freebsd-nq/sys/cam/cam_ccb.h
Kenneth D. Merry a9934668aa Add asynchronous command support to the pass(4) driver, and the new
camdd(8) utility.

CCBs may be queued to the driver via the new CAMIOQUEUE ioctl, and
completed CCBs may be retrieved via the CAMIOGET ioctl.  User
processes can use poll(2) or kevent(2) to get notification when
I/O has completed.

While the existing CAMIOCOMMAND blocking ioctl interface only
supports user virtual data pointers in a CCB (generally only
one per CCB), the new CAMIOQUEUE ioctl supports user virtual and
physical address pointers, as well as user virtual and physical
scatter/gather lists.  This allows user applications to have more
flexibility in their data handling operations.

Kernel memory for data transferred via the queued interface is
allocated from the zone allocator in MAXPHYS sized chunks, and user
data is copied in and out.  This is likely faster than the
vmapbuf()/vunmapbuf() method used by the CAMIOCOMMAND ioctl in
configurations with many processors (there are more TLB shootdowns
caused by the mapping/unmapping operation) but may not be as fast
as running with unmapped I/O.

The new memory handling model for user requests also allows
applications to send CCBs with request sizes that are larger than
MAXPHYS.  The pass(4) driver now limits queued requests to the I/O
size listed by the SIM driver in the maxio field in the Path
Inquiry (XPT_PATH_INQ) CCB.

There are some things things would be good to add:

1. Come up with a way to do unmapped I/O on multiple buffers.
   Currently the unmapped I/O interface operates on a struct bio,
   which includes only one address and length.  It would be nice
   to be able to send an unmapped scatter/gather list down to
   busdma.  This would allow eliminating the copy we currently do
   for data.

2. Add an ioctl to list currently outstanding CCBs in the various
   queues.

3. Add an ioctl to cancel a request, or use the XPT_ABORT CCB to do
   that.

4. Test physical address support.  Virtual pointers and scatter
   gather lists have been tested, but I have not yet tested
   physical addresses or scatter/gather lists.

5. Investigate multiple queue support.  At the moment there is one
   queue of commands per pass(4) device.  If multiple processes
   open the device, they will submit I/O into the same queue and
   get events for the same completions.  This is probably the right
   model for most applications, but it is something that could be
   changed later on.

Also, add a new utility, camdd(8) that uses the asynchronous pass(4)
driver interface.

This utility is intended to be a basic data transfer/copy utility,
a simple benchmark utility, and an example of how to use the
asynchronous pass(4) interface.

It can copy data to and from pass(4) devices using any target queue
depth, starting offset and blocksize for the input and ouptut devices.
It currently only supports SCSI devices, but could be easily extended
to support ATA devices.

It can also copy data to and from regular files, block devices, tape
devices, pipes, stdin, and stdout.  It does not support queueing
multiple commands to any of those targets, since it uses the standard
read(2)/write(2)/writev(2)/readv(2) system calls.

The I/O is done by two threads, one for the reader and one for the
writer.  The reader thread sends completed read requests to the
writer thread in strictly sequential order, even if they complete
out of order.  That could be modified later on for random I/O patterns
or slightly out of order I/O.

camdd(8) uses kqueue(2)/kevent(2) to get I/O completion events from
the pass(4) driver and also to send request notifications internally.

For pass(4) devcies, camdd(8) uses a single buffer (CAM_DATA_VADDR)
per CAM CCB on the reading side, and a scatter/gather list
(CAM_DATA_SG) on the writing side.  In addition to testing both
interfaces, this makes any potential reblocking of I/O easier.  No
data is copied between the reader and the writer, but rather the
reader's buffers are split into multiple I/O requests or combined
into a single I/O request depending on the input and output blocksize.

For the file I/O path, camdd(8) also uses a single buffer (read(2),
write(2), pread(2) or pwrite(2)) on reads, and a scatter/gather list
(readv(2), writev(2), preadv(2), pwritev(2)) on writes.

Things that would be nice to do for camdd(8) eventually:

1.  Add support for I/O pattern generation.  Patterns like all
    zeros, all ones, LBA-based patterns, random patterns, etc. Right
    Now you can always use /dev/zero, /dev/random, etc.

2.  Add support for a "sink" mode, so we do only reads with no
    writes.  Right now, you can use /dev/null.

3.  Add support for automatic queue depth probing, so that we can
    figure out the right queue depth on the input and output side
    for maximum throughput.  At the moment it defaults to 6.

4.  Add support for SATA device passthrough I/O.

5.  Add support for random LBAs and/or lengths on the input and
    output sides.

6.  Track average per-I/O latency and busy time.  The busy time
    and latency could also feed in to the automatic queue depth
    determination.

sys/cam/scsi/scsi_pass.h:
	Define two new ioctls, CAMIOQUEUE and CAMIOGET, that queue
	and fetch asynchronous CAM CCBs respectively.

	Although these ioctls do not have a declared argument, they
	both take a union ccb pointer.  If we declare a size here,
	the ioctl code in sys/kern/sys_generic.c will malloc and free
	a buffer for either the CCB or the CCB pointer (depending on
	how it is declared).  Since we have to keep a copy of the
	CCB (which is fairly large) anyway, having the ioctl malloc
	and free a CCB for each call is wasteful.

sys/cam/scsi/scsi_pass.c:
	Add asynchronous CCB support.

	Add two new ioctls, CAMIOQUEUE and CAMIOGET.

	CAMIOQUEUE adds a CCB to the incoming queue.  The CCB is
	executed immediately (and moved to the active queue) if it
	is an immediate CCB, but otherwise it will be executed
	in passstart() when a CCB is available from the transport layer.

	When CCBs are completed (because they are immediate or
	passdone() if they are queued), they are put on the done
	queue.

	If we get the final close on the device before all pending
	I/O is complete, all active I/O is moved to the abandoned
	queue and we increment the peripheral reference count so
	that the peripheral driver instance doesn't go away before
	all pending I/O is done.

	The new passcreatezone() function is called on the first
	call to the CAMIOQUEUE ioctl on a given device to allocate
	the UMA zones for I/O requests and S/G list buffers.  This
	may be good to move off to a taskqueue at some point.
	The new passmemsetup() function allocates memory and
	scatter/gather lists to hold the user's data, and copies
	in any data that needs to be written.  For virtual pointers
	(CAM_DATA_VADDR), the kernel buffer is malloced from the
	new pass(4) driver malloc bucket.  For virtual
	scatter/gather lists (CAM_DATA_SG), buffers are allocated
	from a new per-pass(9) UMA zone in MAXPHYS-sized chunks.
	Physical pointers are passed in unchanged.  We have support
	for up to 16 scatter/gather segments (for the user and
	kernel S/G lists) in the default struct pass_io_req, so
	requests with longer S/G lists require an extra kernel malloc.

	The new passcopysglist() function copies a user scatter/gather
	list to a kernel scatter/gather list.  The number of elements
	in each list may be different, but (obviously) the amount of data
	stored has to be identical.

	The new passmemdone() function copies data out for the
	CAM_DATA_VADDR and CAM_DATA_SG cases.

	The new passiocleanup() function restores data pointers in
	user CCBs and frees memory.

	Add new functions to support kqueue(2)/kevent(2):

	passreadfilt() tells kevent whether or not the done
	queue is empty.

	passkqfilter() adds a knote to our list.

	passreadfiltdetach() removes a knote from our list.

	Add a new function, passpoll(), for poll(2)/select(2)
	to use.

