freebsd-nq/cmd/zpool_influxdb/zpool_influxdb.c
Richard Elling e9527d44e6
Add zpool_influxdb command
A zpool_influxdb command is introduced to ease the collection
of zpool statistics into the InfluxDB time-series database.
Examples are given on how to integrate with the telegraf
statistics aggregator, a companion to influxdb.

Finally, a grafana dashboard template is included to show
how pool latency distributions can be visualized in a
ZFS + telegraf + influxdb  + grafana environment.

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Signed-off-by: Richard Elling <Richard.Elling@RichardElling.com>
Closes #10786
2020-10-09 09:29:21 -07:00

844 lines
24 KiB
C

/*
* Gather top-level ZFS pool and resilver/scan statistics and print using
* influxdb line protocol
* usage: [options] [pool_name]
* where options are:
* --execd, -e run in telegraf execd input plugin mode, [CR] on
* stdin causes a sample to be printed and wait for
* the next [CR]
* --no-histograms, -n don't print histogram data (reduces cardinality
* if you don't care about histograms)
* --sum-histogram-buckets, -s sum histogram bucket values
*
* To integrate into telegraf use one of:
* 1. the `inputs.execd` plugin with the `--execd` option
* 2. the `inputs.exec` plugin to simply run with no options
*
* NOTE: libzfs is an unstable interface. YMMV.
*
* The design goals of this software include:
* + be as lightweight as possible
* + reduce the number of external dependencies as far as possible, hence
* there is no dependency on a client library for managing the metric
* collection -- info is printed, KISS
* + broken pools or kernel bugs can cause this process to hang in an
* unkillable state. For this reason, it is best to keep the damage limited
* to a small process like zpool_influxdb rather than a larger collector.
*
* Copyright 2018-2020 Richard Elling
*
* This software is dual-licensed MIT and CDDL.
*
* The MIT License (MIT)
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License Version 1.0 (CDDL-1.0).
* You can obtain a copy of the license from the top-level file
* "OPENSOLARIS.LICENSE" or at <http://opensource.org/licenses/CDDL-1.0>.
* You may not use this file except in compliance with the license.
*
* See the License for the specific language governing permissions
* and limitations under the License.
*
* CDDL HEADER END
*/
#include <string.h>
#include <getopt.h>
#include <stdio.h>
#include <stdint.h>
#include <inttypes.h>
#include <libzfs_impl.h>
#define POOL_MEASUREMENT "zpool_stats"
#define SCAN_MEASUREMENT "zpool_scan_stats"
#define VDEV_MEASUREMENT "zpool_vdev_stats"
#define POOL_LATENCY_MEASUREMENT "zpool_latency"
#define POOL_QUEUE_MEASUREMENT "zpool_vdev_queue"
#define MIN_LAT_INDEX 10 /* minimum latency index 10 = 1024ns */
#define POOL_IO_SIZE_MEASUREMENT "zpool_io_size"
#define MIN_SIZE_INDEX 9 /* minimum size index 9 = 512 bytes */
/* global options */
int execd_mode = 0;
int no_histograms = 0;
int sum_histogram_buckets = 0;
char metric_data_type = 'u';
uint64_t metric_value_mask = UINT64_MAX;
uint64_t timestamp = 0;
int complained_about_sync = 0;
char *tags = "";
typedef int (*stat_printer_f)(nvlist_t *, const char *, const char *);
/*
* influxdb line protocol rules for escaping are important because the
* zpool name can include characters that need to be escaped
*
* caller is responsible for freeing result
*/
static char *
escape_string(char *s)
{
char *c, *d;
char *t = (char *)malloc(ZFS_MAX_DATASET_NAME_LEN * 2);
if (t == NULL) {
fprintf(stderr, "error: cannot allocate memory\n");
exit(1);
}
for (c = s, d = t; *c != '\0'; c++, d++) {
switch (*c) {
case ' ':
case ',':
case '=':
case '\\':
*d++ = '\\';
default:
*d = *c;
}
}
*d = '\0';
return (t);
}
/*
* print key=value where value is a uint64_t
*/
static void
print_kv(char *key, uint64_t value)
{
printf("%s=%llu%c", key,
(u_longlong_t)value & metric_value_mask, metric_data_type);
}
/*
* print_scan_status() prints the details as often seen in the "zpool status"
* output. However, unlike the zpool command, which is intended for humans,
* this output is suitable for long-term tracking in influxdb.
