freebsd-nq/module/zfs/vdev_initialize.c
nssrikanth bedbc13daa
Cancel TRIM / initialize on FAULTED non-writeable vdevs
When a device which is actively trimming or initializing becomes
FAULTED, and therefore no longer writable, cancel the active
TRIM or initialization.  When the device is merely taken offline
with `zpool offline` then stop the operation but do not cancel it.
When the device is brought back online the operation will be
resumed if possible.

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov>
Co-authored-by: Vipin Kumar Verma <vipin.verma@hpe.com>
Signed-off-by: Srikanth N S <srikanth.nagasubbaraoseetharaman@hpe.com>
Closes #11588
2021-03-02 10:27:27 -08:00

773 lines
22 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2016, 2019 by Delphix. All rights reserved.
*/
#include <sys/spa.h>
#include <sys/spa_impl.h>
#include <sys/txg.h>
#include <sys/vdev_impl.h>
#include <sys/metaslab_impl.h>
#include <sys/dsl_synctask.h>
#include <sys/zap.h>
#include <sys/dmu_tx.h>
#include <sys/vdev_initialize.h>
/*
* Value that is written to disk during initialization.
*/
#ifdef _ILP32
unsigned long zfs_initialize_value = 0xdeadbeefUL;
#else
unsigned long zfs_initialize_value = 0xdeadbeefdeadbeeeULL;
#endif
/* maximum number of I/Os outstanding per leaf vdev */
int zfs_initialize_limit = 1;
/* size of initializing writes; default 1MiB, see zfs_remove_max_segment */
unsigned long zfs_initialize_chunk_size = 1024 * 1024;
static boolean_t
vdev_initialize_should_stop(vdev_t *vd)
{
return (vd->vdev_initialize_exit_wanted || !vdev_writeable(vd) ||
vd->vdev_detached || vd->vdev_top->vdev_removing);
}
static void
vdev_initialize_zap_update_sync(void *arg, dmu_tx_t *tx)
{
/*
* We pass in the guid instead of the vdev_t since the vdev may
* have been freed prior to the sync task being processed. This
* happens when a vdev is detached as we call spa_config_vdev_exit(),
* stop the initializing thread, schedule the sync task, and free
* the vdev. Later when the scheduled sync task is invoked, it would
* find that the vdev has been freed.
*/
uint64_t guid = *(uint64_t *)arg;
uint64_t txg = dmu_tx_get_txg(tx);
kmem_free(arg, sizeof (uint64_t));
vdev_t *vd = spa_lookup_by_guid(tx->tx_pool->dp_spa, guid, B_FALSE);
if (vd == NULL || vd->vdev_top->vdev_removing || !vdev_is_concrete(vd))
return;
uint64_t last_offset = vd->vdev_initialize_offset[txg & TXG_MASK];
vd->vdev_initialize_offset[txg & TXG_MASK] = 0;
VERIFY(vd->vdev_leaf_zap != 0);
objset_t *mos = vd->vdev_spa->spa_meta_objset;
if (last_offset > 0) {
vd->vdev_initialize_last_offset = last_offset;
VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
VDEV_LEAF_ZAP_INITIALIZE_LAST_OFFSET,
sizeof (last_offset), 1, &last_offset, tx));
}
if (vd->vdev_initialize_action_time > 0) {
uint64_t val = (uint64_t)vd->vdev_initialize_action_time;
VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
VDEV_LEAF_ZAP_INITIALIZE_ACTION_TIME, sizeof (val),
1, &val, tx));
}
uint64_t initialize_state = vd->vdev_initialize_state;
VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
VDEV_LEAF_ZAP_INITIALIZE_STATE, sizeof (initialize_state), 1,
&initialize_state, tx));
}
static void
vdev_initialize_change_state(vdev_t *vd, vdev_initializing_state_t new_state)
{
ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock));
spa_t *spa = vd->vdev_spa;
if (new_state == vd->vdev_initialize_state)
return;
/*
* Copy the vd's guid, this will be freed by the sync task.
