freebsd-nq/sys/i386/isa/if_ep.c
1998-02-06 12:14:30 +00:00

1419 lines
33 KiB
C

/*
* Copyright (c) 1994 Herb Peyerl <hpeyerl@novatel.ca>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Herb Peyerl.
* 4. The name of Herb Peyerl may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* if_ep.c,v 1.19 1995/01/24 20:53:45 davidg Exp
*/
/*
* Modified from the FreeBSD 1.1.5.1 version by:
* Andres Vega Garcia
* INRIA - Sophia Antipolis, France
* avega@sophia.inria.fr
*/
/*
* $Id: if_ep.c,v 1.71 1998/02/04 22:32:19 eivind Exp $
*
* Promiscuous mode added and interrupt logic slightly changed
* to reduce the number of adapter failures. Transceiver select
* logic changed to use value from EEPROM. Autoconfiguration
* features added.
* Done by:
* Serge Babkin
* Chelindbank (Chelyabinsk, Russia)
* babkin@hq.icb.chel.su
*/
/*
* Pccard support for 3C589 by:
* HAMADA Naoki
* nao@tom-yam.or.jp
*/
#include "ep.h"
#if NEP > 0
#include "bpfilter.h"
#include "opt_inet.h"
#include "opt_ipx.h"
#include <sys/param.h>
#if defined(__FreeBSD__)
#include <sys/kernel.h>
#include <sys/systm.h>
#include <sys/conf.h>
#endif
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/socket.h>
#include <sys/sockio.h>
#if defined(__NetBSD__)
#include <sys/select.h>
#endif
#include <net/if.h>
#if defined(__FreeBSD__)
#include <net/ethernet.h>
#include <net/if_arp.h>
#endif
#ifdef INET
#include <netinet/in.h>
#include <netinet/if_ether.h>
#endif
#ifdef IPX
#include <netipx/ipx.h>
#include <netipx/ipx_if.h>
#endif
#ifdef NS
#include <netns/ns.h>
#include <netns/ns_if.h>
#endif
#if NBPFILTER > 0
#include <net/bpf.h>
#endif
#if defined(__FreeBSD__)
#include <machine/clock.h>
#endif
#include <i386/isa/isa_device.h>
#include <i386/isa/if_epreg.h>
#include <i386/isa/elink.h>
/* Exported variables */
u_long ep_unit;
int ep_boards;
struct ep_board ep_board[EP_MAX_BOARDS + 1];
static int eeprom_rdy __P((struct ep_softc *sc));
static int ep_isa_probe __P((struct isa_device *));
static struct ep_board * ep_look_for_board_at __P((struct isa_device *is));
static int ep_isa_attach __P((struct isa_device *));
static int epioctl __P((struct ifnet * ifp, int, caddr_t));
static void epinit __P((struct ep_softc *));
static void epread __P((struct ep_softc *));
void epreset __P((int));
static void epstart __P((struct ifnet *));
static void epstop __P((struct ep_softc *));
static void epwatchdog __P((struct ifnet *));
#if 0
static int send_ID_sequence __P((int));
#endif
static int get_eeprom_data __P((int, int));
static struct ep_softc* ep_softc[NEP];
static int ep_current_tag = EP_LAST_TAG + 1;
static char *ep_conn_type[] = {"UTP", "AUI", "???", "BNC"};
#define ep_ftst(f) (sc->stat&(f))
#define ep_fset(f) (sc->stat|=(f))
#define ep_frst(f) (sc->stat&=~(f))
struct isa_driver epdriver = {
ep_isa_probe,
ep_isa_attach,
"ep",
0
};
#include "card.h"
#if NCARD > 0
#include <sys/select.h>
#include <pccard/cardinfo.h>
#include <pccard/driver.h>
#include <pccard/slot.h>
/*
* PC-Card (PCMCIA) specific code.
*/
static int ep_pccard_init __P((struct pccard_devinfo *));
static int ep_pccard_attach __P((struct pccard_devinfo *));
static void ep_unload __P((struct pccard_devinfo *));
static int card_intr __P((struct pccard_devinfo *));
static struct pccard_device ep_info = {
"ep",
ep_pccard_init,
ep_unload,
card_intr,
0, /* Attributes - presently unused */
&net_imask
};
DATA_SET(pccarddrv_set, ep_info);
/*
* Initialize the device - called from Slot manager.
