721 lines
28 KiB
C++
721 lines
28 KiB
C++
//===- utils/TableGen/X86FoldTablesEmitter.cpp - X86 backend-*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This tablegen backend is responsible for emitting the memory fold tables of
|
|
// the X86 backend instructions.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "CodeGenDAGPatterns.h"
|
|
#include "CodeGenTarget.h"
|
|
#include "X86RecognizableInstr.h"
|
|
#include "llvm/TableGen/Error.h"
|
|
#include "llvm/TableGen/TableGenBackend.h"
|
|
|
|
using namespace llvm;
|
|
|
|
namespace {
|
|
|
|
// 3 possible strategies for the unfolding flag (TB_NO_REVERSE) of the
|
|
// manual added entries.
|
|
enum UnfoldStrategy {
|
|
UNFOLD, // Allow unfolding
|
|
NO_UNFOLD, // Prevent unfolding
|
|
NO_STRATEGY // Make decision according to operands' sizes
|
|
};
|
|
|
|
// Represents an entry in the manual mapped instructions set.
|
|
struct ManualMapEntry {
|
|
const char *RegInstStr;
|
|
const char *MemInstStr;
|
|
UnfoldStrategy Strategy;
|
|
|
|
ManualMapEntry(const char *RegInstStr, const char *MemInstStr,
|
|
UnfoldStrategy Strategy = NO_STRATEGY)
|
|
: RegInstStr(RegInstStr), MemInstStr(MemInstStr), Strategy(Strategy) {}
|
|
};
|
|
|
|
class IsMatch;
|
|
|
|
// List of instructions requiring explicitly aligned memory.
|
|
const char *const ExplicitAlign[] = {"MOVDQA", "MOVAPS", "MOVAPD", "MOVNTPS",
|
|
"MOVNTPD", "MOVNTDQ", "MOVNTDQA"};
|
|
|
|
// List of instructions NOT requiring explicit memory alignment.
|
|
const char *const ExplicitUnalign[] = {"MOVDQU", "MOVUPS", "MOVUPD"};
|
|
|
|
// For manually mapping instructions that do not match by their encoding.
|
|
const ManualMapEntry ManualMapSet[] = {
|
|
{ "ADD16ri_DB", "ADD16mi", NO_UNFOLD },
|
|
{ "ADD16ri8_DB", "ADD16mi8", NO_UNFOLD },
|
|
{ "ADD16rr_DB", "ADD16mr", NO_UNFOLD },
|
|
{ "ADD32ri_DB", "ADD32mi", NO_UNFOLD },
|
|
{ "ADD32ri8_DB", "ADD32mi8", NO_UNFOLD },
|
|
{ "ADD32rr_DB", "ADD32mr", NO_UNFOLD },
|
|
{ "ADD64ri32_DB", "ADD64mi32", NO_UNFOLD },
|
|
{ "ADD64ri8_DB", "ADD64mi8", NO_UNFOLD },
|
|
{ "ADD64rr_DB", "ADD64mr", NO_UNFOLD },
|
|
{ "ADD16rr_DB", "ADD16rm", NO_UNFOLD },
|
|
{ "ADD32rr_DB", "ADD32rm", NO_UNFOLD },
|
|
{ "ADD64rr_DB", "ADD64rm", NO_UNFOLD },
|
|
{ "PUSH16r", "PUSH16rmm", NO_UNFOLD },
|
|
{ "PUSH32r", "PUSH32rmm", NO_UNFOLD },
|
|
{ "PUSH64r", "PUSH64rmm", NO_UNFOLD },
|
|
{ "TAILJMPr", "TAILJMPm", UNFOLD },
|
|
{ "TAILJMPr64", "TAILJMPm64", UNFOLD },
|
|
{ "TAILJMPr64_REX", "TAILJMPm64_REX", UNFOLD },
|
|
};
|
|
|
|
// Do not add these instructions to any of the folding tables.
|
|
const char *const NoFoldSet[] = {
|
|
"TCRETURNri64",
|
|
"TCRETURNmi64", // Special dealing (in X86InstrCompiler.td under
|
|
"TCRETURNri", // "tailcall stuff" section).
|
|
"TCRETURNmi"
|
|
|
|
// Different calculations of the folded operand between
|
|
// memory and register forms (folding is illegal).
|
|
// - In their register form, the second register operand's relevant
|
|
// bits are only the first 4/5/6 (depending on mode and reg size).
|
|
// - In their memory form, the second register operand's relevant
|
|
// bits are only the first 16/32/64 (depending on mode and reg size).