	Add devstat(9) support for the queued CCB path.

sys/cam/ata/ata_da.c:
	Add support for the BIO_VLIST bio type.

sys/cam/cam_ccb.h:
	Add a new enumeration for the xflags field in the CCB header.
	(This doesn't change the CCB header, just adds an enumeration to
	use.)

sys/cam/cam_xpt.c:
	Add a new function, xpt_setup_ccb_flags(), that allows specifying
	CCB flags.

sys/cam/cam_xpt.h:
	Add a prototype for xpt_setup_ccb_flags().

sys/cam/scsi/scsi_da.c:
	Add support for BIO_VLIST.

sys/dev/md/md.c:
	Add BIO_VLIST support to md(4).

sys/geom/geom_disk.c:
	Add BIO_VLIST support to the GEOM disk class.  Re-factor the I/O size
	limiting code in g_disk_start() a bit.

sys/kern/subr_bus_dma.c:
	Change _bus_dmamap_load_vlist() to take a starting offset and
	length.

	Add a new function, _bus_dmamap_load_pages(), that will load a list
	of physical pages starting at an offset.

	Update _bus_dmamap_load_bio() to allow loading BIO_VLIST bios.
	Allow unmapped I/O to start at an offset.

sys/kern/subr_uio.c:
	Add two new functions, physcopyin_vlist() and physcopyout_vlist().

sys/pc98/include/bus.h:
	Guard kernel-only parts of the pc98 machine/bus.h header with
	#ifdef _KERNEL.

	This allows userland programs to include <machine/bus.h> to get the
	definition of bus_addr_t and bus_size_t.

sys/sys/bio.h:
	Add a new bio flag, BIO_VLIST.

sys/sys/uio.h:
	Add prototypes for physcopyin_vlist() and physcopyout_vlist().

share/man/man4/pass.4:
	Document the CAMIOQUEUE and CAMIOGET ioctls.

usr.sbin/Makefile:
	Add camdd.

usr.sbin/camdd/Makefile:
	Add a makefile for camdd(8).

usr.sbin/camdd/camdd.8:
	Man page for camdd(8).

usr.sbin/camdd/camdd.c:
	The new camdd(8) utility.

