freebsd-nq/sys/dev/cxgbe/t4_sge.c
Navdeep Parhar e9e7bc8250 cxgbe(4): Changes to the fatal error handler.
* New error_flags that can be used from the error ithread and elsewhere
  without a synch_op.
* Stop the adapter immediately in t4_fatal_err but defer most of the
  rest of the handling to a task.  The task is allowed to sleep, unlike
  the ithread.  Remove async_event_task as it is no longer needed.
* Dump the devlog, CIMLA, and PCIE_FW exactly once on any fatal error
  involving the firmware or the CIM block.  While here, dump some
  additional info (see dump_cim_regs) for these errors.
* If both reset_on_fatal_err and panic_on_fatal_err are set then attempt
  a reset first and do not panic the system if it is successful.

MFC after:	1 week
Sponsored by:	Chelsio Communications
2022-02-18 09:16:14 -08:00

6927 lines
180 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 2011 Chelsio Communications, Inc.
* All rights reserved.
* Written by: Navdeep Parhar <np@FreeBSD.org>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_inet.h"
#include "opt_inet6.h"
#include "opt_kern_tls.h"
#include "opt_ratelimit.h"
#include <sys/types.h>
#include <sys/eventhandler.h>
#include <sys/mbuf.h>
#include <sys/socket.h>
#include <sys/kernel.h>
#include <sys/ktls.h>
#include <sys/malloc.h>
#include <sys/msan.h>
#include <sys/queue.h>
#include <sys/sbuf.h>
#include <sys/taskqueue.h>
#include <sys/time.h>
#include <sys/sglist.h>
#include <sys/sysctl.h>
#include <sys/smp.h>
#include <sys/socketvar.h>
#include <sys/counter.h>
#include <net/bpf.h>
#include <net/ethernet.h>
#include <net/if.h>
#include <net/if_vlan_var.h>
#include <net/if_vxlan.h>
#include <netinet/in.h>
#include <netinet/ip.h>
#include <netinet/ip6.h>
#include <netinet/tcp.h>
#include <netinet/udp.h>
#include <machine/in_cksum.h>
#include <machine/md_var.h>
#include <vm/vm.h>
#include <vm/pmap.h>
#ifdef DEV_NETMAP
#include <machine/bus.h>
#include <sys/selinfo.h>
#include <net/if_var.h>
#include <net/netmap.h>
#include <dev/netmap/netmap_kern.h>
#endif
#include "common/common.h"
#include "common/t4_regs.h"
#include "common/t4_regs_values.h"
#include "common/t4_msg.h"
#include "t4_l2t.h"
#include "t4_mp_ring.h"
#ifdef T4_PKT_TIMESTAMP
#define RX_COPY_THRESHOLD (MINCLSIZE - 8)
#else
#define RX_COPY_THRESHOLD MINCLSIZE
#endif
/* Internal mbuf flags stored in PH_loc.eight[1]. */
#define MC_NOMAP 0x01
#define MC_RAW_WR 0x02
#define MC_TLS 0x04
/*
* Ethernet frames are DMA'd at this byte offset into the freelist buffer.
* 0-7 are valid values.
*/
static int fl_pktshift = 0;
SYSCTL_INT(_hw_cxgbe, OID_AUTO, fl_pktshift, CTLFLAG_RDTUN, &fl_pktshift, 0,
"payload DMA offset in rx buffer (bytes)");
/*
* Pad ethernet payload up to this boundary.
* -1: driver should figure out a good value.
* 0: disable padding.
* Any power of 2 from 32 to 4096 (both inclusive) is also a valid value.
*/
int fl_pad = -1;
SYSCTL_INT(_hw_cxgbe, OID_AUTO, fl_pad, CTLFLAG_RDTUN, &fl_pad, 0,
"payload pad boundary (bytes)");
/*
* Status page length.
* -1: driver should figure out a good value.
* 64 or 128 are the only other valid values.
*/
static int spg_len = -1;
SYSCTL_INT(_hw_cxgbe, OID_AUTO, spg_len, CTLFLAG_RDTUN, &spg_len, 0,
"status page size (bytes)");
/*
* Congestion drops.
* -1: no congestion feedback (not recommended).
* 0: backpressure the channel instead of dropping packets right away.
* 1: no backpressure, drop packets for the congested queue immediately.
*/
static int cong_drop = 0;
SYSCTL_INT(_hw_cxgbe, OID_AUTO, cong_drop, CTLFLAG_RDTUN, &cong_drop, 0,
"Congestion control for RX queues (0 = backpressure, 1 = drop");
/*
* Deliver multiple frames in the same free list buffer if they fit.
* -1: let the driver decide whether to enable buffer packing or not.
* 0: disable buffer packing.
* 1: enable buffer packing.
*/
static int buffer_packing = -1;
SYSCTL_INT(_hw_cxgbe, OID_AUTO, buffer_packing, CTLFLAG_RDTUN, &buffer_packing,
0, "Enable buffer packing");
/*
* Start next frame in a packed buffer at this boundary.
* -1: driver should figure out a good value.
* T4: driver will ignore this and use the same value as fl_pad above.
* T5: 16, or a power of 2 from 64 to 4096 (both inclusive) is a valid value.
*/
static int fl_pack = -1;
SYSCTL_INT(_hw_cxgbe, OID_AUTO, fl_pack, CTLFLAG_RDTUN, &fl_pack, 0,
"payload pack boundary (bytes)");
/*
* Largest rx cluster size that the driver is allowed to allocate.
*/
static int largest_rx_cluster = MJUM16BYTES;
SYSCTL_INT(_hw_cxgbe, OID_AUTO, largest_rx_cluster, CTLFLAG_RDTUN,
&largest_rx_cluster, 0, "Largest rx cluster (bytes)");
/*
* Size of cluster allocation that's most likely to succeed. The driver will
* fall back to this size if it fails to allocate clusters larger than this.
*/
static int safest_rx_cluster = PAGE_SIZE;
SYSCTL_INT(_hw_cxgbe, OID_AUTO, safest_rx_cluster, CTLFLAG_RDTUN,
&safest_rx_cluster, 0, "Safe rx cluster (bytes)");
#ifdef RATELIMIT
/*
* Knob to control TCP timestamp rewriting, and the granularity of the tick used
* for rewriting. -1 and 0-3 are all valid values.
* -1: hardware should leave the TCP timestamps alone.
* 0: 1ms
* 1: 100us
* 2: 10us
* 3: 1us
*/
static int tsclk = -1;
SYSCTL_INT(_hw_cxgbe, OID_AUTO, tsclk, CTLFLAG_RDTUN, &tsclk, 0,
"Control TCP timestamp rewriting when using pacing");
static int eo_max_backlog = 1024 * 1024;
SYSCTL_INT(_hw_cxgbe, OID_AUTO, eo_max_backlog, CTLFLAG_RDTUN, &eo_max_backlog,
0, "Maximum backlog of ratelimited data per flow");
#endif
/*
* The interrupt holdoff timers are multiplied by this value on T6+.
* 1 and 3-17 (both inclusive) are legal values.
*/
static int tscale = 1;
SYSCTL_INT(_hw_cxgbe, OID_AUTO, tscale, CTLFLAG_RDTUN, &tscale, 0,
"Interrupt holdoff timer scale on T6+");
/*
* Number of LRO entries in the lro_ctrl structure per rx queue.
*/
static int lro_entries = TCP_LRO_ENTRIES;
SYSCTL_INT(_hw_cxgbe, OID_AUTO, lro_entries, CTLFLAG_RDTUN, &lro_entries, 0,
"Number of LRO entries per RX queue");
/*
* This enables presorting of frames before they're fed into tcp_lro_rx.
*/
static int lro_mbufs = 0;
SYSCTL_INT(_hw_cxgbe, OID_AUTO, lro_mbufs, CTLFLAG_RDTUN, &lro_mbufs, 0,
"Enable presorting of LRO frames");
static counter_u64_t pullups;
SYSCTL_COUNTER_U64(_hw_cxgbe, OID_AUTO, pullups, CTLFLAG_RD, &pullups,
"Number of mbuf pullups performed");
static counter_u64_t defrags;
SYSCTL_COUNTER_U64(_hw_cxgbe, OID_AUTO, defrags, CTLFLAG_RD, &defrags,
"Number of mbuf defrags performed");
static int t4_tx_coalesce = 1;
SYSCTL_INT(_hw_cxgbe, OID_AUTO, tx_coalesce, CTLFLAG_RWTUN, &t4_tx_coalesce, 0,
"tx coalescing allowed");
/*
* The driver will make aggressive attempts at tx coalescing if it sees these
* many packets eligible for coalescing in quick succession, with no more than
* the specified gap in between the eth_tx calls that delivered the packets.
*/
static int t4_tx_coalesce_pkts = 32;
SYSCTL_INT(_hw_cxgbe, OID_AUTO, tx_coalesce_pkts, CTLFLAG_RWTUN,
&t4_tx_coalesce_pkts, 0,
"# of consecutive packets (1 - 255) that will trigger tx coalescing");
static int t4_tx_coalesce_gap = 5;
SYSCTL_INT(_hw_cxgbe, OID_AUTO, tx_coalesce_gap, CTLFLAG_RWTUN,
&t4_tx_coalesce_gap, 0, "tx gap (in microseconds)");
static int service_iq(struct sge_iq *, int);
static int service_iq_fl(struct sge_iq *, int);
static struct mbuf *get_fl_payload(struct adapter *, struct sge_fl *, uint32_t);
static int eth_rx(struct adapter *, struct sge_rxq *, const struct iq_desc *,
u_int);
static inline void init_iq(struct sge_iq *, struct adapter *, int, int, int,
int, int);
static inline void init_fl(struct adapter *, struct sge_fl *, int, int, char *);
static inline void init_eq(struct adapter *, struct sge_eq *, int, int, uint8_t,
struct sge_iq *, char *);
static int alloc_iq_fl(struct vi_info *, struct sge_iq *, struct sge_fl *,
struct sysctl_ctx_list *, struct sysctl_oid *);
static void free_iq_fl(struct adapter *, struct sge_iq *, struct sge_fl *);
static void add_iq_sysctls(struct sysctl_ctx_list *, struct sysctl_oid *,
struct sge_iq *);
static void add_fl_sysctls(struct adapter *, struct sysctl_ctx_list *,
struct sysctl_oid *, struct sge_fl *);
static int alloc_iq_fl_hwq(struct vi_info *, struct sge_iq *, struct sge_fl *);
static int free_iq_fl_hwq(struct adapter *, struct sge_iq *, struct sge_fl *);
static int alloc_fwq(struct adapter *);
static void free_fwq(struct adapter *);
static int alloc_ctrlq(struct adapter *, int);
static void free_ctrlq(struct adapter *, int);
static int alloc_rxq(struct vi_info *, struct sge_rxq *, int, int, int);
static void free_rxq(struct vi_info *, struct sge_rxq *);
static void add_rxq_sysctls(struct sysctl_ctx_list *, struct sysctl_oid *,
struct sge_rxq *);
#ifdef TCP_OFFLOAD
static int alloc_ofld_rxq(struct vi_info *, struct sge_ofld_rxq *, int, int,
int);
static void free_ofld_rxq(struct vi_info *, struct sge_ofld_rxq *);
static void add_ofld_rxq_sysctls(struct sysctl_ctx_list *, struct sysctl_oid *,
struct sge_ofld_rxq *);
#endif
static int ctrl_eq_alloc(struct adapter *, struct sge_eq *);
static int eth_eq_alloc(struct adapter *, struct vi_info *, struct sge_eq *);
#if defined(TCP_OFFLOAD) || defined(RATELIMIT)
static int ofld_eq_alloc(struct adapter *, struct vi_info *, struct sge_eq *);
#endif
static int alloc_eq(struct adapter *, struct sge_eq *, struct sysctl_ctx_list *,
struct sysctl_oid *);
static void free_eq(struct adapter *, struct sge_eq *);
static void add_eq_sysctls(struct adapter *, struct sysctl_ctx_list *,
struct sysctl_oid *, struct sge_eq *);
static int alloc_eq_hwq(struct adapter *, struct vi_info *, struct sge_eq *);
static int free_eq_hwq(struct adapter *, struct vi_info *, struct sge_eq *);
static int alloc_wrq(struct adapter *, struct vi_info *, struct sge_wrq *,
struct sysctl_ctx_list *, struct sysctl_oid *);
static void free_wrq(struct adapter *, struct sge_wrq *);
static void add_wrq_sysctls(struct sysctl_ctx_list *, struct sysctl_oid *,
struct sge_wrq *);
static int alloc_txq(struct vi_info *, struct sge_txq *, int);
static void free_txq(struct vi_info *, struct sge_txq *);
static void add_txq_sysctls(struct vi_info *, struct sysctl_ctx_list *,
struct sysctl_oid *, struct sge_txq *);
#if defined(TCP_OFFLOAD) || defined(RATELIMIT)
static int alloc_ofld_txq(struct vi_info *, struct sge_ofld_txq *, int);