|
|
"BT16rr", "BT32rr", "BT64rr",
|
|
"BT16mr", "BT32mr", "BT64mr",
|
|
"BTC16rr", "BTC32rr", "BTC64rr",
|
|
"BTC16mr", "BTC32mr", "BTC64mr",
|
|
"BTR16rr", "BTR32rr", "BTR64rr",
|
|
"BTR16mr", "BTR32mr", "BTR64mr",
|
|
"BTS16rr", "BTS32rr", "BTS64rr",
|
|
"BTS16mr", "BTS32mr", "BTS64mr",
|
|
|
|
// Memory folding is enabled only when optimizing for size by DAG
|
|
// patterns only. (issue detailed in D28744 review)
|
|
"VCVTSS2SDrm", "VCVTSS2SDrr",
|
|
"VCVTSS2SDZrm", "VCVTSS2SDZrr",
|
|
"VCVTSS2SDZrmk", "VCVTSS2SDZrrk",
|
|
"VCVTSS2SDZrmkz", "VCVTSS2SDZrrkz",
|
|
"VCVTSS2SDZrm_Int", "VCVTSS2SDZrr_Int",
|
|
"VCVTSS2SDZrm_Intk", "VCVTSS2SDZrr_Intk",
|
|
"VCVTSS2SDZrm_Intkz", "VCVTSS2SDZrr_Intkz",
|
|
"VCVTSD2SSrm", "VCVTSD2SSrr",
|
|
"VCVTSD2SSZrm", "VCVTSD2SSZrr",
|
|
"VCVTSD2SSZrmk", "VCVTSD2SSZrrk",
|
|
"VCVTSD2SSZrmkz", "VCVTSD2SSZrrkz",
|
|
"VCVTSD2SSZrm_Int", "VCVTSD2SSZrr_Int",
|
|
"VCVTSD2SSZrm_Intk", "VCVTSD2SSZrr_Intk",
|
|
"VCVTSD2SSZrm_Intkz", "VCVTSD2SSZrr_Intkz",
|
|
"VRCP14SSrm", "VRCP14SSrr",
|
|
"VRCP14SDrm", "VRCP14SDrr",
|
|
"VRSQRT14SSrm", "VRSQRT14SSrr",
|
|
"VRSQRT14SDrm", "VRSQRT14SDrr",
|
|
"VSQRTSSm", "VSQRTSSr",
|
|
"VSQRTSSm_Int", "VSQRTSSr_Int",
|
|
"VSQRTSSZm", "VSQRTSSZr",
|
|
"VSQRTSSZm_Int", "VSQRTSSZr_Int",
|
|
"VSQRTSSZm_Intk", "VSQRTSSZr_Intk",
|
|
"VSQRTSSZm_Intkz", "VSQRTSSZr_Intkz",
|
|
"VSQRTSDm", "VSQRTSDr",
|
|
"VSQRTSDm_Int", "VSQRTSDr_Int",
|
|
"VSQRTSDZm", "VSQRTSDZr",
|
|
"VSQRTSDZm_Int", "VSQRTSDZr_Int",
|
|
"VSQRTSDZm_Intk", "VSQRTSDZr_Intk",
|
|
"VSQRTSDZm_Intkz", "VSQRTSDZr_Intkz",
|
|
};
|
|
|
|
static bool isExplicitAlign(const CodeGenInstruction *Inst) {
|
|
return any_of(ExplicitAlign, [Inst](const char *InstStr) {
|
|
return Inst->TheDef->getName().find(InstStr) != StringRef::npos;
|
|
});
|
|
}
|
|
|
|
static bool isExplicitUnalign(const CodeGenInstruction *Inst) {
|
|
return any_of(ExplicitUnalign, [Inst](const char *InstStr) {
|
|
return Inst->TheDef->getName().find(InstStr) != StringRef::npos;
|
|
});
|
|
}
|
|
|
|
class X86FoldTablesEmitter {
|
|
RecordKeeper &Records;
|
|
CodeGenTarget Target;
|
|
|
|
// Represents an entry in the folding table
|
|
class X86FoldTableEntry {
|
|
const CodeGenInstruction *RegInst;
|
|
const CodeGenInstruction *MemInst;
|
|
|
|
public:
|
|
bool CannotUnfold = false;
|
|
bool IsLoad = false;
|
|
bool IsStore = false;
|
|
bool IsAligned = false;
|
|
unsigned int Alignment = 0;
|
|
|
|
X86FoldTableEntry(const CodeGenInstruction *RegInst,
|
|
const CodeGenInstruction *MemInst)
|
|
: RegInst(RegInst), MemInst(MemInst) {}
|
|
|
|
friend raw_ostream &operator<<(raw_ostream &OS,
|
|
const X86FoldTableEntry &E) {
|
|
OS << "{ X86::" << E.RegInst->TheDef->getName()
|
|
<< ", X86::" << E.MemInst->TheDef->getName() << ", ";
|
|
|
|
if (E.IsLoad)
|
|
OS << "TB_FOLDED_LOAD | ";
|
|
if (E.IsStore)
|
|
OS << "TB_FOLDED_STORE | ";
|
|
if (E.CannotUnfold)
|
|
OS << "TB_NO_REVERSE | ";
|
|
if (E.IsAligned)
|
|
OS << "TB_ALIGN_" << E.Alignment << " | ";
|
|
|
|
OS << "0 },\n";
|
|
|
|
return OS;
|
|
}
|
|
};
|
|
|
|
typedef std::vector<X86FoldTableEntry> FoldTable;
|
|
// std::vector for each folding table.
