
static void peer_xmit P((struct peer *));
static void fast_xmit P((struct recvbuf *, int, keyid_t,
int));
static void clock_update P((void));
static int default_get_precision P((void));
static int peer_unfit P((struct peer *));
/*
* transmit - Transmit Procedure. See Section 3.4.2 of the
* specification.
*/
void
transmit(
struct peer *peer /* peer structure pointer */
)
{
int hpoll;
/*
* The polling state machine. There are two kinds of machines,
* those that never expect a reply (broadcast and manycast
* server modes) and those that do (all other modes). The dance
* is intricate...
*/
/*
* Orphan mode is active when enabled and when no servers less
* than the orphan statum are available. In this mode packets
* are sent at the orphan stratum. An orphan with no other
* synchronization source is an orphan parent. It assumes root
* delay zero and reference ID the loopback address. All others
* are orphan children with root delay randomized over a 1-s
* range. The root delay is used by the election algorithm to
* select the order of synchronization.
*/
hpoll = peer->hpoll;
if (sys_orphan < STRATUM_UNSPEC && sys_peer == NULL) {
sys_leap = LEAP_NOWARNING;
sys_stratum = sys_orphan;
sys_refid = htonl(LOOPBACKADR);
sys_rootdelay = 0;
sys_rootdispersion = 0;
}
/*
* In broadcast mode the poll interval is never changed from
* minpoll.
*/
if (peer->cast_flags & (MDF_BCAST | MDF_MCAST)) {
peer->outdate = current_time;
peer_xmit(peer);
poll_update(peer, hpoll);
return;
}
/*
* In manycast mode we start with unity ttl. The ttl is
* increased by one for each poll until either sys_maxclock
* servers have been found or the maximum ttl is reached. When
* sys_maxclock servers are found we stop polling until one or
* more servers have timed out or until less than minpoll
* associations turn up. In this case additional better servers
* are dragged in and preempt the existing ones.
*/
if (peer->cast_flags & MDF_ACAST) {
peer->outdate = current_time;
if (peer->unreach > sys_beacon) {
peer->unreach = 0;
peer->ttl = 0;
peer_xmit(peer);
} else if (sys_survivors < sys_minclock ||
peer_preempt < sys_maxclock) {
if (peer->ttl < sys_ttlmax)
peer->ttl++;
peer_xmit(peer);
}
peer->unreach++;
poll_update(peer, hpoll);
return;
}
/*
* In unicast modes the dance is much more intricate. It is
* desigmed to back off whenever possible to minimize network
* traffic.
*/
if (peer->burst == 0) {
u_char oreach;
/*
* Update the reachability status. If not heard for
* three consecutive polls, stuff infinity in the clock
* filter.
*/
oreach = peer->reach;
peer->outdate = current_time;
if (peer == sys_peer)
sys_hopper++;
peer->reach <<= 1;
if (!(peer->reach & 0x07))
clock_filter(peer, 0., 0., MAXDISPERSE);
if (!peer->reach) {
/*
* Here the peer is unreachable. If it was
* previously reachable, raise a trap.
*/
if (oreach) {
report_event(EVNT_UNREACH, peer);
peer->timereachable = current_time;
}
/*
* Send a burst if enabled, but only once after
* a peer becomes unreachable. If the prempt
* flag is dim, bump the unreach counter by one;
* otherwise, bump it by three.
*/
if (peer->flags & FLAG_IBURST &&
peer->unreach == 0) {
peer->burst = NTP_BURST;
}
if (!(peer->flags & FLAG_PREEMPT))
peer->unreach++;
else
peer->unreach += 3;
} else {
/*
* Here the peer is reachable. Set the poll
* interval to the system poll interval. Send a
* burst only if enabled and the peer is fit.
*
* Respond to the peer evaluation produced by
* the selection algorithm. If less than the
* outlyer level, up the unreach by three. If
* there are excess associations, up the unreach
* by two if not a candidate and by one if so.
*/
if (!(peer->flags & FLAG_PREEMPT)) {
peer->unreach = 0;
} else if (peer->status < CTL_PST_SEL_SELCAND) {
peer->unreach += 3;
} else if (peer_preempt > sys_maxclock) {
if (peer->status < CTL_PST_SEL_SYNCCAND)
peer->unreach += 2;
else
peer->unreach++;
} else {
peer->unreach = 0;
}
hpoll = sys_poll;
if (peer->flags & FLAG_BURST &&
!peer_unfit(peer))
peer->burst = NTP_BURST;
}
/*
* Watch for timeout. If ephemeral or preemptable, toss
* the rascal; otherwise, bump the poll interval.
*/
if (peer->unreach >= NTP_UNREACH) {
if (peer->flags & FLAG_PREEMPT ||
!(peer->flags & FLAG_CONFIG)) {
peer_clear(peer, "TIME");
unpeer(peer);
return;
} else {
hpoll++;
}
}
} else {
peer->burst--;
/*
* If a broadcast client at this point, the burst has
* concluded, so we switch to client mode and purge the
* keylist, since no further transmissions will be made.
*/
if (peer->burst == 0) {
if (peer->cast_flags & MDF_BCLNT) {
peer->hmode = MODE_BCLIENT;
#ifdef OPENSSL
key_expire(peer);
#endif /* OPENSSL */
}
/*
* If ntpdate mode and the clock has not been
* set and all peers have completed the burst,
* we declare a successful failure.
*/
if (mode_ntpdate) {
peer_ntpdate--;
if (peer_ntpdate == 0) {
msyslog(LOG_NOTICE,
"no reply; clock not set");
exit (0);
}
}
}
}
/*
* Do not transmit if in broadcast client mode.
*/
if (peer->hmode != MODE_BCLIENT)
peer_xmit(peer);
poll_update(peer, hpoll);
}
/*
* receive - Receive Procedure. See section 3.4.3 in the specification.
*/
void
receive(
struct recvbuf *rbufp
)
{
register struct peer *peer; /* peer structure pointer */
register struct pkt *pkt; /* receive packet pointer */
int hisversion; /* packet version */
int hisleap; /* packet leap indicator */
int hismode; /* packet mode */
int hisstratum; /* packet stratum */
int restrict_mask; /* restrict bits */
int has_mac; /* length of MAC field */
int authlen; /* offset of MAC field */
int is_authentic = 0; /* cryptosum ok */
keyid_t skeyid = 0; /* key ID */
struct sockaddr_storage *dstadr_sin; /* active runway */
struct peer *peer2; /* aux peer structure pointer */
l_fp p_org; /* origin timestamp */
l_fp p_rec; /* receive timestamp */
l_fp p_xmt; /* transmit timestamp */
#ifdef OPENSSL
keyid_t tkeyid = 0; /* temporary key ID */
keyid_t pkeyid = 0; /* previous key ID */
struct autokey *ap; /* autokey structure pointer */
int rval; /* cookie snatcher */
#endif /* OPENSSL */
int retcode = AM_NOMATCH;
int at_listhead;
/*
* Monitor the packet and get restrictions. Note that the packet
* length for control and private mode packets must be checked
* by the service routines. Note that no statistics counters are
* recorded for restrict violations, since these counters are in
* the restriction routine. Note the careful distinctions here
* between a packet with a format error and a packet that is
* simply discarded without prejudice. Some restrictions have to
* be handled later in order to generate a kiss-of-death packet.
*/
/*
* Bogus port check is before anything, since it probably
* reveals a clogging attack.
*/
sys_received++;
if (SRCPORT(&rbufp->recv_srcadr) == 0) {
sys_badlength++;
return; /* bogus port */
}
at_listhead = ntp_monitor(rbufp);
restrict_mask = restrictions(&rbufp->recv_srcadr, at_listhead);
#ifdef DEBUG
if (debug > 1)
printf("receive: at %ld %s<-%s flags %x restrict %03x\n",
current_time, stoa(&rbufp->dstadr->sin),
stoa(&rbufp->recv_srcadr),
rbufp->dstadr->flags, restrict_mask);
#endif
if (restrict_mask & RES_IGNORE) {
sys_restricted++;
return; /* ignore everything */
}
pkt = &rbufp->recv_pkt;
hisversion = PKT_VERSION(pkt->li_vn_mode);
hisleap = PKT_LEAP(pkt->li_vn_mode);
hismode = (int)PKT_MODE(pkt->li_vn_mode);
hisstratum = PKT_TO_STRATUM(pkt->stratum);
if (hismode == MODE_PRIVATE) {
if (restrict_mask & RES_NOQUERY) {
sys_restricted++;
return; /* no query private */
}
process_private(rbufp, ((restrict_mask &
RES_NOMODIFY) == 0));
return;
}
if (hismode == MODE_CONTROL) {
if (restrict_mask & RES_NOQUERY) {
sys_restricted++;
return; /* no query control */
}
process_control(rbufp, restrict_mask);
return;
}
if (restrict_mask & RES_DONTSERVE) {
sys_restricted++;
return; /* no time */
}
if (rbufp->recv_length < LEN_PKT_NOMAC) {
sys_badlength++;
return; /* runt packet */
}
/*
* Version check must be after the query packets, since they
* intentionally use early version.
*/
if (hisversion == NTP_VERSION) {
sys_newversionpkt++; /* new version */
} else if (!(restrict_mask & RES_VERSION) && hisversion >=
NTP_OLDVERSION) {
sys_oldversionpkt++; /* previous version */
} else {
sys_unknownversion++;
return; /* old version */
}
/*
* Figure out his mode and validate the packet. This has some
* legacy raunch that probably should be removed. In very early
* NTP versions mode 0 was equivalent to what later versions
* would interpret as client mode.
*/
if (hismode == MODE_UNSPEC) {
if (hisversion == NTP_OLDVERSION) {
hismode = MODE_CLIENT;
} else {
sys_badlength++;
return; /* invalid mode */
}
}
/*
* Parse the extension field if present. We figure out whether
* an extension field is present by measuring the MAC size. If
* the number of words following the packet header is 0, no MAC
* is present and the packet is not authenticated. If 1, the
* packet is a crypto-NAK; if 3, the packet is authenticated
* with DES; if 5, the packet is authenticated with MD5. If 2 or
* 4, the packet is a runt and discarded forthwith. If greater
* than 5, an extension field is present, so we subtract the
* length of the field and go around again.
*/
authlen = LEN_PKT_NOMAC;
has_mac = rbufp->recv_length - authlen;
while (has_mac > 0) {
int temp;
if (has_mac % 4 != 0 || has_mac < 0) {
sys_badlength++;
return; /* bad MAC length */
}
if (has_mac == 1 * 4 || has_mac == 3 * 4 || has_mac ==
MAX_MAC_LEN) {
skeyid = ntohl(((u_int32 *)pkt)[authlen / 4]);
break;
} else if (has_mac > MAX_MAC_LEN) {
temp = ntohl(((u_int32 *)pkt)[authlen / 4]) &
0xffff;
if (temp < 4 || temp > NTP_MAXEXTEN || temp % 4
!= 0) {
sys_badlength++;
return; /* bad MAC length */
}
authlen += temp;
has_mac -= temp;
} else {
sys_badlength++;
return; /* bad MAC length */
}
}
#ifdef OPENSSL
pkeyid = tkeyid = 0;
#endif /* OPENSSL */
/*
* We have tossed out as many buggy packets as possible early in
* the game to reduce the exposure to a clogging attack. Now we
* have to burn some cycles to find the association and
* authenticate the packet if required. Note that we burn only
* MD5 cycles, again to reduce exposure. There may be no
* matching association and that's okay.
*
* More on the autokey mambo. Normally the local interface is
* found when the association was mobilized with respect to a
* designated remote address. We assume packets arriving from
* the remote address arrive via this interface and the local
* address used to construct the autokey is the unicast address
* of the interface. However, if the sender is a broadcaster,
* the interface broadcast address is used instead.
& Notwithstanding this technobabble, if the sender is a
* multicaster, the broadcast address is null, so we use the
* unicast address anyway. Don't ask.
*/
peer = findpeer(&rbufp->recv_srcadr, rbufp->dstadr, hismode,
&retcode);
dstadr_sin = &rbufp->dstadr->sin;
NTOHL_FP(&pkt->org, &p_org);
NTOHL_FP(&pkt->rec, &p_rec);
NTOHL_FP(&pkt->xmt, &p_xmt);
/*
* Authentication is conditioned by three switches:
*
* NOPEER (RES_NOPEER) do not mobilize an association unless
* authenticated
* NOTRUST (RES_DONTTRUST) do not allow access unless
* authenticated (implies NOPEER)
* enable (sys_authenticate) master NOPEER switch, by default
* on
*
* The NOPEER and NOTRUST can be specified on a per-client basis
* using the restrict command. The enable switch if on implies
* NOPEER for all clients. There are four outcomes:
*
* NONE The packet has no MAC.