static void free_ofld_txq(struct vi_info *, struct sge_ofld_txq *);
static void add_ofld_txq_sysctls(struct sysctl_ctx_list *, struct sysctl_oid *,
struct sge_ofld_txq *);
#endif
static void oneseg_dma_callback(void *, bus_dma_segment_t *, int, int);
static inline void ring_fl_db(struct adapter *, struct sge_fl *);
static int refill_fl(struct adapter *, struct sge_fl *, int);
static void refill_sfl(void *);
static int find_refill_source(struct adapter *, int, bool);
static void add_fl_to_sfl(struct adapter *, struct sge_fl *);
static inline void get_pkt_gl(struct mbuf *, struct sglist *);
static inline u_int txpkt_len16(u_int, const u_int);
static inline u_int txpkt_vm_len16(u_int, const u_int);
static inline void calculate_mbuf_len16(struct mbuf *, bool);
static inline u_int txpkts0_len16(u_int);
static inline u_int txpkts1_len16(void);
static u_int write_raw_wr(struct sge_txq *, void *, struct mbuf *, u_int);
static u_int write_txpkt_wr(struct adapter *, struct sge_txq *, struct mbuf *,
u_int);
static u_int write_txpkt_vm_wr(struct adapter *, struct sge_txq *,
struct mbuf *);
static int add_to_txpkts_vf(struct adapter *, struct sge_txq *, struct mbuf *,
int, bool *);
static int add_to_txpkts_pf(struct adapter *, struct sge_txq *, struct mbuf *,
int, bool *);
static u_int write_txpkts_wr(struct adapter *, struct sge_txq *);
static u_int write_txpkts_vm_wr(struct adapter *, struct sge_txq *);
static void write_gl_to_txd(struct sge_txq *, struct mbuf *, caddr_t *, int);
static inline void copy_to_txd(struct sge_eq *, caddr_t, caddr_t *, int);
static inline void ring_eq_db(struct adapter *, struct sge_eq *, u_int);
static inline uint16_t read_hw_cidx(struct sge_eq *);
static inline u_int reclaimable_tx_desc(struct sge_eq *);
static inline u_int total_available_tx_desc(struct sge_eq *);
static u_int reclaim_tx_descs(struct sge_txq *, u_int);
static void tx_reclaim(void *, int);
static __be64 get_flit(struct sglist_seg *, int, int);
static int handle_sge_egr_update(struct sge_iq *, const struct rss_header *,
struct mbuf *);
static int handle_fw_msg(struct sge_iq *, const struct rss_header *,
struct mbuf *);
static int t4_handle_wrerr_rpl(struct adapter *, const __be64 *);
static void wrq_tx_drain(void *, int);
static void drain_wrq_wr_list(struct adapter *, struct sge_wrq *);
static int sysctl_bufsizes(SYSCTL_HANDLER_ARGS);
#ifdef RATELIMIT
#if defined(INET) || defined(INET6)
static inline u_int txpkt_eo_len16(u_int, u_int, u_int);
#endif
static int ethofld_fw4_ack(struct sge_iq *, const struct rss_header *,
struct mbuf *);
#endif
static counter_u64_t extfree_refs;
static counter_u64_t extfree_rels;
an_handler_t t4_an_handler;
fw_msg_handler_t t4_fw_msg_handler[NUM_FW6_TYPES];
cpl_handler_t t4_cpl_handler[NUM_CPL_CMDS];
cpl_handler_t set_tcb_rpl_handlers[NUM_CPL_COOKIES];
cpl_handler_t l2t_write_rpl_handlers[NUM_CPL_COOKIES];
cpl_handler_t act_open_rpl_handlers[NUM_CPL_COOKIES];
cpl_handler_t abort_rpl_rss_handlers[NUM_CPL_COOKIES];
cpl_handler_t fw4_ack_handlers[NUM_CPL_COOKIES];
void
t4_register_an_handler(an_handler_t h)
{
uintptr_t *loc;
MPASS(h == NULL || t4_an_handler == NULL);
loc = (uintptr_t *)&t4_an_handler;
atomic_store_rel_ptr(loc, (uintptr_t)h);
}
void
t4_register_fw_msg_handler(int type, fw_msg_handler_t h)
{
uintptr_t *loc;
MPASS(type < nitems(t4_fw_msg_handler));
MPASS(h == NULL || t4_fw_msg_handler[type] == NULL);
/*
* These are dispatched by the handler for FW{4|6}_CPL_MSG using the CPL
* handler dispatch table. Reject any attempt to install a handler for
* this subtype.
*/
MPASS(type != FW_TYPE_RSSCPL);
MPASS(type != FW6_TYPE_RSSCPL);
loc = (uintptr_t *)&t4_fw_msg_handler[type];
atomic_store_rel_ptr(loc, (uintptr_t)h);
}
void
t4_register_cpl_handler(int opcode, cpl_handler_t h)
{
uintptr_t *loc;
MPASS(opcode < nitems(t4_cpl_handler));
MPASS(h == NULL || t4_cpl_handler[opcode] == NULL);
loc = (uintptr_t *)&t4_cpl_handler[opcode];
atomic_store_rel_ptr(loc, (uintptr_t)h);
}
static int
set_tcb_rpl_handler(struct sge_iq *iq, const struct rss_header *rss,
struct mbuf *m)
{
const struct cpl_set_tcb_rpl *cpl = (const void *)(rss + 1);
u_int tid;
int cookie;
MPASS(m == NULL);
tid = GET_TID(cpl);
if (is_hpftid(iq->adapter, tid) || is_ftid(iq->adapter, tid)) {
/*
* The return code for filter-write is put in the CPL cookie so
* we have to rely on the hardware tid (is_ftid) to determine
* that this is a response to a filter.
*/
cookie = CPL_COOKIE_FILTER;
} else {
cookie = G_COOKIE(cpl->cookie);
}
MPASS(cookie > CPL_COOKIE_RESERVED);
MPASS(cookie < nitems(set_tcb_rpl_handlers));
return (set_tcb_rpl_handlers[cookie](iq, rss, m));
}
static int
l2t_write_rpl_handler(struct sge_iq *iq, const struct rss_header *rss,
struct mbuf *m)
{
const struct cpl_l2t_write_rpl *rpl = (const void *)(rss + 1);
unsigned int cookie;
MPASS(m == NULL);
cookie = GET_TID(rpl) & F_SYNC_WR ? CPL_COOKIE_TOM : CPL_COOKIE_FILTER;
return (l2t_write_rpl_handlers[cookie](iq, rss, m));
}
static int
act_open_rpl_handler(struct sge_iq *iq, const struct rss_header *rss,
struct mbuf *m)
{
const struct cpl_act_open_rpl *cpl = (const void *)(rss + 1);
u_int cookie = G_TID_COOKIE(G_AOPEN_ATID(be32toh(cpl->atid_status)));
MPASS(m == NULL);
MPASS(cookie != CPL_COOKIE_RESERVED);
return (act_open_rpl_handlers[cookie](iq, rss, m));
}
static int
abort_rpl_rss_handler(struct sge_iq *iq, const struct rss_header *rss,
struct mbuf *m)
{
struct adapter *sc = iq->adapter;
u_int cookie;
MPASS(m == NULL);
if (is_hashfilter(sc))
cookie = CPL_COOKIE_HASHFILTER;
else
cookie = CPL_COOKIE_TOM;
return (abort_rpl_rss_handlers[cookie](iq, rss, m));
}
static int
fw4_ack_handler(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
{
struct adapter *sc = iq->adapter;
const struct cpl_fw4_ack *cpl = (const void *)(rss + 1);
unsigned int tid = G_CPL_FW4_ACK_FLOWID(be32toh(OPCODE_TID(cpl)));
u_int cookie;
MPASS(m == NULL);
if (is_etid(sc, tid))
cookie = CPL_COOKIE_ETHOFLD;
else
cookie = CPL_COOKIE_TOM;
return (fw4_ack_handlers[cookie](iq, rss, m));
}
static void
t4_init_shared_cpl_handlers(void)
{
t4_register_cpl_handler(CPL_SET_TCB_RPL, set_tcb_rpl_handler);
t4_register_cpl_handler(CPL_L2T_WRITE_RPL, l2t_write_rpl_handler);
t4_register_cpl_handler(CPL_ACT_OPEN_RPL, act_open_rpl_handler);
t4_register_cpl_handler(CPL_ABORT_RPL_RSS, abort_rpl_rss_handler);
t4_register_cpl_handler(CPL_FW4_ACK, fw4_ack_handler);
}
void
t4_register_shared_cpl_handler(int opcode, cpl_handler_t h, int cookie)
{
uintptr_t *loc;
MPASS(opcode < nitems(t4_cpl_handler));
MPASS(cookie > CPL_COOKIE_RESERVED);
MPASS(cookie < NUM_CPL_COOKIES);
MPASS(t4_cpl_handler[opcode] != NULL);
switch (opcode) {
case CPL_SET_TCB_RPL:
loc = (uintptr_t *)&set_tcb_rpl_handlers[cookie];
break;
case CPL_L2T_WRITE_RPL:
loc = (uintptr_t *)&l2t_write_rpl_handlers[cookie];
break;
case CPL_ACT_OPEN_RPL:
loc = (uintptr_t *)&act_open_rpl_handlers[cookie];
break;
case CPL_ABORT_RPL_RSS:
loc = (uintptr_t *)&abort_rpl_rss_handlers[cookie];
break;
case CPL_FW4_ACK:
loc = (uintptr_t *)&fw4_ack_handlers[cookie];
break;
default:
MPASS(0);
return;
}
MPASS(h == NULL || *loc == (uintptr_t)NULL);
atomic_store_rel_ptr(loc, (uintptr_t)h);
}
/*
* Called on MOD_LOAD. Validates and calculates the SGE tunables.
*/
void
t4_sge_modload(void)
{
if (fl_pktshift < 0 || fl_pktshift > 7) {
printf("Invalid hw.cxgbe.fl_pktshift value (%d),"
" using 0 instead.\n", fl_pktshift);
fl_pktshift = 0;
}
if (spg_len != 64 && spg_len != 128) {
int len;
#if defined(__i386__) || defined(__amd64__)
len = cpu_clflush_line_size > 64 ? 128 : 64;
#else
len = 64;
#endif
if (spg_len != -1) {
printf("Invalid hw.cxgbe.spg_len value (%d),"
" using %d instead.\n", spg_len, len);
}
spg_len = len;
}
if (cong_drop < -1 || cong_drop > 1) {
printf("Invalid hw.cxgbe.cong_drop value (%d),"
" using 0 instead.\n", cong_drop);
cong_drop = 0;
}
if (tscale != 1 && (tscale < 3 || tscale > 17)) {
printf("Invalid hw.cxgbe.tscale value (%d),"
" using 1 instead.\n", tscale);
tscale = 1;
}
if (largest_rx_cluster != MCLBYTES &&
#if MJUMPAGESIZE != MCLBYTES
largest_rx_cluster != MJUMPAGESIZE &&
#endif
largest_rx_cluster != MJUM9BYTES &&
largest_rx_cluster != MJUM16BYTES) {
printf("Invalid hw.cxgbe.largest_rx_cluster value (%d),"
" using %d instead.\n", largest_rx_cluster, MJUM16BYTES);
largest_rx_cluster = MJUM16BYTES;
}
if (safest_rx_cluster != MCLBYTES &&
#if MJUMPAGESIZE != MCLBYTES
safest_rx_cluster != MJUMPAGESIZE &&
#endif
safest_rx_cluster != MJUM9BYTES &&
safest_rx_cluster != MJUM16BYTES) {
printf("Invalid hw.cxgbe.safest_rx_cluster value (%d),"
" using %d instead.\n", safest_rx_cluster, MJUMPAGESIZE);
safest_rx_cluster = MJUMPAGESIZE;
}
extfree_refs = counter_u64_alloc(M_WAITOK);
extfree_rels = counter_u64_alloc(M_WAITOK);
pullups = counter_u64_alloc(M_WAITOK);
defrags = counter_u64_alloc(M_WAITOK);
counter_u64_zero(extfree_refs);
counter_u64_zero(extfree_rels);
counter_u64_zero(pullups);
counter_u64_zero(defrags);
t4_init_shared_cpl_handlers();
t4_register_cpl_handler(CPL_FW4_MSG, handle_fw_msg);
t4_register_cpl_handler(CPL_FW6_MSG, handle_fw_msg);
t4_register_cpl_handler(CPL_SGE_EGR_UPDATE, handle_sge_egr_update);
#ifdef RATELIMIT
t4_register_shared_cpl_handler(CPL_FW4_ACK, ethofld_fw4_ack,
CPL_COOKIE_ETHOFLD);
#endif
t4_register_fw_msg_handler(FW6_TYPE_CMD_RPL, t4_handle_fw_rpl);
t4_register_fw_msg_handler(FW6_TYPE_WRERR_RPL, t4_handle_wrerr_rpl);
}
void
t4_sge_modunload(void)
{
counter_u64_free(extfree_refs);
counter_u64_free(extfree_rels);
counter_u64_free(pullups);
counter_u64_free(defrags);
}
uint64_t
t4_sge_extfree_refs(void)
{
uint64_t refs, rels;
rels = counter_u64_fetch(extfree_rels);
refs = counter_u64_fetch(extfree_refs);
return (refs - rels);
}
/* max 4096 */
#define MAX_PACK_BOUNDARY 512
static inline void
setup_pad_and_pack_boundaries(struct adapter *sc)
{
uint32_t v, m;
int pad, pack, pad_shift;
pad_shift = chip_id(sc) > CHELSIO_T5 ? X_T6_INGPADBOUNDARY_SHIFT :
X_INGPADBOUNDARY_SHIFT;
pad = fl_pad;
if (fl_pad < (1 << pad_shift) ||
fl_pad > (1 << (pad_shift + M_INGPADBOUNDARY)) ||
!powerof2(fl_pad)) {
/*
* If there is any chance that we might use buffer packing and
* the chip is a T4, then pick 64 as the pad/pack boundary. Set
* it to the minimum allowed in all other cases.