Sponsored by:	Spectra Logic
MFC after:	1 week
2015-12-03 20:54:55 +00:00

1349 lines
41 KiB
C

/*-
* Data structures and definitions for CAM Control Blocks (CCBs).
*
* Copyright (c) 1997, 1998 Justin T. Gibbs.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions, and the following disclaimer,
* without modification, immediately at the beginning of the file.
* 2. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
#ifndef _CAM_CAM_CCB_H
#define _CAM_CAM_CCB_H 1
#include <sys/queue.h>
#include <sys/cdefs.h>
#include <sys/time.h>
#include <sys/limits.h>
#ifndef _KERNEL
#include <sys/callout.h>
#endif
#include <cam/cam_debug.h>
#include <cam/scsi/scsi_all.h>
#include <cam/ata/ata_all.h>
/* General allocation length definitions for CCB structures */
#define IOCDBLEN CAM_MAX_CDBLEN /* Space for CDB bytes/pointer */
#define VUHBALEN 14 /* Vendor Unique HBA length */
#define SIM_IDLEN 16 /* ASCII string len for SIM ID */
#define HBA_IDLEN 16 /* ASCII string len for HBA ID */
#define DEV_IDLEN 16 /* ASCII string len for device names */
#define CCB_PERIPH_PRIV_SIZE 2 /* size of peripheral private area */
#define CCB_SIM_PRIV_SIZE 2 /* size of sim private area */
/* Struct definitions for CAM control blocks */
/* Common CCB header */
/* CAM CCB flags */
typedef enum {
CAM_CDB_POINTER = 0x00000001,/* The CDB field is a pointer */
CAM_QUEUE_ENABLE = 0x00000002,/* SIM queue actions are enabled */
CAM_CDB_LINKED = 0x00000004,/* CCB contains a linked CDB */
CAM_NEGOTIATE = 0x00000008,/*
* Perform transport negotiation
* with this command.
*/
CAM_DATA_ISPHYS = 0x00000010,/* Data type with physical addrs */
CAM_DIS_AUTOSENSE = 0x00000020,/* Disable autosense feature */
CAM_DIR_BOTH = 0x00000000,/* Data direction (00:IN/OUT) */
CAM_DIR_IN = 0x00000040,/* Data direction (01:DATA IN) */
CAM_DIR_OUT = 0x00000080,/* Data direction (10:DATA OUT) */
CAM_DIR_NONE = 0x000000C0,/* Data direction (11:no data) */
CAM_DIR_MASK = 0x000000C0,/* Data direction Mask */
CAM_DATA_VADDR = 0x00000000,/* Data type (000:Virtual) */
CAM_DATA_PADDR = 0x00000010,/* Data type (001:Physical) */
CAM_DATA_SG = 0x00040000,/* Data type (010:sglist) */
CAM_DATA_SG_PADDR = 0x00040010,/* Data type (011:sglist phys) */
CAM_DATA_BIO = 0x00200000,/* Data type (100:bio) */
CAM_DATA_MASK = 0x00240010,/* Data type mask */
CAM_SOFT_RST_OP = 0x00000100,/* Use Soft reset alternative */
CAM_ENG_SYNC = 0x00000200,/* Flush resid bytes on complete */
CAM_DEV_QFRZDIS = 0x00000400,/* Disable DEV Q freezing */
CAM_DEV_QFREEZE = 0x00000800,/* Freeze DEV Q on execution */
CAM_HIGH_POWER = 0x00001000,/* Command takes a lot of power */
CAM_SENSE_PTR = 0x00002000,/* Sense data is a pointer */
CAM_SENSE_PHYS = 0x00004000,/* Sense pointer is physical addr*/
CAM_TAG_ACTION_VALID = 0x00008000,/* Use the tag action in this ccb*/
CAM_PASS_ERR_RECOVER = 0x00010000,/* Pass driver does err. recovery*/
CAM_DIS_DISCONNECT = 0x00020000,/* Disable disconnect */
CAM_MSG_BUF_PHYS = 0x00080000,/* Message buffer ptr is physical*/
CAM_SNS_BUF_PHYS = 0x00100000,/* Autosense data ptr is physical*/
CAM_CDB_PHYS = 0x00400000,/* CDB poiner is physical */
CAM_ENG_SGLIST = 0x00800000,/* SG list is for the HBA engine */
/* Phase cognizant mode flags */
CAM_DIS_AUTOSRP = 0x01000000,/* Disable autosave/restore ptrs */
CAM_DIS_AUTODISC = 0x02000000,/* Disable auto disconnect */
CAM_TGT_CCB_AVAIL = 0x04000000,/* Target CCB available */
CAM_TGT_PHASE_MODE = 0x08000000,/* The SIM runs in phase mode */
CAM_MSGB_VALID = 0x10000000,/* Message buffer valid */
CAM_STATUS_VALID = 0x20000000,/* Status buffer valid */
CAM_DATAB_VALID = 0x40000000,/* Data buffer valid */
/* Host target Mode flags */
CAM_SEND_SENSE = 0x08000000,/* Send sense data with status */
CAM_TERM_IO = 0x10000000,/* Terminate I/O Message sup. */
CAM_DISCONNECT = 0x20000000,/* Disconnects are mandatory */
CAM_SEND_STATUS = 0x40000000,/* Send status after data phase */
CAM_UNLOCKED = 0x80000000 /* Call callback without lock. */
} ccb_flags;
typedef enum {
CAM_USER_DATA_ADDR = 0x00000001,/* Userspace data pointers */
CAM_SG_FORMAT_IOVEC = 0x00000002,/* iovec instead of busdma S/G*/
CAM_UNMAPPED_BUF = 0x00000004 /* use unmapped I/O */
} ccb_xflags;
/* XPT Opcodes for xpt_action */
typedef enum {
/* Function code flags are bits greater than 0xff */
XPT_FC_QUEUED = 0x100,
/* Non-immediate function code */
XPT_FC_USER_CCB = 0x200,
XPT_FC_XPT_ONLY = 0x400,
/* Only for the transport layer device */
XPT_FC_DEV_QUEUED = 0x800 | XPT_FC_QUEUED,
/* Passes through the device queues */
/* Common function commands: 0x00->0x0F */
XPT_NOOP = 0x00,
/* Execute Nothing */
XPT_SCSI_IO = 0x01 | XPT_FC_DEV_QUEUED,
/* Execute the requested I/O operation */
XPT_GDEV_TYPE = 0x02,
/* Get type information for specified device */
XPT_GDEVLIST = 0x03,
/* Get a list of peripheral devices */
XPT_PATH_INQ = 0x04,
/* Path routing inquiry */
XPT_REL_SIMQ = 0x05,
/* Release a frozen device queue */
XPT_SASYNC_CB = 0x06,
/* Set Asynchronous Callback Parameters */
XPT_SDEV_TYPE = 0x07,
/* Set device type information */
XPT_SCAN_BUS = 0x08 | XPT_FC_QUEUED | XPT_FC_USER_CCB
| XPT_FC_XPT_ONLY,
/* (Re)Scan the SCSI Bus */
XPT_DEV_MATCH = 0x09 | XPT_FC_XPT_ONLY,
/* Get EDT entries matching the given pattern */
XPT_DEBUG = 0x0a,
/* Turn on debugging for a bus, target or lun */
XPT_PATH_STATS = 0x0b,
/* Path statistics (error counts, etc.) */
XPT_GDEV_STATS = 0x0c,
/* Device statistics (error counts, etc.) */
XPT_DEV_ADVINFO = 0x0e,
/* Get/Set Device advanced information */
XPT_ASYNC = 0x0f | XPT_FC_QUEUED | XPT_FC_USER_CCB
| XPT_FC_XPT_ONLY,
/* Asynchronous event */
/* SCSI Control Functions: 0x10->0x1F */
XPT_ABORT = 0x10,
/* Abort the specified CCB */
XPT_RESET_BUS = 0x11 | XPT_FC_XPT_ONLY,
/* Reset the specified SCSI bus */
XPT_RESET_DEV = 0x12 | XPT_FC_DEV_QUEUED,
/* Bus Device Reset the specified SCSI device */
XPT_TERM_IO = 0x13,
/* Terminate the I/O process */
XPT_SCAN_LUN = 0x14 | XPT_FC_QUEUED | XPT_FC_USER_CCB
| XPT_FC_XPT_ONLY,
/* Scan Logical Unit */
XPT_GET_TRAN_SETTINGS = 0x15,
/*
* Get default/user transfer settings
* for the target
*/
XPT_SET_TRAN_SETTINGS = 0x16,
/*
* Set transfer rate/width
* negotiation settings
*/
XPT_CALC_GEOMETRY = 0x17,
/*
* Calculate the geometry parameters for
* a device give the sector size and
* volume size.
*/
XPT_ATA_IO = 0x18 | XPT_FC_DEV_QUEUED,
/* Execute the requested ATA I/O operation */
XPT_GET_SIM_KNOB = 0x18,
/*
* Get SIM specific knob values.
*/