* OK the packet has a MAC and authentication succeeds
* ERROR the packet has a MAC and authentication fails
* CRYPTO crypto-NAK. The MAC has four octets only.
*
* Note: The AUTH(x, y) macro is used to filter outcomes. If x
* is zero, acceptable outcomes of y are NONE and OK. If x is
* one, the only acceptable outcome of y is OK.
*/
if (has_mac == 0) {
is_authentic = AUTH_NONE; /* not required */
#ifdef DEBUG
if (debug)
printf("receive: at %ld %s<-%s mode %d code %d auth %d\n",
current_time, stoa(dstadr_sin),
stoa(&rbufp->recv_srcadr), hismode, retcode,
is_authentic);
#endif
} else if (has_mac == 4) {
is_authentic = AUTH_CRYPTO; /* crypto-NAK */
#ifdef DEBUG
if (debug)
printf(
"receive: at %ld %s<-%s mode %d code %d keyid %08x len %d mac %d auth %d\n",
current_time, stoa(dstadr_sin),
stoa(&rbufp->recv_srcadr), hismode, retcode,
skeyid, authlen, has_mac, is_authentic);
#endif
} else {
#ifdef OPENSSL
/*
* For autokey modes, generate the session key
* and install in the key cache. Use the socket
* broadcast or unicast address as appropriate.
*/
if (skeyid > NTP_MAXKEY) {
/*
* More on the autokey dance (AKD). A cookie is
* constructed from public and private values.
* For broadcast packets, the cookie is public
* (zero). For packets that match no
* association, the cookie is hashed from the
* addresses and private value. For server
* packets, the cookie was previously obtained
* from the server. For symmetric modes, the
* cookie was previously constructed using an
* agreement protocol; however, should PKI be
* unavailable, we construct a fake agreement as
* the EXOR of the peer and host cookies.
*
* hismode ephemeral persistent
* =======================================
* active 0 cookie#
* passive 0% cookie#
* client sys cookie 0%
* server 0% sys cookie
* broadcast 0 0
*
* # if unsync, 0
* % can't happen
*/
if (hismode == MODE_BROADCAST) {
/*
* For broadcaster, use the interface
* broadcast address when available;
* otherwise, use the unicast address
* found when the association was
* mobilized. However, if this is from
* the wildcard interface, game over.
*/
if (crypto_flags && rbufp->dstadr ==
any_interface) {
sys_restricted++;
return; /* no wildcard */
}
pkeyid = 0;
if (!SOCKNUL(&rbufp->dstadr->bcast))
dstadr_sin =
&rbufp->dstadr->bcast;
} else if (peer == NULL) {
pkeyid = session_key(
&rbufp->recv_srcadr, dstadr_sin, 0,
sys_private, 0);
} else {
pkeyid = peer->pcookie;
}
/*
* The session key includes both the public
* values and cookie. In case of an extension
* field, the cookie used for authentication
* purposes is zero. Note the hash is saved for
* use later in the autokey mambo.
*/
if (authlen > LEN_PKT_NOMAC && pkeyid != 0) {
session_key(&rbufp->recv_srcadr,
dstadr_sin, skeyid, 0, 2);
tkeyid = session_key(
&rbufp->recv_srcadr, dstadr_sin,
skeyid, pkeyid, 0);
} else {
tkeyid = session_key(
&rbufp->recv_srcadr, dstadr_sin,
skeyid, pkeyid, 2);
}
}
#endif /* OPENSSL */
/*
* Compute the cryptosum. Note a clogging attack may
* succeed in bloating the key cache. If an autokey,
* purge it immediately, since we won't be needing it
* again. If the packet is authentic, it can mobilize an
* association. Note that there is no key zero.
*/
if (!authdecrypt(skeyid, (u_int32 *)pkt, authlen,
has_mac)) {
is_authentic = AUTH_ERROR;
sys_badauth++;
} else {
is_authentic = AUTH_OK;
}
#ifdef OPENSSL
if (skeyid > NTP_MAXKEY)
authtrust(skeyid, 0);
#endif /* OPENSSL */
#ifdef DEBUG
if (debug)
printf(
"receive: at %ld %s<-%s mode %d code %d keyid %08x len %d mac %d auth %d\n",
current_time, stoa(dstadr_sin),
stoa(&rbufp->recv_srcadr), hismode, retcode,
skeyid, authlen, has_mac, is_authentic);
#endif
}
/*
* The association matching rules are implemented by a set of
* routines and an association table. A packet matching an
* association is processed by the peer process for that
* association. If there are no errors, an ephemeral association
* is mobilized: a broadcast packet mobilizes a broadcast client
* aassociation; a manycast server packet mobilizes a manycast
* client association; a symmetric active packet mobilizes a
* symmetric passive association.
*/
switch (retcode) {
/*
* This is a client mode packet not matching any association. If
* an ordinary client, simply toss a server mode packet back
* over the fence. If a manycast client, we have to work a
* little harder.
*/
case AM_FXMIT:
/*
* The vanilla case is when this is not a multicast
* interface. If authentication succeeds, return a
* server mode packet; if not and the key ID is nonzero,
* return a crypto-NAK.
*/
if (!(rbufp->dstadr->flags & INT_MCASTOPEN)) {
if (AUTH(restrict_mask & RES_DONTTRUST,
is_authentic))
fast_xmit(rbufp, MODE_SERVER, skeyid,
restrict_mask);
else if (is_authentic == AUTH_ERROR)
fast_xmit(rbufp, MODE_SERVER, 0,
restrict_mask);
return; /* hooray */
}
/*
* This must be manycast. Do not respond if not
* configured as a manycast server.
*/
if (!sys_manycastserver) {
sys_restricted++;
return; /* not enabled */
}
/*
* Do not respond if unsynchronized or stratum is below
* the floor or at or above the ceiling.
*/
if (sys_leap == LEAP_NOTINSYNC || sys_stratum <
sys_floor || sys_stratum >= sys_ceiling)
return; /* bad stratum */
/*
* Do not respond if our stratum is greater than the
* manycaster or it has already synchronized to us.
*/
if (sys_peer == NULL || hisstratum < sys_stratum ||
(sys_cohort && hisstratum == sys_stratum) ||
rbufp->dstadr->addr_refid == pkt->refid)
return; /* no help */
/*
* Respond only if authentication succeeds. Don't do a
* crypto-NAK, as that would not be useful.
*/
if (AUTH(restrict_mask & RES_DONTTRUST, is_authentic))
fast_xmit(rbufp, MODE_SERVER, skeyid,
restrict_mask);
return; /* hooray */
/*
* This is a server mode packet returned in response to a client
* mode packet sent to a multicast group address. The origin
* timestamp is a good nonce to reliably associate the reply
* with what was sent. If there is no match, that's curious and
* could be an intruder attempting to clog, so we just ignore
* it.
*
* If the packet is authentic and the manycast association is
* found, we mobilize a client association and copy pertinent
* variables from the manycast association to the new client
* association. If not, just ignore the packet.
*
* There is an implosion hazard at the manycast client, since
* the manycast servers send the server packet immediately. If
* the guy is already here, don't fire up a duplicate.
*/
case AM_MANYCAST:
if (!AUTH(sys_authenticate | (restrict_mask &
(RES_NOPEER | RES_DONTTRUST)), is_authentic))
return; /* bad auth */
if ((peer2 = findmanycastpeer(rbufp)) == NULL) {
sys_restricted++;
return; /* not enabled */
}
if ((peer = newpeer(&rbufp->recv_srcadr,
rbufp->dstadr, MODE_CLIENT,
hisversion, NTP_MINDPOLL, NTP_MAXDPOLL,
FLAG_IBURST | FLAG_PREEMPT, MDF_UCAST | MDF_ACLNT,
0, skeyid)) == NULL)
return; /* system error */
/*
* We don't need these, but it warms the billboards.
*/
peer->ttl = peer2->ttl;
break;
/*
* This is the first packet received from a broadcast server. If
* the packet is authentic and we are enabled as broadcast
* client, mobilize a broadcast client association. We don't
* kiss any frogs here.
*/
case AM_NEWBCL:
if (!AUTH(sys_authenticate | (restrict_mask &
(RES_NOPEER | RES_DONTTRUST)), is_authentic))
return; /* bad auth */
/*
* Do not respond if unsynchronized or stratum is below
* the floor or at or above the ceiling.
*/
if (hisleap == LEAP_NOTINSYNC || hisstratum <
sys_floor || hisstratum >= sys_ceiling)
return; /* bad stratum */
switch (sys_bclient) {
/*
* If not enabled, just skedaddle.
*/
case 0:
sys_restricted++;
return; /* not enabled */
/*
* Execute the initial volley in order to calibrate the
* propagation delay and run the Autokey protocol, if
* enabled.
*/
case 1:
if ((peer = newpeer(&rbufp->recv_srcadr,
rbufp->dstadr, MODE_CLIENT, hisversion,
NTP_MINDPOLL, NTP_MAXDPOLL, FLAG_MCAST |
FLAG_IBURST, MDF_BCLNT, 0, skeyid)) ==
NULL)
return; /* system error */
#ifdef OPENSSL
if (skeyid > NTP_MAXKEY)
crypto_recv(peer, rbufp);
#endif /* OPENSSL */
return; /* hooray */
/*
* Do not execute the initial volley.
*/
case 2:
#ifdef OPENSSL
/*
* If a two-way exchange is not possible,
* neither is Autokey.
*/
if (skeyid > NTP_MAXKEY) {
msyslog(LOG_INFO,
"receive: autokey requires two-way communication");
return; /* no autokey */
}
#endif /* OPENSSL */
if ((peer = newpeer(&rbufp->recv_srcadr,
rbufp->dstadr, MODE_BCLIENT, hisversion,
NTP_MINDPOLL, NTP_MAXDPOLL, 0, MDF_BCLNT, 0,
skeyid)) == NULL)
return; /* system error */
}
break;
/*
* This is the first packet received from a symmetric active
* peer. If the packet is authentic and the first he sent,
* mobilize a passive association. If not, kiss the frog.
*/
case AM_NEWPASS:
/*
* If the inbound packet is correctly authenticated and
* enabled, a symmetric passive association is
* mobilized. If not but correctly authenticated, a
* symmetric active response is sent. If authentication
* fails, send a crypto-NAK packet.
*/
if (!AUTH(restrict_mask & RES_DONTTRUST, is_authentic))
{
if (is_authentic == AUTH_ERROR)
fast_xmit(rbufp, MODE_ACTIVE, 0,
restrict_mask);
return; /* bad auth */
}
if (!AUTH(sys_authenticate | (restrict_mask &
RES_NOPEER), is_authentic)) {
fast_xmit(rbufp, MODE_ACTIVE, skeyid,
restrict_mask);
return; /* hooray */
}
/*
* Do not respond if stratum is below the floor.
*/
if (hisstratum < sys_floor)
return; /* bad stratum */
if ((peer = newpeer(&rbufp->recv_srcadr,
rbufp->dstadr, MODE_PASSIVE, hisversion,
NTP_MINDPOLL, NTP_MAXDPOLL, 0, MDF_UCAST, 0,
skeyid)) == NULL)
return; /* system error */
break;
/*
* Process regular packet. Nothing special.
*/
case AM_PROCPKT:
break;
/*
* A passive packet matches a passive association. This is
* usually the result of reconfiguring a client on the fly. As
* this association might be legitamate and this packet an
* attempt to deny service, just ignore it.
*/
case AM_ERR:
return;
/*
* For everything else there is the bit bucket.
*/
default:
return;
}
peer->flash &= ~PKT_TEST_MASK;
/*
* Next comes a rigorous schedule of timestamp checking. If the
* transmit timestamp is zero, the server is horribly broken.
*/
if (L_ISZERO(&p_xmt)) {
return; /* read rfc1305 */
/*
* If the transmit timestamp duplicates a previous one, the
* packet is a replay. This prevents the bad guys from replaying
* the most recent packet, authenticated or not.
*/
} else if (L_ISEQU(&peer->org, &p_xmt)) {
peer->flash |= TEST1;
peer->oldpkt++;
return; /* duplicate packet */
/*
* If this is a broadcast mode packet, skip further checking.
*/
} else if (hismode != MODE_BROADCAST) {
if (L_ISZERO(&p_org))
peer->flash |= TEST3; /* protocol unsynch */
else if (!L_ISEQU(&p_org, &peer->xmt))
peer->flash |= TEST2; /* bogus packet */
}
/*
* Update the origin and destination timestamps. If
* unsynchronized or bogus abandon ship. If the crypto machine
* breaks, light the crypto bit and plaint the log.