*/
pad = is_t4(sc) && buffer_packing ? 64 : 1 << pad_shift;
/*
* For fl_pad = 0 we'll still write a reasonable value to the
* register but all the freelists will opt out of padding.
* We'll complain here only if the user tried to set it to a
* value greater than 0 that was invalid.
*/
if (fl_pad > 0) {
device_printf(sc->dev, "Invalid hw.cxgbe.fl_pad value"
" (%d), using %d instead.\n", fl_pad, pad);
}
}
m = V_INGPADBOUNDARY(M_INGPADBOUNDARY);
v = V_INGPADBOUNDARY(ilog2(pad) - pad_shift);
t4_set_reg_field(sc, A_SGE_CONTROL, m, v);
if (is_t4(sc)) {
if (fl_pack != -1 && fl_pack != pad) {
/* Complain but carry on. */
device_printf(sc->dev, "hw.cxgbe.fl_pack (%d) ignored,"
" using %d instead.\n", fl_pack, pad);
}
return;
}
pack = fl_pack;
if (fl_pack < 16 || fl_pack == 32 || fl_pack > 4096 ||
!powerof2(fl_pack)) {
if (sc->params.pci.mps > MAX_PACK_BOUNDARY)
pack = MAX_PACK_BOUNDARY;
else
pack = max(sc->params.pci.mps, CACHE_LINE_SIZE);
MPASS(powerof2(pack));
if (pack < 16)
pack = 16;
if (pack == 32)
pack = 64;
if (pack > 4096)
pack = 4096;
if (fl_pack != -1) {
device_printf(sc->dev, "Invalid hw.cxgbe.fl_pack value"
" (%d), using %d instead.\n", fl_pack, pack);
}
}
m = V_INGPACKBOUNDARY(M_INGPACKBOUNDARY);
if (pack == 16)
v = V_INGPACKBOUNDARY(0);
else
v = V_INGPACKBOUNDARY(ilog2(pack) - 5);
MPASS(!is_t4(sc)); /* T4 doesn't have SGE_CONTROL2 */
t4_set_reg_field(sc, A_SGE_CONTROL2, m, v);
}
/*
* adap->params.vpd.cclk must be set up before this is called.
*/
void
t4_tweak_chip_settings(struct adapter *sc)
{
int i, reg;
uint32_t v, m;
int intr_timer[SGE_NTIMERS] = {1, 5, 10, 50, 100, 200};
int timer_max = M_TIMERVALUE0 * 1000 / sc->params.vpd.cclk;
int intr_pktcount[SGE_NCOUNTERS] = {1, 8, 16, 32}; /* 63 max */
uint16_t indsz = min(RX_COPY_THRESHOLD - 1, M_INDICATESIZE);
static int sw_buf_sizes[] = {
MCLBYTES,
#if MJUMPAGESIZE != MCLBYTES
MJUMPAGESIZE,
#endif
MJUM9BYTES,
MJUM16BYTES
};
KASSERT(sc->flags & MASTER_PF,
("%s: trying to change chip settings when not master.", __func__));
m = V_PKTSHIFT(M_PKTSHIFT) | F_RXPKTCPLMODE | F_EGRSTATUSPAGESIZE;
v = V_PKTSHIFT(fl_pktshift) | F_RXPKTCPLMODE |
V_EGRSTATUSPAGESIZE(spg_len == 128);
t4_set_reg_field(sc, A_SGE_CONTROL, m, v);
setup_pad_and_pack_boundaries(sc);
v = V_HOSTPAGESIZEPF0(PAGE_SHIFT - 10) |
V_HOSTPAGESIZEPF1(PAGE_SHIFT - 10) |
V_HOSTPAGESIZEPF2(PAGE_SHIFT - 10) |
V_HOSTPAGESIZEPF3(PAGE_SHIFT - 10) |
V_HOSTPAGESIZEPF4(PAGE_SHIFT - 10) |
V_HOSTPAGESIZEPF5(PAGE_SHIFT - 10) |
V_HOSTPAGESIZEPF6(PAGE_SHIFT - 10) |
V_HOSTPAGESIZEPF7(PAGE_SHIFT - 10);
t4_write_reg(sc, A_SGE_HOST_PAGE_SIZE, v);
t4_write_reg(sc, A_SGE_FL_BUFFER_SIZE0, 4096);
t4_write_reg(sc, A_SGE_FL_BUFFER_SIZE1, 65536);
reg = A_SGE_FL_BUFFER_SIZE2;
for (i = 0; i < nitems(sw_buf_sizes); i++) {
MPASS(reg <= A_SGE_FL_BUFFER_SIZE15);
t4_write_reg(sc, reg, sw_buf_sizes[i]);
reg += 4;
MPASS(reg <= A_SGE_FL_BUFFER_SIZE15);
t4_write_reg(sc, reg, sw_buf_sizes[i] - CL_METADATA_SIZE);
reg += 4;
}
v = V_THRESHOLD_0(intr_pktcount[0]) | V_THRESHOLD_1(intr_pktcount[1]) |
V_THRESHOLD_2(intr_pktcount[2]) | V_THRESHOLD_3(intr_pktcount[3]);
t4_write_reg(sc, A_SGE_INGRESS_RX_THRESHOLD, v);
KASSERT(intr_timer[0] <= timer_max,
("%s: not a single usable timer (%d, %d)", __func__, intr_timer[0],
timer_max));
for (i = 1; i < nitems(intr_timer); i++) {
KASSERT(intr_timer[i] >= intr_timer[i - 1],
("%s: timers not listed in increasing order (%d)",
__func__, i));
while (intr_timer[i] > timer_max) {
if (i == nitems(intr_timer) - 1) {
intr_timer[i] = timer_max;
break;
}
intr_timer[i] += intr_timer[i - 1];
intr_timer[i] /= 2;
}
}
v = V_TIMERVALUE0(us_to_core_ticks(sc, intr_timer[0])) |
V_TIMERVALUE1(us_to_core_ticks(sc, intr_timer[1]));
t4_write_reg(sc, A_SGE_TIMER_VALUE_0_AND_1, v);
v = V_TIMERVALUE2(us_to_core_ticks(sc, intr_timer[2])) |
V_TIMERVALUE3(us_to_core_ticks(sc, intr_timer[3]));
t4_write_reg(sc, A_SGE_TIMER_VALUE_2_AND_3, v);
v = V_TIMERVALUE4(us_to_core_ticks(sc, intr_timer[4])) |
V_TIMERVALUE5(us_to_core_ticks(sc, intr_timer[5]));
t4_write_reg(sc, A_SGE_TIMER_VALUE_4_AND_5, v);
if (chip_id(sc) >= CHELSIO_T6) {
m = V_TSCALE(M_TSCALE);
if (tscale == 1)
v = 0;
else
v = V_TSCALE(tscale - 2);
t4_set_reg_field(sc, A_SGE_ITP_CONTROL, m, v);
if (sc->debug_flags & DF_DISABLE_TCB_CACHE) {
m = V_RDTHRESHOLD(M_RDTHRESHOLD) | F_WRTHRTHRESHEN |
V_WRTHRTHRESH(M_WRTHRTHRESH);
t4_tp_pio_read(sc, &v, 1, A_TP_CMM_CONFIG, 1);
v &= ~m;
v |= V_RDTHRESHOLD(1) | F_WRTHRTHRESHEN |
V_WRTHRTHRESH(16);
t4_tp_pio_write(sc, &v, 1, A_TP_CMM_CONFIG, 1);
}
}
/* 4K, 16K, 64K, 256K DDP "page sizes" for TDDP */
v = V_HPZ0(0) | V_HPZ1(2) | V_HPZ2(4) | V_HPZ3(6);
t4_write_reg(sc, A_ULP_RX_TDDP_PSZ, v);
/*
* 4K, 8K, 16K, 64K DDP "page sizes" for iSCSI DDP. These have been
* chosen with MAXPHYS = 128K in mind. The largest DDP buffer that we
* may have to deal with is MAXPHYS + 1 page.
*/
v = V_HPZ0(0) | V_HPZ1(1) | V_HPZ2(2) | V_HPZ3(4);
t4_write_reg(sc, A_ULP_RX_ISCSI_PSZ, v);
/* We use multiple DDP page sizes both in plain-TOE and ISCSI modes. */
m = v = F_TDDPTAGTCB | F_ISCSITAGTCB;
t4_set_reg_field(sc, A_ULP_RX_CTL, m, v);
m = V_INDICATESIZE(M_INDICATESIZE) | F_REARMDDPOFFSET |
F_RESETDDPOFFSET;
v = V_INDICATESIZE(indsz) | F_REARMDDPOFFSET | F_RESETDDPOFFSET;
t4_set_reg_field(sc, A_TP_PARA_REG5, m, v);
}
/*
* SGE wants the buffer to be at least 64B and then a multiple of 16. Its
* address mut be 16B aligned. If padding is in use the buffer's start and end
* need to be aligned to the pad boundary as well. We'll just make sure that
* the size is a multiple of the pad boundary here, it is up to the buffer
* allocation code to make sure the start of the buffer is aligned.
*/
static inline int
hwsz_ok(struct adapter *sc, int hwsz)
{
int mask = fl_pad ? sc->params.sge.pad_boundary - 1 : 16 - 1;
return (hwsz >= 64 && (hwsz & mask) == 0);
}
/*
* Initialize the rx buffer sizes and figure out which zones the buffers will
* be allocated from.
*/
void
t4_init_rx_buf_info(struct adapter *sc)
{
struct sge *s = &sc->sge;
struct sge_params *sp = &sc->params.sge;
int i, j, n;
static int sw_buf_sizes[] = { /* Sorted by size */
MCLBYTES,
#if MJUMPAGESIZE != MCLBYTES
MJUMPAGESIZE,
#endif
MJUM9BYTES,
MJUM16BYTES
};
struct rx_buf_info *rxb;
s->safe_zidx = -1;
rxb = &s->rx_buf_info[0];
for (i = 0; i < SW_ZONE_SIZES; i++, rxb++) {
rxb->size1 = sw_buf_sizes[i];
rxb->zone = m_getzone(rxb->size1);
rxb->type = m_gettype(rxb->size1);
rxb->size2 = 0;
rxb->hwidx1 = -1;
rxb->hwidx2 = -1;
for (j = 0; j < SGE_FLBUF_SIZES; j++) {
int hwsize = sp->sge_fl_buffer_size[j];
if (!hwsz_ok(sc, hwsize))
continue;
/* hwidx for size1 */
if (rxb->hwidx1 == -1 && rxb->size1 == hwsize)
rxb->hwidx1 = j;
/* hwidx for size2 (buffer packing) */
if (rxb->size1 - CL_METADATA_SIZE < hwsize)
continue;
n = rxb->size1 - hwsize - CL_METADATA_SIZE;
if (n == 0) {
rxb->hwidx2 = j;
rxb->size2 = hwsize;
break; /* stop looking */
}
if (rxb->hwidx2 != -1) {
if (n < sp->sge_fl_buffer_size[rxb->hwidx2] -
hwsize - CL_METADATA_SIZE) {
rxb->hwidx2 = j;
rxb->size2 = hwsize;
}
} else if (n <= 2 * CL_METADATA_SIZE) {
rxb->hwidx2 = j;
rxb->size2 = hwsize;
}
}
if (rxb->hwidx2 != -1)
sc->flags |= BUF_PACKING_OK;
if (s->safe_zidx == -1 && rxb->size1 == safest_rx_cluster)
s->safe_zidx = i;
}
}
/*
* Verify some basic SGE settings for the PF and VF driver, and other
* miscellaneous settings for the PF driver.
*/
int
t4_verify_chip_settings(struct adapter *sc)
{
struct sge_params *sp = &sc->params.sge;
uint32_t m, v, r;
int rc = 0;
const uint16_t indsz = min(RX_COPY_THRESHOLD - 1, M_INDICATESIZE);
m = F_RXPKTCPLMODE;
v = F_RXPKTCPLMODE;
r = sp->sge_control;
if ((r & m) != v) {
device_printf(sc->dev, "invalid SGE_CONTROL(0x%x)\n", r);
rc = EINVAL;
}
/*
* If this changes then every single use of PAGE_SHIFT in the driver
* needs to be carefully reviewed for PAGE_SHIFT vs sp->page_shift.