|
|
// Table2Addr - Holds instructions which their memory form performs load+store
|
|
// Table#i - Holds instructions which the their memory form perform a load OR
|
|
// a store, and their #i'th operand is folded.
|
|
FoldTable Table2Addr;
|
|
FoldTable Table0;
|
|
FoldTable Table1;
|
|
FoldTable Table2;
|
|
FoldTable Table3;
|
|
FoldTable Table4;
|
|
|
|
public:
|
|
X86FoldTablesEmitter(RecordKeeper &R) : Records(R), Target(R) {}
|
|
|
|
// run - Generate the 6 X86 memory fold tables.
|
|
void run(raw_ostream &OS);
|
|
|
|
private:
|
|
// Decides to which table to add the entry with the given instructions.
|
|
// S sets the strategy of adding the TB_NO_REVERSE flag.
|
|
void updateTables(const CodeGenInstruction *RegInstr,
|
|
const CodeGenInstruction *MemInstr,
|
|
const UnfoldStrategy S = NO_STRATEGY);
|
|
|
|
// Generates X86FoldTableEntry with the given instructions and fill it with
|
|
// the appropriate flags - then adds it to Table.
|
|
void addEntryWithFlags(FoldTable &Table, const CodeGenInstruction *RegInstr,
|
|
const CodeGenInstruction *MemInstr,
|
|
const UnfoldStrategy S, const unsigned int FoldedInd);
|
|
|
|
// Print the given table as a static const C++ array of type
|
|
// X86MemoryFoldTableEntry.
|
|
void printTable(const FoldTable &Table, std::string TableName,
|
|
raw_ostream &OS) {
|
|
OS << "\nstatic const X86MemoryFoldTableEntry MemoryFold" << TableName
|
|
<< "[] = {\n";
|
|
|
|
for (const X86FoldTableEntry &E : Table)
|
|
OS.indent(2) << E;
|
|
|
|
OS << "};\n";
|
|
}
|
|
};
|
|
|
|
// Return true if one of the instruction's operands is a RST register class
|
|
static bool hasRSTRegClass(const CodeGenInstruction *Inst) {
|
|
return any_of(Inst->Operands, [](const CGIOperandList::OperandInfo &OpIn) {
|
|
return OpIn.Rec->getName() == "RST";
|
|
});
|
|
}
|
|
|
|
// Return true if one of the instruction's operands is a ptr_rc_tailcall
|
|
static bool hasPtrTailcallRegClass(const CodeGenInstruction *Inst) {
|
|
return any_of(Inst->Operands, [](const CGIOperandList::OperandInfo &OpIn) {
|
|
return OpIn.Rec->getName() == "ptr_rc_tailcall";
|
|
});
|
|
}
|
|
|
|
// Calculates the integer value representing the BitsInit object
|
|
static inline uint64_t getValueFromBitsInit(const BitsInit *B) {
|
|
assert(B->getNumBits() <= sizeof(uint64_t) * CHAR_BIT &&
|
|
"BitInits' too long!");
|
|
|
|
uint64_t Value = 0;
|
|
for (unsigned i = 0, e = B->getNumBits(); i != e; ++i) {
|
|
BitInit *Bit = cast<BitInit>(B->getBit(i));
|
|
Value |= uint64_t(Bit->getValue()) << i;
|
|
}
|
|
return Value;
|
|
}
|
|
|
|
// Returns true if the two given BitsInits represent the same integer value
|
|
static inline bool equalBitsInits(const BitsInit *B1, const BitsInit *B2) {
|
|
if (B1->getNumBits() != B2->getNumBits())
|
|
PrintFatalError("Comparing two BitsInits with different sizes!");
|
|
|
|
for (unsigned i = 0, e = B1->getNumBits(); i != e; ++i) {
|
|
BitInit *Bit1 = cast<BitInit>(B1->getBit(i));
|
|
BitInit *Bit2 = cast<BitInit>(B2->getBit(i));
|
|
if (Bit1->getValue() != Bit2->getValue())
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Return the size of the register operand
|
|
static inline unsigned int getRegOperandSize(const Record *RegRec) {
|
|
if (RegRec->isSubClassOf("RegisterOperand"))
|
|
RegRec = RegRec->getValueAsDef("RegClass");
|
|
if (RegRec->isSubClassOf("RegisterClass"))
|
|
return RegRec->getValueAsListOfDefs("RegTypes")[0]->getValueAsInt("Size");
|
|
|
|
llvm_unreachable("Register operand's size not known!");
|
|
}
|
|
|
|
// Return the size of the memory operand
|
|
static inline unsigned int
|
|
getMemOperandSize(const Record *MemRec, const bool IntrinsicSensitive = false) {
|
|
if (MemRec->isSubClassOf("Operand")) {
|
|
// Intrinsic memory instructions use ssmem/sdmem.