XPT_SET_SIM_KNOB = 0x19,
/*
* Set SIM specific knob values.
*/
XPT_SMP_IO = 0x1b | XPT_FC_DEV_QUEUED,
/* Serial Management Protocol */
XPT_SCAN_TGT = 0x1E | XPT_FC_QUEUED | XPT_FC_USER_CCB
| XPT_FC_XPT_ONLY,
/* Scan Target */
/* HBA engine commands 0x20->0x2F */
XPT_ENG_INQ = 0x20 | XPT_FC_XPT_ONLY,
/* HBA engine feature inquiry */
XPT_ENG_EXEC = 0x21 | XPT_FC_DEV_QUEUED,
/* HBA execute engine request */
/* Target mode commands: 0x30->0x3F */
XPT_EN_LUN = 0x30,
/* Enable LUN as a target */
XPT_TARGET_IO = 0x31 | XPT_FC_DEV_QUEUED,
/* Execute target I/O request */
XPT_ACCEPT_TARGET_IO = 0x32 | XPT_FC_QUEUED | XPT_FC_USER_CCB,
/* Accept Host Target Mode CDB */
XPT_CONT_TARGET_IO = 0x33 | XPT_FC_DEV_QUEUED,
/* Continue Host Target I/O Connection */
XPT_IMMED_NOTIFY = 0x34 | XPT_FC_QUEUED | XPT_FC_USER_CCB,
/* Notify Host Target driver of event (obsolete) */
XPT_NOTIFY_ACK = 0x35,
/* Acknowledgement of event (obsolete) */
XPT_IMMEDIATE_NOTIFY = 0x36 | XPT_FC_QUEUED | XPT_FC_USER_CCB,
/* Notify Host Target driver of event */
XPT_NOTIFY_ACKNOWLEDGE = 0x37 | XPT_FC_QUEUED | XPT_FC_USER_CCB,
/* Acknowledgement of event */
/* Vendor Unique codes: 0x80->0x8F */
XPT_VUNIQUE = 0x80
} xpt_opcode;
#define XPT_FC_GROUP_MASK 0xF0
#define XPT_FC_GROUP(op) ((op) & XPT_FC_GROUP_MASK)
#define XPT_FC_GROUP_COMMON 0x00
#define XPT_FC_GROUP_SCSI_CONTROL 0x10
#define XPT_FC_GROUP_HBA_ENGINE 0x20
#define XPT_FC_GROUP_TMODE 0x30
#define XPT_FC_GROUP_VENDOR_UNIQUE 0x80
#define XPT_FC_IS_DEV_QUEUED(ccb) \
(((ccb)->ccb_h.func_code & XPT_FC_DEV_QUEUED) == XPT_FC_DEV_QUEUED)
#define XPT_FC_IS_QUEUED(ccb) \
(((ccb)->ccb_h.func_code & XPT_FC_QUEUED) != 0)
typedef enum {
PROTO_UNKNOWN,
PROTO_UNSPECIFIED,
PROTO_SCSI, /* Small Computer System Interface */
PROTO_ATA, /* AT Attachment */
PROTO_ATAPI, /* AT Attachment Packetized Interface */
PROTO_SATAPM, /* SATA Port Multiplier */
PROTO_SEMB, /* SATA Enclosure Management Bridge */
} cam_proto;
typedef enum {
XPORT_UNKNOWN,
XPORT_UNSPECIFIED,
XPORT_SPI, /* SCSI Parallel Interface */
XPORT_FC, /* Fiber Channel */
XPORT_SSA, /* Serial Storage Architecture */
XPORT_USB, /* Universal Serial Bus */
XPORT_PPB, /* Parallel Port Bus */
XPORT_ATA, /* AT Attachment */
XPORT_SAS, /* Serial Attached SCSI */
XPORT_SATA, /* Serial AT Attachment */
XPORT_ISCSI, /* iSCSI */
XPORT_SRP, /* SCSI RDMA Protocol */
} cam_xport;
#define XPORT_IS_ATA(t) ((t) == XPORT_ATA || (t) == XPORT_SATA)
#define XPORT_IS_SCSI(t) ((t) != XPORT_UNKNOWN && \
(t) != XPORT_UNSPECIFIED && \
!XPORT_IS_ATA(t))
#define XPORT_DEVSTAT_TYPE(t) (XPORT_IS_ATA(t) ? DEVSTAT_TYPE_IF_IDE : \
XPORT_IS_SCSI(t) ? DEVSTAT_TYPE_IF_SCSI : \
DEVSTAT_TYPE_IF_OTHER)
#define PROTO_VERSION_UNKNOWN (UINT_MAX - 1)
#define PROTO_VERSION_UNSPECIFIED UINT_MAX
#define XPORT_VERSION_UNKNOWN (UINT_MAX - 1)
#define XPORT_VERSION_UNSPECIFIED UINT_MAX
typedef union {
LIST_ENTRY(ccb_hdr) le;
SLIST_ENTRY(ccb_hdr) sle;
TAILQ_ENTRY(ccb_hdr) tqe;
STAILQ_ENTRY(ccb_hdr) stqe;
} camq_entry;
typedef union {
void *ptr;
u_long field;
u_int8_t bytes[sizeof(uintptr_t)];
} ccb_priv_entry;
typedef union {
ccb_priv_entry entries[CCB_PERIPH_PRIV_SIZE];
u_int8_t bytes[CCB_PERIPH_PRIV_SIZE * sizeof(ccb_priv_entry)];
} ccb_ppriv_area;
typedef union {
ccb_priv_entry entries[CCB_SIM_PRIV_SIZE];
u_int8_t bytes[CCB_SIM_PRIV_SIZE * sizeof(ccb_priv_entry)];
} ccb_spriv_area;
typedef struct {
struct timeval *etime;
uintptr_t sim_data;
uintptr_t periph_data;
} ccb_qos_area;
struct ccb_hdr {
cam_pinfo pinfo; /* Info for priority scheduling */
camq_entry xpt_links; /* For chaining in the XPT layer */
camq_entry sim_links; /* For chaining in the SIM layer */
camq_entry periph_links; /* For chaining in the type driver */
u_int32_t retry_count;
void (*cbfcnp)(struct cam_periph *, union ccb *);
/* Callback on completion function */
xpt_opcode func_code; /* XPT function code */
u_int32_t status; /* Status returned by CAM subsystem */
struct cam_path *path; /* Compiled path for this ccb */
path_id_t path_id; /* Path ID for the request */
target_id_t target_id; /* Target device ID */
lun_id_t target_lun; /* Target LUN number */
u_int32_t flags; /* ccb_flags */
u_int32_t xflags; /* Extended flags */
ccb_ppriv_area periph_priv;
ccb_spriv_area sim_priv;
ccb_qos_area qos;
u_int32_t timeout; /* Hard timeout value in mseconds */
struct timeval softtimeout; /* Soft timeout value in sec + usec */
};
/* Get Device Information CCB */
struct ccb_getdev {
struct ccb_hdr ccb_h;
cam_proto protocol;
struct scsi_inquiry_data inq_data;
struct ata_params ident_data;
u_int8_t serial_num[252];
u_int8_t inq_flags;
u_int8_t serial_num_len;
};
/* Device Statistics CCB */
struct ccb_getdevstats {
struct ccb_hdr ccb_h;
int dev_openings; /* Space left for more work on device*/
int dev_active; /* Transactions running on the device */
int allocated; /* CCBs allocated for the device */
int queued; /* CCBs queued to be sent to the device */
int held; /*
* CCBs held by peripheral drivers
* for this device
*/
int maxtags; /*
* Boundary conditions for number of
* tagged operations
*/
int mintags;
struct timeval last_reset; /* Time of last bus reset/loop init */
};
typedef enum {
CAM_GDEVLIST_LAST_DEVICE,
CAM_GDEVLIST_LIST_CHANGED,
CAM_GDEVLIST_MORE_DEVS,
CAM_GDEVLIST_ERROR
} ccb_getdevlist_status_e;
struct ccb_getdevlist {
struct ccb_hdr ccb_h;
char periph_name[DEV_IDLEN];
u_int32_t unit_number;
unsigned int generation;
u_int32_t index;
ccb_getdevlist_status_e status;
};
typedef enum {
PERIPH_MATCH_NONE = 0x000,
PERIPH_MATCH_PATH = 0x001,
PERIPH_MATCH_TARGET = 0x002,
PERIPH_MATCH_LUN = 0x004,
PERIPH_MATCH_NAME = 0x008,
PERIPH_MATCH_UNIT = 0x010,
PERIPH_MATCH_ANY = 0x01f
} periph_pattern_flags;
struct periph_match_pattern {
char periph_name[DEV_IDLEN];
u_int32_t unit_number;
path_id_t path_id;
target_id_t target_id;
lun_id_t target_lun;
periph_pattern_flags flags;
};
typedef enum {
DEV_MATCH_NONE = 0x000,
DEV_MATCH_PATH = 0x001,
DEV_MATCH_TARGET = 0x002,
DEV_MATCH_LUN = 0x004,
DEV_MATCH_INQUIRY = 0x008,
DEV_MATCH_DEVID = 0x010,
DEV_MATCH_ANY = 0x00f
} dev_pattern_flags;
struct device_id_match_pattern {
uint8_t id_len;
uint8_t id[256];
};
struct device_match_pattern {
path_id_t path_id;
target_id_t target_id;
lun_id_t target_lun;
dev_pattern_flags flags;
union {
struct scsi_static_inquiry_pattern inq_pat;
struct device_id_match_pattern devid_pat;
} data;
};
typedef enum {
BUS_MATCH_NONE = 0x000,
BUS_MATCH_PATH = 0x001,
BUS_MATCH_NAME = 0x002,
BUS_MATCH_UNIT = 0x004,