* TODO: update to include issued scan data
*/
static int
print_scan_status(nvlist_t *nvroot, const char *pool_name)
{
uint_t c;
int64_t elapsed;
uint64_t examined, pass_exam, paused_time, paused_ts, rate;
uint64_t remaining_time;
pool_scan_stat_t *ps = NULL;
double pct_done;
char *state[DSS_NUM_STATES] = {
"none", "scanning", "finished", "canceled"};
char *func;
(void) nvlist_lookup_uint64_array(nvroot,
ZPOOL_CONFIG_SCAN_STATS,
(uint64_t **)&ps, &c);
/*
* ignore if there are no stats
*/
if (ps == NULL)
return (0);
/*
* return error if state is bogus
*/
if (ps->pss_state >= DSS_NUM_STATES ||
ps->pss_func >= POOL_SCAN_FUNCS) {
if (complained_about_sync % 1000 == 0) {
fprintf(stderr, "error: cannot decode scan stats: "
"ZFS is out of sync with compiled zpool_influxdb");
complained_about_sync++;
}
return (1);
}
switch (ps->pss_func) {
case POOL_SCAN_NONE:
func = "none_requested";
break;
case POOL_SCAN_SCRUB:
func = "scrub";
break;
case POOL_SCAN_RESILVER:
func = "resilver";
break;
#ifdef POOL_SCAN_REBUILD
case POOL_SCAN_REBUILD:
func = "rebuild";
break;
#endif
default:
func = "scan";
}
/* overall progress */
examined = ps->pss_examined ? ps->pss_examined : 1;
pct_done = 0.0;
if (ps->pss_to_examine > 0)
pct_done = 100.0 * examined / ps->pss_to_examine;
#ifdef EZFS_SCRUB_PAUSED
paused_ts = ps->pss_pass_scrub_pause;
paused_time = ps->pss_pass_scrub_spent_paused;
#else
paused_ts = 0;
paused_time = 0;
#endif
/* calculations for this pass */
if (ps->pss_state == DSS_SCANNING) {
elapsed = (int64_t)time(NULL) - (int64_t)ps->pss_pass_start -
(int64_t)paused_time;
elapsed = (elapsed > 0) ? elapsed : 1;
pass_exam = ps->pss_pass_exam ? ps->pss_pass_exam : 1;
rate = pass_exam / elapsed;
rate = (rate > 0) ? rate : 1;
remaining_time = ps->pss_to_examine - examined / rate;
} else {
elapsed =
(int64_t)ps->pss_end_time - (int64_t)ps->pss_pass_start -
(int64_t)paused_time;
elapsed = (elapsed > 0) ? elapsed : 1;
pass_exam = ps->pss_pass_exam ? ps->pss_pass_exam : 1;
rate = pass_exam / elapsed;
remaining_time = 0;
}
rate = rate ? rate : 1;
/* influxdb line protocol format: "tags metrics timestamp" */
printf("%s%s,function=%s,name=%s,state=%s ",
SCAN_MEASUREMENT, tags, func, pool_name, state[ps->pss_state]);
print_kv("end_ts", ps->pss_end_time);
print_kv(",errors", ps->pss_errors);
print_kv(",examined", examined);
print_kv(",issued", ps->pss_issued);
print_kv(",pass_examined", pass_exam);
print_kv(",pass_issued", ps->pss_pass_issued);
print_kv(",paused_ts", paused_ts);
print_kv(",paused_t", paused_time);
printf(",pct_done=%.2f", pct_done);
print_kv(",processed", ps->pss_processed);
print_kv(",rate", rate);
print_kv(",remaining_t", remaining_time);
print_kv(",start_ts", ps->pss_start_time);
print_kv(",to_examine", ps->pss_to_examine);
print_kv(",to_process", ps->pss_to_process);
printf(" %llu\n", (u_longlong_t)timestamp);
return (0);
}
/*
* get a vdev name that corresponds to the top-level vdev names
* printed by `zpool status`
*/
static char *
get_vdev_name(nvlist_t *nvroot, const char *parent_name)
{
static char vdev_name[256];
char *vdev_type = NULL;
uint64_t vdev_id = 0;
if (nvlist_lookup_string(nvroot, ZPOOL_CONFIG_TYPE,
&vdev_type) != 0) {
vdev_type = "unknown";
}
if (nvlist_lookup_uint64(
nvroot, ZPOOL_CONFIG_ID, &vdev_id) != 0) {
vdev_id = UINT64_MAX;
}
if (parent_name == NULL) {
(void) snprintf(vdev_name, sizeof (vdev_name), "%s",
vdev_type);
} else {
(void) snprintf(vdev_name, sizeof (vdev_name),
"%s/%s-%llu",
parent_name, vdev_type, (u_longlong_t)vdev_id);
}
return (vdev_name);
}
/*
* get a string suitable for an influxdb tag that describes this vdev
*
* By default only the vdev hierarchical name is shown, separated by '/'
* If the vdev has an associated path, which is typical of leaf vdevs,
* then the path is added.