|
|
if (IntrinsicSensitive &&
|
|
(MemRec->getName() == "sdmem" || MemRec->getName() == "ssmem"))
|
|
return 128;
|
|
|
|
std::string Name =
|
|
MemRec->getValueAsDef("ParserMatchClass")->getValueAsString("Name");
|
|
if (Name == "Mem8")
|
|
return 8;
|
|
if (Name == "Mem16")
|
|
return 16;
|
|
if (Name == "Mem32")
|
|
return 32;
|
|
if (Name == "Mem64")
|
|
return 64;
|
|
if (Name == "Mem80")
|
|
return 80;
|
|
if (Name == "Mem128")
|
|
return 128;
|
|
if (Name == "Mem256")
|
|
return 256;
|
|
if (Name == "Mem512")
|
|
return 512;
|
|
}
|
|
|
|
llvm_unreachable("Memory operand's size not known!");
|
|
}
|
|
|
|
// Returns true if the record's list of defs includes the given def.
|
|
static inline bool hasDefInList(const Record *Rec, const StringRef List,
|
|
const StringRef Def) {
|
|
if (!Rec->isValueUnset(List)) {
|
|
return any_of(*(Rec->getValueAsListInit(List)),
|
|
[Def](const Init *I) { return I->getAsString() == Def; });
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Return true if the instruction defined as a register flavor.
|
|
static inline bool hasRegisterFormat(const Record *Inst) {
|
|
const BitsInit *FormBits = Inst->getValueAsBitsInit("FormBits");
|
|
uint64_t FormBitsNum = getValueFromBitsInit(FormBits);
|
|
|
|
// Values from X86Local namespace defined in X86RecognizableInstr.cpp
|
|
return FormBitsNum >= X86Local::MRMDestReg && FormBitsNum <= X86Local::MRM7r;
|
|
}
|
|
|
|
// Return true if the instruction defined as a memory flavor.
|
|
static inline bool hasMemoryFormat(const Record *Inst) {
|
|
const BitsInit *FormBits = Inst->getValueAsBitsInit("FormBits");
|
|
uint64_t FormBitsNum = getValueFromBitsInit(FormBits);
|
|
|
|
// Values from X86Local namespace defined in X86RecognizableInstr.cpp
|
|
return FormBitsNum >= X86Local::MRMDestMem && FormBitsNum <= X86Local::MRM7m;
|
|
}
|
|
|
|
static inline bool isNOREXRegClass(const Record *Op) {
|
|
return Op->getName().find("_NOREX") != StringRef::npos;
|
|
}
|
|
|
|
static inline bool isRegisterOperand(const Record *Rec) {
|
|
return Rec->isSubClassOf("RegisterClass") ||
|
|
Rec->isSubClassOf("RegisterOperand") ||
|
|
Rec->isSubClassOf("PointerLikeRegClass");
|
|
}
|
|
|
|
static inline bool isMemoryOperand(const Record *Rec) {
|
|
return Rec->isSubClassOf("Operand") &&
|
|
Rec->getValueAsString("OperandType") == "OPERAND_MEMORY";
|
|
}
|
|
|
|
static inline bool isImmediateOperand(const Record *Rec) {
|
|
return Rec->isSubClassOf("Operand") &&
|
|
Rec->getValueAsString("OperandType") == "OPERAND_IMMEDIATE";
|
|
}
|
|
|
|
// Get the alternative instruction pointed by "FoldGenRegForm" field.
|
|
static inline const CodeGenInstruction *
|
|
getAltRegInst(const CodeGenInstruction *I, const RecordKeeper &Records,
|
|
const CodeGenTarget &Target) {
|
|
|
|
std::string AltRegInstStr = I->TheDef->getValueAsString("FoldGenRegForm");
|
|
Record *AltRegInstRec = Records.getDef(AltRegInstStr);
|
|
assert(AltRegInstRec &&
|
|
"Alternative register form instruction def not found");
|
|
CodeGenInstruction &AltRegInst = Target.getInstruction(AltRegInstRec);
|
|
return &AltRegInst;
|
|
}
|
|
|
|
// Function object - Operator() returns true if the given VEX instruction
|
|
// matches the EVEX instruction of this object.