*/
if (sp->page_shift != PAGE_SHIFT) {
device_printf(sc->dev, "invalid SGE_HOST_PAGE_SIZE(0x%x)\n", r);
rc = EINVAL;
}
if (sc->flags & IS_VF)
return (0);
v = V_HPZ0(0) | V_HPZ1(2) | V_HPZ2(4) | V_HPZ3(6);
r = t4_read_reg(sc, A_ULP_RX_TDDP_PSZ);
if (r != v) {
device_printf(sc->dev, "invalid ULP_RX_TDDP_PSZ(0x%x)\n", r);
if (sc->vres.ddp.size != 0)
rc = EINVAL;
}
m = v = F_TDDPTAGTCB;
r = t4_read_reg(sc, A_ULP_RX_CTL);
if ((r & m) != v) {
device_printf(sc->dev, "invalid ULP_RX_CTL(0x%x)\n", r);
if (sc->vres.ddp.size != 0)
rc = EINVAL;
}
m = V_INDICATESIZE(M_INDICATESIZE) | F_REARMDDPOFFSET |
F_RESETDDPOFFSET;
v = V_INDICATESIZE(indsz) | F_REARMDDPOFFSET | F_RESETDDPOFFSET;
r = t4_read_reg(sc, A_TP_PARA_REG5);
if ((r & m) != v) {
device_printf(sc->dev, "invalid TP_PARA_REG5(0x%x)\n", r);
if (sc->vres.ddp.size != 0)
rc = EINVAL;
}
return (rc);
}
int
t4_create_dma_tag(struct adapter *sc)
{
int rc;
rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), 1, 0,
BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE,
BUS_SPACE_UNRESTRICTED, BUS_SPACE_MAXSIZE, BUS_DMA_ALLOCNOW, NULL,
NULL, &sc->dmat);
if (rc != 0) {
device_printf(sc->dev,
"failed to create main DMA tag: %d\n", rc);
}
return (rc);
}
void
t4_sge_sysctls(struct adapter *sc, struct sysctl_ctx_list *ctx,
struct sysctl_oid_list *children)
{
struct sge_params *sp = &sc->params.sge;
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "buffer_sizes",
CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
sysctl_bufsizes, "A", "freelist buffer sizes");
SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pktshift", CTLFLAG_RD,
NULL, sp->fl_pktshift, "payload DMA offset in rx buffer (bytes)");
SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pad", CTLFLAG_RD,
NULL, sp->pad_boundary, "payload pad boundary (bytes)");
SYSCTL_ADD_INT(ctx, children, OID_AUTO, "spg_len", CTLFLAG_RD,
NULL, sp->spg_len, "status page size (bytes)");
SYSCTL_ADD_INT(ctx, children, OID_AUTO, "cong_drop", CTLFLAG_RD,
NULL, cong_drop, "congestion drop setting");
SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pack", CTLFLAG_RD,
NULL, sp->pack_boundary, "payload pack boundary (bytes)");
}
int
t4_destroy_dma_tag(struct adapter *sc)
{
if (sc->dmat)
bus_dma_tag_destroy(sc->dmat);
return (0);
}
/*
* Allocate and initialize the firmware event queue, control queues, and special
* purpose rx queues owned by the adapter.
*
* Returns errno on failure. Resources allocated up to that point may still be
* allocated. Caller is responsible for cleanup in case this function fails.
*/
int
t4_setup_adapter_queues(struct adapter *sc)
{
int rc, i;
ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
/*
* Firmware event queue
*/
rc = alloc_fwq(sc);
if (rc != 0)
return (rc);
/*
* That's all for the VF driver.
*/
if (sc->flags & IS_VF)
return (rc);
/*
* XXX: General purpose rx queues, one per port.
*/
/*
* Control queues, one per port.
*/
for_each_port(sc, i) {
rc = alloc_ctrlq(sc, i);
if (rc != 0)
return (rc);
}
return (rc);
}
/*
* Idempotent
*/
int
t4_teardown_adapter_queues(struct adapter *sc)
{
int i;
ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
if (sc->sge.ctrlq != NULL) {
MPASS(!(sc->flags & IS_VF)); /* VFs don't allocate ctrlq. */
for_each_port(sc, i)
free_ctrlq(sc, i);
}
free_fwq(sc);
return (0);
}
/* Maximum payload that could arrive with a single iq descriptor. */
static inline int
max_rx_payload(struct adapter *sc, struct ifnet *ifp, const bool ofld)
{
int maxp;
/* large enough even when hw VLAN extraction is disabled */
maxp = sc->params.sge.fl_pktshift + ETHER_HDR_LEN +
ETHER_VLAN_ENCAP_LEN + ifp->if_mtu;
if (ofld && sc->tt.tls && sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS &&
maxp < sc->params.tp.max_rx_pdu)
maxp = sc->params.tp.max_rx_pdu;
return (maxp);
}
int
t4_setup_vi_queues(struct vi_info *vi)
{
int rc = 0, i, intr_idx;
struct sge_rxq *rxq;
struct sge_txq *txq;
#ifdef TCP_OFFLOAD
struct sge_ofld_rxq *ofld_rxq;
#endif
#if defined(TCP_OFFLOAD) || defined(RATELIMIT)
struct sge_ofld_txq *ofld_txq;
#endif
#ifdef DEV_NETMAP
int saved_idx, iqidx;
struct sge_nm_rxq *nm_rxq;
struct sge_nm_txq *nm_txq;
#endif
struct adapter *sc = vi->adapter;
struct ifnet *ifp = vi->ifp;
int maxp;
/* Interrupt vector to start from (when using multiple vectors) */
intr_idx = vi->first_intr;
#ifdef DEV_NETMAP
saved_idx = intr_idx;
if (ifp->if_capabilities & IFCAP_NETMAP) {
/* netmap is supported with direct interrupts only. */
MPASS(!forwarding_intr_to_fwq(sc));
MPASS(vi->first_intr >= 0);
/*
* We don't have buffers to back the netmap rx queues
* right now so we create the queues in a way that
* doesn't set off any congestion signal in the chip.
*/
for_each_nm_rxq(vi, i, nm_rxq) {
rc = alloc_nm_rxq(vi, nm_rxq, intr_idx, i);
if (rc != 0)
goto done;
intr_idx++;
}
for_each_nm_txq(vi, i, nm_txq) {
iqidx = vi->first_nm_rxq + (i % vi->nnmrxq);
rc = alloc_nm_txq(vi, nm_txq, iqidx, i);
if (rc != 0)
goto done;
}
}
/* Normal rx queues and netmap rx queues share the same interrupts. */
intr_idx = saved_idx;
#endif
/*
* Allocate rx queues first because a default iqid is required when
* creating a tx queue.
*/
maxp = max_rx_payload(sc, ifp, false);
for_each_rxq(vi, i, rxq) {
rc = alloc_rxq(vi, rxq, i, intr_idx, maxp);
if (rc != 0)
goto done;
if (!forwarding_intr_to_fwq(sc))
intr_idx++;
}
#ifdef DEV_NETMAP
if (ifp->if_capabilities & IFCAP_NETMAP)
intr_idx = saved_idx + max(vi->nrxq, vi->nnmrxq);
#endif
#ifdef TCP_OFFLOAD
maxp = max_rx_payload(sc, ifp, true);
for_each_ofld_rxq(vi, i, ofld_rxq) {
rc = alloc_ofld_rxq(vi, ofld_rxq, i, intr_idx, maxp);
if (rc != 0)
goto done;
if (!forwarding_intr_to_fwq(sc))
intr_idx++;
}
#endif
/*
* Now the tx queues.
*/
for_each_txq(vi, i, txq) {
rc = alloc_txq(vi, txq, i);
if (rc != 0)
goto done;
}
#if defined(TCP_OFFLOAD) || defined(RATELIMIT)
for_each_ofld_txq(vi, i, ofld_txq) {
rc = alloc_ofld_txq(vi, ofld_txq, i);
if (rc != 0)
goto done;
}
#endif
done:
if (rc)
t4_teardown_vi_queues(vi);
return (rc);
}
/*
* Idempotent
*/
int
t4_teardown_vi_queues(struct vi_info *vi)
{
int i;
struct sge_rxq *rxq;
struct sge_txq *txq;
#if defined(TCP_OFFLOAD) || defined(RATELIMIT)
struct sge_ofld_txq *ofld_txq;
#endif
#ifdef TCP_OFFLOAD
struct sge_ofld_rxq *ofld_rxq;
#endif
#ifdef DEV_NETMAP
struct sge_nm_rxq *nm_rxq;
struct sge_nm_txq *nm_txq;
#endif
#ifdef DEV_NETMAP
if (vi->ifp->if_capabilities & IFCAP_NETMAP) {
for_each_nm_txq(vi, i, nm_txq) {
free_nm_txq(vi, nm_txq);
}
for_each_nm_rxq(vi, i, nm_rxq) {
free_nm_rxq(vi, nm_rxq);
}
}
#endif
/*
* Take down all the tx queues first, as they reference the rx queues
* (for egress updates, etc.).
*/
for_each_txq(vi, i, txq) {
free_txq(vi, txq);
}
#if defined(TCP_OFFLOAD) || defined(RATELIMIT)
for_each_ofld_txq(vi, i, ofld_txq) {
free_ofld_txq(vi, ofld_txq);
}
#endif
/*
* Then take down the rx queues.
*/
for_each_rxq(vi, i, rxq) {
free_rxq(vi, rxq);
}
#ifdef TCP_OFFLOAD
for_each_ofld_rxq(vi, i, ofld_rxq) {
free_ofld_rxq(vi, ofld_rxq);
}
#endif
return (0);
}
/*
* Interrupt handler when the driver is using only 1 interrupt. This is a very
* unusual scenario.
*
* a) Deals with errors, if any.
* b) Services firmware event queue, which is taking interrupts for all other
* queues.
*/
void
t4_intr_all(void *arg)
{
struct adapter *sc = arg;
struct sge_iq *fwq = &sc->sge.fwq;
MPASS(sc->intr_count == 1);
if (sc->intr_type == INTR_INTX)
t4_write_reg(sc, MYPF_REG(A_PCIE_PF_CLI), 0);
t4_intr_err(arg);
t4_intr_evt(fwq);
}
/*
* Interrupt handler for errors (installed directly when multiple interrupts are
* being used, or called by t4_intr_all).
*/
void
t4_intr_err(void *arg)
{
struct adapter *sc = arg;
uint32_t v;
const bool verbose = (sc->debug_flags & DF_VERBOSE_SLOWINTR) != 0;
if (atomic_load_int(&sc->error_flags) & ADAP_FATAL_ERR)
return;
v = t4_read_reg(sc, MYPF_REG(A_PL_PF_INT_CAUSE));
if (v & F_PFSW) {
sc->swintr++;
t4_write_reg(sc, MYPF_REG(A_PL_PF_INT_CAUSE), v);
}
if (t4_slow_intr_handler(sc, verbose))
t4_fatal_err(sc, false);
}
/*
* Interrupt handler for iq-only queues. The firmware event queue is the only
* such queue right now.
*/
void
t4_intr_evt(void *arg)
{
struct sge_iq *iq = arg;
if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) {
service_iq(iq, 0);
(void) atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE);
}
}
/*
* Interrupt handler for iq+fl queues.
*/
void
t4_intr(void *arg)
{
struct sge_iq *iq = arg;
if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) {
service_iq_fl(iq, 0);
(void) atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE);
}
}
#ifdef DEV_NETMAP
/*
* Interrupt handler for netmap rx queues.
*/
void
t4_nm_intr(void *arg)
{
struct sge_nm_rxq *nm_rxq = arg;
if (atomic_cmpset_int(&nm_rxq->nm_state, NM_ON, NM_BUSY)) {
service_nm_rxq(nm_rxq);
(void) atomic_cmpset_int(&nm_rxq->nm_state, NM_BUSY, NM_ON);
}
}
/*
* Interrupt handler for vectors shared between NIC and netmap rx queues.
*/
void
t4_vi_intr(void *arg)
{
struct irq *irq = arg;
MPASS(irq->nm_rxq != NULL);
t4_nm_intr(irq->nm_rxq);
MPASS(irq->rxq != NULL);
t4_intr(irq->rxq);
}
#endif
/*
* Deals with interrupts on an iq-only (no freelist) queue.
*/
static int
service_iq(struct sge_iq *iq, int budget)
{
struct sge_iq *q;
struct adapter *sc = iq->adapter;
struct iq_desc *d = &iq->desc[iq->cidx];
int ndescs = 0, limit;
int rsp_type;
uint32_t lq;
STAILQ_HEAD(, sge_iq) iql = STAILQ_HEAD_INITIALIZER(iql);
KASSERT(iq->state == IQS_BUSY, ("%s: iq %p not BUSY", __func__, iq));
KASSERT((iq->flags & IQ_HAS_FL) == 0,
("%s: called for iq %p with fl (iq->flags 0x%x)", __func__, iq,
iq->flags));
MPASS((iq->flags & IQ_ADJ_CREDIT) == 0);
MPASS((iq->flags & IQ_LRO_ENABLED) == 0);
limit = budget ? budget : iq->qsize / 16;
/*
* We always come back and check the descriptor ring for new indirect
* interrupts and other responses after running a single handler.