BUS_MATCH_BUS_ID = 0x008,
BUS_MATCH_ANY = 0x00f
} bus_pattern_flags;
struct bus_match_pattern {
path_id_t path_id;
char dev_name[DEV_IDLEN];
u_int32_t unit_number;
u_int32_t bus_id;
bus_pattern_flags flags;
};
union match_pattern {
struct periph_match_pattern periph_pattern;
struct device_match_pattern device_pattern;
struct bus_match_pattern bus_pattern;
};
typedef enum {
DEV_MATCH_PERIPH,
DEV_MATCH_DEVICE,
DEV_MATCH_BUS
} dev_match_type;
struct dev_match_pattern {
dev_match_type type;
union match_pattern pattern;
};
struct periph_match_result {
char periph_name[DEV_IDLEN];
u_int32_t unit_number;
path_id_t path_id;
target_id_t target_id;
lun_id_t target_lun;
};
typedef enum {
DEV_RESULT_NOFLAG = 0x00,
DEV_RESULT_UNCONFIGURED = 0x01
} dev_result_flags;
struct device_match_result {
path_id_t path_id;
target_id_t target_id;
lun_id_t target_lun;
cam_proto protocol;
struct scsi_inquiry_data inq_data;
struct ata_params ident_data;
dev_result_flags flags;
};
struct bus_match_result {
path_id_t path_id;
char dev_name[DEV_IDLEN];
u_int32_t unit_number;
u_int32_t bus_id;
};
union match_result {
struct periph_match_result periph_result;
struct device_match_result device_result;
struct bus_match_result bus_result;
};
struct dev_match_result {
dev_match_type type;
union match_result result;
};
typedef enum {
CAM_DEV_MATCH_LAST,
CAM_DEV_MATCH_MORE,
CAM_DEV_MATCH_LIST_CHANGED,
CAM_DEV_MATCH_SIZE_ERROR,
CAM_DEV_MATCH_ERROR
} ccb_dev_match_status;
typedef enum {
CAM_DEV_POS_NONE = 0x000,
CAM_DEV_POS_BUS = 0x001,
CAM_DEV_POS_TARGET = 0x002,
CAM_DEV_POS_DEVICE = 0x004,
CAM_DEV_POS_PERIPH = 0x008,
CAM_DEV_POS_PDPTR = 0x010,
CAM_DEV_POS_TYPEMASK = 0xf00,
CAM_DEV_POS_EDT = 0x100,
CAM_DEV_POS_PDRV = 0x200
} dev_pos_type;
struct ccb_dm_cookie {
void *bus;
void *target;
void *device;
void *periph;
void *pdrv;
};
struct ccb_dev_position {
u_int generations[4];
#define CAM_BUS_GENERATION 0x00
#define CAM_TARGET_GENERATION 0x01
#define CAM_DEV_GENERATION 0x02
#define CAM_PERIPH_GENERATION 0x03
dev_pos_type position_type;
struct ccb_dm_cookie cookie;
};
struct ccb_dev_match {
struct ccb_hdr ccb_h;
ccb_dev_match_status status;
u_int32_t num_patterns;
u_int32_t pattern_buf_len;
struct dev_match_pattern *patterns;
u_int32_t num_matches;
u_int32_t match_buf_len;
struct dev_match_result *matches;
struct ccb_dev_position pos;
};
/*
* Definitions for the path inquiry CCB fields.
*/
#define CAM_VERSION 0x19 /* Hex value for current version */
typedef enum {
PI_MDP_ABLE = 0x80, /* Supports MDP message */
PI_WIDE_32 = 0x40, /* Supports 32 bit wide SCSI */
PI_WIDE_16 = 0x20, /* Supports 16 bit wide SCSI */
PI_SDTR_ABLE = 0x10, /* Supports SDTR message */
PI_LINKED_CDB = 0x08, /* Supports linked CDBs */
PI_SATAPM = 0x04, /* Supports SATA PM */
PI_TAG_ABLE = 0x02, /* Supports tag queue messages */
PI_SOFT_RST = 0x01 /* Supports soft reset alternative */
} pi_inqflag;
typedef enum {
PIT_PROCESSOR = 0x80, /* Target mode processor mode */
PIT_PHASE = 0x40, /* Target mode phase cog. mode */
PIT_DISCONNECT = 0x20, /* Disconnects supported in target mode */
PIT_TERM_IO = 0x10, /* Terminate I/O message supported in TM */
PIT_GRP_6 = 0x08, /* Group 6 commands supported */
PIT_GRP_7 = 0x04 /* Group 7 commands supported */
} pi_tmflag;
typedef enum {
PIM_EXTLUNS = 0x100,/* 64bit extended LUNs supported */
PIM_SCANHILO = 0x80, /* Bus scans from high ID to low ID */
PIM_NOREMOVE = 0x40, /* Removeable devices not included in scan */
PIM_NOINITIATOR = 0x20, /* Initiator role not supported. */
PIM_NOBUSRESET = 0x10, /* User has disabled initial BUS RESET */
PIM_NO_6_BYTE = 0x08, /* Do not send 6-byte commands */
PIM_SEQSCAN = 0x04, /* Do bus scans sequentially, not in parallel */
PIM_UNMAPPED = 0x02,
PIM_NOSCAN = 0x01 /* SIM does its own scanning */
} pi_miscflag;
/* Path Inquiry CCB */
struct ccb_pathinq_settings_spi {
u_int8_t ppr_options;
};
struct ccb_pathinq_settings_fc {
u_int64_t wwnn; /* world wide node name */
u_int64_t wwpn; /* world wide port name */
u_int32_t port; /* 24 bit port id, if known */
u_int32_t bitrate; /* Mbps */
};
struct ccb_pathinq_settings_sas {
u_int32_t bitrate; /* Mbps */
};
#define PATHINQ_SETTINGS_SIZE 128
struct ccb_pathinq {
struct ccb_hdr ccb_h;
u_int8_t version_num; /* Version number for the SIM/HBA */
u_int8_t hba_inquiry; /* Mimic of INQ byte 7 for the HBA */
u_int16_t target_sprt; /* Flags for target mode support */
u_int32_t hba_misc; /* Misc HBA features */
u_int16_t hba_eng_cnt; /* HBA engine count */
/* Vendor Unique capabilities */
u_int8_t vuhba_flags[VUHBALEN];
u_int32_t max_target; /* Maximum supported Target */
u_int32_t max_lun; /* Maximum supported Lun */
u_int32_t async_flags; /* Installed Async handlers */
path_id_t hpath_id; /* Highest Path ID in the subsystem */
target_id_t initiator_id; /* ID of the HBA on the SCSI bus */
char sim_vid[SIM_IDLEN]; /* Vendor ID of the SIM */
char hba_vid[HBA_IDLEN]; /* Vendor ID of the HBA */
char dev_name[DEV_IDLEN];/* Device name for SIM */
u_int32_t unit_number; /* Unit number for SIM */
u_int32_t bus_id; /* Bus ID for SIM */
u_int32_t base_transfer_speed;/* Base bus speed in KB/sec */
cam_proto protocol;
u_int protocol_version;
cam_xport transport;
u_int transport_version;
union {
struct ccb_pathinq_settings_spi spi;
struct ccb_pathinq_settings_fc fc;
struct ccb_pathinq_settings_sas sas;
char ccb_pathinq_settings_opaque[PATHINQ_SETTINGS_SIZE];
} xport_specific;
u_int maxio; /* Max supported I/O size, in bytes. */
u_int16_t hba_vendor; /* HBA vendor ID */
u_int16_t hba_device; /* HBA device ID */
u_int16_t hba_subvendor; /* HBA subvendor ID */
u_int16_t hba_subdevice; /* HBA subdevice ID */
};
/* Path Statistics CCB */
struct ccb_pathstats {
struct ccb_hdr ccb_h;
struct timeval last_reset; /* Time of last bus reset/loop init */
};
typedef enum {
SMP_FLAG_NONE = 0x00,
SMP_FLAG_REQ_SG = 0x01,
SMP_FLAG_RSP_SG = 0x02
} ccb_smp_pass_flags;
/*
* Serial Management Protocol CCB
* XXX Currently the semantics for this CCB are that it is executed either
* by the addressed device, or that device's parent (i.e. an expander for
* any device on an expander) if the addressed device doesn't support SMP.
* Later, once we have the ability to probe SMP-only devices and put them
* in CAM's topology, the CCB will only be executed by the addressed device
* if possible.
*/
struct ccb_smpio {
struct ccb_hdr ccb_h;
uint8_t *smp_request;
int smp_request_len;
uint16_t smp_request_sglist_cnt;
uint8_t *smp_response;