*/
uint64_t *guid = kmem_zalloc(sizeof (uint64_t), KM_SLEEP);
*guid = vd->vdev_guid;
/*
* If we're suspending, then preserving the original start time.
*/
if (vd->vdev_initialize_state != VDEV_INITIALIZE_SUSPENDED) {
vd->vdev_initialize_action_time = gethrestime_sec();
}
vdev_initializing_state_t old_state = vd->vdev_initialize_state;
vd->vdev_initialize_state = new_state;
dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
dsl_sync_task_nowait(spa_get_dsl(spa), vdev_initialize_zap_update_sync,
guid, tx);
switch (new_state) {
case VDEV_INITIALIZE_ACTIVE:
spa_history_log_internal(spa, "initialize", tx,
"vdev=%s activated", vd->vdev_path);
break;
case VDEV_INITIALIZE_SUSPENDED:
spa_history_log_internal(spa, "initialize", tx,
"vdev=%s suspended", vd->vdev_path);
break;
case VDEV_INITIALIZE_CANCELED:
if (old_state == VDEV_INITIALIZE_ACTIVE ||
old_state == VDEV_INITIALIZE_SUSPENDED)
spa_history_log_internal(spa, "initialize", tx,
"vdev=%s canceled", vd->vdev_path);
break;
case VDEV_INITIALIZE_COMPLETE:
spa_history_log_internal(spa, "initialize", tx,
"vdev=%s complete", vd->vdev_path);
break;
default:
panic("invalid state %llu", (unsigned long long)new_state);
}
dmu_tx_commit(tx);
if (new_state != VDEV_INITIALIZE_ACTIVE)
spa_notify_waiters(spa);
}
static void
vdev_initialize_cb(zio_t *zio)
{
vdev_t *vd = zio->io_vd;
mutex_enter(&vd->vdev_initialize_io_lock);
if (zio->io_error == ENXIO && !vdev_writeable(vd)) {
/*
* The I/O failed because the vdev was unavailable; roll the
* last offset back. (This works because spa_sync waits on
* spa_txg_zio before it runs sync tasks.)
*/
uint64_t *off =
&vd->vdev_initialize_offset[zio->io_txg & TXG_MASK];
*off = MIN(*off, zio->io_offset);
} else {
/*
* Since initializing is best-effort, we ignore I/O errors and
* rely on vdev_probe to determine if the errors are more
* critical.
*/
if (zio->io_error != 0)
vd->vdev_stat.vs_initialize_errors++;
vd->vdev_initialize_bytes_done += zio->io_orig_size;
}
ASSERT3U(vd->vdev_initialize_inflight, >, 0);
vd->vdev_initialize_inflight--;
cv_broadcast(&vd->vdev_initialize_io_cv);
mutex_exit(&vd->vdev_initialize_io_lock);
spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
}
/* Takes care of physical writing and limiting # of concurrent ZIOs. */
static int
vdev_initialize_write(vdev_t *vd, uint64_t start, uint64_t size, abd_t *data)
{
spa_t *spa = vd->vdev_spa;
/* Limit inflight initializing I/Os */
mutex_enter(&vd->vdev_initialize_io_lock);
while (vd->vdev_initialize_inflight >= zfs_initialize_limit) {
cv_wait(&vd->vdev_initialize_io_cv,
&vd->vdev_initialize_io_lock);
}
vd->vdev_initialize_inflight++;
mutex_exit(&vd->vdev_initialize_io_lock);
dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
uint64_t txg = dmu_tx_get_txg(tx);
spa_config_enter(spa, SCL_STATE_ALL, vd, RW_READER);
mutex_enter(&vd->vdev_initialize_lock);
if (vd->vdev_initialize_offset[txg & TXG_MASK] == 0) {
uint64_t *guid = kmem_zalloc(sizeof (uint64_t), KM_SLEEP);
*guid = vd->vdev_guid;
/* This is the first write of this txg. */
dsl_sync_task_nowait(spa_get_dsl(spa),
vdev_initialize_zap_update_sync, guid, tx);
}
/*
* We know the vdev struct will still be around since all
* consumers of vdev_free must stop the initialization first.