|
|
class IsMatch {
|
|
const CodeGenInstruction *MemInst;
|
|
const RecordKeeper &Records;
|
|
|
|
public:
|
|
IsMatch(const CodeGenInstruction *Inst, const RecordKeeper &Records)
|
|
: MemInst(Inst), Records(Records) {}
|
|
|
|
bool operator()(const CodeGenInstruction *RegInst) {
|
|
Record *MemRec = MemInst->TheDef;
|
|
Record *RegRec = RegInst->TheDef;
|
|
|
|
// Return false if one (at least) of the encoding fields of both
|
|
// instructions do not match.
|
|
if (RegRec->getValueAsDef("OpEnc") != MemRec->getValueAsDef("OpEnc") ||
|
|
!equalBitsInits(RegRec->getValueAsBitsInit("Opcode"),
|
|
MemRec->getValueAsBitsInit("Opcode")) ||
|
|
// VEX/EVEX fields
|
|
RegRec->getValueAsDef("OpPrefix") !=
|
|
MemRec->getValueAsDef("OpPrefix") ||
|
|
RegRec->getValueAsDef("OpMap") != MemRec->getValueAsDef("OpMap") ||
|
|
RegRec->getValueAsDef("OpSize") != MemRec->getValueAsDef("OpSize") ||
|
|
RegRec->getValueAsBit("hasVEX_4V") !=
|
|
MemRec->getValueAsBit("hasVEX_4V") ||
|
|
RegRec->getValueAsBit("hasEVEX_K") !=
|
|
MemRec->getValueAsBit("hasEVEX_K") ||
|
|
RegRec->getValueAsBit("hasEVEX_Z") !=
|
|
MemRec->getValueAsBit("hasEVEX_Z") ||
|
|
RegRec->getValueAsBit("hasEVEX_B") !=
|
|
MemRec->getValueAsBit("hasEVEX_B") ||
|
|
RegRec->getValueAsBit("hasEVEX_RC") !=
|
|
MemRec->getValueAsBit("hasEVEX_RC") ||
|
|
RegRec->getValueAsBit("hasREX_WPrefix") !=
|
|
MemRec->getValueAsBit("hasREX_WPrefix") ||
|
|
RegRec->getValueAsBit("hasLockPrefix") !=
|
|
MemRec->getValueAsBit("hasLockPrefix") ||
|
|
!equalBitsInits(RegRec->getValueAsBitsInit("EVEX_LL"),
|
|
MemRec->getValueAsBitsInit("EVEX_LL")) ||
|
|
!equalBitsInits(RegRec->getValueAsBitsInit("VEX_WPrefix"),
|
|
MemRec->getValueAsBitsInit("VEX_WPrefix")) ||
|
|
// Instruction's format - The register form's "Form" field should be
|
|
// the opposite of the memory form's "Form" field.
|
|
!areOppositeForms(RegRec->getValueAsBitsInit("FormBits"),
|
|
MemRec->getValueAsBitsInit("FormBits")) ||
|
|
RegRec->getValueAsBit("isAsmParserOnly") !=
|
|
MemRec->getValueAsBit("isAsmParserOnly"))
|
|
return false;
|
|
|
|
// Make sure the sizes of the operands of both instructions suit each other.
|
|
// This is needed for instructions with intrinsic version (_Int).
|
|
// Where the only difference is the size of the operands.
|
|
// For example: VUCOMISDZrm and Int_VUCOMISDrm
|
|
// Also for instructions that their EVEX version was upgraded to work with
|
|
// k-registers. For example VPCMPEQBrm (xmm output register) and
|
|
// VPCMPEQBZ128rm (k register output register).
|
|
bool ArgFolded = false;
|
|
unsigned MemOutSize = MemRec->getValueAsDag("OutOperandList")->getNumArgs();
|
|
unsigned RegOutSize = RegRec->getValueAsDag("OutOperandList")->getNumArgs();
|
|
unsigned MemInSize = MemRec->getValueAsDag("InOperandList")->getNumArgs();
|
|
unsigned RegInSize = RegRec->getValueAsDag("InOperandList")->getNumArgs();
|
|
|
|
// Instructions with one output in their memory form use the memory folded
|
|
// operand as source and destination (Read-Modify-Write).