*/
for (;;) {
while ((d->rsp.u.type_gen & F_RSPD_GEN) == iq->gen) {
rmb();
rsp_type = G_RSPD_TYPE(d->rsp.u.type_gen);
lq = be32toh(d->rsp.pldbuflen_qid);
switch (rsp_type) {
case X_RSPD_TYPE_FLBUF:
panic("%s: data for an iq (%p) with no freelist",
__func__, iq);
/* NOTREACHED */
case X_RSPD_TYPE_CPL:
KASSERT(d->rss.opcode < NUM_CPL_CMDS,
("%s: bad opcode %02x.", __func__,
d->rss.opcode));
t4_cpl_handler[d->rss.opcode](iq, &d->rss, NULL);
break;
case X_RSPD_TYPE_INTR:
/*
* There are 1K interrupt-capable queues (qids 0
* through 1023). A response type indicating a
* forwarded interrupt with a qid >= 1K is an
* iWARP async notification.
*/
if (__predict_true(lq >= 1024)) {
t4_an_handler(iq, &d->rsp);
break;
}
q = sc->sge.iqmap[lq - sc->sge.iq_start -
sc->sge.iq_base];
if (atomic_cmpset_int(&q->state, IQS_IDLE,
IQS_BUSY)) {
if (service_iq_fl(q, q->qsize / 16) == 0) {
(void) atomic_cmpset_int(&q->state,
IQS_BUSY, IQS_IDLE);
} else {
STAILQ_INSERT_TAIL(&iql, q,
link);
}
}
break;
default:
KASSERT(0,
("%s: illegal response type %d on iq %p",
__func__, rsp_type, iq));
log(LOG_ERR,
"%s: illegal response type %d on iq %p",
device_get_nameunit(sc->dev), rsp_type, iq);
break;
}
d++;
if (__predict_false(++iq->cidx == iq->sidx)) {
iq->cidx = 0;
iq->gen ^= F_RSPD_GEN;
d = &iq->desc[0];
}
if (__predict_false(++ndescs == limit)) {
t4_write_reg(sc, sc->sge_gts_reg,
V_CIDXINC(ndescs) |
V_INGRESSQID(iq->cntxt_id) |
V_SEINTARM(V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX)));
ndescs = 0;
if (budget) {
return (EINPROGRESS);
}
}
}
if (STAILQ_EMPTY(&iql))
break;
/*
* Process the head only, and send it to the back of the list if
* it's still not done.
*/
q = STAILQ_FIRST(&iql);
STAILQ_REMOVE_HEAD(&iql, link);
if (service_iq_fl(q, q->qsize / 8) == 0)
(void) atomic_cmpset_int(&q->state, IQS_BUSY, IQS_IDLE);
else
STAILQ_INSERT_TAIL(&iql, q, link);
}
t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(ndescs) |
V_INGRESSQID((u32)iq->cntxt_id) | V_SEINTARM(iq->intr_params));
return (0);
}
#if defined(INET) || defined(INET6)
static inline int
sort_before_lro(struct lro_ctrl *lro)
{
return (lro->lro_mbuf_max != 0);
}
#endif
static inline uint64_t
last_flit_to_ns(struct adapter *sc, uint64_t lf)
{
uint64_t n = be64toh(lf) & 0xfffffffffffffff; /* 60b, not 64b. */
if (n > UINT64_MAX / 1000000)
return (n / sc->params.vpd.cclk * 1000000);
else
return (n * 1000000 / sc->params.vpd.cclk);
}
static inline void
move_to_next_rxbuf(struct sge_fl *fl)
{
fl->rx_offset = 0;
if (__predict_false((++fl->cidx & 7) == 0)) {
uint16_t cidx = fl->cidx >> 3;
if (__predict_false(cidx == fl->sidx))
fl->cidx = cidx = 0;
fl->hw_cidx = cidx;
}
}
/*
* Deals with interrupts on an iq+fl queue.
*/
static int
service_iq_fl(struct sge_iq *iq, int budget)
{
struct sge_rxq *rxq = iq_to_rxq(iq);
struct sge_fl *fl;
struct adapter *sc = iq->adapter;
struct iq_desc *d = &iq->desc[iq->cidx];
int ndescs, limit;
int rsp_type, starved;
uint32_t lq;
uint16_t fl_hw_cidx;
struct mbuf *m0;
#if defined(INET) || defined(INET6)
const struct timeval lro_timeout = {0, sc->lro_timeout};
struct lro_ctrl *lro = &rxq->lro;
#endif
KASSERT(iq->state == IQS_BUSY, ("%s: iq %p not BUSY", __func__, iq));
MPASS(iq->flags & IQ_HAS_FL);
ndescs = 0;
#if defined(INET) || defined(INET6)
if (iq->flags & IQ_ADJ_CREDIT) {
MPASS(sort_before_lro(lro));
iq->flags &= ~IQ_ADJ_CREDIT;
if ((d->rsp.u.type_gen & F_RSPD_GEN) != iq->gen) {
tcp_lro_flush_all(lro);
t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(1) |
V_INGRESSQID((u32)iq->cntxt_id) |
V_SEINTARM(iq->intr_params));
return (0);
}
ndescs = 1;
}
#else
MPASS((iq->flags & IQ_ADJ_CREDIT) == 0);
#endif
limit = budget ? budget : iq->qsize / 16;
fl = &rxq->fl;
fl_hw_cidx = fl->hw_cidx; /* stable snapshot */
while ((d->rsp.u.type_gen & F_RSPD_GEN) == iq->gen) {
rmb();
m0 = NULL;
rsp_type = G_RSPD_TYPE(d->rsp.u.type_gen);
lq = be32toh(d->rsp.pldbuflen_qid);
switch (rsp_type) {
case X_RSPD_TYPE_FLBUF:
if (lq & F_RSPD_NEWBUF) {
if (fl->rx_offset > 0)
move_to_next_rxbuf(fl);
lq = G_RSPD_LEN(lq);
}
if (IDXDIFF(fl->hw_cidx, fl_hw_cidx, fl->sidx) > 4) {
FL_LOCK(fl);
refill_fl(sc, fl, 64);
FL_UNLOCK(fl);
fl_hw_cidx = fl->hw_cidx;
}
if (d->rss.opcode == CPL_RX_PKT) {
if (__predict_true(eth_rx(sc, rxq, d, lq) == 0))
break;
goto out;
}
m0 = get_fl_payload(sc, fl, lq);
if (__predict_false(m0 == NULL))
goto out;
/* fall through */
case X_RSPD_TYPE_CPL:
KASSERT(d->rss.opcode < NUM_CPL_CMDS,
("%s: bad opcode %02x.", __func__, d->rss.opcode));
t4_cpl_handler[d->rss.opcode](iq, &d->rss, m0);
break;
case X_RSPD_TYPE_INTR:
/*
* There are 1K interrupt-capable queues (qids 0
* through 1023). A response type indicating a
* forwarded interrupt with a qid >= 1K is an
* iWARP async notification. That is the only
* acceptable indirect interrupt on this queue.
*/
if (__predict_false(lq < 1024)) {
panic("%s: indirect interrupt on iq_fl %p "
"with qid %u", __func__, iq, lq);
}
t4_an_handler(iq, &d->rsp);
break;
default:
KASSERT(0, ("%s: illegal response type %d on iq %p",
__func__, rsp_type, iq));
log(LOG_ERR, "%s: illegal response type %d on iq %p",
device_get_nameunit(sc->dev), rsp_type, iq);
break;
}
d++;
if (__predict_false(++iq->cidx == iq->sidx)) {
iq->cidx = 0;
iq->gen ^= F_RSPD_GEN;
d = &iq->desc[0];
}
if (__predict_false(++ndescs == limit)) {
t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(ndescs) |
V_INGRESSQID(iq->cntxt_id) |
V_SEINTARM(V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX)));
#if defined(INET) || defined(INET6)
if (iq->flags & IQ_LRO_ENABLED &&
!sort_before_lro(lro) &&
sc->lro_timeout != 0) {
tcp_lro_flush_inactive(lro, &lro_timeout);
}
#endif
if (budget)
return (EINPROGRESS);
ndescs = 0;
}
}
out:
#if defined(INET) || defined(INET6)
if (iq->flags & IQ_LRO_ENABLED) {
if (ndescs > 0 && lro->lro_mbuf_count > 8) {
MPASS(sort_before_lro(lro));
/* hold back one credit and don't flush LRO state */
iq->flags |= IQ_ADJ_CREDIT;
ndescs--;
} else {
tcp_lro_flush_all(lro);
}
}
#endif
t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(ndescs) |
V_INGRESSQID((u32)iq->cntxt_id) | V_SEINTARM(iq->intr_params));
FL_LOCK(fl);
starved = refill_fl(sc, fl, 64);
FL_UNLOCK(fl);
if (__predict_false(starved != 0))
add_fl_to_sfl(sc, fl);
return (0);
}
static inline struct cluster_metadata *
cl_metadata(struct fl_sdesc *sd)
{
return ((void *)(sd->cl + sd->moff));
}
static void
rxb_free(struct mbuf *m)
{
struct cluster_metadata *clm = m->m_ext.ext_arg1;
uma_zfree(clm->zone, clm->cl);
counter_u64_add(extfree_rels, 1);
}
/*
* The mbuf returned comes from zone_muf and carries the payload in one of these
* ways
* a) complete frame inside the mbuf
* b) m_cljset (for clusters without metadata)
* d) m_extaddref (cluster with metadata)
*/
static struct mbuf *
get_scatter_segment(struct adapter *sc, struct sge_fl *fl, int fr_offset,
int remaining)
{
struct mbuf *m;
struct fl_sdesc *sd = &fl->sdesc[fl->cidx];
struct rx_buf_info *rxb = &sc->sge.rx_buf_info[sd->zidx];
struct cluster_metadata *clm;
int len, blen;
caddr_t payload;
if (fl->flags & FL_BUF_PACKING) {
u_int l, pad;
blen = rxb->size2 - fl->rx_offset; /* max possible in this buf */
len = min(remaining, blen);
payload = sd->cl + fl->rx_offset;
l = fr_offset + len;
pad = roundup2(l, fl->buf_boundary) - l;
if (fl->rx_offset + len + pad < rxb->size2)
blen = len + pad;
MPASS(fl->rx_offset + blen <= rxb->size2);
} else {
MPASS(fl->rx_offset == 0); /* not packing */
blen = rxb->size1;
len = min(remaining, blen);
payload = sd->cl;
}
if (fr_offset == 0) {
m = m_gethdr(M_NOWAIT, MT_DATA);
if (__predict_false(m == NULL))
return (NULL);
m->m_pkthdr.len = remaining;
} else {
m = m_get(M_NOWAIT, MT_DATA);
if (__predict_false(m == NULL))
return (NULL);
}
m->m_len = len;
kmsan_mark(payload, len, KMSAN_STATE_INITED);
if (sc->sc_do_rxcopy && len < RX_COPY_THRESHOLD) {
/* copy data to mbuf */
bcopy(payload, mtod(m, caddr_t), len);
if (fl->flags & FL_BUF_PACKING) {
fl->rx_offset += blen;
MPASS(fl->rx_offset <= rxb->size2);
if (fl->rx_offset < rxb->size2)
return (m); /* without advancing the cidx */
}
} else if (fl->flags & FL_BUF_PACKING) {
clm = cl_metadata(sd);
if (sd->nmbuf++ == 0) {
clm->refcount = 1;
clm->zone = rxb->zone;
clm->cl = sd->cl;
counter_u64_add(extfree_refs, 1);
}
m_extaddref(m, payload, blen, &clm->refcount, rxb_free, clm,
NULL);
fl->rx_offset += blen;
MPASS(fl->rx_offset <= rxb->size2);
if (fl->rx_offset < rxb->size2)
return (m); /* without advancing the cidx */
} else {
m_cljset(m, sd->cl, rxb->type);
sd->cl = NULL; /* consumed, not a recycle candidate */
}
move_to_next_rxbuf(fl);
return (m);
}
static struct mbuf *
get_fl_payload(struct adapter *sc, struct sge_fl *fl, const u_int plen)
{
struct mbuf *m0, *m, **pnext;
u_int remaining;
if (__predict_false(fl->flags & FL_BUF_RESUME)) {
M_ASSERTPKTHDR(fl->m0);
MPASS(fl->m0->m_pkthdr.len == plen);
MPASS(fl->remaining < plen);
m0 = fl->m0;
pnext = fl->pnext;
remaining = fl->remaining;
fl->flags &= ~FL_BUF_RESUME;
goto get_segment;
}
/*
* Payload starts at rx_offset in the current hw buffer. Its length is
* 'len' and it may span multiple hw buffers.