*/
if (vdev_initialize_should_stop(vd)) {
mutex_enter(&vd->vdev_initialize_io_lock);
ASSERT3U(vd->vdev_initialize_inflight, >, 0);
vd->vdev_initialize_inflight--;
mutex_exit(&vd->vdev_initialize_io_lock);
spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
mutex_exit(&vd->vdev_initialize_lock);
dmu_tx_commit(tx);
return (SET_ERROR(EINTR));
}
mutex_exit(&vd->vdev_initialize_lock);
vd->vdev_initialize_offset[txg & TXG_MASK] = start + size;
zio_nowait(zio_write_phys(spa->spa_txg_zio[txg & TXG_MASK], vd, start,
size, data, ZIO_CHECKSUM_OFF, vdev_initialize_cb, NULL,
ZIO_PRIORITY_INITIALIZING, ZIO_FLAG_CANFAIL, B_FALSE));
/* vdev_initialize_cb releases SCL_STATE_ALL */
dmu_tx_commit(tx);
return (0);
}
/*
* Callback to fill each ABD chunk with zfs_initialize_value. len must be
* divisible by sizeof (uint64_t), and buf must be 8-byte aligned. The ABD
* allocation will guarantee these for us.
*/
/* ARGSUSED */
static int
vdev_initialize_block_fill(void *buf, size_t len, void *unused)
{
ASSERT0(len % sizeof (uint64_t));
#ifdef _ILP32
for (uint64_t i = 0; i < len; i += sizeof (uint32_t)) {
*(uint32_t *)((char *)(buf) + i) = zfs_initialize_value;
}
#else
for (uint64_t i = 0; i < len; i += sizeof (uint64_t)) {
*(uint64_t *)((char *)(buf) + i) = zfs_initialize_value;
}
#endif
return (0);
}
static abd_t *
vdev_initialize_block_alloc(void)
{
/* Allocate ABD for filler data */
abd_t *data = abd_alloc_for_io(zfs_initialize_chunk_size, B_FALSE);
ASSERT0(zfs_initialize_chunk_size % sizeof (uint64_t));
(void) abd_iterate_func(data, 0, zfs_initialize_chunk_size,
vdev_initialize_block_fill, NULL);
return (data);
}
static void
vdev_initialize_block_free(abd_t *data)
{
abd_free(data);
}
static int
vdev_initialize_ranges(vdev_t *vd, abd_t *data)
{
range_tree_t *rt = vd->vdev_initialize_tree;
zfs_btree_t *bt = &rt->rt_root;
zfs_btree_index_t where;
for (range_seg_t *rs = zfs_btree_first(bt, &where); rs != NULL;
rs = zfs_btree_next(bt, &where, &where)) {
uint64_t size = rs_get_end(rs, rt) - rs_get_start(rs, rt);
/* Split range into legally-sized physical chunks */
uint64_t writes_required =
((size - 1) / zfs_initialize_chunk_size) + 1;
for (uint64_t w = 0; w < writes_required; w++) {
int error;
error = vdev_initialize_write(vd,
VDEV_LABEL_START_SIZE + rs_get_start(rs, rt) +
(w * zfs_initialize_chunk_size),
MIN(size - (w * zfs_initialize_chunk_size),
zfs_initialize_chunk_size), data);
if (error != 0)
return (error);
}
}
return (0);
}
static void
vdev_initialize_xlate_last_rs_end(void *arg, range_seg64_t *physical_rs)
{
uint64_t *last_rs_end = (uint64_t *)arg;
if (physical_rs->rs_end > *last_rs_end)
*last_rs_end = physical_rs->rs_end;
}
static void
vdev_initialize_xlate_progress(void *arg, range_seg64_t *physical_rs)
{
vdev_t *vd = (vdev_t *)arg;
uint64_t size = physical_rs->rs_end - physical_rs->rs_start;
vd->vdev_initialize_bytes_est += size;
if (vd->vdev_initialize_last_offset > physical_rs->rs_end) {
vd->vdev_initialize_bytes_done += size;
} else if (vd->vdev_initialize_last_offset > physical_rs->rs_start &&
vd->vdev_initialize_last_offset < physical_rs->rs_end) {
vd->vdev_initialize_bytes_done +=
vd->vdev_initialize_last_offset - physical_rs->rs_start;
}
}
static void
vdev_initialize_calculate_progress(vdev_t *vd)
{
ASSERT(spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_READER) ||
spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_WRITER));
ASSERT(vd->vdev_leaf_zap != 0);