int smp_response_len;
uint16_t smp_response_sglist_cnt;
ccb_smp_pass_flags flags;
};
typedef union {
u_int8_t *sense_ptr; /*
* Pointer to storage
* for sense information
*/
/* Storage Area for sense information */
struct scsi_sense_data sense_buf;
} sense_t;
typedef union {
u_int8_t *cdb_ptr; /* Pointer to the CDB bytes to send */
/* Area for the CDB send */
u_int8_t cdb_bytes[IOCDBLEN];
} cdb_t;
/*
* SCSI I/O Request CCB used for the XPT_SCSI_IO and XPT_CONT_TARGET_IO
* function codes.
*/
struct ccb_scsiio {
struct ccb_hdr ccb_h;
union ccb *next_ccb; /* Ptr for next CCB for action */
u_int8_t *req_map; /* Ptr to mapping info */
u_int8_t *data_ptr; /* Ptr to the data buf/SG list */
u_int32_t dxfer_len; /* Data transfer length */
/* Autosense storage */
struct scsi_sense_data sense_data;
u_int8_t sense_len; /* Number of bytes to autosense */
u_int8_t cdb_len; /* Number of bytes for the CDB */
u_int16_t sglist_cnt; /* Number of SG list entries */
u_int8_t scsi_status; /* Returned SCSI status */
u_int8_t sense_resid; /* Autosense resid length: 2's comp */
u_int32_t resid; /* Transfer residual length: 2's comp */
cdb_t cdb_io; /* Union for CDB bytes/pointer */
u_int8_t *msg_ptr; /* Pointer to the message buffer */
u_int16_t msg_len; /* Number of bytes for the Message */
u_int8_t tag_action; /* What to do for tag queueing */
/*
* The tag action should be either the define below (to send a
* non-tagged transaction) or one of the defined scsi tag messages
* from scsi_message.h.
*/
#define CAM_TAG_ACTION_NONE 0x00
u_int tag_id; /* tag id from initator (target mode) */
u_int init_id; /* initiator id of who selected */
};
/*
* ATA I/O Request CCB used for the XPT_ATA_IO function code.
*/
struct ccb_ataio {
struct ccb_hdr ccb_h;
union ccb *next_ccb; /* Ptr for next CCB for action */
struct ata_cmd cmd; /* ATA command register set */
struct ata_res res; /* ATA result register set */
u_int8_t *data_ptr; /* Ptr to the data buf/SG list */
u_int32_t dxfer_len; /* Data transfer length */
u_int32_t resid; /* Transfer residual length: 2's comp */
u_int8_t tag_action; /* What to do for tag queueing */
/*
* The tag action should be either the define below (to send a
* non-tagged transaction) or one of the defined scsi tag messages
* from scsi_message.h.
*/
#define CAM_TAG_ACTION_NONE 0x00
u_int tag_id; /* tag id from initator (target mode) */
u_int init_id; /* initiator id of who selected */
};
struct ccb_accept_tio {
struct ccb_hdr ccb_h;
cdb_t cdb_io; /* Union for CDB bytes/pointer */
u_int8_t cdb_len; /* Number of bytes for the CDB */
u_int8_t tag_action; /* What to do for tag queueing */
u_int8_t sense_len; /* Number of bytes of Sense Data */
u_int tag_id; /* tag id from initator (target mode) */
u_int init_id; /* initiator id of who selected */
struct scsi_sense_data sense_data;
};
/* Release SIM Queue */
struct ccb_relsim {
struct ccb_hdr ccb_h;
u_int32_t release_flags;
#define RELSIM_ADJUST_OPENINGS 0x01
#define RELSIM_RELEASE_AFTER_TIMEOUT 0x02
#define RELSIM_RELEASE_AFTER_CMDCMPLT 0x04
#define RELSIM_RELEASE_AFTER_QEMPTY 0x08
u_int32_t openings;
u_int32_t release_timeout; /* Abstract argument. */
u_int32_t qfrozen_cnt;
};
/*
* Definitions for the asynchronous callback CCB fields.
*/
typedef enum {
AC_UNIT_ATTENTION = 0x4000,/* Device reported UNIT ATTENTION */
AC_ADVINFO_CHANGED = 0x2000,/* Advance info might have changes */
AC_CONTRACT = 0x1000,/* A contractual callback */
AC_GETDEV_CHANGED = 0x800,/* Getdev info might have changed */
AC_INQ_CHANGED = 0x400,/* Inquiry info might have changed */
AC_TRANSFER_NEG = 0x200,/* New transfer settings in effect */
AC_LOST_DEVICE = 0x100,/* A device went away */
AC_FOUND_DEVICE = 0x080,/* A new device was found */
AC_PATH_DEREGISTERED = 0x040,/* A path has de-registered */
AC_PATH_REGISTERED = 0x020,/* A new path has been registered */
AC_SENT_BDR = 0x010,/* A BDR message was sent to target */
AC_SCSI_AEN = 0x008,/* A SCSI AEN has been received */
AC_UNSOL_RESEL = 0x002,/* Unsolicited reselection occurred */
AC_BUS_RESET = 0x001 /* A SCSI bus reset occurred */
} ac_code;
typedef void ac_callback_t (void *softc, u_int32_t code,
struct cam_path *path, void *args);
/*
* Generic Asynchronous callbacks.
*
* Generic arguments passed bac which are then interpreted between a per-system
* contract number.
*/
#define AC_CONTRACT_DATA_MAX (128 - sizeof (u_int64_t))
struct ac_contract {
u_int64_t contract_number;
u_int8_t contract_data[AC_CONTRACT_DATA_MAX];
};
#define AC_CONTRACT_DEV_CHG 1
struct ac_device_changed {
u_int64_t wwpn;
u_int32_t port;
target_id_t target;
u_int8_t arrived;
};
/* Set Asynchronous Callback CCB */
struct ccb_setasync {
struct ccb_hdr ccb_h;
u_int32_t event_enable; /* Async Event enables */
ac_callback_t *callback;
void *callback_arg;
};
/* Set Device Type CCB */
struct ccb_setdev {
struct ccb_hdr ccb_h;
u_int8_t dev_type; /* Value for dev type field in EDT */
};
/* SCSI Control Functions */
/* Abort XPT request CCB */
struct ccb_abort {
struct ccb_hdr ccb_h;
union ccb *abort_ccb; /* Pointer to CCB to abort */
};
/* Reset SCSI Bus CCB */
struct ccb_resetbus {
struct ccb_hdr ccb_h;
};
/* Reset SCSI Device CCB */
struct ccb_resetdev {
struct ccb_hdr ccb_h;
};
/* Terminate I/O Process Request CCB */
struct ccb_termio {
struct ccb_hdr ccb_h;
union ccb *termio_ccb; /* Pointer to CCB to terminate */
};
typedef enum {
CTS_TYPE_CURRENT_SETTINGS,
CTS_TYPE_USER_SETTINGS
} cts_type;
struct ccb_trans_settings_scsi
{
u_int valid; /* Which fields to honor */
#define CTS_SCSI_VALID_TQ 0x01
u_int flags;
#define CTS_SCSI_FLAGS_TAG_ENB 0x01
};
struct ccb_trans_settings_ata
{
u_int valid; /* Which fields to honor */
#define CTS_ATA_VALID_TQ 0x01
u_int flags;
#define CTS_ATA_FLAGS_TAG_ENB 0x01
};
struct ccb_trans_settings_spi
{
u_int valid; /* Which fields to honor */
#define CTS_SPI_VALID_SYNC_RATE 0x01
#define CTS_SPI_VALID_SYNC_OFFSET 0x02
#define CTS_SPI_VALID_BUS_WIDTH 0x04
#define CTS_SPI_VALID_DISC 0x08
#define CTS_SPI_VALID_PPR_OPTIONS 0x10
u_int flags;
#define CTS_SPI_FLAGS_DISC_ENB 0x01
u_int sync_period;
u_int sync_offset;
u_int bus_width;
u_int ppr_options;
};
struct ccb_trans_settings_fc {
u_int valid; /* Which fields to honor */
#define CTS_FC_VALID_WWNN 0x8000
#define CTS_FC_VALID_WWPN 0x4000
#define CTS_FC_VALID_PORT 0x2000
#define CTS_FC_VALID_SPEED 0x1000
u_int64_t wwnn; /* world wide node name */
u_int64_t wwpn; /* world wide port name */
u_int32_t port; /* 24 bit port id, if known */