*/
peer->org = p_xmt;
peer->rec = rbufp->recv_time;
if (peer->flash & PKT_TEST_MASK) {
#ifdef OPENSSL
if (crypto_flags && (peer->flags & FLAG_SKEY)) {
rval = crypto_recv(peer, rbufp);
if (rval != XEVNT_OK) {
peer_clear(peer, "CRYP");
peer->flash |= TEST9; /* crypto error */
}
}
#endif /* OPENSSL */
return; /* unsynch */
}
/*
* The timestamps are valid and the receive packet matches the
* last one sent. If the packet is a crypto-NAK, the server
* might have just changed keys. We reset the association
* and restart the protocol.
*/
if (is_authentic == AUTH_CRYPTO) {
peer_clear(peer, "AUTH");
return; /* crypto-NAK */
/*
* If the association is authenticated, the key ID is nonzero
* and received packets must be authenticated. This is designed
* to avoid a bait-and-switch attack, which was possible in past
* versions. If symmetric modes, return a crypto-NAK. The peer
* should restart the protocol.
*/
} else if (!AUTH(peer->keyid || (restrict_mask & RES_DONTTRUST),
is_authentic)) {
peer->flash |= TEST5;
if (hismode == MODE_ACTIVE || hismode == MODE_PASSIVE)
fast_xmit(rbufp, MODE_ACTIVE, 0, restrict_mask);
return; /* bad auth */
}
/*
* That was hard and I am sweaty, but the packet is squeaky
* clean. Get on with real work.
*/
peer->received++;
peer->timereceived = current_time;
if (is_authentic == AUTH_OK)
peer->flags |= FLAG_AUTHENTIC;
else
peer->flags &= ~FLAG_AUTHENTIC;
#ifdef OPENSSL
/*
* More autokey dance. The rules of the cha-cha are as follows:
*
* 1. If there is no key or the key is not auto, do nothing.
*
* 2. If this packet is in response to the one just previously
* sent or from a broadcast server, do the extension fields.
* Otherwise, assume bogosity and bail out.
*
* 3. If an extension field contains a verified signature, it is
* self-authenticated and we sit the dance.
*
* 4. If this is a server reply, check only to see that the
* transmitted key ID matches the received key ID.
*
* 5. Check to see that one or more hashes of the current key ID
* matches the previous key ID or ultimate original key ID
* obtained from the broadcaster or symmetric peer. If no
* match, sit the dance and wait for timeout.
*
* In case of crypto error, fire the orchestra and stop dancing.
* This is considered a permanant error, so light the crypto bit
* to suppress further requests. If preemptable or ephemeral,
* scuttle the ship.
*/
if (crypto_flags && (peer->flags & FLAG_SKEY)) {
peer->flash |= TEST8;
rval = crypto_recv(peer, rbufp);
if (rval != XEVNT_OK) {
peer_clear(peer, "CRYP");
peer->flash |= TEST9; /* crypto error */
if (peer->flags & FLAG_PREEMPT ||
!(peer->flags & FLAG_CONFIG))
unpeer(peer);
return;
} else if (hismode == MODE_SERVER) {
if (skeyid == peer->keyid)
peer->flash &= ~TEST8;
} else if (!(peer->flash & TEST8)) {
peer->pkeyid = skeyid;
} else if ((ap = (struct autokey *)peer->recval.ptr) !=
NULL) {
int i;
for (i = 0; ; i++) {
if (tkeyid == peer->pkeyid ||
tkeyid == ap->key) {
peer->flash &= ~TEST8;
peer->pkeyid = skeyid;
break;
}
if (i > ap->seq)
break;
tkeyid = session_key(
&rbufp->recv_srcadr, dstadr_sin,
tkeyid, pkeyid, 0);
}
}
if (!(peer->crypto & CRYPTO_FLAG_PROV)) /* test 9 */
peer->flash |= TEST8; /* not proventic */
/*
* If the transmit queue is nonempty, clamp the host
* poll interval to the packet poll interval.
*/
if (peer->cmmd != 0) {
peer->ppoll = pkt->ppoll;
poll_update(peer, peer->hpoll);
}
}
#endif /* OPENSSL */
/*
* The dance is complete and the flash bits have been lit. Toss
* the packet over the fence for processing, which may light up
* more flashers.
*/
process_packet(peer, pkt);
/*
* Well, that was nice. If TEST4 is lit, either the crypto
* machine jammed or a kiss-o'-death packet flew in, either of
* which is fatal.
*/
if (peer->flash & TEST4) {
msyslog(LOG_INFO, "receive: fatal error %04x for %s",
peer->flash, stoa(&peer->srcadr));
return;
}
}
/*
* process_packet - Packet Procedure, a la Section 3.4.4 of the
* specification. Or almost, at least. If we're in here we have a
* reasonable expectation that we will be having a long term
* relationship with this host.
*/
void
process_packet(
register struct peer *peer,
register struct pkt *pkt
)
{
double t34, t21;
double p_offset, p_del, p_disp;
l_fp p_rec, p_xmt, p_org, p_reftime;
l_fp ci;
u_char pmode, pleap, pstratum;
sys_processed++;
peer->processed++;
p_del = FPTOD(NTOHS_FP(pkt->rootdelay));
p_disp = FPTOD(NTOHS_FP(pkt->rootdispersion));
NTOHL_FP(&pkt->reftime, &p_reftime);
NTOHL_FP(&pkt->rec, &p_rec);
NTOHL_FP(&pkt->xmt, &p_xmt);
pmode = PKT_MODE(pkt->li_vn_mode);
pleap = PKT_LEAP(pkt->li_vn_mode);
if (pmode != MODE_BROADCAST)
NTOHL_FP(&pkt->org, &p_org);
else
p_org = peer->rec;
pstratum = PKT_TO_STRATUM(pkt->stratum);
/*
* Test for kiss-o'death packet)
*/
if (pleap == LEAP_NOTINSYNC && pstratum == STRATUM_UNSPEC) {
if (memcmp(&pkt->refid, "DENY", 4) == 0) {
peer_clear(peer, "DENY");
peer->flash |= TEST4; /* access denied */
}
}
/*
* Capture the header values.
*/
record_raw_stats(&peer->srcadr, peer->dstadr ? &peer->dstadr->sin : NULL, &p_org,
&p_rec, &p_xmt, &peer->rec);
peer->leap = pleap;
peer->stratum = min(pstratum, STRATUM_UNSPEC);
peer->pmode = pmode;
peer->ppoll = pkt->ppoll;
peer->precision = pkt->precision;
peer->rootdelay = p_del;
peer->rootdispersion = p_disp;
peer->refid = pkt->refid; /* network byte order */
peer->reftime = p_reftime;
/*
* Verify the server is synchronized; that is, the leap bits and
* stratum are valid, the root delay and root dispersion are
* valid and the reference timestamp is not later than the
* transmit timestamp.
*/
if (pleap == LEAP_NOTINSYNC || /* test 6 */
pstratum < sys_floor || pstratum >= sys_ceiling)
peer->flash |= TEST6; /* peer not synch */
if (p_del < 0 || p_disp < 0 || p_del / /* test 7 */
2 + p_disp >= MAXDISPERSE || !L_ISHIS(&p_xmt, &p_reftime))
peer->flash |= TEST7; /* bad header */
/*
* If any tests fail at this point, the packet is discarded.
* Note that some flashers may have already been set in the
* receive() routine.
*/
if (peer->flash & PKT_TEST_MASK) {
#ifdef DEBUG
if (debug)
printf("packet: flash header %04x\n",
peer->flash);
#endif
return;
}
if (!(peer->reach)) {
report_event(EVNT_REACH, peer);
peer->timereachable = current_time;
}
poll_update(peer, peer->hpoll);
peer->reach |= 1;
/*
* For a client/server association, calculate the clock offset,
* roundtrip delay and dispersion. The equations are reordered
* from the spec for more efficient use of temporaries. For a
* broadcast association, offset the last measurement by the
* computed delay during the client/server volley. Note that
* org has been set to the time of last reception. Note the
* computation of dispersion includes the system precision plus
* that due to the frequency error since the origin time.
*
* It is very important to respect the hazards of overflow. The
* only permitted operation on raw timestamps is subtraction,
* where the result is a signed quantity spanning from 68 years
* in the past to 68 years in the future. To avoid loss of
* precision, these calculations are done using 64-bit integer
* arithmetic. However, the offset and delay calculations are
* sums and differences of these first-order differences, which
* if done using 64-bit integer arithmetic, would be valid over
* only half that span. Since the typical first-order
* differences are usually very small, they are converted to 64-
* bit doubles and all remaining calculations done in floating-
* point arithmetic. This preserves the accuracy while retaining
* the 68-year span.
*
* Let t1 = p_org, t2 = p_rec, t3 = p_xmt, t4 = peer->rec:
*/
ci = p_xmt; /* t3 - t4 */
L_SUB(&ci, &peer->rec);
LFPTOD(&ci, t34);
ci = p_rec; /* t2 - t1 */
L_SUB(&ci, &p_org);
LFPTOD(&ci, t21);
ci = peer->rec; /* t4 - t1 */
L_SUB(&ci, &p_org);
/*
* If running in a broadcast association, the clock offset is
* (t1 - t0) corrected by the one-way delay, but we can't
* measure that directly. Therefore, we start up in MODE_CLIENT
* mode, set FLAG_MCAST and exchange eight messages to determine
* the clock offset. When the last message is sent, we switch to
* MODE_BCLIENT mode. The next broadcast message after that
* computes the broadcast offset and clears FLAG_MCAST.
*/
if (pmode == MODE_BROADCAST) {
p_offset = t34;
if (peer->flags & FLAG_MCAST) {
peer->estbdelay = peer->offset - p_offset;
if (peer->hmode == MODE_CLIENT)
return;
peer->flags &= ~(FLAG_MCAST | FLAG_BURST);
}
p_offset += peer->estbdelay;
p_del = peer->delay;
p_disp = 0;
} else {
p_offset = (t21 + t34) / 2.;
p_del = t21 - t34;
LFPTOD(&ci, p_disp);
p_disp = LOGTOD(sys_precision) +
LOGTOD(peer->precision) + clock_phi * p_disp;
}
p_del = max(p_del, LOGTOD(sys_precision));
clock_filter(peer, p_offset, p_del, p_disp);
record_peer_stats(&peer->srcadr, ctlpeerstatus(peer),
peer->offset, peer->delay, peer->disp, peer->jitter);
}
/*
* clock_update - Called at system process update intervals.
*/
static void
clock_update(void)
{
u_char oleap;
u_char ostratum;
double dtemp;
/*
* There must be a system peer at this point. If we just changed
* the system peer, but have a newer sample from the old one,
* wait until newer data are available.
*/
if (sys_poll < sys_peer->minpoll)
sys_poll = sys_peer->minpoll;
if (sys_poll > sys_peer->maxpoll)
sys_poll = sys_peer->maxpoll;
poll_update(sys_peer, sys_poll);
if (sys_peer->epoch <= sys_clocktime)
return;
#ifdef DEBUG
if (debug)
printf("clock_update: at %ld assoc %d \n", current_time,
peer_associations);
#endif
oleap = sys_leap;
ostratum = sys_stratum;
switch (local_clock(sys_peer, sys_offset)) {
/*
* Clock exceeds panic threshold. Life as we know it ends.
*/
case -1:
report_event(EVNT_SYSFAULT, NULL);
exit (-1);
/* not reached */
/*
* Clock was stepped. Flush all time values of all peers.
*/
case 2:
clear_all();
sys_leap = LEAP_NOTINSYNC;
sys_stratum = STRATUM_UNSPEC;
sys_peer = NULL;
sys_rootdelay = 0;
sys_rootdispersion = 0;
memcpy(&sys_refid, "STEP", 4);
report_event(EVNT_CLOCKRESET, NULL);
break;
/*
* Clock was slewed. Update the system stratum, leap bits, root
* delay, root dispersion, reference ID and reference time. If
* the leap changes, we gotta reroll the keys. Except for
* reference clocks, the minimum dispersion increment is not
* less than sys_mindisp.
*/
case 1:
sys_leap = leap_next;
sys_stratum = min(sys_peer->stratum + 1,
STRATUM_UNSPEC);
sys_reftime = sys_peer->rec;
/*
* In orphan mode the stratum defaults to the orphan
* stratum. The root delay is set to a random value
* generated at startup. The root dispersion is set from
* the peer dispersion; the peer root dispersion is
* ignored.