*/
m0 = get_scatter_segment(sc, fl, 0, plen);
if (m0 == NULL)
return (NULL);
remaining = plen - m0->m_len;
pnext = &m0->m_next;
while (remaining > 0) {
get_segment:
MPASS(fl->rx_offset == 0);
m = get_scatter_segment(sc, fl, plen - remaining, remaining);
if (__predict_false(m == NULL)) {
fl->m0 = m0;
fl->pnext = pnext;
fl->remaining = remaining;
fl->flags |= FL_BUF_RESUME;
return (NULL);
}
*pnext = m;
pnext = &m->m_next;
remaining -= m->m_len;
}
*pnext = NULL;
M_ASSERTPKTHDR(m0);
return (m0);
}
static int
skip_scatter_segment(struct adapter *sc, struct sge_fl *fl, int fr_offset,
int remaining)
{
struct fl_sdesc *sd = &fl->sdesc[fl->cidx];
struct rx_buf_info *rxb = &sc->sge.rx_buf_info[sd->zidx];
int len, blen;
if (fl->flags & FL_BUF_PACKING) {
u_int l, pad;
blen = rxb->size2 - fl->rx_offset; /* max possible in this buf */
len = min(remaining, blen);
l = fr_offset + len;
pad = roundup2(l, fl->buf_boundary) - l;
if (fl->rx_offset + len + pad < rxb->size2)
blen = len + pad;
fl->rx_offset += blen;
MPASS(fl->rx_offset <= rxb->size2);
if (fl->rx_offset < rxb->size2)
return (len); /* without advancing the cidx */
} else {
MPASS(fl->rx_offset == 0); /* not packing */
blen = rxb->size1;
len = min(remaining, blen);
}
move_to_next_rxbuf(fl);
return (len);
}
static inline void
skip_fl_payload(struct adapter *sc, struct sge_fl *fl, int plen)
{
int remaining, fr_offset, len;
fr_offset = 0;
remaining = plen;
while (remaining > 0) {
len = skip_scatter_segment(sc, fl, fr_offset, remaining);
fr_offset += len;
remaining -= len;
}
}
static inline int
get_segment_len(struct adapter *sc, struct sge_fl *fl, int plen)
{
int len;
struct fl_sdesc *sd = &fl->sdesc[fl->cidx];
struct rx_buf_info *rxb = &sc->sge.rx_buf_info[sd->zidx];
if (fl->flags & FL_BUF_PACKING)
len = rxb->size2 - fl->rx_offset;
else
len = rxb->size1;
return (min(plen, len));
}
static int
eth_rx(struct adapter *sc, struct sge_rxq *rxq, const struct iq_desc *d,
u_int plen)
{
struct mbuf *m0;
struct ifnet *ifp = rxq->ifp;
struct sge_fl *fl = &rxq->fl;
struct vi_info *vi = ifp->if_softc;
const struct cpl_rx_pkt *cpl;
#if defined(INET) || defined(INET6)
struct lro_ctrl *lro = &rxq->lro;
#endif
uint16_t err_vec, tnl_type, tnlhdr_len;
static const int sw_hashtype[4][2] = {
{M_HASHTYPE_NONE, M_HASHTYPE_NONE},
{M_HASHTYPE_RSS_IPV4, M_HASHTYPE_RSS_IPV6},
{M_HASHTYPE_RSS_TCP_IPV4, M_HASHTYPE_RSS_TCP_IPV6},
{M_HASHTYPE_RSS_UDP_IPV4, M_HASHTYPE_RSS_UDP_IPV6},
};
static const int sw_csum_flags[2][2] = {
{
/* IP, inner IP */
CSUM_ENCAP_VXLAN |
CSUM_L3_CALC | CSUM_L3_VALID |
CSUM_L4_CALC | CSUM_L4_VALID |
CSUM_INNER_L3_CALC | CSUM_INNER_L3_VALID |
CSUM_INNER_L4_CALC | CSUM_INNER_L4_VALID,
/* IP, inner IP6 */
CSUM_ENCAP_VXLAN |
CSUM_L3_CALC | CSUM_L3_VALID |
CSUM_L4_CALC | CSUM_L4_VALID |
CSUM_INNER_L4_CALC | CSUM_INNER_L4_VALID,
},
{
/* IP6, inner IP */
CSUM_ENCAP_VXLAN |
CSUM_L4_CALC | CSUM_L4_VALID |
CSUM_INNER_L3_CALC | CSUM_INNER_L3_VALID |
CSUM_INNER_L4_CALC | CSUM_INNER_L4_VALID,
/* IP6, inner IP6 */
CSUM_ENCAP_VXLAN |
CSUM_L4_CALC | CSUM_L4_VALID |
CSUM_INNER_L4_CALC | CSUM_INNER_L4_VALID,
},
};
MPASS(plen > sc->params.sge.fl_pktshift);
if (vi->pfil != NULL && PFIL_HOOKED_IN(vi->pfil) &&
__predict_true((fl->flags & FL_BUF_RESUME) == 0)) {
struct fl_sdesc *sd = &fl->sdesc[fl->cidx];
caddr_t frame;
int rc, slen;
slen = get_segment_len(sc, fl, plen) -
sc->params.sge.fl_pktshift;
frame = sd->cl + fl->rx_offset + sc->params.sge.fl_pktshift;
CURVNET_SET_QUIET(ifp->if_vnet);
rc = pfil_run_hooks(vi->pfil, frame, ifp,
slen | PFIL_MEMPTR | PFIL_IN, NULL);
CURVNET_RESTORE();
if (rc == PFIL_DROPPED || rc == PFIL_CONSUMED) {
skip_fl_payload(sc, fl, plen);
return (0);
}
if (rc == PFIL_REALLOCED) {
skip_fl_payload(sc, fl, plen);
m0 = pfil_mem2mbuf(frame);
goto have_mbuf;
}
}
m0 = get_fl_payload(sc, fl, plen);
if (__predict_false(m0 == NULL))
return (ENOMEM);
m0->m_pkthdr.len -= sc->params.sge.fl_pktshift;
m0->m_len -= sc->params.sge.fl_pktshift;
m0->m_data += sc->params.sge.fl_pktshift;
have_mbuf:
m0->m_pkthdr.rcvif = ifp;
M_HASHTYPE_SET(m0, sw_hashtype[d->rss.hash_type][d->rss.ipv6]);
m0->m_pkthdr.flowid = be32toh(d->rss.hash_val);
cpl = (const void *)(&d->rss + 1);
if (sc->params.tp.rx_pkt_encap) {
const uint16_t ev = be16toh(cpl->err_vec);
err_vec = G_T6_COMPR_RXERR_VEC(ev);
tnl_type = G_T6_RX_TNL_TYPE(ev);
tnlhdr_len = G_T6_RX_TNLHDR_LEN(ev);
} else {
err_vec = be16toh(cpl->err_vec);
tnl_type = 0;
tnlhdr_len = 0;
}
if (cpl->csum_calc && err_vec == 0) {
int ipv6 = !!(cpl->l2info & htobe32(F_RXF_IP6));
/* checksum(s) calculated and found to be correct. */
MPASS((cpl->l2info & htobe32(F_RXF_IP)) ^
(cpl->l2info & htobe32(F_RXF_IP6)));
m0->m_pkthdr.csum_data = be16toh(cpl->csum);
if (tnl_type == 0) {
if (!ipv6 && ifp->if_capenable & IFCAP_RXCSUM) {
m0->m_pkthdr.csum_flags = CSUM_L3_CALC |
CSUM_L3_VALID | CSUM_L4_CALC |
CSUM_L4_VALID;
} else if (ipv6 && ifp->if_capenable & IFCAP_RXCSUM_IPV6) {
m0->m_pkthdr.csum_flags = CSUM_L4_CALC |
CSUM_L4_VALID;
}
rxq->rxcsum++;
} else {
MPASS(tnl_type == RX_PKT_TNL_TYPE_VXLAN);
M_HASHTYPE_SETINNER(m0);
if (__predict_false(cpl->ip_frag)) {
/*
* csum_data is for the inner frame (which is an
* IP fragment) and is not 0xffff. There is no
* way to pass the inner csum_data to the stack.
* We don't want the stack to use the inner
* csum_data to validate the outer frame or it
* will get rejected. So we fix csum_data here
* and let sw do the checksum of inner IP
* fragments.
*
* XXX: Need 32b for csum_data2 in an rx mbuf.
* Maybe stuff it into rcv_tstmp?
*/
m0->m_pkthdr.csum_data = 0xffff;
if (ipv6) {
m0->m_pkthdr.csum_flags = CSUM_L4_CALC |
CSUM_L4_VALID;
} else {
m0->m_pkthdr.csum_flags = CSUM_L3_CALC |
CSUM_L3_VALID | CSUM_L4_CALC |
CSUM_L4_VALID;
}
} else {
int outer_ipv6;
MPASS(m0->m_pkthdr.csum_data == 0xffff);
outer_ipv6 = tnlhdr_len >=
sizeof(struct ether_header) +
sizeof(struct ip6_hdr);
m0->m_pkthdr.csum_flags =
sw_csum_flags[outer_ipv6][ipv6];
}
rxq->vxlan_rxcsum++;
}
}
if (cpl->vlan_ex) {
m0->m_pkthdr.ether_vtag = be16toh(cpl->vlan);
m0->m_flags |= M_VLANTAG;
rxq->vlan_extraction++;
}
if (rxq->iq.flags & IQ_RX_TIMESTAMP) {
/*
* Fill up rcv_tstmp but do not set M_TSTMP.
* rcv_tstmp is not in the format that the
* kernel expects and we don't want to mislead
* it. For now this is only for custom code
* that knows how to interpret cxgbe's stamp.
*/
m0->m_pkthdr.rcv_tstmp =
last_flit_to_ns(sc, d->rsp.u.last_flit);
#ifdef notyet
m0->m_flags |= M_TSTMP;
#endif
}
#ifdef NUMA
m0->m_pkthdr.numa_domain = ifp->if_numa_domain;
#endif
#if defined(INET) || defined(INET6)
if (rxq->iq.flags & IQ_LRO_ENABLED && tnl_type == 0 &&
(M_HASHTYPE_GET(m0) == M_HASHTYPE_RSS_TCP_IPV4 ||
M_HASHTYPE_GET(m0) == M_HASHTYPE_RSS_TCP_IPV6)) {
if (sort_before_lro(lro)) {
tcp_lro_queue_mbuf(lro, m0);
return (0); /* queued for sort, then LRO */
}
if (tcp_lro_rx(lro, m0, 0) == 0)
return (0); /* queued for LRO */
}
#endif
ifp->if_input(ifp, m0);
return (0);
}
/*
* Must drain the wrq or make sure that someone else will.
*/
static void
wrq_tx_drain(void *arg, int n)
{
struct sge_wrq *wrq = arg;
struct sge_eq *eq = &wrq->eq;
EQ_LOCK(eq);
if (TAILQ_EMPTY(&wrq->incomplete_wrs) && !STAILQ_EMPTY(&wrq->wr_list))
drain_wrq_wr_list(wrq->adapter, wrq);
EQ_UNLOCK(eq);
}
static void
drain_wrq_wr_list(struct adapter *sc, struct sge_wrq *wrq)
{
struct sge_eq *eq = &wrq->eq;
u_int available, dbdiff; /* # of hardware descriptors */
u_int n;
struct wrqe *wr;
struct fw_eth_tx_pkt_wr *dst; /* any fw WR struct will do */
EQ_LOCK_ASSERT_OWNED(eq);
MPASS(TAILQ_EMPTY(&wrq->incomplete_wrs));
wr = STAILQ_FIRST(&wrq->wr_list);
MPASS(wr != NULL); /* Must be called with something useful to do */
MPASS(eq->pidx == eq->dbidx);
dbdiff = 0;
do {
eq->cidx = read_hw_cidx(eq);
if (eq->pidx == eq->cidx)
available = eq->sidx - 1;
else
available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
MPASS(wr->wrq == wrq);
n = howmany(wr->wr_len, EQ_ESIZE);
if (available < n)
break;
dst = (void *)&eq->desc[eq->pidx];
if (__predict_true(eq->sidx - eq->pidx > n)) {
/* Won't wrap, won't end exactly at the status page. */
bcopy(&wr->wr[0], dst, wr->wr_len);
eq->pidx += n;
} else {
int first_portion = (eq->sidx - eq->pidx) * EQ_ESIZE;
bcopy(&wr->wr[0], dst, first_portion);
if (wr->wr_len > first_portion) {
bcopy(&wr->wr[first_portion], &eq->desc[0],
wr->wr_len - first_portion);
}
eq->pidx = n - (eq->sidx - eq->pidx);
}
wrq->tx_wrs_copied++;
if (available < eq->sidx / 4 &&
atomic_cmpset_int(&eq->equiq, 0, 1)) {
/*
* XXX: This is not 100% reliable with some
* types of WRs. But this is a very unusual
* situation for an ofld/ctrl queue anyway.
*/
dst->equiq_to_len16 |= htobe32(F_FW_WR_EQUIQ |
F_FW_WR_EQUEQ);
}
dbdiff += n;
if (dbdiff >= 16) {
ring_eq_db(sc, eq, dbdiff);
dbdiff = 0;
}
STAILQ_REMOVE_HEAD(&wrq->wr_list, link);
free_wrqe(wr);
MPASS(wrq->nwr_pending > 0);
wrq->nwr_pending--;
MPASS(wrq->ndesc_needed >= n);
wrq->ndesc_needed -= n;
} while ((wr = STAILQ_FIRST(&wrq->wr_list)) != NULL);
if (dbdiff)
ring_eq_db(sc, eq, dbdiff);
}
/*
* Doesn't fail. Holds on to work requests it can't send right away.