* It would be nice to have the devid instead of the path, but under
* Linux we cannot be sure a devid will exist and we'd rather have
* something than nothing, so we'll use path instead.
*/
static char *
get_vdev_desc(nvlist_t *nvroot, const char *parent_name)
{
static char vdev_desc[2 * MAXPATHLEN];
char *vdev_type = NULL;
uint64_t vdev_id = 0;
char vdev_value[MAXPATHLEN];
char *vdev_path = NULL;
char *s, *t;
if (nvlist_lookup_string(nvroot, ZPOOL_CONFIG_TYPE, &vdev_type) != 0) {
vdev_type = "unknown";
}
if (nvlist_lookup_uint64(nvroot, ZPOOL_CONFIG_ID, &vdev_id) != 0) {
vdev_id = UINT64_MAX;
}
if (nvlist_lookup_string(
nvroot, ZPOOL_CONFIG_PATH, &vdev_path) != 0) {
vdev_path = NULL;
}
if (parent_name == NULL) {
s = escape_string(vdev_type);
(void) snprintf(vdev_value, sizeof (vdev_value), "vdev=%s", s);
free(s);
} else {
s = escape_string((char *)parent_name);
t = escape_string(vdev_type);
(void) snprintf(vdev_value, sizeof (vdev_value),
"vdev=%s/%s-%llu", s, t, (u_longlong_t)vdev_id);
free(s);
free(t);
}
if (vdev_path == NULL) {
(void) snprintf(vdev_desc, sizeof (vdev_desc), "%s",
vdev_value);
} else {
s = escape_string(vdev_path);
(void) snprintf(vdev_desc, sizeof (vdev_desc), "path=%s,%s",
s, vdev_value);
free(s);
}
return (vdev_desc);
}
/*
* vdev summary stats are a combination of the data shown by
* `zpool status` and `zpool list -v`
*/
static int
print_summary_stats(nvlist_t *nvroot, const char *pool_name,
const char *parent_name)
{
uint_t c;
vdev_stat_t *vs;
char *vdev_desc = NULL;
vdev_desc = get_vdev_desc(nvroot, parent_name);
if (nvlist_lookup_uint64_array(nvroot, ZPOOL_CONFIG_VDEV_STATS,
(uint64_t **)&vs, &c) != 0) {
return (1);
}
printf("%s%s,name=%s,state=%s,%s ", POOL_MEASUREMENT, tags,
pool_name, zpool_state_to_name((vdev_state_t)vs->vs_state,
(vdev_aux_t)vs->vs_aux), vdev_desc);
print_kv("alloc", vs->vs_alloc);
print_kv(",free", vs->vs_space - vs->vs_alloc);
print_kv(",size", vs->vs_space);
print_kv(",read_bytes", vs->vs_bytes[ZIO_TYPE_READ]);
print_kv(",read_errors", vs->vs_read_errors);
print_kv(",read_ops", vs->vs_ops[ZIO_TYPE_READ]);
print_kv(",write_bytes", vs->vs_bytes[ZIO_TYPE_WRITE]);
print_kv(",write_errors", vs->vs_write_errors);
print_kv(",write_ops", vs->vs_ops[ZIO_TYPE_WRITE]);
print_kv(",checksum_errors", vs->vs_checksum_errors);
print_kv(",fragmentation", vs->vs_fragmentation);
printf(" %llu\n", (u_longlong_t)timestamp);
return (0);
}
/*
* vdev latency stats are histograms stored as nvlist arrays of uint64.
* Latency stats include the ZIO scheduler classes plus lower-level
* vdev latencies.
*
* In many cases, the top-level "root" view obscures the underlying
* top-level vdev operations. For example, if a pool has a log, special,
* or cache device, then each can behave very differently. It is useful
* to see how each is responding.