*/
dtemp = sys_peer->disp + clock_phi * (current_time -
sys_peer->update) + sys_jitter +
fabs(sys_peer->offset);
#ifdef REFCLOCK
if (!(sys_peer->flags & FLAG_REFCLOCK) && dtemp <
sys_mindisp)
dtemp = sys_mindisp;
#else
if (dtemp < sys_mindisp)
dtemp = sys_mindisp;
#endif /* REFCLOCK */
if (sys_stratum >= sys_orphan) {
sys_stratum = sys_orphan;
sys_rootdelay = sys_peer->delay;
sys_rootdispersion = dtemp;
} else {
sys_rootdelay = sys_peer->delay +
sys_peer->rootdelay;
sys_rootdispersion = dtemp +
sys_peer->rootdispersion;
}
if (oleap == LEAP_NOTINSYNC) {
report_event(EVNT_SYNCCHG, NULL);
#ifdef OPENSSL
expire_all();
crypto_update();
#endif /* OPENSSL */
}
break;
/*
* Popcorn spike or step threshold exceeded. Pretend it never
* happened.
*/
default:
break;
}
if (ostratum != sys_stratum)
report_event(EVNT_PEERSTCHG, NULL);
}
/*
* poll_update - update peer poll interval
*/
void
poll_update(
struct peer *peer,
int mpoll
)
{
int hpoll;
/*
* This routine figures out when the next poll should be sent.
* That turns out to be wickedly complicated. The big problem is
* that sometimes the time for the next poll is in the past.
* Watch out for races here between the receive process and the
* poll process. The key assertion is that, if nextdate equals
* current_time, the call is from the poll process; otherwise,
* it is from the receive process.
*
* First, bracket the poll interval according to the type of
* association and options. If a fixed interval is configured,
* use minpoll. This primarily is for reference clocks, but
* works for any association.
*/
if (peer->flags & FLAG_FIXPOLL) {
hpoll = peer->minpoll;
/*
* The ordinary case; clamp the poll interval between minpoll
* and maxpoll.
*/
} else {
hpoll = max(min(peer->maxpoll, mpoll), peer->minpoll);
}
#ifdef OPENSSL
/*
* Bit of crass arrogance at this point. If the poll interval
* has changed and we have a keylist, the lifetimes in the
* keylist are probably bogus. In this case purge the keylist
* and regenerate it later.
*/
if (hpoll != peer->hpoll)
key_expire(peer);
#endif /* OPENSSL */
peer->hpoll = hpoll;
/*
* Now we figure out if there is an override. If during the
* crypto protocol and a message is pending, make it wait not
* more than two seconds.
*/
#ifdef OPENSSL
if (peer->cmmd != NULL && (sys_leap != LEAP_NOTINSYNC ||
peer->crypto)) {
peer->nextdate = current_time + RESP_DELAY;
/*
* If we get called from the receive routine while a burst is
* pending, just slink away. If from the poll routine and a
* reference clock or a pending crypto response, delay for one
* second. If this is the first sent in a burst, wait for the
* modem to come up. For others in the burst, delay two seconds.
*/
} else if (peer->burst > 0) {
#else /* OPENSSL */
if (peer->burst > 0) {
#endif /* OPENSSL */
if (peer->nextdate != current_time)
return;
#ifdef REFCLOCK
else if (peer->flags & FLAG_REFCLOCK)
peer->nextdate += RESP_DELAY;
#endif /* REFCLOCK */
else if (peer->flags & (FLAG_IBURST | FLAG_BURST) &&
peer->burst == NTP_BURST)
peer->nextdate += sys_calldelay;
else
peer->nextdate += BURST_DELAY;
/*
* The ordinary case; use the minimum of the host and peer
* intervals, but not less than minpoll. In other words,
* oversampling is okay but understampling is evil.
*/
} else {
peer->nextdate = peer->outdate +
RANDPOLL(max(min(peer->ppoll, hpoll),
peer->minpoll));
}
/*
* If the time for the next poll has already happened, bring it
* up to the next second after this one. This way the only way
* to get nexdate == current time is from the poll routine.
*/
if (peer->nextdate <= current_time)
peer->nextdate = current_time + 1;
#ifdef DEBUG
if (debug > 1)
printf("poll_update: at %lu %s flags %04x poll %d burst %d last %lu next %lu\n",
current_time, ntoa(&peer->srcadr), peer->flags,
peer->hpoll, peer->burst, peer->outdate,
peer->nextdate);
#endif
}
/*
* peer_crypto_clear - discard crypto information
*/
void
peer_crypto_clear(
struct peer *peer
)
{
/*
* If cryptographic credentials have been acquired, toss them to
* Valhalla. Note that autokeys are ephemeral, in that they are
* tossed immediately upon use. Therefore, the keylist can be
* purged anytime without needing to preserve random keys. Note
* that, if the peer is purged, the cryptographic variables are
* purged, too. This makes it much harder to sneak in some
* unauthenticated data in the clock filter.
*/
DPRINTF(1, ("peer_crypto_clear: at %ld next %ld assoc ID %d\n",
current_time, peer->nextdate, peer->associd));
#ifdef OPENSSL
peer->assoc = 0;
peer->crypto = 0;
if (peer->pkey != NULL)
EVP_PKEY_free(peer->pkey);
peer->pkey = NULL;
peer->digest = NULL; /* XXX MEMLEAK? check whether this needs to be freed in any way - never was freed */
if (peer->subject != NULL)
free(peer->subject);
peer->subject = NULL;
if (peer->issuer != NULL)
free(peer->issuer);
peer->issuer = NULL;
peer->pkeyid = 0;
peer->pcookie = 0;
if (peer->ident_pkey != NULL)
EVP_PKEY_free(peer->ident_pkey);
peer->ident_pkey = NULL;
memset(&peer->fstamp, 0, sizeof(peer->fstamp));
if (peer->iffval != NULL)
BN_free(peer->iffval);
peer->iffval = NULL;
if (peer->grpkey != NULL)
BN_free(peer->grpkey);
peer->grpkey = NULL;
value_free(&peer->cookval);
value_free(&peer->recval);
if (peer->cmmd != NULL) {
free(peer->cmmd);
peer->cmmd = NULL;
}
key_expire(peer);
value_free(&peer->encrypt);
#endif /* OPENSSL */
}
/*
* peer_clear - clear peer filter registers. See Section 3.4.8 of the spec.
*/
void
peer_clear(
struct peer *peer, /* peer structure */
char *ident /* tally lights */
)
{
int i;
peer_crypto_clear(peer);
if (peer == sys_peer)
sys_peer = NULL;
/*
* Wipe the association clean and initialize the nonzero values.
*/
memset(CLEAR_TO_ZERO(peer), 0, LEN_CLEAR_TO_ZERO);
peer->estbdelay = sys_bdelay;
peer->ppoll = peer->maxpoll;
peer->hpoll = peer->minpoll;
peer->disp = MAXDISPERSE;
peer->jitter = LOGTOD(sys_precision);
for (i = 0; i < NTP_SHIFT; i++) {
peer->filter_order[i] = i;
peer->filter_disp[i] = MAXDISPERSE;
}
#ifdef REFCLOCK
if (!(peer->flags & FLAG_REFCLOCK)) {
peer->leap = LEAP_NOTINSYNC;
peer->stratum = STRATUM_UNSPEC;
memcpy(&peer->refid, ident, 4);
}
#else
peer->leap = LEAP_NOTINSYNC;
peer->stratum = STRATUM_UNSPEC;
memcpy(&peer->refid, ident, 4);
#endif /* REFCLOCK */
/*
* During initialization use the association count to spread out
* the polls at one-second intervals. Othersie, randomize over
* the minimum poll interval in order to avoid broadcast
* implosion.
*/
peer->nextdate = peer->update = peer->outdate = current_time;
if (initializing)
peer->nextdate += peer_associations;
else if (peer->hmode == MODE_PASSIVE)
peer->nextdate += RESP_DELAY;
else
peer->nextdate += (ntp_random() & ((1 << NTP_MINDPOLL) -
1));
DPRINTF(1, ("peer_clear: at %ld next %ld assoc ID %d refid %s\n",
current_time, peer->nextdate, peer->associd, ident));
}
/*
* clock_filter - add incoming clock sample to filter register and run
* the filter procedure to find the best sample.
*/
void
clock_filter(
struct peer *peer, /* peer structure pointer */
double sample_offset, /* clock offset */
double sample_delay, /* roundtrip delay */
double sample_disp /* dispersion */
)
{
double dst[NTP_SHIFT]; /* distance vector */
int ord[NTP_SHIFT]; /* index vector */
int i, j, k, m;
double dtemp, etemp;
/*
* Shift the new sample into the register and discard the oldest
* one. The new offset and delay come directly from the
* timestamp calculations. The dispersion grows from the last
* outbound packet or reference clock update to the present time
* and increased by the sum of the peer precision and the system
* precision. The delay can sometimes swing negative due to
* frequency skew, so it is clamped non-negative.
*/
j = peer->filter_nextpt;
peer->filter_offset[j] = sample_offset;
peer->filter_delay[j] = max(0, sample_delay);
peer->filter_disp[j] = sample_disp;
peer->filter_epoch[j] = current_time;
j = (j + 1) % NTP_SHIFT;
peer->filter_nextpt = j;
/*
* Update dispersions since the last update and at the same
* time initialize the distance and index lists. The distance
* list uses a compound metric. If the sample is valid and
* younger than the minimum Allan intercept, use delay;
* otherwise, use biased dispersion.
*/
dtemp = clock_phi * (current_time - peer->update);
peer->update = current_time;
for (i = NTP_SHIFT - 1; i >= 0; i--) {
if (i != 0)
peer->filter_disp[j] += dtemp;
if (peer->filter_disp[j] >= MAXDISPERSE)
peer->filter_disp[j] = MAXDISPERSE;
if (peer->filter_disp[j] >= MAXDISPERSE)
dst[i] = MAXDISPERSE;
else if (peer->update - peer->filter_epoch[j] >
allan_xpt)
dst[i] = sys_maxdist + peer->filter_disp[j];
else
dst[i] = peer->filter_delay[j];
ord[i] = j;
j++; j %= NTP_SHIFT;
}
/*
* If the clock discipline has stabilized, sort the samples in
* both lists by distance. Note, we do not displace a higher
* distance sample by a lower distance one unless lower by at
* least the precision.
*/
if (state == 4) {
for (i = 1; i < NTP_SHIFT; i++) {
for (j = 0; j < i; j++) {
if (dst[j] > dst[i] +
LOGTOD(sys_precision)) {
k = ord[j];
ord[j] = ord[i];
ord[i] = k;
etemp = dst[j];
dst[j] = dst[i];
dst[i] = etemp;
}
}
}
}
/*
* Copy the index list to the association structure so ntpq
* can see it later. Prune the distance list to samples less
* than max distance, but keep at least two valid samples for
* jitter calculation.
*/
m = 0;
for (i = 0; i < NTP_SHIFT; i++) {
peer->filter_order[i] = (u_char) ord[i];
if (dst[i] >= MAXDISPERSE || (m >= 2 && dst[i] >=
sys_maxdist))
continue;
m++;
}
/*
* Compute the dispersion and jitter. The dispersion is weighted
* exponentially by NTP_FWEIGHT (0.5) so it is normalized close
* to 1.0. The jitter is the RMS differences relative to the
* lowest delay sample. If no acceptable samples remain in the
* shift register, quietly tiptoe home leaving only the
* dispersion.
*/
peer->disp = peer->jitter = 0;
k = ord[0];
for (i = NTP_SHIFT - 1; i >= 0; i--) {
j = ord[i];
peer->disp = NTP_FWEIGHT * (peer->disp +
peer->filter_disp[j]);
if (i < m)
peer->jitter += DIFF(peer->filter_offset[j],
peer->filter_offset[k]);
}
/*
* If no acceptable samples remain in the shift register,
* quietly tiptoe home leaving only the dispersion. Otherwise,
* save the offset, delay and jitter. Note the jitter must not
* be less than the precision.
*/
if (m == 0)
return;
etemp = fabs(peer->offset - peer->filter_offset[k]);
peer->offset = peer->filter_offset[k];
peer->delay = peer->filter_delay[k];
if (m > 1)
peer->jitter /= m - 1;
peer->jitter = max(SQRT(peer->jitter), LOGTOD(sys_precision));
/*
* A new sample is useful only if it is younger than the last
* one used. Note the order is FIFO if the clock discipline has
* not stabilized.
*/
if (peer->filter_epoch[k] <= peer->epoch) {
#ifdef DEBUG
if (debug)
printf("clock_filter: discard %lu\n",
peer->epoch - peer->filter_epoch[k]);
#endif
return;
}
/*
* If the difference between the last offset and the current one
* exceeds the jitter by CLOCK_SGATE and the interval since the
* last update is less than twice the system poll interval,
* consider the update a popcorn spike and ignore it.