vd->vdev_initialize_bytes_est = 0;
vd->vdev_initialize_bytes_done = 0;
for (uint64_t i = 0; i < vd->vdev_top->vdev_ms_count; i++) {
metaslab_t *msp = vd->vdev_top->vdev_ms[i];
mutex_enter(&msp->ms_lock);
uint64_t ms_free = (msp->ms_size -
metaslab_allocated_space(msp)) /
vdev_get_ndisks(vd->vdev_top);
/*
* Convert the metaslab range to a physical range
* on our vdev. We use this to determine if we are
* in the middle of this metaslab range.
*/
range_seg64_t logical_rs, physical_rs, remain_rs;
logical_rs.rs_start = msp->ms_start;
logical_rs.rs_end = msp->ms_start + msp->ms_size;
/* Metaslab space after this offset has not been initialized */
vdev_xlate(vd, &logical_rs, &physical_rs, &remain_rs);
if (vd->vdev_initialize_last_offset <= physical_rs.rs_start) {
vd->vdev_initialize_bytes_est += ms_free;
mutex_exit(&msp->ms_lock);
continue;
}
/* Metaslab space before this offset has been initialized */
uint64_t last_rs_end = physical_rs.rs_end;
if (!vdev_xlate_is_empty(&remain_rs)) {
vdev_xlate_walk(vd, &remain_rs,
vdev_initialize_xlate_last_rs_end, &last_rs_end);
}
if (vd->vdev_initialize_last_offset > last_rs_end) {
vd->vdev_initialize_bytes_done += ms_free;
vd->vdev_initialize_bytes_est += ms_free;
mutex_exit(&msp->ms_lock);
continue;
}
/*
* If we get here, we're in the middle of initializing this
* metaslab. Load it and walk the free tree for more accurate
* progress estimation.
*/
VERIFY0(metaslab_load(msp));
zfs_btree_index_t where;
range_tree_t *rt = msp->ms_allocatable;
for (range_seg_t *rs =
zfs_btree_first(&rt->rt_root, &where); rs;
rs = zfs_btree_next(&rt->rt_root, &where,
&where)) {
logical_rs.rs_start = rs_get_start(rs, rt);
logical_rs.rs_end = rs_get_end(rs, rt);
vdev_xlate_walk(vd, &logical_rs,
vdev_initialize_xlate_progress, vd);
}
mutex_exit(&msp->ms_lock);
}
}
static int
vdev_initialize_load(vdev_t *vd)
{
int err = 0;
ASSERT(spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_READER) ||
spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_WRITER));
ASSERT(vd->vdev_leaf_zap != 0);
if (vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE ||
vd->vdev_initialize_state == VDEV_INITIALIZE_SUSPENDED) {
err = zap_lookup(vd->vdev_spa->spa_meta_objset,
vd->vdev_leaf_zap, VDEV_LEAF_ZAP_INITIALIZE_LAST_OFFSET,
sizeof (vd->vdev_initialize_last_offset), 1,
&vd->vdev_initialize_last_offset);
if (err == ENOENT) {
vd->vdev_initialize_last_offset = 0;
err = 0;
}
}
vdev_initialize_calculate_progress(vd);
return (err);
}
static void
vdev_initialize_xlate_range_add(void *arg, range_seg64_t *physical_rs)
{
vdev_t *vd = arg;
/* Only add segments that we have not visited yet */
if (physical_rs->rs_end <= vd->vdev_initialize_last_offset)
return;
/* Pick up where we left off mid-range. */
if (vd->vdev_initialize_last_offset > physical_rs->rs_start) {
zfs_dbgmsg("range write: vd %s changed (%llu, %llu) to "
"(%llu, %llu)", vd->vdev_path,
(u_longlong_t)physical_rs->rs_start,
(u_longlong_t)physical_rs->rs_end,
(u_longlong_t)vd->vdev_initialize_last_offset,
(u_longlong_t)physical_rs->rs_end);
ASSERT3U(physical_rs->rs_end, >,
vd->vdev_initialize_last_offset);
physical_rs->rs_start = vd->vdev_initialize_last_offset;
}
ASSERT3U(physical_rs->rs_end, >, physical_rs->rs_start);
range_tree_add(vd->vdev_initialize_tree, physical_rs->rs_start,
physical_rs->rs_end - physical_rs->rs_start);
}
/*
* Convert the logical range into a physical range and add it to our
* avl tree.