*/
static int
ep_pccard_init(devi)
struct pccard_devinfo *devi;
{
struct isa_device *is = &devi->isahd;
struct ep_softc *sc = ep_softc[is->id_unit];
struct ep_board *epb;
int i;
epb = &ep_board[is->id_unit];
if (sc == 0) {
if ((sc = ep_alloc(is->id_unit, epb)) == 0) {
return (ENXIO);
}
ep_unit++;
}
/* get_e() requires these. */
sc->ep_io_addr = is->id_iobase;
sc->unit = is->id_unit;
epb->epb_addr = is->id_iobase;
epb->epb_used = 1;
epb->prod_id = get_e(sc, EEPROM_PROD_ID);
/* 3C589's product id? */
if (epb->prod_id != 0x9058) {
printf("ep%d: failed to come ready.\n", is->id_unit);
return (ENXIO);
}
epb->res_cfg = get_e(sc, EEPROM_RESOURCE_CFG);
for (i = 0; i < 3; i++)
sc->epb->eth_addr[i] = get_e(sc, EEPROM_NODE_ADDR_0 + i);
if (ep_pccard_attach(devi) == 0)
return (ENXIO);
sc->arpcom.ac_if.if_snd.ifq_maxlen = ifqmaxlen;
return (0);
}
static int
ep_pccard_attach(devi)
struct pccard_devinfo *devi;
{
struct isa_device *is = &devi->isahd;
struct ep_softc *sc = ep_softc[is->id_unit];
u_short config;
sc->ep_connectors = 0;
config = inw(IS_BASE + EP_W0_CONFIG_CTRL);
if (config & IS_BNC) {
sc->ep_connectors |= BNC;
}
if (config & IS_UTP) {
sc->ep_connectors |= UTP;
}
if (!(sc->ep_connectors & 7))
printf("no connectors!");
sc->ep_connector = inw(BASE + EP_W0_ADDRESS_CFG) >> ACF_CONNECTOR_BITS;
/* ROM size = 0, ROM base = 0 */
/* For now, ignore AUTO SELECT feature of 3C589B and later. */
outw(BASE + EP_W0_ADDRESS_CFG, get_e(sc, EEPROM_ADDR_CFG) & 0xc000);
/* Fake IRQ must be 3 */
outw(BASE + EP_W0_RESOURCE_CFG, (sc->epb->res_cfg & 0x0fff) | 0x3000);
outw(BASE + EP_W0_PRODUCT_ID, sc->epb->prod_id);
ep_attach(sc);
return 1;
}
static void
ep_unload(devi)
struct pccard_devinfo *devi;
{
struct ep_softc *sc = ep_softc[devi->isahd.id_unit];
if (sc->gone) {
printf("ep%d: already unloaded\n", devi->isahd.id_unit);
return;
}
sc->arpcom.ac_if.if_flags &= ~IFF_RUNNING;
sc->gone = 1;
printf("ep%d: unload\n", devi->isahd.id_unit);
}
/*
* card_intr - Shared interrupt called from
* front end of PC-Card handler.
*/
static int
card_intr(devi)
struct pccard_devinfo *devi;
{
epintr(devi->isahd.id_unit);
return(1);
}
#endif /* NCARD > 0 */
static int
eeprom_rdy(sc)
struct ep_softc *sc;
{
int i;
for (i = 0; is_eeprom_busy(BASE) && i < MAX_EEPROMBUSY; i++)
continue;
if (i >= MAX_EEPROMBUSY) {
printf("ep%d: eeprom failed to come ready.\n", sc->unit);
return (0);
}
return (1);
}
static struct ep_board *
ep_look_for_board_at(is)
struct isa_device *is;
{
int data, i, j, id_port = ELINK_ID_PORT;
int count = 0;
if (ep_current_tag == (EP_LAST_TAG + 1)) {
/* Come here just one time */
ep_current_tag--;
/* Look for the ISA boards. Init and leave them actived */
outb(id_port, 0);
outb(id_port, 0);
elink_idseq(0xCF);
elink_reset();
DELAY(10000);
for (i = 0; i < EP_MAX_BOARDS; i++) {
outb(id_port, 0);
outb(id_port, 0);
elink_idseq(0xCF);
data = get_eeprom_data(id_port, EEPROM_MFG_ID);
if (data != MFG_ID)
break;
/* resolve contention using the Ethernet address */
for (j = 0; j < 3; j++)
get_eeprom_data(id_port, j);
/* and save this address for later use */
for (j = 0; j < 3; j++)
ep_board[ep_boards].eth_addr[j] = get_eeprom_data(id_port, j);
ep_board[ep_boards].res_cfg =
get_eeprom_data(id_port, EEPROM_RESOURCE_CFG);
ep_board[ep_boards].prod_id =
get_eeprom_data(id_port, EEPROM_PROD_ID);
ep_board[ep_boards].epb_used = 0;
#ifdef PC98
ep_board[ep_boards].epb_addr =
(get_eeprom_data(id_port, EEPROM_ADDR_CFG) & 0x1f) * 0x100 + 0x40d0;
#else
ep_board[ep_boards].epb_addr =
(get_eeprom_data(id_port, EEPROM_ADDR_CFG) & 0x1f) * 0x10 + 0x200;
if (ep_board[ep_boards].epb_addr > 0x3E0)
/* Board in EISA configuration mode */
continue;
#endif /* PC98 */
outb(id_port, ep_current_tag); /* tags board */
outb(id_port, ACTIVATE_ADAPTER_TO_CONFIG);
ep_boards++;
count++;
ep_current_tag--;
}
ep_board[ep_boards].epb_addr = 0;
if (count) {
printf("%d 3C5x9 board(s) on ISA found at", count);
for (j = 0; ep_board[j].epb_addr; j++)
if (ep_board[j].epb_addr <= 0x3E0)
printf(" 0x%x", ep_board[j].epb_addr);
printf("\n");
}
}
/* we have two cases:
*
* 1. Device was configured with 'port ?'