*/
static int
print_vdev_latency_stats(nvlist_t *nvroot, const char *pool_name,
const char *parent_name)
{
uint_t c, end = 0;
nvlist_t *nv_ex;
char *vdev_desc = NULL;
/* short_names become part of the metric name and are influxdb-ready */
struct lat_lookup {
char *name;
char *short_name;
uint64_t sum;
uint64_t *array;
};
struct lat_lookup lat_type[] = {
{ZPOOL_CONFIG_VDEV_TOT_R_LAT_HISTO, "total_read", 0},
{ZPOOL_CONFIG_VDEV_TOT_W_LAT_HISTO, "total_write", 0},
{ZPOOL_CONFIG_VDEV_DISK_R_LAT_HISTO, "disk_read", 0},
{ZPOOL_CONFIG_VDEV_DISK_W_LAT_HISTO, "disk_write", 0},
{ZPOOL_CONFIG_VDEV_SYNC_R_LAT_HISTO, "sync_read", 0},
{ZPOOL_CONFIG_VDEV_SYNC_W_LAT_HISTO, "sync_write", 0},
{ZPOOL_CONFIG_VDEV_ASYNC_R_LAT_HISTO, "async_read", 0},
{ZPOOL_CONFIG_VDEV_ASYNC_W_LAT_HISTO, "async_write", 0},
{ZPOOL_CONFIG_VDEV_SCRUB_LAT_HISTO, "scrub", 0},
#ifdef ZPOOL_CONFIG_VDEV_TRIM_LAT_HISTO
{ZPOOL_CONFIG_VDEV_TRIM_LAT_HISTO, "trim", 0},
#endif
{NULL, NULL}
};
if (nvlist_lookup_nvlist(nvroot,
ZPOOL_CONFIG_VDEV_STATS_EX, &nv_ex) != 0) {
return (6);
}
vdev_desc = get_vdev_desc(nvroot, parent_name);
for (int i = 0; lat_type[i].name; i++) {
if (nvlist_lookup_uint64_array(nv_ex,
lat_type[i].name, &lat_type[i].array, &c) != 0) {
fprintf(stderr, "error: can't get %s\n",
lat_type[i].name);
return (3);
}
/* end count count, all of the arrays are the same size */
end = c - 1;
}
for (int bucket = 0; bucket <= end; bucket++) {
if (bucket < MIN_LAT_INDEX) {
/* don't print, but collect the sum */
for (int i = 0; lat_type[i].name; i++) {
lat_type[i].sum += lat_type[i].array[bucket];
}
continue;
}
if (bucket < end) {
printf("%s%s,le=%0.6f,name=%s,%s ",
POOL_LATENCY_MEASUREMENT, tags,
(float)(1ULL << bucket) * 1e-9,
pool_name, vdev_desc);
} else {
printf("%s%s,le=+Inf,name=%s,%s ",
POOL_LATENCY_MEASUREMENT, tags, pool_name,
vdev_desc);
}
for (int i = 0; lat_type[i].name; i++) {
if (bucket <= MIN_LAT_INDEX || sum_histogram_buckets) {
lat_type[i].sum += lat_type[i].array[bucket];
} else {
lat_type[i].sum = lat_type[i].array[bucket];
}
print_kv(lat_type[i].short_name, lat_type[i].sum);
if (lat_type[i + 1].name != NULL) {
printf(",");
}
}
printf(" %llu\n", (u_longlong_t)timestamp);
}
return (0);
}
/*
* vdev request size stats are histograms stored as nvlist arrays of uint64.
* Request size stats include the ZIO scheduler classes plus lower-level
* vdev sizes. Both independent (ind) and aggregated (agg) sizes are reported.
*
* In many cases, the top-level "root" view obscures the underlying
* top-level vdev operations. For example, if a pool has a log, special,
* or cache device, then each can behave very differently. It is useful
* to see how each is responding.