*/
static void
vdev_initialize_range_add(void *arg, uint64_t start, uint64_t size)
{
vdev_t *vd = arg;
range_seg64_t logical_rs;
logical_rs.rs_start = start;
logical_rs.rs_end = start + size;
ASSERT(vd->vdev_ops->vdev_op_leaf);
vdev_xlate_walk(vd, &logical_rs, vdev_initialize_xlate_range_add, arg);
}
static void
vdev_initialize_thread(void *arg)
{
vdev_t *vd = arg;
spa_t *spa = vd->vdev_spa;
int error = 0;
uint64_t ms_count = 0;
ASSERT(vdev_is_concrete(vd));
spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
vd->vdev_initialize_last_offset = 0;
VERIFY0(vdev_initialize_load(vd));
abd_t *deadbeef = vdev_initialize_block_alloc();
vd->vdev_initialize_tree = range_tree_create(NULL, RANGE_SEG64, NULL,
0, 0);
for (uint64_t i = 0; !vd->vdev_detached &&
i < vd->vdev_top->vdev_ms_count; i++) {
metaslab_t *msp = vd->vdev_top->vdev_ms[i];
boolean_t unload_when_done = B_FALSE;
/*
* If we've expanded the top-level vdev or it's our
* first pass, calculate our progress.
*/
if (vd->vdev_top->vdev_ms_count != ms_count) {
vdev_initialize_calculate_progress(vd);
ms_count = vd->vdev_top->vdev_ms_count;
}
spa_config_exit(spa, SCL_CONFIG, FTAG);
metaslab_disable(msp);
mutex_enter(&msp->ms_lock);
if (!msp->ms_loaded && !msp->ms_loading)
unload_when_done = B_TRUE;
VERIFY0(metaslab_load(msp));
range_tree_walk(msp->ms_allocatable, vdev_initialize_range_add,
vd);
mutex_exit(&msp->ms_lock);
error = vdev_initialize_ranges(vd, deadbeef);
metaslab_enable(msp, B_TRUE, unload_when_done);
spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
range_tree_vacate(vd->vdev_initialize_tree, NULL, NULL);
if (error != 0)
break;
}
spa_config_exit(spa, SCL_CONFIG, FTAG);
mutex_enter(&vd->vdev_initialize_io_lock);
while (vd->vdev_initialize_inflight > 0) {
cv_wait(&vd->vdev_initialize_io_cv,
&vd->vdev_initialize_io_lock);
}
mutex_exit(&vd->vdev_initialize_io_lock);
range_tree_destroy(vd->vdev_initialize_tree);
vdev_initialize_block_free(deadbeef);
vd->vdev_initialize_tree = NULL;
mutex_enter(&vd->vdev_initialize_lock);
if (!vd->vdev_initialize_exit_wanted) {
if (vdev_writeable(vd)) {
vdev_initialize_change_state(vd,
VDEV_INITIALIZE_COMPLETE);
} else if (vd->vdev_faulted) {
vdev_initialize_change_state(vd,
VDEV_INITIALIZE_CANCELED);
}
}
ASSERT(vd->vdev_initialize_thread != NULL ||
vd->vdev_initialize_inflight == 0);
/*
* Drop the vdev_initialize_lock while we sync out the
* txg since it's possible that a device might be trying to
* come online and must check to see if it needs to restart an
* initialization. That thread will be holding the spa_config_lock
* which would prevent the txg_wait_synced from completing.