*/
if (etemp > CLOCK_SGATE * peer->jitter && m > 1 &&
peer->filter_epoch[k] - peer->epoch < 2. *
ULOGTOD(sys_poll)) {
#ifdef DEBUG
if (debug)
printf("clock_filter: popcorn %.6f %.6f\n",
etemp, dtemp);
#endif
return;
}
/*
* The mitigated sample statistics are saved for later
* processing. If not in a burst, tickle the select.
*/
peer->epoch = peer->filter_epoch[k];
#ifdef DEBUG
if (debug)
printf(
"clock_filter: n %d off %.6f del %.6f dsp %.6f jit %.6f, age %lu\n",
m, peer->offset, peer->delay, peer->disp,
peer->jitter, current_time - peer->epoch);
#endif
if (peer->burst == 0 || sys_leap == LEAP_NOTINSYNC)
clock_select();
}
/*
* clock_select - find the pick-of-the-litter clock
*
* LOCKCLOCK: If the local clock is the prefer peer, it will always be
* enabled, even if declared falseticker, (2) only the prefer peer can
* be selected as the system peer, (3) if the external source is down,
* the system leap bits are set to 11 and the stratum set to infinity.
*/
void
clock_select(void)
{
struct peer *peer;
int i, j, k, n;
int nlist, nl3;
int allow, osurv;
double d, e, f, g;
double high, low;
double synch[NTP_MAXASSOC], error[NTP_MAXASSOC];
struct peer *osys_peer;
struct peer *typeacts = NULL;
struct peer *typelocal = NULL;
struct peer *typesystem = NULL;
static int list_alloc = 0;
static struct endpoint *endpoint = NULL;
static int *indx = NULL;
static struct peer **peer_list = NULL;
static u_int endpoint_size = 0;
static u_int indx_size = 0;
static u_int peer_list_size = 0;
/*
* Initialize and create endpoint, index and peer lists big
* enough to handle all associations.
*/
osys_peer = sys_peer;
sys_peer = NULL;
sys_pps = NULL;
sys_prefer = NULL;
osurv = sys_survivors;
sys_survivors = 0;
#ifdef LOCKCLOCK
sys_leap = LEAP_NOTINSYNC;
sys_stratum = STRATUM_UNSPEC;
memcpy(&sys_refid, "DOWN", 4);
#endif /* LOCKCLOCK */
nlist = 0;
for (n = 0; n < NTP_HASH_SIZE; n++)
nlist += peer_hash_count[n];
if (nlist > list_alloc) {
if (list_alloc > 0) {
free(endpoint);
free(indx);
free(peer_list);
}
while (list_alloc < nlist) {
list_alloc += 5;
endpoint_size += 5 * 3 * sizeof(*endpoint);
indx_size += 5 * 3 * sizeof(*indx);
peer_list_size += 5 * sizeof(*peer_list);
}
endpoint = (struct endpoint *)emalloc(endpoint_size);
indx = (int *)emalloc(indx_size);
peer_list = (struct peer **)emalloc(peer_list_size);
}
/*
* Initially, we populate the island with all the rifraff peers
* that happen to be lying around. Those with seriously
* defective clocks are immediately booted off the island. Then,
* the falsetickers are culled and put to sea. The truechimers
* remaining are subject to repeated rounds where the most
* unpopular at each round is kicked off. When the population
* has dwindled to sys_minclock, the survivors split a million
* bucks and collectively crank the chimes.
*/
nlist = nl3 = 0; /* none yet */
for (n = 0; n < NTP_HASH_SIZE; n++) {
for (peer = peer_hash[n]; peer != NULL; peer =
peer->next) {
peer->flags &= ~FLAG_SYSPEER;
peer->status = CTL_PST_SEL_REJECT;
/*
* Leave the island immediately if the peer is
* unfit to synchronize.
*/
if (peer_unfit(peer))
continue;
/*
* Don't allow the local clock or modem drivers
* in the kitchen at this point, unless the
* prefer peer. Do that later, but only if
* nobody else is around. These guys are all
* configured, so we never throw them away.
*/
#ifdef REFCLOCK
if (peer->refclktype == REFCLK_LOCALCLOCK
#if defined(VMS) && defined(VMS_LOCALUNIT)
/* wjm: VMS_LOCALUNIT taken seriously */
&& REFCLOCKUNIT(&peer->srcadr) !=
VMS_LOCALUNIT
#endif /* VMS && VMS_LOCALUNIT */
) {
typelocal = peer;
#ifndef LOCKCLOCK
if (!(peer->flags & FLAG_PREFER))
continue; /* no local clock */
#endif /* LOCKCLOCK */
}
if (peer->sstclktype == CTL_SST_TS_TELEPHONE) {
typeacts = peer;
if (!(peer->flags & FLAG_PREFER))
continue; /* no acts */
}
#endif /* REFCLOCK */
/*
* If we get this far, the peer can stay on the
* island, but does not yet have the immunity
* idol.
*/
peer->status = CTL_PST_SEL_SANE;
peer_list[nlist++] = peer;
/*
* Insert each interval endpoint on the sorted
* list.
*/
e = peer->offset; /* Upper end */
f = root_distance(peer);
e = e + f;
for (i = nl3 - 1; i >= 0; i--) {
if (e >= endpoint[indx[i]].val)
break;
indx[i + 3] = indx[i];
}
indx[i + 3] = nl3;
endpoint[nl3].type = 1;
endpoint[nl3++].val = e;
e = e - f; /* Center point */
for (; i >= 0; i--) {
if (e >= endpoint[indx[i]].val)
break;
indx[i + 2] = indx[i];
}
indx[i + 2] = nl3;
endpoint[nl3].type = 0;
endpoint[nl3++].val = e;
e = e - f; /* Lower end */
for (; i >= 0; i--) {
if (e >= endpoint[indx[i]].val)
break;
indx[i + 1] = indx[i];
}
indx[i + 1] = nl3;
endpoint[nl3].type = -1;
endpoint[nl3++].val = e;
}
}
#ifdef DEBUG
if (debug > 2)
for (i = 0; i < nl3; i++)
printf("select: endpoint %2d %.6f\n",
endpoint[indx[i]].type,
endpoint[indx[i]].val);
#endif
/*
* This is the actual algorithm that cleaves the truechimers
* from the falsetickers. The original algorithm was described
* in Keith Marzullo's dissertation, but has been modified for
* better accuracy.
*
* Briefly put, we first assume there are no falsetickers, then
* scan the candidate list first from the low end upwards and
* then from the high end downwards. The scans stop when the
* number of intersections equals the number of candidates less
* the number of falsetickers. If this doesn't happen for a
* given number of falsetickers, we bump the number of
* falsetickers and try again. If the number of falsetickers
* becomes equal to or greater than half the number of
* candidates, the Albanians have won the Byzantine wars and
* correct synchronization is not possible.
*
* Here, nlist is the number of candidates and allow is the
* number of falsetickers. Upon exit, the truechimers are the
* susvivors with offsets not less than low and not greater than
* high. There may be none of them.
*/
low = 1e9;
high = -1e9;
for (allow = 0; 2 * allow < nlist; allow++) {
int found;
/*
* Bound the interval (low, high) as the largest
* interval containing points from presumed truechimers.
*/
found = 0;
n = 0;
for (i = 0; i < nl3; i++) {
low = endpoint[indx[i]].val;
n -= endpoint[indx[i]].type;
if (n >= nlist - allow)
break;
if (endpoint[indx[i]].type == 0)
found++;
}
n = 0;
for (j = nl3 - 1; j >= 0; j--) {
high = endpoint[indx[j]].val;
n += endpoint[indx[j]].type;
if (n >= nlist - allow)
break;
if (endpoint[indx[j]].type == 0)
found++;
}
/*
* If the number of candidates found outside the
* interval is greater than the number of falsetickers,
* then at least one truechimer is outside the interval,
* so go around again. This is what makes this algorithm
* different than Marzullo's.
*/
if (found > allow)
continue;
/*
* If an interval containing truechimers is found, stop.
* If not, increase the number of falsetickers and go
* around again.
*/
if (high > low)
break;
}
/*
* Clustering algorithm. Construct candidate list in order first
* by stratum then by root distance, but keep only the best
* NTP_MAXASSOC of them. Scan the list to find falsetickers, who
* leave the island immediately. The TRUE peer is always a
* truechimer. We must leave at least one peer to collect the
* million bucks. If in orphan mode, rascals found with lower
* stratum are guaranteed a seat on the bus.
*/
j = 0;
for (i = 0; i < nlist; i++) {
peer = peer_list[i];
if (nlist > 1 && (peer->offset <= low || peer->offset >=
high) && !(peer->flags & FLAG_TRUE) &&
!(sys_stratum >= sys_orphan && peer->stratum <
sys_orphan))
continue;
peer->status = CTL_PST_SEL_DISTSYSPEER;
/*
* The order metric is formed from the stratum times
* max distance (1.) plus the root distance. It strongly
* favors the lowest stratum, but a higher stratum peer
* can capture the clock if the low stratum dominant
* hasn't been heard for awhile.
*/
d = root_distance(peer) + peer->stratum * sys_maxdist;
if (j >= NTP_MAXASSOC) {
if (d >= synch[j - 1])
continue;
else
j--;
}
for (k = j; k > 0; k--) {
if (d >= synch[k - 1])
break;
peer_list[k] = peer_list[k - 1];
error[k] = error[k - 1];
synch[k] = synch[k - 1];
}
peer_list[k] = peer;
error[k] = peer->jitter;
synch[k] = d;
j++;
}
nlist = j;
/*
* If no survivors remain at this point, check if the local
* clock or modem drivers have been found. If so, nominate one
* of them as the only survivor. Otherwise, give up and leave
* the island to the rats.
*/
if (nlist == 0) {
if (typeacts != 0) {
typeacts->status = CTL_PST_SEL_DISTSYSPEER;
peer_list[0] = typeacts;
nlist = 1;
} else if (typelocal != 0) {
typelocal->status = CTL_PST_SEL_DISTSYSPEER;
peer_list[0] = typelocal;
nlist = 1;
} else {
if (osys_peer != NULL) {
NLOG(NLOG_SYNCSTATUS)
msyslog(LOG_INFO,
"no servers reachable");
report_event(EVNT_PEERSTCHG, NULL);
}
}
}
/*
* We can only trust the survivors if the number of candidates
* sys_minsane is at least the number required to detect and
* cast out one falsticker. For the Byzantine agreement
* algorithm used here, that number is 4; however, the default
* sys_minsane is 1 to speed initial synchronization. Careful
* operators will tinker a higher value and use at least that
* number of synchronization sources.
*/
if (nlist < sys_minsane)
return;
for (i = 0; i < nlist; i++)
peer_list[i]->status = CTL_PST_SEL_SELCAND;
/*
* Now, vote outlyers off the island by select jitter weighted
* by root distance. Continue voting as long as there are more
* than sys_minclock survivors and the minimum select jitter is
* greater than the maximum peer jitter. Stop if we are about to
* discard a TRUE or PREFER peer, who of course has the
* immunity idol.
*/
while (1) {
d = 1e9;
e = -1e9;
f = g = 0;
k = 0;
for (i = 0; i < nlist; i++) {
if (error[i] < d)
d = error[i];
f = 0;
if (nlist > 1) {
for (j = 0; j < nlist; j++)
f += DIFF(peer_list[j]->offset,
peer_list[i]->offset);
f = SQRT(f / (nlist - 1));
}
if (f * synch[i] > e) {
g = f;
e = f * synch[i];
k = i;
}
}
f = max(f, LOGTOD(sys_precision));
if (nlist <= sys_minclock || f <= d ||
peer_list[k]->flags & (FLAG_TRUE | FLAG_PREFER))
break;
#ifdef DEBUG
if (debug > 2)
printf(
"select: drop %s select %.6f jitter %.6f\n",
ntoa(&peer_list[k]->srcadr), g, d);
#endif
for (j = k + 1; j < nlist; j++) {
peer_list[j - 1] = peer_list[j];
error[j - 1] = error[j];
}
nlist--;
}
/*
* What remains is a list usually not greater than sys_minclock
* peers. We want only a peer at the lowest stratum to become
* the system peer, although all survivors are eligible for the
* combining algorithm. Consider each peer in turn and OR the
* leap bits on the assumption that, if some of them honk
* nonzero bits, they must know what they are doing. Check for
* prefer and pps peers at any stratum. Note that the head of
* the list is at the lowest stratum and that unsynchronized
* peers cannot survive this far.