*/
void
t4_wrq_tx_locked(struct adapter *sc, struct sge_wrq *wrq, struct wrqe *wr)
{
#ifdef INVARIANTS
struct sge_eq *eq = &wrq->eq;
#endif
EQ_LOCK_ASSERT_OWNED(eq);
MPASS(wr != NULL);
MPASS(wr->wr_len > 0 && wr->wr_len <= SGE_MAX_WR_LEN);
MPASS((wr->wr_len & 0x7) == 0);
STAILQ_INSERT_TAIL(&wrq->wr_list, wr, link);
wrq->nwr_pending++;
wrq->ndesc_needed += howmany(wr->wr_len, EQ_ESIZE);
if (!TAILQ_EMPTY(&wrq->incomplete_wrs))
return; /* commit_wrq_wr will drain wr_list as well. */
drain_wrq_wr_list(sc, wrq);
/* Doorbell must have caught up to the pidx. */
MPASS(eq->pidx == eq->dbidx);
}
void
t4_update_fl_bufsize(struct ifnet *ifp)
{
struct vi_info *vi = ifp->if_softc;
struct adapter *sc = vi->adapter;
struct sge_rxq *rxq;
#ifdef TCP_OFFLOAD
struct sge_ofld_rxq *ofld_rxq;
#endif
struct sge_fl *fl;
int i, maxp;
maxp = max_rx_payload(sc, ifp, false);
for_each_rxq(vi, i, rxq) {
fl = &rxq->fl;
FL_LOCK(fl);
fl->zidx = find_refill_source(sc, maxp,
fl->flags & FL_BUF_PACKING);
FL_UNLOCK(fl);
}
#ifdef TCP_OFFLOAD
maxp = max_rx_payload(sc, ifp, true);
for_each_ofld_rxq(vi, i, ofld_rxq) {
fl = &ofld_rxq->fl;
FL_LOCK(fl);
fl->zidx = find_refill_source(sc, maxp,
fl->flags & FL_BUF_PACKING);
FL_UNLOCK(fl);
}
#endif
}
static inline int
mbuf_nsegs(struct mbuf *m)
{
M_ASSERTPKTHDR(m);
KASSERT(m->m_pkthdr.inner_l5hlen > 0,
("%s: mbuf %p missing information on # of segments.", __func__, m));
return (m->m_pkthdr.inner_l5hlen);
}
static inline void
set_mbuf_nsegs(struct mbuf *m, uint8_t nsegs)
{
M_ASSERTPKTHDR(m);
m->m_pkthdr.inner_l5hlen = nsegs;
}
static inline int
mbuf_cflags(struct mbuf *m)
{
M_ASSERTPKTHDR(m);
return (m->m_pkthdr.PH_loc.eight[4]);
}
static inline void
set_mbuf_cflags(struct mbuf *m, uint8_t flags)
{
M_ASSERTPKTHDR(m);
m->m_pkthdr.PH_loc.eight[4] = flags;
}
static inline int
mbuf_len16(struct mbuf *m)
{
int n;
M_ASSERTPKTHDR(m);
n = m->m_pkthdr.PH_loc.eight[0];
if (!(mbuf_cflags(m) & MC_TLS))
MPASS(n > 0 && n <= SGE_MAX_WR_LEN / 16);
return (n);
}
static inline void
set_mbuf_len16(struct mbuf *m, uint8_t len16)
{
M_ASSERTPKTHDR(m);
if (!(mbuf_cflags(m) & MC_TLS))
MPASS(len16 > 0 && len16 <= SGE_MAX_WR_LEN / 16);
m->m_pkthdr.PH_loc.eight[0] = len16;
}
#ifdef RATELIMIT
static inline int
mbuf_eo_nsegs(struct mbuf *m)
{
M_ASSERTPKTHDR(m);
return (m->m_pkthdr.PH_loc.eight[1]);
}
#if defined(INET) || defined(INET6)
static inline void
set_mbuf_eo_nsegs(struct mbuf *m, uint8_t nsegs)
{
M_ASSERTPKTHDR(m);
m->m_pkthdr.PH_loc.eight[1] = nsegs;
}
#endif
static inline int
mbuf_eo_len16(struct mbuf *m)
{
int n;
M_ASSERTPKTHDR(m);
n = m->m_pkthdr.PH_loc.eight[2];
MPASS(n > 0 && n <= SGE_MAX_WR_LEN / 16);
return (n);
}
#if defined(INET) || defined(INET6)
static inline void
set_mbuf_eo_len16(struct mbuf *m, uint8_t len16)
{
M_ASSERTPKTHDR(m);
m->m_pkthdr.PH_loc.eight[2] = len16;
}
#endif
static inline int
mbuf_eo_tsclk_tsoff(struct mbuf *m)
{
M_ASSERTPKTHDR(m);
return (m->m_pkthdr.PH_loc.eight[3]);
}
#if defined(INET) || defined(INET6)
static inline void
set_mbuf_eo_tsclk_tsoff(struct mbuf *m, uint8_t tsclk_tsoff)
{
M_ASSERTPKTHDR(m);
m->m_pkthdr.PH_loc.eight[3] = tsclk_tsoff;
}
#endif
static inline int
needs_eo(struct m_snd_tag *mst)
{
return (mst != NULL && mst->sw->type == IF_SND_TAG_TYPE_RATE_LIMIT);
}
#endif
/*
* Try to allocate an mbuf to contain a raw work request. To make it
* easy to construct the work request, don't allocate a chain but a
* single mbuf.
*/
struct mbuf *
alloc_wr_mbuf(int len, int how)
{
struct mbuf *m;
if (len <= MHLEN)
m = m_gethdr(how, MT_DATA);
else if (len <= MCLBYTES)
m = m_getcl(how, MT_DATA, M_PKTHDR);
else
m = NULL;
if (m == NULL)
return (NULL);
m->m_pkthdr.len = len;
m->m_len = len;
set_mbuf_cflags(m, MC_RAW_WR);
set_mbuf_len16(m, howmany(len, 16));
return (m);
}
static inline bool
needs_hwcsum(struct mbuf *m)
{
const uint32_t csum_flags = CSUM_IP | CSUM_IP_UDP | CSUM_IP_TCP |
CSUM_IP_TSO | CSUM_INNER_IP | CSUM_INNER_IP_UDP |
CSUM_INNER_IP_TCP | CSUM_INNER_IP_TSO | CSUM_IP6_UDP |
CSUM_IP6_TCP | CSUM_IP6_TSO | CSUM_INNER_IP6_UDP |
CSUM_INNER_IP6_TCP | CSUM_INNER_IP6_TSO;
M_ASSERTPKTHDR(m);
return (m->m_pkthdr.csum_flags & csum_flags);
}
static inline bool
needs_tso(struct mbuf *m)
{
const uint32_t csum_flags = CSUM_IP_TSO | CSUM_IP6_TSO |
CSUM_INNER_IP_TSO | CSUM_INNER_IP6_TSO;
M_ASSERTPKTHDR(m);
return (m->m_pkthdr.csum_flags & csum_flags);
}
static inline bool
needs_vxlan_csum(struct mbuf *m)
{
M_ASSERTPKTHDR(m);
return (m->m_pkthdr.csum_flags & CSUM_ENCAP_VXLAN);
}
static inline bool
needs_vxlan_tso(struct mbuf *m)
{
const uint32_t csum_flags = CSUM_ENCAP_VXLAN | CSUM_INNER_IP_TSO |
CSUM_INNER_IP6_TSO;
M_ASSERTPKTHDR(m);
return ((m->m_pkthdr.csum_flags & csum_flags) != 0 &&
(m->m_pkthdr.csum_flags & csum_flags) != CSUM_ENCAP_VXLAN);
}
#if defined(INET) || defined(INET6)
static inline bool
needs_inner_tcp_csum(struct mbuf *m)
{
const uint32_t csum_flags = CSUM_INNER_IP_TSO | CSUM_INNER_IP6_TSO;
M_ASSERTPKTHDR(m);
return (m->m_pkthdr.csum_flags & csum_flags);
}
#endif
static inline bool
needs_l3_csum(struct mbuf *m)
{
const uint32_t csum_flags = CSUM_IP | CSUM_IP_TSO | CSUM_INNER_IP |
CSUM_INNER_IP_TSO;
M_ASSERTPKTHDR(m);
return (m->m_pkthdr.csum_flags & csum_flags);
}
static inline bool
needs_outer_tcp_csum(struct mbuf *m)
{
const uint32_t csum_flags = CSUM_IP_TCP | CSUM_IP_TSO | CSUM_IP6_TCP |
CSUM_IP6_TSO;
M_ASSERTPKTHDR(m);
return (m->m_pkthdr.csum_flags & csum_flags);
}
#ifdef RATELIMIT
static inline bool
needs_outer_l4_csum(struct mbuf *m)
{
const uint32_t csum_flags = CSUM_IP_UDP | CSUM_IP_TCP | CSUM_IP_TSO |
CSUM_IP6_UDP | CSUM_IP6_TCP | CSUM_IP6_TSO;
M_ASSERTPKTHDR(m);
return (m->m_pkthdr.csum_flags & csum_flags);
}
static inline bool
needs_outer_udp_csum(struct mbuf *m)
{
const uint32_t csum_flags = CSUM_IP_UDP | CSUM_IP6_UDP;
M_ASSERTPKTHDR(m);
return (m->m_pkthdr.csum_flags & csum_flags);
}
#endif
static inline bool
needs_vlan_insertion(struct mbuf *m)
{
M_ASSERTPKTHDR(m);
return (m->m_flags & M_VLANTAG);
}
#if defined(INET) || defined(INET6)
static void *
m_advance(struct mbuf **pm, int *poffset, int len)
{
struct mbuf *m = *pm;
int offset = *poffset;
uintptr_t p = 0;
MPASS(len > 0);
for (;;) {
if (offset + len < m->m_len) {
offset += len;
p = mtod(m, uintptr_t) + offset;
break;
}
len -= m->m_len - offset;
m = m->m_next;
offset = 0;
MPASS(m != NULL);
}
*poffset = offset;
*pm = m;
return ((void *)p);
}
#endif
static inline int
count_mbuf_ext_pgs(struct mbuf *m, int skip, vm_paddr_t *nextaddr)
{
vm_paddr_t paddr;
int i, len, off, pglen, pgoff, seglen, segoff;
int nsegs = 0;
M_ASSERTEXTPG(m);
off = mtod(m, vm_offset_t);
len = m->m_len;
off += skip;
len -= skip;
if (m->m_epg_hdrlen != 0) {
if (off >= m->m_epg_hdrlen) {
off -= m->m_epg_hdrlen;
} else {
seglen = m->m_epg_hdrlen - off;
segoff = off;
seglen = min(seglen, len);
off = 0;
len -= seglen;
paddr = pmap_kextract(
(vm_offset_t)&m->m_epg_hdr[segoff]);
if (*nextaddr != paddr)
nsegs++;
*nextaddr = paddr + seglen;
}
}
pgoff = m->m_epg_1st_off;
for (i = 0; i < m->m_epg_npgs && len > 0; i++) {
pglen = m_epg_pagelen(m, i, pgoff);
if (off >= pglen) {
off -= pglen;
pgoff = 0;
continue;
}
seglen = pglen - off;
segoff = pgoff + off;
off = 0;
seglen = min(seglen, len);
len -= seglen;
paddr = m->m_epg_pa[i] + segoff;
if (*nextaddr != paddr)
nsegs++;
*nextaddr = paddr + seglen;
pgoff = 0;
};
if (len != 0) {
seglen = min(len, m->m_epg_trllen - off);
len -= seglen;
paddr = pmap_kextract((vm_offset_t)&m->m_epg_trail[off]);
if (*nextaddr != paddr)
nsegs++;
*nextaddr = paddr + seglen;
}
return (nsegs);
}
/*
* Can deal with empty mbufs in the chain that have m_len = 0, but the chain
* must have at least one mbuf that's not empty. It is possible for this
* routine to return 0 if skip accounts for all the contents of the mbuf chain.
*/
static inline int
count_mbuf_nsegs(struct mbuf *m, int skip, uint8_t *cflags)
{
vm_paddr_t nextaddr, paddr;
vm_offset_t va;
int len, nsegs;
M_ASSERTPKTHDR(m);
MPASS(m->m_pkthdr.len > 0);
MPASS(m->m_pkthdr.len >= skip);
nsegs = 0;
nextaddr = 0;
for (; m; m = m->m_next) {
len = m->m_len;
if (__predict_false(len == 0))
continue;
if (skip >= len) {
skip -= len;
continue;
}
if ((m->m_flags & M_EXTPG) != 0) {
*cflags |= MC_NOMAP;
nsegs += count_mbuf_ext_pgs(m, skip, &nextaddr);
skip = 0;
continue;
}
va = mtod(m, vm_offset_t) + skip;
len -= skip;
skip = 0;
paddr = pmap_kextract(va);
nsegs += sglist_count((void *)(uintptr_t)va, len);
if (paddr == nextaddr)
nsegs--;
nextaddr = pmap_kextract(va + len - 1) + 1;
}
return (nsegs);
}
/*
* The maximum number of segments that can fit in a WR.