* In this case we search for the first unused card in list
*
* 2. Device was configured with 'port xxx'
* In this case we search for the unused card with that address
*
*/
if (IS_BASE == -1) { /* port? */
for (i = 0; ep_board[i].epb_addr && ep_board[i].epb_used; i++)
;
if (ep_board[i].epb_addr == 0)
return 0;
IS_BASE = ep_board[i].epb_addr;
ep_board[i].epb_used = 1;
return &ep_board[i];
} else {
for (i = 0;
ep_board[i].epb_addr && ep_board[i].epb_addr != IS_BASE;
i++)
;
if (ep_board[i].epb_used || ep_board[i].epb_addr != IS_BASE)
return 0;
if (inw(IS_BASE + EP_W0_EEPROM_COMMAND) & EEPROM_TST_MODE) {
printf("ep%d: 3c5x9 at 0x%x in PnP mode. Disable PnP mode!\n",
is->id_unit, IS_BASE);
}
ep_board[i].epb_used = 1;
return &ep_board[i];
}
}
/*
* get_e: gets a 16 bits word from the EEPROM. we must have set the window
* before
*/
u_int16_t
get_e(sc, offset)
struct ep_softc *sc;
int offset;
{
if (!eeprom_rdy(sc))
return (0xffff);
outw(BASE + EP_W0_EEPROM_COMMAND, EEPROM_CMD_RD | offset);
if (!eeprom_rdy(sc))
return (0xffff);
return (inw(BASE + EP_W0_EEPROM_DATA));
}
struct ep_softc *
ep_alloc(unit, epb)
int unit;
struct ep_board *epb;
{
struct ep_softc *sc;
if (unit >= NEP) {
printf("ep: unit number (%d) too high\n", unit);
return NULL;
}
/*
* Allocate a storage area for us
*/
if (ep_softc[unit]) {
printf("ep%d: unit number already allocated to another "
"adaptor\n", unit);
return NULL;
}
sc = malloc(sizeof(struct ep_softc), M_DEVBUF, M_NOWAIT);
if (!sc) {
printf("ep%d: cannot malloc!\n", unit);
return NULL;
}
bzero(sc, sizeof(struct ep_softc));
ep_softc[unit] = sc;
sc->unit = unit;
sc->ep_io_addr = epb->epb_addr;
sc->epb = epb;
return(sc);
}
void
ep_free(sc)
struct ep_softc *sc;
{
ep_softc[sc->unit] = NULL;
free(sc, M_DEVBUF);
return;
}
int
ep_isa_probe(is)
struct isa_device *is;
{
struct ep_softc *sc;
struct ep_board *epb;
u_short k;
if ((epb = ep_look_for_board_at(is)) == 0)
return (0);
/*
* Allocate a storage area for us
*/
sc = ep_alloc(ep_unit, epb);
if (!sc)
return (0);
is->id_unit = ep_unit++;
/*
* The iobase was found and MFG_ID was 0x6d50. PROD_ID should be
* 0x9[0-f]50 (IBM-PC)
* 0x9[0-f]5[0-f] (PC-98)
*/
GO_WINDOW(0);
k = sc->epb->prod_id;
#ifdef PC98
if ((k & 0xf0f0) != (PROD_ID & 0xf0f0)) {
#else
if ((k & 0xf0ff) != (PROD_ID & 0xf0ff)) {
#endif
printf("ep_isa_probe: ignoring model %04x\n", k);
ep_free(sc);
return (0);
}
k = sc->epb->res_cfg;
k >>= 12;
/* Now we have two cases again:
*
* 1. Device was configured with 'irq?'
* In this case we use irq read from the board
*
* 2. Device was configured with 'irq xxx'
* In this case we set up the board to use specified interrupt
*
*/
if (is->id_irq == 0) { /* irq? */
is->id_irq = 1 << ((k == 2) ? 9 : k);
}
sc->stat = 0; /* 16 bit access */
/* By now, the adapter is already activated */
return (EP_IOSIZE); /* 16 bytes of I/O space used. */
}
static int
ep_isa_attach(is)
struct isa_device *is;
{
struct ep_softc *sc = ep_softc[is->id_unit];
u_short config;
int irq;
sc->ep_connectors = 0;
config = inw(IS_BASE + EP_W0_CONFIG_CTRL);
if (config & IS_AUI) {
sc->ep_connectors |= AUI;
}
if (config & IS_BNC) {
sc->ep_connectors |= BNC;
}
if (config & IS_UTP) {
sc->ep_connectors |= UTP;
}
if (!(sc->ep_connectors & 7))
printf("no connectors!");
sc->ep_connector = inw(BASE + EP_W0_ADDRESS_CFG) >> ACF_CONNECTOR_BITS;