*/
mutex_exit(&vd->vdev_initialize_lock);
txg_wait_synced(spa_get_dsl(spa), 0);
mutex_enter(&vd->vdev_initialize_lock);
vd->vdev_initialize_thread = NULL;
cv_broadcast(&vd->vdev_initialize_cv);
mutex_exit(&vd->vdev_initialize_lock);
thread_exit();
}
/*
* Initiates a device. Caller must hold vdev_initialize_lock.
* Device must be a leaf and not already be initializing.
*/
void
vdev_initialize(vdev_t *vd)
{
ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock));
ASSERT(vd->vdev_ops->vdev_op_leaf);
ASSERT(vdev_is_concrete(vd));
ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
ASSERT(!vd->vdev_detached);
ASSERT(!vd->vdev_initialize_exit_wanted);
ASSERT(!vd->vdev_top->vdev_removing);
vdev_initialize_change_state(vd, VDEV_INITIALIZE_ACTIVE);
vd->vdev_initialize_thread = thread_create(NULL, 0,
vdev_initialize_thread, vd, 0, &p0, TS_RUN, maxclsyspri);
}
/*
* Wait for the initialize thread to be terminated (cancelled or stopped).
*/
static void
vdev_initialize_stop_wait_impl(vdev_t *vd)
{
ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock));
while (vd->vdev_initialize_thread != NULL)
cv_wait(&vd->vdev_initialize_cv, &vd->vdev_initialize_lock);
ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
vd->vdev_initialize_exit_wanted = B_FALSE;
}
/*
* Wait for vdev initialize threads which were either to cleanly exit.
*/
void
vdev_initialize_stop_wait(spa_t *spa, list_t *vd_list)
{
vdev_t *vd;
ASSERT(MUTEX_HELD(&spa_namespace_lock));
while ((vd = list_remove_head(vd_list)) != NULL) {
mutex_enter(&vd->vdev_initialize_lock);
vdev_initialize_stop_wait_impl(vd);
mutex_exit(&vd->vdev_initialize_lock);
}
}
/*
* Stop initializing a device, with the resultant initializing state being
* tgt_state. For blocking behavior pass NULL for vd_list. Otherwise, when
* a list_t is provided the stopping vdev is inserted in to the list. Callers
* are then required to call vdev_initialize_stop_wait() to block for all the
* initialization threads to exit. The caller must hold vdev_initialize_lock
* and must not be writing to the spa config, as the initializing thread may
* try to enter the config as a reader before exiting.
*/
void
vdev_initialize_stop(vdev_t *vd, vdev_initializing_state_t tgt_state,
list_t *vd_list)
{
ASSERT(!spa_config_held(vd->vdev_spa, SCL_CONFIG|SCL_STATE, RW_WRITER));
ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock));
ASSERT(vd->vdev_ops->vdev_op_leaf);
ASSERT(vdev_is_concrete(vd));
/*
* Allow cancel requests to proceed even if the initialize thread
* has stopped.