*/
leap_next = 0;
for (i = 0; i < nlist; i++) {
peer = peer_list[i];
sys_survivors++;
leap_next |= peer->leap;
peer->status = CTL_PST_SEL_SYNCCAND;
if (peer->flags & FLAG_PREFER)
sys_prefer = peer;
if (peer == osys_peer)
typesystem = peer;
#ifdef REFCLOCK
if (peer->refclktype == REFCLK_ATOM_PPS)
sys_pps = peer;
#endif /* REFCLOCK */
#if DEBUG
if (debug > 1)
printf("cluster: survivor %s metric %.6f\n",
ntoa(&peer_list[i]->srcadr), synch[i]);
#endif
}
/*
* Anticlockhop provision. Keep the current system peer if it is
* a survivor but not first in the list. But do that only HOPPER
* times.
*/
if (osys_peer == NULL || typesystem == NULL || typesystem ==
peer_list[0] || sys_hopper > sys_maxhop) {
typesystem = peer_list[0];
sys_hopper = 0;
} else {
peer->selbroken++;
}
/*
* Mitigation rules of the game. There are several types of
* peers that can be selected here: (1) orphan, (2) prefer peer
* (flag FLAG_PREFER) (3) pps peers (type REFCLK_ATOM_PPS), (4)
* the existing system peer, if any, and (5) the head of the
* survivor list.
*/
if (typesystem->stratum >= sys_orphan) {
/*
* If in orphan mode, choose the system peer. If the
* lowest distance, we are the orphan parent and the
* offset is zero.
*/
sys_peer = typesystem;
sys_peer->status = CTL_PST_SEL_SYSPEER;
if (sys_orphandelay < sys_peer->rootdelay) {
sys_offset = 0;
sys_refid = htonl(LOOPBACKADR);
} else {
sys_offset = sys_peer->offset;
sys_refid = addr2refid(&sys_peer->srcadr);
}
sys_jitter = LOGTOD(sys_precision);
#ifdef DEBUG
if (debug > 1)
printf("select: orphan offset %.6f\n",
sys_offset);
#endif
} else if (sys_prefer) {
/*
* If a pps peer is present, choose it; otherwise,
* choose the prefer peer.
*/
if (sys_pps) {
sys_peer = sys_pps;
sys_peer->status = CTL_PST_SEL_PPS;
sys_offset = sys_peer->offset;
if (!pps_control)
NLOG(NLOG_SYSEVENT)
msyslog(LOG_INFO,
"pps sync enabled");
pps_control = current_time;
#ifdef DEBUG
if (debug > 1)
printf("select: pps offset %.6f\n",
sys_offset);
#endif
} else {
sys_peer = sys_prefer;
sys_peer->status = CTL_PST_SEL_SYSPEER;
sys_offset = sys_peer->offset;
#ifdef DEBUG
if (debug > 1)
printf("select: prefer offset %.6f\n",
sys_offset);
#endif
}
if (sys_peer->stratum == STRATUM_REFCLOCK ||
sys_peer->stratum == STRATUM_UNSPEC)
sys_refid = sys_peer->refid;
else
sys_refid = addr2refid(&sys_peer->srcadr);
sys_jitter = sys_peer->jitter;
} else {
/*
* Otherwise, choose the anticlockhopper.
*/
sys_peer = typesystem;
sys_peer->status = CTL_PST_SEL_SYSPEER;
clock_combine(peer_list, nlist);
if (sys_peer->stratum == STRATUM_REFCLOCK ||
sys_peer->stratum == STRATUM_UNSPEC)
sys_refid = sys_peer->refid;
else
sys_refid = addr2refid(&sys_peer->srcadr);
sys_jitter = SQRT(SQUARE(sys_peer->jitter) +
SQUARE(sys_jitter));
#ifdef DEBUG
if (debug > 1)
printf("select: combine offset %.6f\n",
sys_offset);
#endif
}
/*
* We have found the alpha male.
*/
sys_peer->flags |= FLAG_SYSPEER;
if (osys_peer != sys_peer) {
char *src;
report_event(EVNT_PEERSTCHG, NULL);
#ifdef REFCLOCK
if (sys_peer->flags & FLAG_REFCLOCK)
src = refnumtoa(&sys_peer->srcadr);
else
#endif /* REFCLOCK */
src = ntoa(&sys_peer->srcadr);
NLOG(NLOG_SYNCSTATUS)
msyslog(LOG_INFO, "synchronized to %s, stratum %d",
src, sys_peer->stratum);
}
clock_update();
}
/*
* clock_combine - compute system offset and jitter from selected peers
*/
static void
clock_combine(
struct peer **peers, /* survivor list */
int npeers /* number of survivors */
)
{
int i;
double x, y, z, w;
y = z = w = 0;
for (i = 0; i < npeers; i++) {
x = root_distance(peers[i]);
y += 1. / x;
z += peers[i]->offset / x;
w += SQUARE(peers[i]->offset - peers[0]->offset) / x;
}
sys_offset = z / y;
sys_jitter = SQRT(w / y);
}
/*
* root_distance - compute synchronization distance from peer to root
*/
static double
root_distance(
struct peer *peer
)
{
double dist;
/*
* Careful squeak here. The value returned must be greater than
* the minimum root dispersion in order to avoid clockhop with
* highly precise reference clocks. In orphan mode lose the peer
* root delay, as that is used by the election algorithm.
*/
if (peer->stratum >= sys_orphan)
dist = 0;
else
dist = peer->rootdelay;
dist += max(sys_mindisp, dist + peer->delay) / 2 +
peer->rootdispersion + peer->disp + clock_phi *
(current_time - peer->update) + peer->jitter;
return (dist);
}
/*
* peer_xmit - send packet for persistent association.
*/
static void
peer_xmit(
struct peer *peer /* peer structure pointer */
)
{
struct pkt xpkt; /* transmit packet */
int sendlen, authlen;
keyid_t xkeyid = 0; /* transmit key ID */
l_fp xmt_tx;
if (!peer->dstadr) /* don't bother with peers without interface */
return;
/*
* This is deliciously complicated. There are three cases.
*
* case leap stratum refid delay dispersion
*
* normal system system system system system
* orphan child 00 orphan system orphan system
* orphan parent 00 orphan loopbk 0 0
*/
/*
* This is a normal packet. Use the system variables.
*/
if (sys_stratum < sys_orphan) {
xpkt.li_vn_mode = PKT_LI_VN_MODE(sys_leap,
peer->version, peer->hmode);
xpkt.stratum = STRATUM_TO_PKT(sys_stratum);
xpkt.refid = sys_refid;
xpkt.rootdelay = HTONS_FP(DTOFP(sys_rootdelay));
xpkt.rootdispersion =
HTONS_FP(DTOUFP(sys_rootdispersion));
/*
* This is a orphan child packet. The host is synchronized to an
* orphan parent. Show leap synchronized, orphan stratum, system
* reference ID, orphan root delay and system root dispersion.
*/
} else if (sys_peer != NULL) {
xpkt.li_vn_mode = PKT_LI_VN_MODE(LEAP_NOWARNING,
peer->version, peer->hmode);
xpkt.stratum = STRATUM_TO_PKT(sys_orphan);
xpkt.refid = htonl(LOOPBACKADR);
xpkt.rootdelay = HTONS_FP(DTOFP(sys_orphandelay));
xpkt.rootdispersion =
HTONS_FP(DTOUFP(sys_rootdispersion));
/*
* This is an orphan parent. Show leap synchronized, orphan
* stratum, loopack reference ID and zero root delay and root
* dispersion.
*/
} else {
xpkt.li_vn_mode = PKT_LI_VN_MODE(LEAP_NOWARNING,
peer->version, peer->hmode);
xpkt.stratum = STRATUM_TO_PKT(sys_orphan);
xpkt.refid = sys_refid;
xpkt.rootdelay = 0;
xpkt.rootdispersion = 0;
}
xpkt.ppoll = peer->hpoll;
xpkt.precision = sys_precision;
HTONL_FP(&sys_reftime, &xpkt.reftime);
HTONL_FP(&peer->org, &xpkt.org);
HTONL_FP(&peer->rec, &xpkt.rec);
/*
* If the received packet contains a MAC, the transmitted packet
* is authenticated and contains a MAC. If not, the transmitted
* packet is not authenticated.
*
* It is most important when autokey is in use that the local
* interface IP address be known before the first packet is
* sent. Otherwise, it is not possible to compute a correct MAC
* the recipient will accept. Thus, the I/O semantics have to do
* a little more work. In particular, the wildcard interface
* might not be usable.
*/
sendlen = LEN_PKT_NOMAC;
if (!(peer->flags & FLAG_AUTHENABLE)) {
get_systime(&peer->xmt);
HTONL_FP(&peer->xmt, &xpkt.xmt);
sendpkt(&peer->srcadr, peer->dstadr, sys_ttl[peer->ttl],
&xpkt, sendlen);
peer->sent++;
#ifdef DEBUG
if (debug)
printf("transmit: at %ld %s->%s mode %d\n",
current_time, peer->dstadr ? stoa(&peer->dstadr->sin) : "-",
stoa(&peer->srcadr), peer->hmode);
#endif
return;
}
/*
* The received packet contains a MAC, so the transmitted packet
* must be authenticated. If autokey is enabled, fuss with the
* various modes; otherwise, symmetric key cryptography is used.
*/
#ifdef OPENSSL
if (crypto_flags && (peer->flags & FLAG_SKEY)) {
struct exten *exten; /* extension field */
/*
* The Public Key Dance (PKD): Cryptographic credentials
* are contained in extension fields, each including a
* 4-octet length/code word followed by a 4-octet
* association ID and optional additional data. Optional
* data includes a 4-octet data length field followed by
* the data itself. Request messages are sent from a
* configured association; response messages can be sent
* from a configured association or can take the fast
* path without ever matching an association. Response
* messages have the same code as the request, but have
* a response bit and possibly an error bit set. In this
* implementation, a message may contain no more than
* one command and no more than one response.
*
* Cryptographic session keys include both a public and
* a private componet. Request and response messages
* using extension fields are always sent with the
* private component set to zero. Packets without
* extension fields indlude the private component when
* the session key is generated.
*/
while (1) {
/*
* Allocate and initialize a keylist if not
* already done. Then, use the list in inverse
* order, discarding keys once used. Keep the
* latest key around until the next one, so
* clients can use client/server packets to
* compute propagation delay.
*
* Note that once a key is used from the list,
* it is retained in the key cache until the
* next key is used. This is to allow a client
* to retrieve the encrypted session key
* identifier to verify authenticity.
*
* If for some reason a key is no longer in the
* key cache, a birthday has happened and the
* pseudo-random sequence is probably broken. In
* that case, purge the keylist and regenerate
* it.
*/
if (peer->keynumber == 0)
make_keylist(peer, peer->dstadr);
else
peer->keynumber--;
xkeyid = peer->keylist[peer->keynumber];
if (authistrusted(xkeyid))
break;
else
key_expire(peer);
}
peer->keyid = xkeyid;
exten = NULL;
switch (peer->hmode) {
/*
* In broadcast server mode the autokey values are
* required by the broadcast clients. Push them when a
* new keylist is generated; otherwise, push the
* association message so the client can request them at
* other times.
*/
case MODE_BROADCAST:
if (peer->flags & FLAG_ASSOC)
exten = crypto_args(peer, CRYPTO_AUTO |
CRYPTO_RESP, NULL);
else
exten = crypto_args(peer, CRYPTO_ASSOC |
CRYPTO_RESP, NULL);
break;
/*
* In symmetric modes the digest, certificate, agreement
* parameters, cookie and autokey values are required.
* The leapsecond table is optional. But, a passive peer
* will not believe the active peer until the latter has
* synchronized, so the agreement must be postponed
* until then. In any case, if a new keylist is
* generated, the autokey values are pushed.
*
* If the crypto bit is lit, don't send requests.
*/
case MODE_ACTIVE:
case MODE_PASSIVE:
if (peer->flash & TEST9)
break;
/*
* Parameter and certificate.
*/
if (!peer->crypto)
exten = crypto_args(peer, CRYPTO_ASSOC,
sys_hostname);
else if (!(peer->crypto & CRYPTO_FLAG_VALID))
exten = crypto_args(peer, CRYPTO_CERT,
peer->issuer);
/*
* Identity. Note we have to sign the
* certificate before the cookie to avoid a
* deadlock when the passive peer is walking the
* certificate trail. Awesome.
*/
else if (!(peer->crypto & CRYPTO_FLAG_VRFY))
exten = crypto_args(peer,
crypto_ident(peer), NULL);
else if (sys_leap != LEAP_NOTINSYNC &&
!(peer->crypto & CRYPTO_FLAG_SIGN))
exten = crypto_args(peer, CRYPTO_SIGN,
sys_hostname);
/*
* Autokey. We request the cookie only when the
* server and client are synchronized and
* signatures work both ways. On the other hand,
* the active peer needs the autokey values
* before then and when the passive peer is
* waiting for the active peer to synchronize.