|
|
unsigned RegStartIdx =
|
|
(MemOutSize + 1 == RegOutSize) && (MemInSize == RegInSize) ? 1 : 0;
|
|
|
|
for (unsigned i = 0, e = MemInst->Operands.size(); i < e; i++) {
|
|
Record *MemOpRec = MemInst->Operands[i].Rec;
|
|
Record *RegOpRec = RegInst->Operands[i + RegStartIdx].Rec;
|
|
|
|
if (MemOpRec == RegOpRec)
|
|
continue;
|
|
|
|
if (isRegisterOperand(MemOpRec) && isRegisterOperand(RegOpRec)) {
|
|
if (getRegOperandSize(MemOpRec) != getRegOperandSize(RegOpRec) ||
|
|
isNOREXRegClass(MemOpRec) != isNOREXRegClass(RegOpRec))
|
|
return false;
|
|
} else if (isMemoryOperand(MemOpRec) && isMemoryOperand(RegOpRec)) {
|
|
if (getMemOperandSize(MemOpRec) != getMemOperandSize(RegOpRec))
|
|
return false;
|
|
} else if (isImmediateOperand(MemOpRec) && isImmediateOperand(RegOpRec)) {
|
|
if (MemOpRec->getValueAsDef("Type") != RegOpRec->getValueAsDef("Type"))
|
|
return false;
|
|
} else {
|
|
// Only one operand can be folded.
|
|
if (ArgFolded)
|
|
return false;
|
|
|
|
assert(isRegisterOperand(RegOpRec) && isMemoryOperand(MemOpRec));
|
|
ArgFolded = true;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
private:
|
|
// Return true of the 2 given forms are the opposite of each other.
|
|
bool areOppositeForms(const BitsInit *RegFormBits,
|
|
const BitsInit *MemFormBits) {
|
|
uint64_t MemFormNum = getValueFromBitsInit(MemFormBits);
|
|
uint64_t RegFormNum = getValueFromBitsInit(RegFormBits);
|
|
|
|
if ((MemFormNum == X86Local::MRM0m && RegFormNum == X86Local::MRM0r) ||
|
|
(MemFormNum == X86Local::MRM1m && RegFormNum == X86Local::MRM1r) ||
|
|
(MemFormNum == X86Local::MRM2m && RegFormNum == X86Local::MRM2r) ||
|
|
(MemFormNum == X86Local::MRM3m && RegFormNum == X86Local::MRM3r) ||
|
|
(MemFormNum == X86Local::MRM4m && RegFormNum == X86Local::MRM4r) ||
|
|
(MemFormNum == X86Local::MRM5m && RegFormNum == X86Local::MRM5r) ||
|
|
(MemFormNum == X86Local::MRM6m && RegFormNum == X86Local::MRM6r) ||
|
|
(MemFormNum == X86Local::MRM7m && RegFormNum == X86Local::MRM7r) ||
|
|
(MemFormNum == X86Local::MRMXm && RegFormNum == X86Local::MRMXr) ||
|
|
(MemFormNum == X86Local::MRMDestMem &&
|
|
RegFormNum == X86Local::MRMDestReg) ||
|
|
(MemFormNum == X86Local::MRMSrcMem &&
|
|
RegFormNum == X86Local::MRMSrcReg) ||
|
|
(MemFormNum == X86Local::MRMSrcMem4VOp3 &&
|
|
RegFormNum == X86Local::MRMSrcReg4VOp3) ||
|
|
(MemFormNum == X86Local::MRMSrcMemOp4 &&
|
|
RegFormNum == X86Local::MRMSrcRegOp4))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
void X86FoldTablesEmitter::addEntryWithFlags(FoldTable &Table,
|
|
const CodeGenInstruction *RegInstr,
|
|
const CodeGenInstruction *MemInstr,
|
|
const UnfoldStrategy S,
|
|
const unsigned int FoldedInd) {
|
|
|
|
X86FoldTableEntry Result = X86FoldTableEntry(RegInstr, MemInstr);
|
|
Record *RegRec = RegInstr->TheDef;
|
|
Record *MemRec = MemInstr->TheDef;
|
|
|
|
// Only table0 entries should explicitly specify a load or store flag.
|
|
if (&Table == &Table0) {
|
|
unsigned MemInOpsNum = MemRec->getValueAsDag("InOperandList")->getNumArgs();
|
|
unsigned RegInOpsNum = RegRec->getValueAsDag("InOperandList")->getNumArgs();
|
|
// If the instruction writes to the folded operand, it will appear as an
|
|
// output in the register form instruction and as an input in the memory
|
|
// form instruction.
|
|
// If the instruction reads from the folded operand, it well appear as in
|
|
// input in both forms.
|
|
if (MemInOpsNum == RegInOpsNum)
|
|
Result.IsLoad = true;
|
|
else
|
|
Result.IsStore = true;
|
|
}
|
|
|
|
Record *RegOpRec = RegInstr->Operands[FoldedInd].Rec;
|
|
Record *MemOpRec = MemInstr->Operands[FoldedInd].Rec;
|
|
|
|
// Unfolding code generates a load/store instruction according to the size of
|
|
// the register in the register form instruction.
|
|
// If the register's size is greater than the memory's operand size, do not
|
|
// allow unfolding.