/*
* Write IRQ value to board
*/
irq = ffs(is->id_irq) - 1;
if (irq == -1) {
printf(" invalid irq... cannot attach\n");
return 0;
}
GO_WINDOW(0);
SET_IRQ(BASE, irq);
ep_attach(sc);
return 1;
}
int
ep_attach(sc)
struct ep_softc *sc;
{
struct ifnet *ifp = &sc->arpcom.ac_if;
u_short *p;
int i;
int attached;
sc->gone = 0;
attached = (ifp->if_softc != 0);
printf("ep%d: ", sc->unit);
/*
* Current media type
*/
if (sc->ep_connectors & AUI) {
printf("aui");
if (sc->ep_connectors & ~AUI)
printf("/");
}
if (sc->ep_connectors & UTP) {
printf("utp");
if (sc->ep_connectors & BNC)
printf("/");
}
if (sc->ep_connectors & BNC) {
printf("bnc");
}
printf("[*%s*]", ep_conn_type[sc->ep_connector]);
/*
* Setup the station address
*/
p = (u_short *) & sc->arpcom.ac_enaddr;
GO_WINDOW(2);
for (i = 0; i < 3; i++) {
p[i] = htons(sc->epb->eth_addr[i]);
outw(BASE + EP_W2_ADDR_0 + (i * 2), ntohs(p[i]));
}
printf(" address %6D\n", sc->arpcom.ac_enaddr, ":");
ifp->if_softc = sc;
ifp->if_unit = sc->unit;
ifp->if_name = "ep";
ifp->if_mtu = ETHERMTU;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_output = ether_output;
ifp->if_start = epstart;
ifp->if_ioctl = epioctl;
ifp->if_watchdog = epwatchdog;
if (!attached) {
if_attach(ifp);
ether_ifattach(ifp);
}
#ifdef EP_LOCAL_STATS
sc->rx_no_first = sc->rx_no_mbuf =
sc->rx_bpf_disc = sc->rx_overrunf = sc->rx_overrunl =
sc->tx_underrun = 0;
#endif
ep_fset(F_RX_FIRST);
sc->top = sc->mcur = 0;
#if NBPFILTER > 0
if (!attached) {
bpfattach(ifp, DLT_EN10MB, sizeof(struct ether_header));
}
#endif
return 0;
}
/*
* The order in here seems important. Otherwise we may not receive
* interrupts. ?!
*/
static void
epinit(sc)
struct ep_softc *sc;
{
register struct ifnet *ifp = &sc->arpcom.ac_if;
int s, i, j;
if (sc->gone)
return;
/*
if (ifp->if_addrlist == (struct ifaddr *) 0)
return;
*/
s = splimp();
while (inw(BASE + EP_STATUS) & S_COMMAND_IN_PROGRESS);
GO_WINDOW(0);
outw(BASE + EP_COMMAND, STOP_TRANSCEIVER);
GO_WINDOW(4);
outw(BASE + EP_W4_MEDIA_TYPE, DISABLE_UTP);
GO_WINDOW(0);
/* Disable the card */
outw(BASE + EP_W0_CONFIG_CTRL, 0);
/* Enable the card */
outw(BASE + EP_W0_CONFIG_CTRL, ENABLE_DRQ_IRQ);
GO_WINDOW(2);
/* Reload the ether_addr. */
for (i = 0; i < 6; i++)
outb(BASE + EP_W2_ADDR_0 + i, sc->arpcom.ac_enaddr[i]);
outw(BASE + EP_COMMAND, RX_RESET);
outw(BASE + EP_COMMAND, TX_RESET);
while (inw(BASE + EP_STATUS) & S_COMMAND_IN_PROGRESS);
/* Window 1 is operating window */
GO_WINDOW(1);
for (i = 0; i < 31; i++)
inb(BASE + EP_W1_TX_STATUS);
/* get rid of stray intr's */
outw(BASE + EP_COMMAND, ACK_INTR | 0xff);
outw(BASE + EP_COMMAND, SET_RD_0_MASK | S_5_INTS);
outw(BASE + EP_COMMAND, SET_INTR_MASK | S_5_INTS);
if (ifp->if_flags & IFF_PROMISC)
outw(BASE + EP_COMMAND, SET_RX_FILTER | FIL_INDIVIDUAL |
FIL_GROUP | FIL_BRDCST | FIL_ALL);
else
outw(BASE + EP_COMMAND, SET_RX_FILTER | FIL_INDIVIDUAL |
FIL_GROUP | FIL_BRDCST);
/*
* S.B.
*
* Now behavior was slightly changed:
*
* if any of flags link[0-2] is used and its connector is
* physically present the following connectors are used:
*
* link0 - AUI * highest precedence
* link1 - BNC
* link2 - UTP * lowest precedence
*
* If none of them is specified then
* connector specified in the EEPROM is used
* (if present on card or AUI if not).