*/
if (vd->vdev_initialize_thread == NULL &&
tgt_state != VDEV_INITIALIZE_CANCELED) {
return;
}
vdev_initialize_change_state(vd, tgt_state);
vd->vdev_initialize_exit_wanted = B_TRUE;
if (vd_list == NULL) {
vdev_initialize_stop_wait_impl(vd);
} else {
ASSERT(MUTEX_HELD(&spa_namespace_lock));
list_insert_tail(vd_list, vd);
}
}
static void
vdev_initialize_stop_all_impl(vdev_t *vd, vdev_initializing_state_t tgt_state,
list_t *vd_list)
{
if (vd->vdev_ops->vdev_op_leaf && vdev_is_concrete(vd)) {
mutex_enter(&vd->vdev_initialize_lock);
vdev_initialize_stop(vd, tgt_state, vd_list);
mutex_exit(&vd->vdev_initialize_lock);
return;
}
for (uint64_t i = 0; i < vd->vdev_children; i++) {
vdev_initialize_stop_all_impl(vd->vdev_child[i], tgt_state,
vd_list);
}
}
/*
* Convenience function to stop initializing of a vdev tree and set all
* initialize thread pointers to NULL.
*/
void
vdev_initialize_stop_all(vdev_t *vd, vdev_initializing_state_t tgt_state)
{
spa_t *spa = vd->vdev_spa;
list_t vd_list;
ASSERT(MUTEX_HELD(&spa_namespace_lock));
list_create(&vd_list, sizeof (vdev_t),
offsetof(vdev_t, vdev_initialize_node));
vdev_initialize_stop_all_impl(vd, tgt_state, &vd_list);
vdev_initialize_stop_wait(spa, &vd_list);
if (vd->vdev_spa->spa_sync_on) {
/* Make sure that our state has been synced to disk */
txg_wait_synced(spa_get_dsl(vd->vdev_spa), 0);
}
list_destroy(&vd_list);
}
void
vdev_initialize_restart(vdev_t *vd)
{
ASSERT(MUTEX_HELD(&spa_namespace_lock));
ASSERT(!spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
if (vd->vdev_leaf_zap != 0) {
mutex_enter(&vd->vdev_initialize_lock);
uint64_t initialize_state = VDEV_INITIALIZE_NONE;
int err = zap_lookup(vd->vdev_spa->spa_meta_objset,
vd->vdev_leaf_zap, VDEV_LEAF_ZAP_INITIALIZE_STATE,
sizeof (initialize_state), 1, &initialize_state);
ASSERT(err == 0 || err == ENOENT);
vd->vdev_initialize_state = initialize_state;
uint64_t timestamp = 0;
err = zap_lookup(vd->vdev_spa->spa_meta_objset,
vd->vdev_leaf_zap, VDEV_LEAF_ZAP_INITIALIZE_ACTION_TIME,
sizeof (timestamp), 1, &timestamp);
ASSERT(err == 0 || err == ENOENT);
vd->vdev_initialize_action_time = timestamp;
if (vd->vdev_initialize_state == VDEV_INITIALIZE_SUSPENDED ||
vd->vdev_offline) {
/* load progress for reporting, but don't resume */
VERIFY0(vdev_initialize_load(vd));
} else if (vd->vdev_initialize_state ==
VDEV_INITIALIZE_ACTIVE && vdev_writeable(vd) &&
!vd->vdev_top->vdev_removing &&
vd->vdev_initialize_thread == NULL) {
vdev_initialize(vd);
}
mutex_exit(&vd->vdev_initialize_lock);
}
for (uint64_t i = 0; i < vd->vdev_children; i++) {
vdev_initialize_restart(vd->vdev_child[i]);
}
}
EXPORT_SYMBOL(vdev_initialize);
EXPORT_SYMBOL(vdev_initialize_stop);
EXPORT_SYMBOL(vdev_initialize_stop_all);
EXPORT_SYMBOL(vdev_initialize_stop_wait);
EXPORT_SYMBOL(vdev_initialize_restart);
/* BEGIN CSTYLED */
ZFS_MODULE_PARAM(zfs, zfs_, initialize_value, ULONG, ZMOD_RW,
"Value written during zpool initialize");
ZFS_MODULE_PARAM(zfs, zfs_, initialize_chunk_size, ULONG, ZMOD_RW,
"Size in bytes of writes by zpool initialize");
/* END CSTYLED */