*/
static int
print_vdev_size_stats(nvlist_t *nvroot, const char *pool_name,
const char *parent_name)
{
uint_t c, end = 0;
nvlist_t *nv_ex;
char *vdev_desc = NULL;
/* short_names become the field name */
struct size_lookup {
char *name;
char *short_name;
uint64_t sum;
uint64_t *array;
};
struct size_lookup size_type[] = {
{ZPOOL_CONFIG_VDEV_SYNC_IND_R_HISTO, "sync_read_ind"},
{ZPOOL_CONFIG_VDEV_SYNC_IND_W_HISTO, "sync_write_ind"},
{ZPOOL_CONFIG_VDEV_ASYNC_IND_R_HISTO, "async_read_ind"},
{ZPOOL_CONFIG_VDEV_ASYNC_IND_W_HISTO, "async_write_ind"},
{ZPOOL_CONFIG_VDEV_IND_SCRUB_HISTO, "scrub_read_ind"},
{ZPOOL_CONFIG_VDEV_SYNC_AGG_R_HISTO, "sync_read_agg"},
{ZPOOL_CONFIG_VDEV_SYNC_AGG_W_HISTO, "sync_write_agg"},
{ZPOOL_CONFIG_VDEV_ASYNC_AGG_R_HISTO, "async_read_agg"},
{ZPOOL_CONFIG_VDEV_ASYNC_AGG_W_HISTO, "async_write_agg"},
{ZPOOL_CONFIG_VDEV_AGG_SCRUB_HISTO, "scrub_read_agg"},
#ifdef ZPOOL_CONFIG_VDEV_IND_TRIM_HISTO
{ZPOOL_CONFIG_VDEV_IND_TRIM_HISTO, "trim_write_ind"},
{ZPOOL_CONFIG_VDEV_AGG_TRIM_HISTO, "trim_write_agg"},
#endif
{NULL, NULL}
};
if (nvlist_lookup_nvlist(nvroot,
ZPOOL_CONFIG_VDEV_STATS_EX, &nv_ex) != 0) {
return (6);
}
vdev_desc = get_vdev_desc(nvroot, parent_name);
for (int i = 0; size_type[i].name; i++) {
if (nvlist_lookup_uint64_array(nv_ex, size_type[i].name,
&size_type[i].array, &c) != 0) {
fprintf(stderr, "error: can't get %s\n",
size_type[i].name);
return (3);
}
/* end count count, all of the arrays are the same size */
end = c - 1;
}
for (int bucket = 0; bucket <= end; bucket++) {
if (bucket < MIN_SIZE_INDEX) {
/* don't print, but collect the sum */
for (int i = 0; size_type[i].name; i++) {
size_type[i].sum += size_type[i].array[bucket];
}
continue;
}
if (bucket < end) {
printf("%s%s,le=%llu,name=%s,%s ",
POOL_IO_SIZE_MEASUREMENT, tags, 1ULL << bucket,
pool_name, vdev_desc);
} else {
printf("%s%s,le=+Inf,name=%s,%s ",
POOL_IO_SIZE_MEASUREMENT, tags, pool_name,
vdev_desc);
}
for (int i = 0; size_type[i].name; i++) {
if (bucket <= MIN_SIZE_INDEX || sum_histogram_buckets) {
size_type[i].sum += size_type[i].array[bucket];
} else {
size_type[i].sum = size_type[i].array[bucket];
}
print_kv(size_type[i].short_name, size_type[i].sum);
if (size_type[i + 1].name != NULL) {
printf(",");
}
}
printf(" %llu\n", (u_longlong_t)timestamp);
}
return (0);
}
/*
* ZIO scheduler queue stats are stored as gauges. This is unfortunate
* because the values can change very rapidly and any point-in-time
* value will quickly be obsoleted. It is also not easy to downsample.
* Thus only the top-level queue stats might be beneficial... maybe.