*
*/
/* Set the xcvr. */
if (ifp->if_flags & IFF_LINK0 && sc->ep_connectors & AUI) {
i = ACF_CONNECTOR_AUI;
} else if (ifp->if_flags & IFF_LINK1 && sc->ep_connectors & BNC) {
i = ACF_CONNECTOR_BNC;
} else if (ifp->if_flags & IFF_LINK2 && sc->ep_connectors & UTP) {
i = ACF_CONNECTOR_UTP;
} else {
i = sc->ep_connector;
}
GO_WINDOW(0);
j = inw(BASE + EP_W0_ADDRESS_CFG) & 0x3fff;
outw(BASE + EP_W0_ADDRESS_CFG, j | (i << ACF_CONNECTOR_BITS));
switch(i) {
case ACF_CONNECTOR_UTP:
if (sc->ep_connectors & UTP) {
GO_WINDOW(4);
outw(BASE + EP_W4_MEDIA_TYPE, ENABLE_UTP);
}
break;
case ACF_CONNECTOR_BNC:
if (sc->ep_connectors & BNC) {
outw(BASE + EP_COMMAND, START_TRANSCEIVER);
DELAY(1000);
}
break;
case ACF_CONNECTOR_AUI:
/* nothing to do */
break;
default:
printf("ep%d: strange connector type in EEPROM: assuming AUI\n",
sc->unit);
break;
}
outw(BASE + EP_COMMAND, RX_ENABLE);
outw(BASE + EP_COMMAND, TX_ENABLE);
ifp->if_flags |= IFF_RUNNING;
ifp->if_flags &= ~IFF_OACTIVE; /* just in case */
#ifdef EP_LOCAL_STATS
sc->rx_no_first = sc->rx_no_mbuf =
sc->rx_bpf_disc = sc->rx_overrunf = sc->rx_overrunl =
sc->tx_underrun = 0;
#endif
ep_fset(F_RX_FIRST);
if (sc->top) {
m_freem(sc->top);
sc->top = sc->mcur = 0;
}
outw(BASE + EP_COMMAND, SET_RX_EARLY_THRESH | RX_INIT_EARLY_THRESH);
outw(BASE + EP_COMMAND, SET_TX_START_THRESH | 16);
/*
* Store up a bunch of mbuf's for use later. (MAX_MBS). First we free up
* any that we had in case we're being called from intr or somewhere
* else.
*/
GO_WINDOW(1);
epstart(ifp);
splx(s);
}
static const char padmap[] = {0, 3, 2, 1};
static void
epstart(ifp)
struct ifnet *ifp;
{
register struct ep_softc *sc = ifp->if_softc;
register u_int len;
register struct mbuf *m;
struct mbuf *top;
int s, pad;
if (sc->gone) {
return;
}
s = splimp();
while (inw(BASE + EP_STATUS) & S_COMMAND_IN_PROGRESS);
if (ifp->if_flags & IFF_OACTIVE) {
splx(s);
return;
}
startagain:
/* Sneak a peek at the next packet */
m = ifp->if_snd.ifq_head;
if (m == 0) {
splx(s);
return;
}
for (len = 0, top = m; m; m = m->m_next)
len += m->m_len;
pad = padmap[len & 3];
/*
* The 3c509 automatically pads short packets to minimum ethernet length,
* but we drop packets that are too large. Perhaps we should truncate
* them instead?
*/
if (len + pad > ETHER_MAX_LEN) {
/* packet is obviously too large: toss it */
++ifp->if_oerrors;
IF_DEQUEUE(&ifp->if_snd, m);
m_freem(m);
goto readcheck;
}
if (inw(BASE + EP_W1_FREE_TX) < len + pad + 4) {
/* no room in FIFO */
outw(BASE + EP_COMMAND, SET_TX_AVAIL_THRESH | (len + pad + 4));
/* make sure */
if (inw(BASE + EP_W1_FREE_TX) < len + pad + 4) {
ifp->if_flags |= IFF_OACTIVE;
splx(s);
return;
}
}
IF_DEQUEUE(&ifp->if_snd, m);
outw(BASE + EP_W1_TX_PIO_WR_1, len);
outw(BASE + EP_W1_TX_PIO_WR_1, 0x0); /* Second dword meaningless */
for (top = m; m != 0; m = m->m_next)
if (ep_ftst(F_ACCESS_32_BITS)) {
outsl(BASE + EP_W1_TX_PIO_WR_1, mtod(m, caddr_t),
m->m_len / 4);
if (m->m_len & 3)
outsb(BASE + EP_W1_TX_PIO_WR_1,
mtod(m, caddr_t) + (m->m_len & (~3)),
m->m_len & 3);
} else {
outsw(BASE + EP_W1_TX_PIO_WR_1, mtod(m, caddr_t), m->m_len / 2);
if (m->m_len & 1)
outb(BASE + EP_W1_TX_PIO_WR_1,
*(mtod(m, caddr_t) + m->m_len - 1));
}
while (pad--)
outb(BASE + EP_W1_TX_PIO_WR_1, 0); /* Padding */
#if NBPFILTER > 0
if (ifp->if_bpf) {
bpf_mtap(ifp, top);
}
#endif
ifp->if_timer = 2;
ifp->if_opackets++;
m_freem(top);
/*
* Is another packet coming in? We don't want to overflow the tiny RX
* fifo.