u_int32_t bitrate; /* Mbps */
};
struct ccb_trans_settings_sas {
u_int valid; /* Which fields to honor */
#define CTS_SAS_VALID_SPEED 0x1000
u_int32_t bitrate; /* Mbps */
};
struct ccb_trans_settings_pata {
u_int valid; /* Which fields to honor */
#define CTS_ATA_VALID_MODE 0x01
#define CTS_ATA_VALID_BYTECOUNT 0x02
#define CTS_ATA_VALID_ATAPI 0x20
#define CTS_ATA_VALID_CAPS 0x40
int mode; /* Mode */
u_int bytecount; /* Length of PIO transaction */
u_int atapi; /* Length of ATAPI CDB */
u_int caps; /* Device and host SATA caps. */
#define CTS_ATA_CAPS_H 0x0000ffff
#define CTS_ATA_CAPS_H_DMA48 0x00000001 /* 48-bit DMA */
#define CTS_ATA_CAPS_D 0xffff0000
};
struct ccb_trans_settings_sata {
u_int valid; /* Which fields to honor */
#define CTS_SATA_VALID_MODE 0x01
#define CTS_SATA_VALID_BYTECOUNT 0x02
#define CTS_SATA_VALID_REVISION 0x04
#define CTS_SATA_VALID_PM 0x08
#define CTS_SATA_VALID_TAGS 0x10
#define CTS_SATA_VALID_ATAPI 0x20
#define CTS_SATA_VALID_CAPS 0x40
int mode; /* Legacy PATA mode */
u_int bytecount; /* Length of PIO transaction */
int revision; /* SATA revision */
u_int pm_present; /* PM is present (XPT->SIM) */
u_int tags; /* Number of allowed tags */
u_int atapi; /* Length of ATAPI CDB */
u_int caps; /* Device and host SATA caps. */
#define CTS_SATA_CAPS_H 0x0000ffff
#define CTS_SATA_CAPS_H_PMREQ 0x00000001
#define CTS_SATA_CAPS_H_APST 0x00000002
#define CTS_SATA_CAPS_H_DMAAA 0x00000010 /* Auto-activation */
#define CTS_SATA_CAPS_H_AN 0x00000020 /* Async. notification */
#define CTS_SATA_CAPS_D 0xffff0000
#define CTS_SATA_CAPS_D_PMREQ 0x00010000
#define CTS_SATA_CAPS_D_APST 0x00020000
};
/* Get/Set transfer rate/width/disconnection/tag queueing settings */
struct ccb_trans_settings {
struct ccb_hdr ccb_h;
cts_type type; /* Current or User settings */
cam_proto protocol;
u_int protocol_version;
cam_xport transport;
u_int transport_version;
union {
u_int valid; /* Which fields to honor */
struct ccb_trans_settings_ata ata;
struct ccb_trans_settings_scsi scsi;
} proto_specific;
union {
u_int valid; /* Which fields to honor */
struct ccb_trans_settings_spi spi;
struct ccb_trans_settings_fc fc;
struct ccb_trans_settings_sas sas;
struct ccb_trans_settings_pata ata;
struct ccb_trans_settings_sata sata;
} xport_specific;
};
/*
* Calculate the geometry parameters for a device
* give the block size and volume size in blocks.
*/
struct ccb_calc_geometry {
struct ccb_hdr ccb_h;
u_int32_t block_size;
u_int64_t volume_size;
u_int32_t cylinders;
u_int8_t heads;
u_int8_t secs_per_track;
};
/*
* Set or get SIM (and transport) specific knobs
*/
#define KNOB_VALID_ADDRESS 0x1
#define KNOB_VALID_ROLE 0x2
#define KNOB_ROLE_NONE 0x0
#define KNOB_ROLE_INITIATOR 0x1
#define KNOB_ROLE_TARGET 0x2
#define KNOB_ROLE_BOTH 0x3
struct ccb_sim_knob_settings_spi {
u_int valid;
u_int initiator_id;
u_int role;
};
struct ccb_sim_knob_settings_fc {
u_int valid;
u_int64_t wwnn; /* world wide node name */
u_int64_t wwpn; /* world wide port name */
u_int role;
};
struct ccb_sim_knob_settings_sas {
u_int valid;
u_int64_t wwnn; /* world wide node name */
u_int role;
};
#define KNOB_SETTINGS_SIZE 128
struct ccb_sim_knob {
struct ccb_hdr ccb_h;
union {
u_int valid; /* Which fields to honor */
struct ccb_sim_knob_settings_spi spi;
struct ccb_sim_knob_settings_fc fc;
struct ccb_sim_knob_settings_sas sas;
char pad[KNOB_SETTINGS_SIZE];
} xport_specific;
};
/*
* Rescan the given bus, or bus/target/lun
*/
struct ccb_rescan {
struct ccb_hdr ccb_h;
cam_flags flags;
};
/*
* Turn on debugging for the given bus, bus/target, or bus/target/lun.
*/
struct ccb_debug {
struct ccb_hdr ccb_h;
cam_debug_flags flags;
};
/* Target mode structures. */
struct ccb_en_lun {
struct ccb_hdr ccb_h;
u_int16_t grp6_len; /* Group 6 VU CDB length */
u_int16_t grp7_len; /* Group 7 VU CDB length */
u_int8_t enable;
};
/* old, barely used immediate notify, binary compatibility */
struct ccb_immed_notify {
struct ccb_hdr ccb_h;
struct scsi_sense_data sense_data;
u_int8_t sense_len; /* Number of bytes in sense buffer */
u_int8_t initiator_id; /* Id of initiator that selected */
u_int8_t message_args[7]; /* Message Arguments */
};
struct ccb_notify_ack {
struct ccb_hdr ccb_h;
u_int16_t seq_id; /* Sequence identifier */
u_int8_t event; /* Event flags */
};
struct ccb_immediate_notify {
struct ccb_hdr ccb_h;
u_int tag_id; /* Tag for immediate notify */
u_int seq_id; /* Tag for target of notify */
u_int initiator_id; /* Initiator Identifier */
u_int arg; /* Function specific */
};
struct ccb_notify_acknowledge {
struct ccb_hdr ccb_h;
u_int tag_id; /* Tag for immediate notify */
u_int seq_id; /* Tar for target of notify */
u_int initiator_id; /* Initiator Identifier */
u_int arg; /* Function specific */
};
/* HBA engine structures. */
typedef enum {
EIT_BUFFER, /* Engine type: buffer memory */
EIT_LOSSLESS, /* Engine type: lossless compression */
EIT_LOSSY, /* Engine type: lossy compression */
EIT_ENCRYPT /* Engine type: encryption */
} ei_type;
typedef enum {
EAD_VUNIQUE, /* Engine algorithm ID: vendor unique */
EAD_LZ1V1, /* Engine algorithm ID: LZ1 var.1 */
EAD_LZ2V1, /* Engine algorithm ID: LZ2 var.1 */
EAD_LZ2V2 /* Engine algorithm ID: LZ2 var.2 */
} ei_algo;
struct ccb_eng_inq {
struct ccb_hdr ccb_h;
u_int16_t eng_num; /* The engine number for this inquiry */
ei_type eng_type; /* Returned engine type */
ei_algo eng_algo; /* Returned engine algorithm type */
u_int32_t eng_memeory; /* Returned engine memory size */
};
struct ccb_eng_exec { /* This structure must match SCSIIO size */
struct ccb_hdr ccb_h;
u_int8_t *pdrv_ptr; /* Ptr used by the peripheral driver */
u_int8_t *req_map; /* Ptr for mapping info on the req. */
u_int8_t *data_ptr; /* Pointer to the data buf/SG list */
u_int32_t dxfer_len; /* Data transfer length */
u_int8_t *engdata_ptr; /* Pointer to the engine buffer data */
u_int16_t sglist_cnt; /* Num of scatter gather list entries */
u_int32_t dmax_len; /* Destination data maximum length */
u_int32_t dest_len; /* Destination data length */
int32_t src_resid; /* Source residual length: 2's comp */
u_int32_t timeout; /* Timeout value */
u_int16_t eng_num; /* Engine number for this request */
u_int16_t vu_flags; /* Vendor Unique flags */
};
/*
* Definitions for the timeout field in the SCSI I/O CCB.
*/
#define CAM_TIME_DEFAULT 0x00000000 /* Use SIM default value */
#define CAM_TIME_INFINITY 0xFFFFFFFF /* Infinite timeout */
#define CAM_SUCCESS 0 /* For signaling general success */