*/
static int
print_queue_stats(nvlist_t *nvroot, const char *pool_name,
const char *parent_name)
{
nvlist_t *nv_ex;
uint64_t value;
/* short_names are used for the field name */
struct queue_lookup {
char *name;
char *short_name;
};
struct queue_lookup queue_type[] = {
{ZPOOL_CONFIG_VDEV_SYNC_R_ACTIVE_QUEUE, "sync_r_active"},
{ZPOOL_CONFIG_VDEV_SYNC_W_ACTIVE_QUEUE, "sync_w_active"},
{ZPOOL_CONFIG_VDEV_ASYNC_R_ACTIVE_QUEUE, "async_r_active"},
{ZPOOL_CONFIG_VDEV_ASYNC_W_ACTIVE_QUEUE, "async_w_active"},
{ZPOOL_CONFIG_VDEV_SCRUB_ACTIVE_QUEUE, "async_scrub_active"},
{ZPOOL_CONFIG_VDEV_SYNC_R_PEND_QUEUE, "sync_r_pend"},
{ZPOOL_CONFIG_VDEV_SYNC_W_PEND_QUEUE, "sync_w_pend"},
{ZPOOL_CONFIG_VDEV_ASYNC_R_PEND_QUEUE, "async_r_pend"},
{ZPOOL_CONFIG_VDEV_ASYNC_W_PEND_QUEUE, "async_w_pend"},
{ZPOOL_CONFIG_VDEV_SCRUB_PEND_QUEUE, "async_scrub_pend"},
{NULL, NULL}
};
if (nvlist_lookup_nvlist(nvroot,
ZPOOL_CONFIG_VDEV_STATS_EX, &nv_ex) != 0) {
return (6);
}
printf("%s%s,name=%s,%s ", POOL_QUEUE_MEASUREMENT, tags, pool_name,
get_vdev_desc(nvroot, parent_name));
for (int i = 0; queue_type[i].name; i++) {
if (nvlist_lookup_uint64(nv_ex,
queue_type[i].name, &value) != 0) {
fprintf(stderr, "error: can't get %s\n",
queue_type[i].name);
return (3);
}
print_kv(queue_type[i].short_name, value);
if (queue_type[i + 1].name != NULL) {
printf(",");
}
}
printf(" %llu\n", (u_longlong_t)timestamp);
return (0);
}
/*
* top-level vdev stats are at the pool level
*/
static int
print_top_level_vdev_stats(nvlist_t *nvroot, const char *pool_name)
{
nvlist_t *nv_ex;
uint64_t value;
/* short_names become part of the metric name */
struct queue_lookup {
char *name;
char *short_name;
};
struct queue_lookup queue_type[] = {
{ZPOOL_CONFIG_VDEV_SYNC_R_ACTIVE_QUEUE, "sync_r_active_queue"},
{ZPOOL_CONFIG_VDEV_SYNC_W_ACTIVE_QUEUE, "sync_w_active_queue"},
{ZPOOL_CONFIG_VDEV_ASYNC_R_ACTIVE_QUEUE, "async_r_active_queue"},
{ZPOOL_CONFIG_VDEV_ASYNC_W_ACTIVE_QUEUE, "async_w_active_queue"},
{ZPOOL_CONFIG_VDEV_SCRUB_ACTIVE_QUEUE, "async_scrub_active_queue"},
{ZPOOL_CONFIG_VDEV_SYNC_R_PEND_QUEUE, "sync_r_pend_queue"},
{ZPOOL_CONFIG_VDEV_SYNC_W_PEND_QUEUE, "sync_w_pend_queue"},
{ZPOOL_CONFIG_VDEV_ASYNC_R_PEND_QUEUE, "async_r_pend_queue"},
{ZPOOL_CONFIG_VDEV_ASYNC_W_PEND_QUEUE, "async_w_pend_queue"},
{ZPOOL_CONFIG_VDEV_SCRUB_PEND_QUEUE, "async_scrub_pend_queue"},
{NULL, NULL}
};
if (nvlist_lookup_nvlist(nvroot,
ZPOOL_CONFIG_VDEV_STATS_EX, &nv_ex) != 0) {
return (6);
}
printf("%s%s,name=%s,vdev=root ", VDEV_MEASUREMENT, tags,
pool_name);
for (int i = 0; queue_type[i].name; i++) {
if (nvlist_lookup_uint64(nv_ex,
queue_type[i].name, &value) != 0) {
fprintf(stderr, "error: can't get %s\n",
queue_type[i].name);
return (3);
}
if (i > 0)
printf(",");
print_kv(queue_type[i].short_name, value);
}
printf(" %llu\n", (u_longlong_t)timestamp);
return (0);
}
/*
* recursive stats printer
*/
static int
print_recursive_stats(stat_printer_f func, nvlist_t *nvroot,
const char *pool_name, const char *parent_name, int descend)
{
uint_t c, children;
nvlist_t **child;
char vdev_name[256];
int err;
err = func(nvroot, pool_name, parent_name);
if (err)
return (err);
if (descend && nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
&child, &children) == 0) {
(void) strncpy(vdev_name, get_vdev_name(nvroot, parent_name),
sizeof (vdev_name));
vdev_name[sizeof (vdev_name) - 1] = '\0';
for (c = 0; c < children; c++) {
print_recursive_stats(func, child[c], pool_name,
vdev_name, descend);
}
}
return (0);
}
/*
* call-back to print the stats from the pool config
*
* Note: if the pool is broken, this can hang indefinitely and perhaps in an
* unkillable state.