* Any time we regenerate the key list, we offer
* the autokey values without being asked.
*/
else if (sys_leap != LEAP_NOTINSYNC &&
peer->leap != LEAP_NOTINSYNC &&
!(peer->crypto & CRYPTO_FLAG_AGREE))
exten = crypto_args(peer, CRYPTO_COOK,
NULL);
else if (peer->flags & FLAG_ASSOC)
exten = crypto_args(peer, CRYPTO_AUTO |
CRYPTO_RESP, NULL);
else if (!(peer->crypto & CRYPTO_FLAG_AUTO))
exten = crypto_args(peer, CRYPTO_AUTO,
NULL);
/*
* Postamble. We trade leapseconds only when the
* server and client are synchronized.
*/
else if (sys_leap != LEAP_NOTINSYNC &&
peer->leap != LEAP_NOTINSYNC &&
peer->crypto & CRYPTO_FLAG_TAI &&
!(peer->crypto & CRYPTO_FLAG_LEAP))
exten = crypto_args(peer, CRYPTO_TAI,
NULL);
break;
/*
* In client mode the digest, certificate, agreement
* parameters and cookie are required. The leapsecond
* table is optional. If broadcast client mode, the
* autokey values are required as well. In broadcast
* client mode, these values must be acquired during the
* client/server exchange to avoid having to wait until
* the next key list regeneration. Otherwise, the poor
* dude may die a lingering death until becoming
* unreachable and attempting rebirth.
*
* If neither the server or client have the agreement
* parameters, the protocol transmits the cookie in the
* clear. If the server has the parameters, the client
* requests them and the protocol blinds it using the
* agreed key. It is a protocol error if the client has
* the parameters but the server does not.
*
* If the crypto bit is lit, don't send requests.
*/
case MODE_CLIENT:
if (peer->flash & TEST9)
break;
/*
* Parameter and certificate.
*/
if (!peer->crypto)
exten = crypto_args(peer, CRYPTO_ASSOC,
sys_hostname);
else if (!(peer->crypto & CRYPTO_FLAG_VALID))
exten = crypto_args(peer, CRYPTO_CERT,
peer->issuer);
/*
* Identity
*/
else if (!(peer->crypto & CRYPTO_FLAG_VRFY))
exten = crypto_args(peer,
crypto_ident(peer), NULL);
/*
* Autokey
*/
else if (!(peer->crypto & CRYPTO_FLAG_AGREE))
exten = crypto_args(peer, CRYPTO_COOK,
NULL);
else if (!(peer->crypto & CRYPTO_FLAG_AUTO) &&
(peer->cast_flags & MDF_BCLNT))
exten = crypto_args(peer, CRYPTO_AUTO,
NULL);
/*
* Postamble. We can sign the certificate here,
* since there is no chance of deadlock.
*/
else if (sys_leap != LEAP_NOTINSYNC &&
!(peer->crypto & CRYPTO_FLAG_SIGN))
exten = crypto_args(peer, CRYPTO_SIGN,
sys_hostname);
else if (sys_leap != LEAP_NOTINSYNC &&
peer->crypto & CRYPTO_FLAG_TAI &&
!(peer->crypto & CRYPTO_FLAG_LEAP))
exten = crypto_args(peer, CRYPTO_TAI,
NULL);
break;
}
/*
* Build the extension fields as directed. A response to
* a request is always sent, even if an error. If an
* error occurs when sending a request, the crypto
* machinery broke or was misconfigured. In that case
* light the crypto bit to suppress further requests.
*/
if (peer->cmmd != NULL) {
peer->cmmd->associd = htonl(peer->associd);
sendlen += crypto_xmit(&xpkt, &peer->srcadr,
sendlen, peer->cmmd, 0);
free(peer->cmmd);
peer->cmmd = NULL;
}
if (exten != NULL) {
int ltemp = 0;
if (exten->opcode != 0) {
ltemp = crypto_xmit(&xpkt,
&peer->srcadr, sendlen, exten, 0);
if (ltemp == 0) {
peer->flash |= TEST9; /* crypto error */
free(exten);
return;
}
}
sendlen += ltemp;
free(exten);
}
/*
* If extension fields are present, we must use a
* private cookie value of zero. Don't send if the
* crypto bit is set and no extension field is present,
* but in that case give back the key. Most intricate.
*/
if (sendlen > LEN_PKT_NOMAC) {
session_key(&peer->dstadr->sin, &peer->srcadr,
xkeyid, 0, 2);
} else if (peer->flash & TEST9) {
authtrust(xkeyid, 0);
return;
}
}
#endif /* OPENSSL */
/*
* Stash the transmit timestamp corrected for the encryption
* delay. If autokey, give back the key, as we use keys only
* once. Check for errors such as missing keys, buffer overflow,
* etc.
*/
xkeyid = peer->keyid;
get_systime(&peer->xmt);
L_ADD(&peer->xmt, &sys_authdelay);
HTONL_FP(&peer->xmt, &xpkt.xmt);
authlen = authencrypt(xkeyid, (u_int32 *)&xpkt, sendlen);
if (authlen == 0) {
msyslog(LOG_INFO, "transmit: %s key %u not found",
stoa(&peer->srcadr), xkeyid);
peer->flash |= TEST9; /* no key found */
return;
}
sendlen += authlen;
#ifdef OPENSSL
if (xkeyid > NTP_MAXKEY)
authtrust(xkeyid, 0);
#endif /* OPENSSL */
get_systime(&xmt_tx);
if (sendlen > sizeof(xpkt)) {
msyslog(LOG_ERR, "buffer overflow %u", sendlen);
exit (-1);
}
sendpkt(&peer->srcadr, peer->dstadr, sys_ttl[peer->ttl], &xpkt,
sendlen);
/*
* Calculate the encryption delay. Keep the minimum over
* the latest two samples.
*/
L_SUB(&xmt_tx, &peer->xmt);
L_ADD(&xmt_tx, &sys_authdelay);
sys_authdly[1] = sys_authdly[0];
sys_authdly[0] = xmt_tx.l_uf;
if (sys_authdly[0] < sys_authdly[1])
sys_authdelay.l_uf = sys_authdly[0];
else
sys_authdelay.l_uf = sys_authdly[1];
peer->sent++;
#ifdef OPENSSL
#ifdef DEBUG
if (debug)
printf(
"transmit: at %ld %s->%s mode %d keyid %08x len %d mac %d index %d\n",
current_time, peer->dstadr ? ntoa(&peer->dstadr->sin) : "-",
ntoa(&peer->srcadr), peer->hmode, xkeyid, sendlen -
authlen, authlen, peer->keynumber);
#endif
#else
#ifdef DEBUG
if (debug)
printf(
"transmit: at %ld %s->%s mode %d keyid %08x len %d mac %d\n",
current_time, peer->dstadr ? ntoa(&peer->dstadr->sin) : "-",
ntoa(&peer->srcadr), peer->hmode, xkeyid, sendlen -
authlen, authlen);
#endif
#endif /* OPENSSL */
}
/*
* fast_xmit - Send packet for nonpersistent association. Note that
* neither the source or destination can be a broadcast address.
*/
static void
fast_xmit(
struct recvbuf *rbufp, /* receive packet pointer */
int xmode, /* transmit mode */
keyid_t xkeyid, /* transmit key ID */
int mask /* restrict mask */
)
{
struct pkt xpkt; /* transmit packet structure */
struct pkt *rpkt; /* receive packet structure */
l_fp xmt_ts; /* timestamp */
l_fp xmt_tx; /* timestamp after authent */
int sendlen, authlen;
#ifdef OPENSSL
u_int32 temp32;
#endif
/*
* Initialize transmit packet header fields from the receive
* buffer provided. We leave some fields intact as received. If
* the gazinta was from a multicast address, the gazoutta must
* go out another way.
*
* The root delay field is special. If the system stratum is
* less than the orphan stratum, send the real root delay.
* Otherwise, if there is no system peer, send the orphan delay.
* Otherwise, we must be an orphan parent, so send zero.
*/
rpkt = &rbufp->recv_pkt;
if (rbufp->dstadr->flags & INT_MCASTOPEN)
rbufp->dstadr = findinterface(&rbufp->recv_srcadr);
/*
* This is deliciously complicated. There are four cases.
*
* case leap stratum refid delay dispersion
*
* KoD 11 16 KISS system system
* normal system system system system system
* orphan child 00 orphan system orphan system
* orphan parent 00 orphan loopbk 0 0
*/
/*
* This is a kiss-of-death (KoD) packet. Show leap
* unsynchronized, stratum zero, reference ID the four-character
* kiss code and system root delay. Note the rate limit on these
* packets. Once a second initialize a bucket counter. Every
* packet sent decrements the counter until reaching zero. If
* the counter is zero, drop the kiss.
*/
if (mask & RES_LIMITED) {
sys_limitrejected++;
if (sys_kod == 0 || !(mask & RES_DEMOBILIZE))
return;
sys_kod--;
xpkt.li_vn_mode = PKT_LI_VN_MODE(LEAP_NOTINSYNC,
PKT_VERSION(rpkt->li_vn_mode), xmode);
xpkt.stratum = STRATUM_UNSPEC;
memcpy(&xpkt.refid, "RATE", 4);
xpkt.rootdelay = HTONS_FP(DTOFP(sys_rootdelay));
xpkt.rootdispersion =
HTONS_FP(DTOUFP(sys_rootdispersion));
/*
* This is a normal packet. Use the system variables.
*/
} else if (sys_stratum < sys_orphan) {
xpkt.li_vn_mode = PKT_LI_VN_MODE(sys_leap,
PKT_VERSION(rpkt->li_vn_mode), xmode);
xpkt.stratum = STRATUM_TO_PKT(sys_stratum);
xpkt.refid = sys_refid;
xpkt.rootdelay = HTONS_FP(DTOFP(sys_rootdelay));
xpkt.rootdispersion =
HTONS_FP(DTOUFP(sys_rootdispersion));
/*
* This is a orphan child packet. The host is synchronized to an
* orphan parent. Show leap synchronized, orphan stratum, system
* reference ID and orphan root delay.
*/
} else if (sys_peer != NULL) {
xpkt.li_vn_mode = PKT_LI_VN_MODE(LEAP_NOWARNING,
PKT_VERSION(rpkt->li_vn_mode), xmode);
xpkt.stratum = STRATUM_TO_PKT(sys_orphan);
xpkt.refid = sys_refid;
xpkt.rootdelay = HTONS_FP(DTOFP(sys_orphandelay));
xpkt.rootdispersion =
HTONS_FP(DTOUFP(sys_rootdispersion));
/*
* This is an orphan parent. Show leap synchronized, orphan
* stratum, loopack reference ID and zero root delay.
*/
} else {
xpkt.li_vn_mode = PKT_LI_VN_MODE(LEAP_NOWARNING,
PKT_VERSION(rpkt->li_vn_mode), xmode);
xpkt.stratum = STRATUM_TO_PKT(sys_orphan);
xpkt.refid = htonl(LOOPBACKADR);
xpkt.rootdelay = HTONS_FP(DTOFP(0));
xpkt.rootdispersion = HTONS_FP(DTOFP(0));
}
xpkt.ppoll = rpkt->ppoll;
xpkt.precision = sys_precision;
xpkt.rootdispersion = HTONS_FP(DTOUFP(sys_rootdispersion));
HTONL_FP(&sys_reftime, &xpkt.reftime);
xpkt.org = rpkt->xmt;
HTONL_FP(&rbufp->recv_time, &xpkt.rec);
/*
* If the received packet contains a MAC, the transmitted packet
* is authenticated and contains a MAC. If not, the transmitted
* packet is not authenticated.
*/
sendlen = LEN_PKT_NOMAC;
if (rbufp->recv_length == sendlen) {
get_systime(&xmt_ts);
HTONL_FP(&xmt_ts, &xpkt.xmt);
sendpkt(&rbufp->recv_srcadr, rbufp->dstadr, 0, &xpkt,
sendlen);
#ifdef DEBUG
if (debug)
printf("transmit: at %ld %s->%s mode %d\n",
current_time, stoa(&rbufp->dstadr->sin),
stoa(&rbufp->recv_srcadr), xmode);
#endif
return;
}
/*
* The received packet contains a MAC, so the transmitted packet
* must be authenticated. For symmetric key cryptography, use
* the predefined and trusted symmetric keys to generate the
* cryptosum. For autokey cryptography, use the server private
* value to generate the cookie, which is unique for every
* source-destination-key ID combination.