|
|
if (S == UNFOLD)
|
|
Result.CannotUnfold = false;
|
|
else if (S == NO_UNFOLD)
|
|
Result.CannotUnfold = true;
|
|
else if (getRegOperandSize(RegOpRec) > getMemOperandSize(MemOpRec))
|
|
Result.CannotUnfold = true; // S == NO_STRATEGY
|
|
|
|
uint64_t Enc = getValueFromBitsInit(RegRec->getValueAsBitsInit("OpEncBits"));
|
|
if (isExplicitAlign(RegInstr)) {
|
|
// The instruction require explicitly aligned memory.
|
|
BitsInit *VectSize = RegRec->getValueAsBitsInit("VectSize");
|
|
uint64_t Value = getValueFromBitsInit(VectSize);
|
|
Result.IsAligned = true;
|
|
Result.Alignment = Value;
|
|
} else if (Enc != X86Local::XOP && Enc != X86Local::VEX &&
|
|
Enc != X86Local::EVEX) {
|
|
// Instructions with VEX encoding do not require alignment.
|
|
if (!isExplicitUnalign(RegInstr) && getMemOperandSize(MemOpRec) > 64) {
|
|
// SSE packed vector instructions require a 16 byte alignment.
|
|
Result.IsAligned = true;
|
|
Result.Alignment = 16;
|
|
}
|
|
}
|
|
|
|
Table.push_back(Result);
|
|
}
|
|
|
|
void X86FoldTablesEmitter::updateTables(const CodeGenInstruction *RegInstr,
|
|
const CodeGenInstruction *MemInstr,
|
|
const UnfoldStrategy S) {
|
|
|
|
Record *RegRec = RegInstr->TheDef;
|
|
Record *MemRec = MemInstr->TheDef;
|
|
unsigned MemOutSize = MemRec->getValueAsDag("OutOperandList")->getNumArgs();
|
|
unsigned RegOutSize = RegRec->getValueAsDag("OutOperandList")->getNumArgs();
|
|
unsigned MemInSize = MemRec->getValueAsDag("InOperandList")->getNumArgs();
|
|
unsigned RegInSize = RegRec->getValueAsDag("InOperandList")->getNumArgs();
|
|
|
|
// Instructions which have the WriteRMW value (Read-Modify-Write) should be
|
|
// added to Table2Addr.
|
|
if (hasDefInList(MemRec, "SchedRW", "WriteRMW") && MemOutSize != RegOutSize &&
|
|
MemInSize == RegInSize) {
|
|
addEntryWithFlags(Table2Addr, RegInstr, MemInstr, S, 0);
|
|
return;
|
|
}
|
|
|
|
if (MemInSize == RegInSize && MemOutSize == RegOutSize) {
|
|
// Load-Folding cases.
|
|
// If the i'th register form operand is a register and the i'th memory form
|
|
// operand is a memory operand, add instructions to Table#i.
|
|
for (unsigned i = RegOutSize, e = RegInstr->Operands.size(); i < e; i++) {
|
|
Record *RegOpRec = RegInstr->Operands[i].Rec;
|
|
Record *MemOpRec = MemInstr->Operands[i].Rec;
|
|
if (isRegisterOperand(RegOpRec) && isMemoryOperand(MemOpRec)) {
|
|
switch (i) {
|
|
default: llvm_unreachable("Unexpected operand count!");
|
|
case 0:
|
|
addEntryWithFlags(Table0, RegInstr, MemInstr, S, 0);
|
|
return;
|
|
case 1:
|
|
addEntryWithFlags(Table1, RegInstr, MemInstr, S, 1);
|
|
return;
|
|
case 2:
|
|
addEntryWithFlags(Table2, RegInstr, MemInstr, S, 2);
|
|
return;
|
|
case 3:
|
|
addEntryWithFlags(Table3, RegInstr, MemInstr, S, 3);
|
|
return;
|
|
case 4:
|
|
addEntryWithFlags(Table4, RegInstr, MemInstr, S, 4);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
} else if (MemInSize == RegInSize + 1 && MemOutSize + 1 == RegOutSize) {
|
|
// Store-Folding cases.
|
|
// If the memory form instruction performs performs a store, the *output*
|
|
// register of the register form instructions disappear and instead a
|
|
// memory *input* operand appears in the memory form instruction.
|
|
// For example:
|
|
// MOVAPSrr => (outs VR128:$dst), (ins VR128:$src)
|
|
// MOVAPSmr => (outs), (ins f128mem:$dst, VR128:$src)
|
|
Record *RegOpRec = RegInstr->Operands[RegOutSize - 1].Rec;
|
|
Record *MemOpRec = MemInstr->Operands[RegOutSize - 1].Rec;
|
|
if (isRegisterOperand(RegOpRec) && isMemoryOperand(MemOpRec))
|
|
addEntryWithFlags(Table0, RegInstr, MemInstr, S, 0);
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
void X86FoldTablesEmitter::run(raw_ostream &OS) {
|
|
emitSourceFileHeader("X86 fold tables", OS);
|
|
|
|
// Holds all memory instructions
|
|
std::vector<const CodeGenInstruction *> MemInsts;
|
|
// Holds all register instructions - divided according to opcode.