*/
readcheck:
if (inw(BASE + EP_W1_RX_STATUS) & RX_BYTES_MASK) {
/*
* we check if we have packets left, in that case we prepare to come
* back later
*/
if (ifp->if_snd.ifq_head) {
outw(BASE + EP_COMMAND, SET_TX_AVAIL_THRESH | 8);
}
splx(s);
return;
}
goto startagain;
}
void
epintr(unit)
int unit;
{
register struct ep_softc *sc = ep_softc[unit];
if (sc->gone) {
return;
}
ep_intr(sc);
}
void
ep_intr(arg)
void *arg;
{
struct ep_softc *sc;
register int status;
struct ifnet *ifp;
int x;
x = splbio();
sc = (struct ep_softc *)arg;
ifp = &sc->arpcom.ac_if;
outw(BASE + EP_COMMAND, SET_INTR_MASK); /* disable all Ints */
rescan:
while ((status = inw(BASE + EP_STATUS)) & S_5_INTS) {
/* first acknowledge all interrupt sources */
outw(BASE + EP_COMMAND, ACK_INTR | (status & S_MASK));
if (status & (S_RX_COMPLETE | S_RX_EARLY)) {
epread(sc);
continue;
}
if (status & S_TX_AVAIL) {
/* we need ACK */
ifp->if_timer = 0;
ifp->if_flags &= ~IFF_OACTIVE;
GO_WINDOW(1);
inw(BASE + EP_W1_FREE_TX);
epstart(ifp);
}
if (status & S_CARD_FAILURE) {
ifp->if_timer = 0;
#ifdef EP_LOCAL_STATS
printf("\nep%d:\n\tStatus: %x\n", sc->unit, status);
GO_WINDOW(4);
printf("\tFIFO Diagnostic: %x\n", inw(BASE + EP_W4_FIFO_DIAG));
printf("\tStat: %x\n", sc->stat);
printf("\tIpackets=%d, Opackets=%d\n",
ifp->if_ipackets, ifp->if_opackets);
printf("\tNOF=%d, NOMB=%d, BPFD=%d, RXOF=%d, RXOL=%d, TXU=%d\n",
sc->rx_no_first, sc->rx_no_mbuf, sc->rx_bpf_disc, sc->rx_overrunf,
sc->rx_overrunl, sc->tx_underrun);
#else
#ifdef DIAGNOSTIC
printf("ep%d: Status: %x (input buffer overflow)\n", sc->unit, status);
#else
++ifp->if_ierrors;
#endif
#endif
epinit(sc);
splx(x);
return;
}
if (status & S_TX_COMPLETE) {
ifp->if_timer = 0;
/* we need ACK. we do it at the end */
/*
* We need to read TX_STATUS until we get a 0 status in order to
* turn off the interrupt flag.
*/
while ((status = inb(BASE + EP_W1_TX_STATUS)) & TXS_COMPLETE) {
if (status & TXS_SUCCES_INTR_REQ);
else if (status & (TXS_UNDERRUN | TXS_JABBER | TXS_MAX_COLLISION)) {
outw(BASE + EP_COMMAND, TX_RESET);
if (status & TXS_UNDERRUN) {
#ifdef EP_LOCAL_STATS
sc->tx_underrun++;
#endif
} else {
if (status & TXS_JABBER);
else /* TXS_MAX_COLLISION - we shouldn't get here */
++ifp->if_collisions;
}
++ifp->if_oerrors;
outw(BASE + EP_COMMAND, TX_ENABLE);
/*
* To have a tx_avail_int but giving the chance to the
* Reception
*/
if (ifp->if_snd.ifq_head) {
outw(BASE + EP_COMMAND, SET_TX_AVAIL_THRESH | 8);
}
}
outb(BASE + EP_W1_TX_STATUS, 0x0); /* pops up the next
* status */
} /* while */
ifp->if_flags &= ~IFF_OACTIVE;
GO_WINDOW(1);
inw(BASE + EP_W1_FREE_TX);
epstart(ifp);
} /* end TX_COMPLETE */
}
outw(BASE + EP_COMMAND, C_INTR_LATCH); /* ACK int Latch */
if ((status = inw(BASE + EP_STATUS)) & S_5_INTS)
goto rescan;
/* re-enable Ints */
outw(BASE + EP_COMMAND, SET_INTR_MASK | S_5_INTS);
splx(x);
}
static void
epread(sc)
register struct ep_softc *sc;
{
struct ether_header *eh;
struct mbuf *top, *mcur, *m;
struct ifnet *ifp;
int lenthisone;
short rx_fifo2, status;
register short rx_fifo;
ifp = &sc->arpcom.ac_if;
status = inw(BASE + EP_W1_RX_STATUS);
read_again:
if (status & ERR_RX) {
++ifp->if_ierrors;
if (status & ERR_RX_OVERRUN) {
/*
* we can think the rx latency is actually greather than we
* expect
*/
#ifdef EP_LOCAL_STATS
if (ep_ftst(F_RX_FIRST))
sc->rx_overrunf++;
else
sc->rx_overrunl++;
#endif
}
goto out;
}
rx_fifo = rx_fifo2 = status & RX_BYTES_MASK;
if (ep_ftst(F_RX_FIRST)) {