*/
static int
print_stats(zpool_handle_t *zhp, void *data)
{
uint_t c;
int err;
boolean_t missing;
nvlist_t *config, *nvroot;
vdev_stat_t *vs;
struct timespec tv;
char *pool_name;
/* if not this pool return quickly */
if (data &&
strncmp(data, zhp->zpool_name, ZFS_MAX_DATASET_NAME_LEN) != 0) {
zpool_close(zhp);
return (0);
}
if (zpool_refresh_stats(zhp, &missing) != 0) {
zpool_close(zhp);
return (1);
}
config = zpool_get_config(zhp, NULL);
if (clock_gettime(CLOCK_REALTIME, &tv) != 0)
timestamp = (uint64_t)time(NULL) * 1000000000;
else
timestamp =
((uint64_t)tv.tv_sec * 1000000000) + (uint64_t)tv.tv_nsec;
if (nvlist_lookup_nvlist(
config, ZPOOL_CONFIG_VDEV_TREE, &nvroot) != 0) {
zpool_close(zhp);
return (2);
}
if (nvlist_lookup_uint64_array(nvroot, ZPOOL_CONFIG_VDEV_STATS,
(uint64_t **)&vs, &c) != 0) {
zpool_close(zhp);
return (3);
}
pool_name = escape_string(zhp->zpool_name);
err = print_recursive_stats(print_summary_stats, nvroot,
pool_name, NULL, 1);
/* if any of these return an error, skip the rest */
if (err == 0)
err = print_top_level_vdev_stats(nvroot, pool_name);
if (no_histograms == 0) {
if (err == 0)
err = print_recursive_stats(print_vdev_latency_stats, nvroot,
pool_name, NULL, 1);
if (err == 0)
err = print_recursive_stats(print_vdev_size_stats, nvroot,
pool_name, NULL, 1);
if (err == 0)
err = print_recursive_stats(print_queue_stats, nvroot,
pool_name, NULL, 0);
}
if (err == 0)
err = print_scan_status(nvroot, pool_name);
free(pool_name);
zpool_close(zhp);
return (err);
}
static void
usage(char *name)
{
fprintf(stderr, "usage: %s [--execd][--no-histograms]"
"[--sum-histogram-buckets] [--signed-int] [poolname]\n", name);
exit(EXIT_FAILURE);
}
int
main(int argc, char *argv[])
{
int opt;
int ret = 8;
char *line = NULL;
size_t len, tagslen = 0;
struct option long_options[] = {
{"execd", no_argument, NULL, 'e'},
{"help", no_argument, NULL, 'h'},
{"no-histograms", no_argument, NULL, 'n'},
{"signed-int", no_argument, NULL, 'i'},
{"sum-histogram-buckets", no_argument, NULL, 's'},
{"tags", required_argument, NULL, 't'},
{0, 0, 0, 0}
};
while ((opt = getopt_long(
argc, argv, "ehinst:", long_options, NULL)) != -1) {
switch (opt) {
case 'e':
execd_mode = 1;
break;
case 'i':
metric_data_type = 'i';
metric_value_mask = INT64_MAX;
break;
case 'n':
no_histograms = 1;
break;
case 's':
sum_histogram_buckets = 1;
break;
case 't':
tagslen = strlen(optarg) + 2;
tags = calloc(tagslen, 1);
if (tags == NULL) {
fprintf(stderr,
"error: cannot allocate memory "
"for tags\n");
exit(1);
}
(void) snprintf(tags, tagslen, ",%s", optarg);
break;
default:
usage(argv[0]);
}
}
libzfs_handle_t *g_zfs;
if ((g_zfs = libzfs_init()) == NULL) {
fprintf(stderr,
"error: cannot initialize libzfs. "
"Is the zfs module loaded or zrepl running?\n");
exit(EXIT_FAILURE);
}
if (execd_mode == 0) {
ret = zpool_iter(g_zfs, print_stats, argv[optind]);
return (ret);
}
while (getline(&line, &len, stdin) != -1) {
ret = zpool_iter(g_zfs, print_stats, argv[optind]);
fflush(stdout);
}
return (ret);
}