|
|
std::map<uint8_t, std::vector<const CodeGenInstruction *>> RegInsts;
|
|
|
|
ArrayRef<const CodeGenInstruction *> NumberedInstructions =
|
|
Target.getInstructionsByEnumValue();
|
|
|
|
for (const CodeGenInstruction *Inst : NumberedInstructions) {
|
|
if (!Inst->TheDef->getNameInit() || !Inst->TheDef->isSubClassOf("X86Inst"))
|
|
continue;
|
|
|
|
const Record *Rec = Inst->TheDef;
|
|
|
|
// - Do not proceed matching if the instruction in NoFoldSet.
|
|
// - Instructions including RST register class operands are not relevant
|
|
// for memory folding (for further details check the explanation in
|
|
// lib/Target/X86/X86InstrFPStack.td file).
|
|
// - Some instructions (listed in the manual map above) use the register
|
|
// class ptr_rc_tailcall, which can be of a size 32 or 64, to ensure
|
|
// safe mapping of these instruction we manually map them and exclude
|
|
// them from the automation.
|
|
if (find(NoFoldSet, Rec->getName()) != std::end(NoFoldSet) ||
|
|
hasRSTRegClass(Inst) || hasPtrTailcallRegClass(Inst))
|
|
continue;
|
|
|
|
// Add all the memory form instructions to MemInsts, and all the register
|
|
// form instructions to RegInsts[Opc], where Opc in the opcode of each
|
|
// instructions. this helps reducing the runtime of the backend.
|
|
if (hasMemoryFormat(Rec))
|
|
MemInsts.push_back(Inst);
|
|
else if (hasRegisterFormat(Rec)) {
|
|
uint8_t Opc = getValueFromBitsInit(Rec->getValueAsBitsInit("Opcode"));
|
|
RegInsts[Opc].push_back(Inst);
|
|
}
|
|
}
|
|
|
|
// For each memory form instruction, try to find its register form
|
|
// instruction.
|
|
for (const CodeGenInstruction *MemInst : MemInsts) {
|
|
uint8_t Opc =
|
|
getValueFromBitsInit(MemInst->TheDef->getValueAsBitsInit("Opcode"));
|
|
|
|
if (RegInsts.count(Opc) == 0)
|
|
continue;
|
|
|
|
// Two forms (memory & register) of the same instruction must have the same
|
|
// opcode. try matching only with register form instructions with the same
|
|
// opcode.
|
|
std::vector<const CodeGenInstruction *> &OpcRegInsts =
|
|
RegInsts.find(Opc)->second;
|
|
|
|
auto Match = find_if(OpcRegInsts, IsMatch(MemInst, Records));
|
|
if (Match != OpcRegInsts.end()) {
|
|
const CodeGenInstruction *RegInst = *Match;
|
|
// If the matched instruction has it's "FoldGenRegForm" set, map the
|
|
// memory form instruction to the register form instruction pointed by
|
|
// this field
|
|
if (RegInst->TheDef->isValueUnset("FoldGenRegForm")) {
|
|
updateTables(RegInst, MemInst);
|
|
} else {
|
|
const CodeGenInstruction *AltRegInst =
|
|
getAltRegInst(RegInst, Records, Target);
|
|
updateTables(AltRegInst, MemInst);
|
|
}
|
|
OpcRegInsts.erase(Match);
|
|
}
|
|
}
|
|
|
|
// Add the manually mapped instructions listed above.
|
|
for (const ManualMapEntry &Entry : ManualMapSet) {
|
|
Record *RegInstIter = Records.getDef(Entry.RegInstStr);
|
|
Record *MemInstIter = Records.getDef(Entry.MemInstStr);
|
|
|
|
updateTables(&(Target.getInstruction(RegInstIter)),
|
|
&(Target.getInstruction(MemInstIter)), Entry.Strategy);
|
|
}
|
|
|
|
// Print all tables to raw_ostream OS.
|
|
printTable(Table2Addr, "Table2Addr", OS);
|
|
printTable(Table0, "Table0", OS);
|
|
printTable(Table1, "Table1", OS);
|
|
printTable(Table2, "Table2", OS);
|
|
printTable(Table3, "Table3", OS);
|
|
printTable(Table4, "Table4", OS);
|
|
}
|
|
|
|
namespace llvm {
|
|
|
|
void EmitX86FoldTables(RecordKeeper &RK, raw_ostream &OS) {
|
|
X86FoldTablesEmitter(RK).run(OS);
|
|
}
|
|
} // namespace llvm
|