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (!m)
goto out;
if (rx_fifo >= MINCLSIZE)
MCLGET(m, M_DONTWAIT);
sc->top = sc->mcur = top = m;
#define EROUND ((sizeof(struct ether_header) + 3) & ~3)
#define EOFF (EROUND - sizeof(struct ether_header))
top->m_data += EOFF;
/* Read what should be the header. */
insw(BASE + EP_W1_RX_PIO_RD_1,
mtod(top, caddr_t), sizeof(struct ether_header) / 2);
top->m_len = sizeof(struct ether_header);
rx_fifo -= sizeof(struct ether_header);
sc->cur_len = rx_fifo2;
} else {
/* come here if we didn't have a complete packet last time */
top = sc->top;
m = sc->mcur;
sc->cur_len += rx_fifo2;
}
/* Reads what is left in the RX FIFO */
while (rx_fifo > 0) {
lenthisone = min(rx_fifo, M_TRAILINGSPACE(m));
if (lenthisone == 0) { /* no room in this one */
mcur = m;
MGET(m, M_DONTWAIT, MT_DATA);
if (!m)
goto out;
if (rx_fifo >= MINCLSIZE)
MCLGET(m, M_DONTWAIT);
m->m_len = 0;
mcur->m_next = m;
lenthisone = min(rx_fifo, M_TRAILINGSPACE(m));
}
if (ep_ftst(F_ACCESS_32_BITS)) { /* default for EISA configured cards*/
insl(BASE + EP_W1_RX_PIO_RD_1, mtod(m, caddr_t) + m->m_len,
lenthisone / 4);
m->m_len += (lenthisone & ~3);
if (lenthisone & 3)
insb(BASE + EP_W1_RX_PIO_RD_1,
mtod(m, caddr_t) + m->m_len,
lenthisone & 3);
m->m_len += (lenthisone & 3);
} else {
insw(BASE + EP_W1_RX_PIO_RD_1, mtod(m, caddr_t) + m->m_len,
lenthisone / 2);
m->m_len += lenthisone;
if (lenthisone & 1)
*(mtod(m, caddr_t) + m->m_len - 1) = inb(BASE + EP_W1_RX_PIO_RD_1);
}
rx_fifo -= lenthisone;
}
if (status & ERR_RX_INCOMPLETE) { /* we haven't received the complete
* packet */
sc->mcur = m;
#ifdef EP_LOCAL_STATS
sc->rx_no_first++; /* to know how often we come here */
#endif
ep_frst(F_RX_FIRST);
if (!((status = inw(BASE + EP_W1_RX_STATUS)) & ERR_RX_INCOMPLETE)) {
/* we see if by now, the packet has completly arrived */
goto read_again;
}
outw(BASE + EP_COMMAND, SET_RX_EARLY_THRESH | RX_NEXT_EARLY_THRESH);
return;
}
outw(BASE + EP_COMMAND, RX_DISCARD_TOP_PACK);
++ifp->if_ipackets;
ep_fset(F_RX_FIRST);
top->m_pkthdr.rcvif = &sc->arpcom.ac_if;
top->m_pkthdr.len = sc->cur_len;
#if NBPFILTER > 0
if (ifp->if_bpf) {
bpf_mtap(ifp, top);
/*
* Note that the interface cannot be in promiscuous mode if there are
* no BPF listeners. And if we are in promiscuous mode, we have to
* check if this packet is really ours.
*/
eh = mtod(top, struct ether_header *);
if ((ifp->if_flags & IFF_PROMISC) &&
(eh->ether_dhost[0] & 1) == 0 &&
bcmp(eh->ether_dhost, sc->arpcom.ac_enaddr,
sizeof(eh->ether_dhost)) != 0 &&
bcmp(eh->ether_dhost, etherbroadcastaddr,
sizeof(eh->ether_dhost)) != 0) {
if (sc->top) {
m_freem(sc->top);
sc->top = 0;
}
ep_fset(F_RX_FIRST);
#ifdef EP_LOCAL_STATS
sc->rx_bpf_disc++;
#endif
while (inw(BASE + EP_STATUS) & S_COMMAND_IN_PROGRESS);
outw(BASE + EP_COMMAND, SET_RX_EARLY_THRESH | RX_INIT_EARLY_THRESH);
return;
}
}
#endif
eh = mtod(top, struct ether_header *);
m_adj(top, sizeof(struct ether_header));
ether_input(ifp, eh, top);
sc->top = 0;
while (inw(BASE + EP_STATUS) & S_COMMAND_IN_PROGRESS);
outw(BASE + EP_COMMAND, SET_RX_EARLY_THRESH | RX_INIT_EARLY_THRESH);
return;
out:
outw(BASE + EP_COMMAND, RX_DISCARD_TOP_PACK);
if (sc->top) {
m_freem(sc->top);
sc->top = 0;
#ifdef EP_LOCAL_STATS
sc->rx_no_mbuf++;
#endif
}
ep_fset(F_RX_FIRST);
while (inw(BASE + EP_STATUS) & S_COMMAND_IN_PROGRESS);
outw(BASE + EP_COMMAND, SET_RX_EARLY_THRESH | RX_INIT_EARLY_THRESH);
}
/*
* Look familiar?