*/
#ifdef OPENSSL
if (xkeyid > NTP_MAXKEY) {
keyid_t cookie;
/*
* The only way to get here is a reply to a legitimate
* client request message, so the mode must be
* MODE_SERVER. If an extension field is present, there
* can be only one and that must be a command. Do what
* needs, but with private value of zero so the poor
* jerk can decode it. If no extension field is present,
* use the cookie to generate the session key.
*/
cookie = session_key(&rbufp->recv_srcadr,
&rbufp->dstadr->sin, 0, sys_private, 0);
if (rbufp->recv_length >= (int)(sendlen + MAX_MAC_LEN +
2 * sizeof(u_int32))) {
session_key(&rbufp->dstadr->sin,
&rbufp->recv_srcadr, xkeyid, 0, 2);
temp32 = CRYPTO_RESP;
rpkt->exten[0] |= htonl(temp32);
sendlen += crypto_xmit(&xpkt,
&rbufp->recv_srcadr, sendlen,
(struct exten *)rpkt->exten, cookie);
} else {
session_key(&rbufp->dstadr->sin,
&rbufp->recv_srcadr, xkeyid, cookie, 2);
}
}
#endif /* OPENSSL */
get_systime(&xmt_ts);
L_ADD(&xmt_ts, &sys_authdelay);
HTONL_FP(&xmt_ts, &xpkt.xmt);
authlen = authencrypt(xkeyid, (u_int32 *)&xpkt, sendlen);
sendlen += authlen;
#ifdef OPENSSL
if (xkeyid > NTP_MAXKEY)
authtrust(xkeyid, 0);
#endif /* OPENSSL */
get_systime(&xmt_tx);
if (sendlen > sizeof(xpkt)) {
msyslog(LOG_ERR, "buffer overflow %u", sendlen);
exit (-1);
}
sendpkt(&rbufp->recv_srcadr, rbufp->dstadr, 0, &xpkt, sendlen);
/*
* Calculate the encryption delay. Keep the minimum over the
* latest two samples.
*/
L_SUB(&xmt_tx, &xmt_ts);
L_ADD(&xmt_tx, &sys_authdelay);
sys_authdly[1] = sys_authdly[0];
sys_authdly[0] = xmt_tx.l_uf;
if (sys_authdly[0] < sys_authdly[1])
sys_authdelay.l_uf = sys_authdly[0];
else
sys_authdelay.l_uf = sys_authdly[1];
#ifdef DEBUG
if (debug)
printf(
"transmit: at %ld %s->%s mode %d keyid %08x len %d mac %d\n",
current_time, ntoa(&rbufp->dstadr->sin),
ntoa(&rbufp->recv_srcadr), xmode, xkeyid, sendlen -
authlen, authlen);
#endif
}
#ifdef OPENSSL
/*
* key_expire - purge the key list
*/
void
key_expire(
struct peer *peer /* peer structure pointer */
)
{
int i;
if (peer->keylist != NULL) {
for (i = 0; i <= peer->keynumber; i++)
authtrust(peer->keylist[i], 0);
free(peer->keylist);
peer->keylist = NULL;
}
value_free(&peer->sndval);
peer->keynumber = 0;
#ifdef DEBUG
if (debug)
printf("key_expire: at %lu\n", current_time);
#endif
}
#endif /* OPENSSL */
/*
* Determine if the peer is unfit for synchronization
*
* A peer is unfit for synchronization if
* > TEST10 bad leap or stratum below floor or at or above ceiling
* > TEST11 root distance exceeded
* > TEST12 a direct or indirect synchronization loop would form
* > TEST13 unreachable or noselect
*/
int /* FALSE if fit, TRUE if unfit */
peer_unfit(
struct peer *peer /* peer structure pointer */
)
{
int rval = 0;
/*
* A stratum error occurs if (1) the server has never been
* synchronized, (2) the server stratum is below the floor or
* greater than or equal to the ceiling, (3) the system stratum
* is below the orphan stratum and the server stratum is greater
* than or equal to the orphan stratum.
*/
if (peer->leap == LEAP_NOTINSYNC || peer->stratum < sys_floor ||
peer->stratum >= sys_ceiling || (sys_stratum < sys_orphan &&
peer->stratum >= sys_orphan))
rval |= TEST10; /* stratum out of bounds */
/*
* A distance error occurs if the root distance is greater than
* or equal to the distance threshold plus the increment due to
* one poll interval.
*/
if (root_distance(peer) >= sys_maxdist + clock_phi *
ULOGTOD(sys_poll))
rval |= TEST11; /* distance exceeded */
/*
* A loop error occurs if the remote peer is synchronized to the
* local peer of if the remote peer is synchronized to the same
* server as the local peer, but only if the remote peer is not
* the orphan parent.
*/
if (peer->stratum > 1 && peer->refid != htonl(LOOPBACKADR) &&
((!peer->dstadr || peer->refid == peer->dstadr->addr_refid) ||
peer->refid == sys_refid))
rval |= TEST12; /* synch loop */
/*
* An unreachable error occurs if the server is unreachable or
* the noselect bit is set.
*/
if (!peer->reach || peer->flags & FLAG_NOSELECT)
rval |= TEST13; /* unreachable */
peer->flash &= ~PEER_TEST_MASK;
peer->flash |= rval;
return (rval);
}
/*
* Find the precision of this particular machine
*/
#define MINSTEP 100e-9 /* minimum clock increment (s) */
#define MAXSTEP 20e-3 /* maximum clock increment (s) */
#define MINLOOPS 5 /* minimum number of step samples */
/*
* This routine calculates the system precision, defined as the minimum
* of a sequence of differences between successive readings of the
* system clock. However, if the system clock can be read more than once
* during a tick interval, the difference can be zero or one LSB unit,
* where the LSB corresponds to one nanosecond or one microsecond.
* Conceivably, if some other process preempts this one and reads the
* clock, the difference can be more than one LSB unit.
*
* For hardware clock frequencies of 10 MHz or less, we assume the
* logical clock advances only at the hardware clock tick. For higher
* frequencies, we assume the logical clock can advance no more than 100
* nanoseconds between ticks.
*/
int
default_get_precision(void)
{
l_fp val; /* current seconds fraction */
l_fp last; /* last seconds fraction */
l_fp diff; /* difference */
double tick; /* computed tick value */
double dtemp; /* scratch */
int i; /* log2 precision */
/*
* Loop to find tick value in nanoseconds. Toss out outlyer
* values less than the minimun tick value. In wacky cases, use
* the default maximum value.
*/
get_systime(&last);
tick = MAXSTEP;
for (i = 0; i < MINLOOPS;) {
get_systime(&val);
diff = val;
L_SUB(&diff, &last);
last = val;
LFPTOD(&diff, dtemp);
if (dtemp < MINSTEP)
continue;
i++;
if (dtemp < tick)
tick = dtemp;
}
/*
* Find the nearest power of two.
*/
NLOG(NLOG_SYSEVENT)
msyslog(LOG_INFO, "precision = %.3f usec", tick * 1e6);
for (i = 0; tick <= 1; i++)
tick *= 2;
if (tick - 1. > 1. - tick / 2)
i--;
return (-i);
}
/*
* kod_proto - called once per second to limit kiss-of-death packets
*/
void
kod_proto(void)
{
sys_kod = sys_kod_rate;
}
/*
* init_proto - initialize the protocol module's data
*/
void
init_proto(void)
{
l_fp dummy;
int i;
/*
* Fill in the sys_* stuff. Default is don't listen to
* broadcasting, authenticate.
*/
sys_leap = LEAP_NOTINSYNC;
sys_stratum = STRATUM_UNSPEC;
memcpy(&sys_refid, "INIT", 4);
sys_precision = (s_char)default_get_precision();
sys_jitter = LOGTOD(sys_precision);
sys_rootdelay = 0;
sys_orphandelay = (double)(ntp_random() & 0xffff) / 65536. *
sys_maxdist;
sys_rootdispersion = 0;
L_CLR(&sys_reftime);
sys_peer = NULL;
sys_survivors = 0;
get_systime(&dummy);
sys_manycastserver = 0;
sys_bclient = 0;
sys_bdelay = DEFBROADDELAY;
sys_calldelay = BURST_DELAY;
sys_authenticate = 1;
L_CLR(&sys_authdelay);
sys_authdly[0] = sys_authdly[1] = 0;
sys_stattime = 0;
proto_clr_stats();
for (i = 0; i < MAX_TTL; i++) {
sys_ttl[i] = (u_char)((i * 256) / MAX_TTL);
sys_ttlmax = i;
}
#ifdef OPENSSL
sys_automax = 1 << NTP_AUTOMAX;
#endif /* OPENSSL */
/*
* Default these to enable
*/
ntp_enable = 1;
#ifndef KERNEL_FLL_BUG
kern_enable = 1;
#endif
pps_enable = 0;
stats_control = 1;
}
/*
* proto_config - configure the protocol module
*/
void
proto_config(
int item,
u_long value,
double dvalue,
struct sockaddr_storage* svalue
)
{
/*
* Figure out what he wants to change, then do it
*/
switch (item) {
/*
* Turn on/off kernel discipline.
*/
case PROTO_KERNEL:
kern_enable = (int)value;
break;
/*
* Turn on/off clock discipline.
*/
case PROTO_NTP:
ntp_enable = (int)value;
break;
/*
* Turn on/off monitoring.
*/
case PROTO_MONITOR:
if (value)
mon_start(MON_ON);
else
mon_stop(MON_ON);
break;
/*
* Turn on/off statistics.
*/
case PROTO_FILEGEN:
stats_control = (int)value;
break;
/*
* Turn on/off enable broadcasts.
*/
case PROTO_BROADCLIENT:
sys_bclient = (int)value;
if (sys_bclient == 0)
io_unsetbclient();
else
io_setbclient();
break;
/*
* Turn on/off PPS discipline.
*/
case PROTO_PPS:
pps_enable = (int)value;
break;
/*
* Add muliticast group address.
*/
case PROTO_MULTICAST_ADD:
if (svalue)
io_multicast_add(*svalue);
sys_bclient = 1;
break;
/*
* Delete multicast group address.
*/
case PROTO_MULTICAST_DEL:
if (svalue)
io_multicast_del(*svalue);
break;
/*
* Set default broadcast delay.
*/
case PROTO_BROADDELAY:
sys_bdelay = dvalue;
break;
/*
* Set modem call delay.
*/
case PROTO_CALLDELAY:
sys_calldelay = (int)value;
break;
/*
* Turn on/off authentication to mobilize ephemeral
* associations.
*/
case PROTO_AUTHENTICATE:
sys_authenticate = (int)value;
break;
/*
* Set minimum number of survivors.
*/
case PROTO_MINCLOCK:
sys_minclock = (int)dvalue;
break;
/*
* Set maximum number of preemptable associations.
*/
case PROTO_MAXCLOCK:
sys_maxclock = (int)dvalue;
break;
/*
* Set minimum number of survivors.
*/
case PROTO_MINSANE:
sys_minsane = (int)dvalue;
break;
/*
* Set stratum floor.
*/
case PROTO_FLOOR:
sys_floor = (int)dvalue;
break;
/*
* Set stratum ceiling.
*/
case PROTO_CEILING:
sys_ceiling = (int)dvalue;
break;
/*
* Set orphan stratum.
*/
case PROTO_ORPHAN:
sys_orphan = (int)dvalue;
break;
/*
* Set cohort switch.
*/
case PROTO_COHORT:
sys_cohort = (int)dvalue;
break;
/*
* Set minimum dispersion increment.
*/
case PROTO_MINDISP:
sys_mindisp = dvalue;
break;
/*
* Set maximum distance (select threshold).
*/
case PROTO_MAXDIST:
sys_maxdist = dvalue;
break;
/*
* Set anticlockhop threshold.
*/
case PROTO_MAXHOP:
sys_maxhop = (int)dvalue;
break;
/*
* Set adjtime() resolution (s).
*/
case PROTO_ADJ:
sys_tick = dvalue;
break;
/*
* Set manycast beacon interval.
*/
case PROTO_BEACON:
sys_beacon = (int)dvalue;
break;
#ifdef REFCLOCK
/*
* Turn on/off refclock calibrate
*/
case PROTO_CAL:
cal_enable = (int)value;
break;
#endif /* REFCLOCK */
default:
/*
* Log this error.
*/
msyslog(LOG_INFO,
"proto_config: illegal item %d, value %ld", item,
value);
}
}
/*
* proto_clr_stats - clear protocol stat counters
*/
void
proto_clr_stats(void)
{
sys_stattime = current_time;
sys_received = 0;
sys_processed = 0;
sys_newversionpkt = 0;
sys_oldversionpkt = 0;
sys_unknownversion = 0;
sys_restricted = 0;
sys_badlength = 0;
sys_badauth = 0;
sys_limitrejected = 0;
}