#define CAM_FAILURE 1 /* For signaling general failure */
#define CAM_FALSE 0
#define CAM_TRUE 1
#define XPT_CCB_INVALID -1 /* for signaling a bad CCB to free */
/*
* CCB for working with advanced device information. This operates in a fashion
* similar to XPT_GDEV_TYPE. Specify the target in ccb_h, the buffer
* type requested, and provide a buffer size/buffer to write to. If the
* buffer is too small, provsiz will be larger than bufsiz.
*/
struct ccb_dev_advinfo {
struct ccb_hdr ccb_h;
uint32_t flags;
#define CDAI_FLAG_NONE 0x0 /* No flags set */
#define CDAI_FLAG_STORE 0x1 /* If set, action becomes store */
uint32_t buftype; /* IN: Type of data being requested */
/* NB: buftype is interpreted on a per-transport basis */
#define CDAI_TYPE_SCSI_DEVID 1
#define CDAI_TYPE_SERIAL_NUM 2
#define CDAI_TYPE_PHYS_PATH 3
#define CDAI_TYPE_RCAPLONG 4
#define CDAI_TYPE_EXT_INQ 5
off_t bufsiz; /* IN: Size of external buffer */
#define CAM_SCSI_DEVID_MAXLEN 65536 /* length in buffer is an uint16_t */
off_t provsiz; /* OUT: Size required/used */
uint8_t *buf; /* IN/OUT: Buffer for requested data */
};
/*
* CCB for sending async events
*/
struct ccb_async {
struct ccb_hdr ccb_h;
uint32_t async_code;
off_t async_arg_size;
void *async_arg_ptr;
};
/*
* Union of all CCB types for kernel space allocation. This union should
* never be used for manipulating CCBs - its only use is for the allocation
* and deallocation of raw CCB space and is the return type of xpt_ccb_alloc
* and the argument to xpt_ccb_free.
*/
union ccb {
struct ccb_hdr ccb_h; /* For convenience */
struct ccb_scsiio csio;
struct ccb_getdev cgd;
struct ccb_getdevlist cgdl;
struct ccb_pathinq cpi;
struct ccb_relsim crs;
struct ccb_setasync csa;
struct ccb_setdev csd;
struct ccb_pathstats cpis;
struct ccb_getdevstats cgds;
struct ccb_dev_match cdm;
struct ccb_trans_settings cts;
struct ccb_calc_geometry ccg;
struct ccb_sim_knob knob;
struct ccb_abort cab;
struct ccb_resetbus crb;
struct ccb_resetdev crd;
struct ccb_termio tio;
struct ccb_accept_tio atio;
struct ccb_scsiio ctio;
struct ccb_en_lun cel;
struct ccb_immed_notify cin;
struct ccb_notify_ack cna;
struct ccb_immediate_notify cin1;
struct ccb_notify_acknowledge cna2;
struct ccb_eng_inq cei;
struct ccb_eng_exec cee;
struct ccb_smpio smpio;
struct ccb_rescan crcn;
struct ccb_debug cdbg;
struct ccb_ataio ataio;
struct ccb_dev_advinfo cdai;
struct ccb_async casync;
};
__BEGIN_DECLS
static __inline void
cam_fill_csio(struct ccb_scsiio *csio, u_int32_t retries,
void (*cbfcnp)(struct cam_periph *, union ccb *),
u_int32_t flags, u_int8_t tag_action,
u_int8_t *data_ptr, u_int32_t dxfer_len,
u_int8_t sense_len, u_int8_t cdb_len,
u_int32_t timeout);
static __inline void
cam_fill_ctio(struct ccb_scsiio *csio, u_int32_t retries,
void (*cbfcnp)(struct cam_periph *, union ccb *),
u_int32_t flags, u_int tag_action, u_int tag_id,
u_int init_id, u_int scsi_status, u_int8_t *data_ptr,
u_int32_t dxfer_len, u_int32_t timeout);
static __inline void
cam_fill_ataio(struct ccb_ataio *ataio, u_int32_t retries,
void (*cbfcnp)(struct cam_periph *, union ccb *),
u_int32_t flags, u_int tag_action,
u_int8_t *data_ptr, u_int32_t dxfer_len,
u_int32_t timeout);
static __inline void
cam_fill_smpio(struct ccb_smpio *smpio, uint32_t retries,
void (*cbfcnp)(struct cam_periph *, union ccb *), uint32_t flags,
uint8_t *smp_request, int smp_request_len,
uint8_t *smp_response, int smp_response_len,
uint32_t timeout);
static __inline void
cam_fill_csio(struct ccb_scsiio *csio, u_int32_t retries,
void (*cbfcnp)(struct cam_periph *, union ccb *),
u_int32_t flags, u_int8_t tag_action,
u_int8_t *data_ptr, u_int32_t dxfer_len,
u_int8_t sense_len, u_int8_t cdb_len,
u_int32_t timeout)
{
csio->ccb_h.func_code = XPT_SCSI_IO;
csio->ccb_h.flags = flags;
csio->ccb_h.xflags = 0;
csio->ccb_h.retry_count = retries;
csio->ccb_h.cbfcnp = cbfcnp;
csio->ccb_h.timeout = timeout;
csio->data_ptr = data_ptr;
csio->dxfer_len = dxfer_len;
csio->sense_len = sense_len;
csio->cdb_len = cdb_len;
csio->tag_action = tag_action;
}
static __inline void
cam_fill_ctio(struct ccb_scsiio *csio, u_int32_t retries,
void (*cbfcnp)(struct cam_periph *, union ccb *),
u_int32_t flags, u_int tag_action, u_int tag_id,
u_int init_id, u_int scsi_status, u_int8_t *data_ptr,
u_int32_t dxfer_len, u_int32_t timeout)
{
csio->ccb_h.func_code = XPT_CONT_TARGET_IO;
csio->ccb_h.flags = flags;
csio->ccb_h.xflags = 0;
csio->ccb_h.retry_count = retries;
csio->ccb_h.cbfcnp = cbfcnp;
csio->ccb_h.timeout = timeout;
csio->data_ptr = data_ptr;
csio->dxfer_len = dxfer_len;
csio->scsi_status = scsi_status;
csio->tag_action = tag_action;
csio->tag_id = tag_id;
csio->init_id = init_id;
}
static __inline void
cam_fill_ataio(struct ccb_ataio *ataio, u_int32_t retries,
void (*cbfcnp)(struct cam_periph *, union ccb *),
u_int32_t flags, u_int tag_action,
u_int8_t *data_ptr, u_int32_t dxfer_len,
u_int32_t timeout)
{
ataio->ccb_h.func_code = XPT_ATA_IO;
ataio->ccb_h.flags = flags;
ataio->ccb_h.retry_count = retries;
ataio->ccb_h.cbfcnp = cbfcnp;
ataio->ccb_h.timeout = timeout;
ataio->data_ptr = data_ptr;
ataio->dxfer_len = dxfer_len;
ataio->tag_action = tag_action;
}
static __inline void
cam_fill_smpio(struct ccb_smpio *smpio, uint32_t retries,
void (*cbfcnp)(struct cam_periph *, union ccb *), uint32_t flags,
uint8_t *smp_request, int smp_request_len,
uint8_t *smp_response, int smp_response_len,
uint32_t timeout)
{
#ifdef _KERNEL
KASSERT((flags & CAM_DIR_MASK) == CAM_DIR_BOTH,
("direction != CAM_DIR_BOTH"));
KASSERT((smp_request != NULL) && (smp_response != NULL),
("need valid request and response buffers"));
KASSERT((smp_request_len != 0) && (smp_response_len != 0),
("need non-zero request and response lengths"));
#endif /*_KERNEL*/
smpio->ccb_h.func_code = XPT_SMP_IO;
smpio->ccb_h.flags = flags;
smpio->ccb_h.retry_count = retries;
smpio->ccb_h.cbfcnp = cbfcnp;
smpio->ccb_h.timeout = timeout;
smpio->smp_request = smp_request;
smpio->smp_request_len = smp_request_len;
smpio->smp_response = smp_response;
smpio->smp_response_len = smp_response_len;
}
static __inline void
cam_set_ccbstatus(union ccb *ccb, cam_status status)
{
ccb->ccb_h.status &= ~CAM_STATUS_MASK;
ccb->ccb_h.status |= status;
}
static __inline cam_status
cam_ccb_status(union ccb *ccb)
{
return ((cam_status)(ccb->ccb_h.status & CAM_STATUS_MASK));
}
void cam_calc_geometry(struct ccb_calc_geometry *ccg, int extended);
__END_DECLS
#endif /* _CAM_CAM_CCB_H */