*/
static int
epioctl(ifp, cmd, data)
register struct ifnet *ifp;
int cmd;
caddr_t data;
{
register struct ifaddr *ifa = (struct ifaddr *) data;
struct ep_softc *sc = ifp->if_softc;
struct ifreq *ifr = (struct ifreq *) data;
int s, error = 0;
s = splimp();
switch (cmd) {
case SIOCSIFADDR:
ifp->if_flags |= IFF_UP;
/* netifs are BUSY when UP */
switch (ifa->ifa_addr->sa_family) {
#ifdef INET
case AF_INET:
epinit(sc); /* before arpwhohas */
arp_ifinit((struct arpcom *)ifp, ifa);
break;
#endif
#ifdef IPX
case AF_IPX:
{
register struct ipx_addr *ina = &(IA_SIPX(ifa)->sipx_addr);
if (ipx_nullhost(*ina))
ina->x_host =
*(union ipx_host *) (sc->arpcom.ac_enaddr);
else {
ifp->if_flags &= ~IFF_RUNNING;
bcopy((caddr_t) ina->x_host.c_host,
(caddr_t) sc->arpcom.ac_enaddr,
sizeof(sc->arpcom.ac_enaddr));
}
epinit(sc);
break;
}
#endif
#ifdef NS
case AF_NS:
{
register struct ns_addr *ina = &(IA_SNS(ifa)->sns_addr);
if (ns_nullhost(*ina))
ina->x_host =
*(union ns_host *) (sc->arpcom.ac_enaddr);
else {
ifp->if_flags &= ~IFF_RUNNING;
bcopy((caddr_t) ina->x_host.c_host,
(caddr_t) sc->arpcom.ac_enaddr,
sizeof(sc->arpcom.ac_enaddr));
}
epinit(sc);
break;
}
#endif
default:
epinit(sc);
break;
}
break;
case SIOCGIFADDR:
{
struct sockaddr *sa;
sa = (struct sockaddr *) & ifr->ifr_data;
bcopy((caddr_t) sc->arpcom.ac_enaddr,
(caddr_t) sa->sa_data, ETHER_ADDR_LEN);
}
break;
case SIOCSIFFLAGS:
if ((ifp->if_flags & IFF_UP) == 0 && ifp->if_flags & IFF_RUNNING) {
ifp->if_flags &= ~IFF_RUNNING;
epstop(sc);
break;
} else {
/* reinitialize card on any parameter change */
epinit(sc);
break;
}
/* NOTREACHED */
break;
#ifdef notdef
case SIOCGHWADDR:
bcopy((caddr_t) sc->sc_addr, (caddr_t) & ifr->ifr_data,
sizeof(sc->sc_addr));
break;
#endif
case SIOCSIFMTU:
/*
* Set the interface MTU.
*/
if (ifr->ifr_mtu > ETHERMTU) {
error = EINVAL;
} else {
ifp->if_mtu = ifr->ifr_mtu;
}
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
/*
* The Etherlink III has no programmable multicast
* filter. We always initialize the card to be
* promiscuous to multicast, since we're always a
* member of the ALL-SYSTEMS group, so there's no
* need to process SIOC*MULTI requests.
*/
error = 0;
break;
default:
error = EINVAL;
}
splx(s);
return (error);
}
static void
epwatchdog(ifp)
struct ifnet *ifp;
{
struct ep_softc *sc = ifp->if_softc;
/*
printf("ep: watchdog\n");
log(LOG_ERR, "ep%d: watchdog\n", ifp->if_unit);
ifp->if_oerrors++;
*/
if (sc->gone) {
return;
}
ifp->if_flags &= ~IFF_OACTIVE;
epstart(ifp);
ep_intr(ifp->if_softc);
}
static void
epstop(sc)
struct ep_softc *sc;
{
if (sc->gone) {
return;
}
outw(BASE + EP_COMMAND, RX_DISABLE);
outw(BASE + EP_COMMAND, RX_DISCARD_TOP_PACK);
while (inw(BASE + EP_STATUS) & S_COMMAND_IN_PROGRESS);
outw(BASE + EP_COMMAND, TX_DISABLE);
outw(BASE + EP_COMMAND, STOP_TRANSCEIVER);
outw(BASE + EP_COMMAND, RX_RESET);
outw(BASE + EP_COMMAND, TX_RESET);
while (inw(BASE + EP_STATUS) & S_COMMAND_IN_PROGRESS);
outw(BASE + EP_COMMAND, C_INTR_LATCH);
outw(BASE + EP_COMMAND, SET_RD_0_MASK);
outw(BASE + EP_COMMAND, SET_INTR_MASK);
outw(BASE + EP_COMMAND, SET_RX_FILTER);
}
#if 0
static int
send_ID_sequence(port)
int port;
{
int cx, al;
for (al = 0xff, cx = 0; cx < 255; cx++) {
outb(port, al);
al <<= 1;
if (al & 0x100)
al ^= 0xcf;
}
return (1);
}
#endif
/*
* We get eeprom data from the id_port given an offset into the eeprom.
* Basically; after the ID_sequence is sent to all of the cards; they enter
* the ID_CMD state where they will accept command requests. 0x80-0xbf loads
* the eeprom data. We then read the port 16 times and with every read; the
* cards check for contention (ie: if one card writes a 0 bit and another
* writes a 1 bit then the host sees a 0. At the end of the cycle; each card
* compares the data on the bus; if there is a difference then that card goes
* into ID_WAIT state again). In the meantime; one bit of data is returned in
* the AX register which is conveniently returned to us by inb(). Hence; we
* read 16 times getting one bit of data with each read.
*/
static int
get_eeprom_data(id_port, offset)
int id_port;
int offset;
{
int i, data = 0;
outb(id_port, 0x80 + offset);
DELAY(1000);
for (i = 0; i < 16; i++)
data = (data << 1) | (inw(id_port) & 1);
return (data);
}
#endif /* NEP > 0 */