*/
static int
max_nsegs_allowed(struct mbuf *m, bool vm_wr)
{
if (vm_wr) {
if (needs_tso(m))
return (TX_SGL_SEGS_VM_TSO);
return (TX_SGL_SEGS_VM);
}
if (needs_tso(m)) {
if (needs_vxlan_tso(m))
return (TX_SGL_SEGS_VXLAN_TSO);
else
return (TX_SGL_SEGS_TSO);
}
return (TX_SGL_SEGS);
}
static struct timeval txerr_ratecheck = {0};
static const struct timeval txerr_interval = {3, 0};
/*
* Analyze the mbuf to determine its tx needs. The mbuf passed in may change:
* a) caller can assume it's been freed if this function returns with an error.
* b) it may get defragged up if the gather list is too long for the hardware.
*/
int
parse_pkt(struct mbuf **mp, bool vm_wr)
{
struct mbuf *m0 = *mp, *m;
int rc, nsegs, defragged = 0;
struct ether_header *eh;
#ifdef INET
void *l3hdr;
#endif
#if defined(INET) || defined(INET6)
int offset;
struct tcphdr *tcp;
#endif
#if defined(KERN_TLS) || defined(RATELIMIT)
struct m_snd_tag *mst;
#endif
uint16_t eh_type;
uint8_t cflags;
cflags = 0;
M_ASSERTPKTHDR(m0);
if (__predict_false(m0->m_pkthdr.len < ETHER_HDR_LEN)) {
rc = EINVAL;
fail:
m_freem(m0);
*mp = NULL;
return (rc);
}
restart:
/*
* First count the number of gather list segments in the payload.
* Defrag the mbuf if nsegs exceeds the hardware limit.
*/
M_ASSERTPKTHDR(m0);
MPASS(m0->m_pkthdr.len > 0);
nsegs = count_mbuf_nsegs(m0, 0, &cflags);
#if defined(KERN_TLS) || defined(RATELIMIT)
if (m0->m_pkthdr.csum_flags & CSUM_SND_TAG)
mst = m0->m_pkthdr.snd_tag;
else
mst = NULL;
#endif
#ifdef KERN_TLS
if (mst != NULL && mst->sw->type == IF_SND_TAG_TYPE_TLS) {
int len16;
cflags |= MC_TLS;
set_mbuf_cflags(m0, cflags);
rc = t6_ktls_parse_pkt(m0, &nsegs, &len16);
if (rc != 0)
goto fail;
set_mbuf_nsegs(m0, nsegs);
set_mbuf_len16(m0, len16);
return (0);
}
#endif
if (nsegs > max_nsegs_allowed(m0, vm_wr)) {
if (defragged++ > 0) {
rc = EFBIG;
goto fail;
}
counter_u64_add(defrags, 1);
if ((m = m_defrag(m0, M_NOWAIT)) == NULL) {
rc = ENOMEM;
goto fail;
}
*mp = m0 = m; /* update caller's copy after defrag */
goto restart;
}
if (__predict_false(nsegs > 2 && m0->m_pkthdr.len <= MHLEN &&
!(cflags & MC_NOMAP))) {
counter_u64_add(pullups, 1);
m0 = m_pullup(m0, m0->m_pkthdr.len);
if (m0 == NULL) {
/* Should have left well enough alone. */
rc = EFBIG;
goto fail;
}
*mp = m0; /* update caller's copy after pullup */
goto restart;
}
set_mbuf_nsegs(m0, nsegs);
set_mbuf_cflags(m0, cflags);
calculate_mbuf_len16(m0, vm_wr);
#ifdef RATELIMIT
/*
* Ethofld is limited to TCP and UDP for now, and only when L4 hw
* checksumming is enabled. needs_outer_l4_csum happens to check for
* all the right things.
*/
if (__predict_false(needs_eo(mst) && !needs_outer_l4_csum(m0))) {
m_snd_tag_rele(m0->m_pkthdr.snd_tag);
m0->m_pkthdr.snd_tag = NULL;
m0->m_pkthdr.csum_flags &= ~CSUM_SND_TAG;
mst = NULL;
}
#endif
if (!needs_hwcsum(m0)
#ifdef RATELIMIT
&& !needs_eo(mst)
#endif
)
return (0);
m = m0;
eh = mtod(m, struct ether_header *);
eh_type = ntohs(eh->ether_type);
if (eh_type == ETHERTYPE_VLAN) {
struct ether_vlan_header *evh = (void *)eh;
eh_type = ntohs(evh->evl_proto);
m0->m_pkthdr.l2hlen = sizeof(*evh);
} else
m0->m_pkthdr.l2hlen = sizeof(*eh);
#if defined(INET) || defined(INET6)
offset = 0;
#ifdef INET
l3hdr = m_advance(&m, &offset, m0->m_pkthdr.l2hlen);
#else
m_advance(&m, &offset, m0->m_pkthdr.l2hlen);
#endif
#endif
switch (eh_type) {
#ifdef INET6
case ETHERTYPE_IPV6:
m0->m_pkthdr.l3hlen = sizeof(struct ip6_hdr);
break;
#endif
#ifdef INET
case ETHERTYPE_IP:
{
struct ip *ip = l3hdr;
if (needs_vxlan_csum(m0)) {
/* Driver will do the outer IP hdr checksum. */
ip->ip_sum = 0;
if (needs_vxlan_tso(m0)) {
const uint16_t ipl = ip->ip_len;
ip->ip_len = 0;
ip->ip_sum = ~in_cksum_hdr(ip);
ip->ip_len = ipl;
} else
ip->ip_sum = in_cksum_hdr(ip);
}
m0->m_pkthdr.l3hlen = ip->ip_hl << 2;
break;
}
#endif
default:
if (ratecheck(&txerr_ratecheck, &txerr_interval)) {
log(LOG_ERR, "%s: ethertype 0x%04x unknown. "
"if_cxgbe must be compiled with the same "
"INET/INET6 options as the kernel.\n", __func__,
eh_type);
}
rc = EINVAL;
goto fail;
}
#if defined(INET) || defined(INET6)
if (needs_vxlan_csum(m0)) {
m0->m_pkthdr.l4hlen = sizeof(struct udphdr);
m0->m_pkthdr.l5hlen = sizeof(struct vxlan_header);
/* Inner headers. */
eh = m_advance(&m, &offset, m0->m_pkthdr.l3hlen +
sizeof(struct udphdr) + sizeof(struct vxlan_header));
eh_type = ntohs(eh->ether_type);
if (eh_type == ETHERTYPE_VLAN) {
struct ether_vlan_header *evh = (void *)eh;
eh_type = ntohs(evh->evl_proto);
m0->m_pkthdr.inner_l2hlen = sizeof(*evh);
} else
m0->m_pkthdr.inner_l2hlen = sizeof(*eh);
#ifdef INET
l3hdr = m_advance(&m, &offset, m0->m_pkthdr.inner_l2hlen);
#else
m_advance(&m, &offset, m0->m_pkthdr.inner_l2hlen);
#endif
switch (eh_type) {
#ifdef INET6
case ETHERTYPE_IPV6:
m0->m_pkthdr.inner_l3hlen = sizeof(struct ip6_hdr);
break;
#endif
#ifdef INET
case ETHERTYPE_IP:
{
struct ip *ip = l3hdr;
m0->m_pkthdr.inner_l3hlen = ip->ip_hl << 2;
break;
}
#endif
default:
if (ratecheck(&txerr_ratecheck, &txerr_interval)) {
log(LOG_ERR, "%s: VXLAN hw offload requested"
"with unknown ethertype 0x%04x. if_cxgbe "
"must be compiled with the same INET/INET6 "
"options as the kernel.\n", __func__,
eh_type);
}
rc = EINVAL;
goto fail;
}
if (needs_inner_tcp_csum(m0)) {
tcp = m_advance(&m, &offset, m0->m_pkthdr.inner_l3hlen);
m0->m_pkthdr.inner_l4hlen = tcp->th_off * 4;
}
MPASS((m0->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0);
m0->m_pkthdr.csum_flags &= CSUM_INNER_IP6_UDP |
CSUM_INNER_IP6_TCP | CSUM_INNER_IP6_TSO | CSUM_INNER_IP |
CSUM_INNER_IP_UDP | CSUM_INNER_IP_TCP | CSUM_INNER_IP_TSO |
CSUM_ENCAP_VXLAN;
}
if (needs_outer_tcp_csum(m0)) {
tcp = m_advance(&m, &offset, m0->m_pkthdr.l3hlen);
m0->m_pkthdr.l4hlen = tcp->th_off * 4;
#ifdef RATELIMIT
if (tsclk >= 0 && *(uint32_t *)(tcp + 1) == ntohl(0x0101080a)) {
set_mbuf_eo_tsclk_tsoff(m0,
V_FW_ETH_TX_EO_WR_TSCLK(tsclk) |
V_FW_ETH_TX_EO_WR_TSOFF(sizeof(*tcp) / 2 + 1));
} else
set_mbuf_eo_tsclk_tsoff(m0, 0);
} else if (needs_outer_udp_csum(m0)) {
m0->m_pkthdr.l4hlen = sizeof(struct udphdr);
#endif
}
#ifdef RATELIMIT
if (needs_eo(mst)) {
u_int immhdrs;
/* EO WRs have the headers in the WR and not the GL. */
immhdrs = m0->m_pkthdr.l2hlen + m0->m_pkthdr.l3hlen +
m0->m_pkthdr.l4hlen;
cflags = 0;
nsegs = count_mbuf_nsegs(m0, immhdrs, &cflags);
MPASS(cflags == mbuf_cflags(m0));
set_mbuf_eo_nsegs(m0, nsegs);
set_mbuf_eo_len16(m0,
txpkt_eo_len16(nsegs, immhdrs, needs_tso(m0)));
}
#endif
#endif
MPASS(m0 == *mp);
return (0);
}
void *
start_wrq_wr(struct sge_wrq *wrq, int len16, struct wrq_cookie *cookie)
{
struct sge_eq *eq = &wrq->eq;
struct adapter *sc = wrq->adapter;
int ndesc, available;
struct wrqe *wr;
void *w;
MPASS(len16 > 0);
ndesc = tx_len16_to_desc(len16);
MPASS(ndesc > 0 && ndesc <= SGE_MAX_WR_NDESC);
EQ_LOCK(eq);
if (TAILQ_EMPTY(&wrq->incomplete_wrs) && !STAILQ_EMPTY(&wrq->wr_list))
drain_wrq_wr_list(sc, wrq);
if (!STAILQ_EMPTY(&wrq->wr_list)) {
slowpath:
EQ_UNLOCK(eq);
wr = alloc_wrqe(len16 * 16, wrq);
if (__predict_false(wr == NULL))
return (NULL);
cookie->pidx = -1;
cookie->ndesc = ndesc;
return (&wr->wr);
}
eq->cidx = read_hw_cidx(eq);
if (eq->pidx == eq->cidx)
available = eq->sidx - 1;
else
available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
if (available < ndesc)
goto slowpath;
cookie->pidx = eq->pidx;
cookie->ndesc = ndesc;
TAILQ_INSERT_TAIL(&wrq->incomplete_wrs, cookie, link);
w = &eq->desc[eq->pidx];
IDXINCR(eq->pidx, ndesc, eq->sidx);
if (__predict_false(cookie->pidx + ndesc > eq->sidx)) {
w = &wrq->ss[0];
wrq->ss_pidx = cookie->pidx;
wrq->ss_len = len16 * 16;
}
EQ_UNLOCK(eq);
return (w);
}
void
commit_wrq_wr(struct sge_wrq *wrq, void *w, struct wrq_cookie *cookie)
{
struct sge_eq *eq = &wrq->eq;
struct adapter *sc = wrq->adapter;
int ndesc, pidx;
struct wrq_cookie *prev, *next;
if (cookie->pidx == -1) {
struct wrqe *wr = __containerof(w, struct wrqe, wr);
t4_wrq_tx(sc, wr);
return;
}
if (__predict_false(w == &wrq->ss[0])) {
int n = (eq->sidx - wrq->ss_pidx) * EQ_ESIZE;
MPASS(wrq->ss_len > n); /* WR had better wrap around. */
bcopy(&wrq->ss[0], &eq->desc[wrq->ss_pidx], n);
bcopy(&wrq->ss[n], &eq->desc[0], wrq->ss_len - n);
wrq->tx_wrs_ss++;
} else
wrq->tx_wrs_direct++;
EQ_LOCK(eq);
ndesc = cookie->ndesc; /* Can be more than SGE_MAX_WR_NDESC here. */
pidx = cookie->pidx;
MPASS(pidx >= 0 && pidx < eq->sidx);
prev = TAILQ_PREV(cookie, wrq_incomplete_wrs, link);
next = TAILQ_NEXT(cookie, link);
if (prev == NULL) {
MPASS(pidx == eq->dbidx);
if (next == NULL || ndesc >= 16) {
int available;
struct fw_eth_tx_pkt_wr *dst; /* any fw WR struct will do */
/*
* Note that the WR via which we'll request tx updates
* is at pidx and not eq->pidx, which has moved on
* already.
*/
dst = (void *)&eq->desc[pidx];
available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
if (available < eq->sidx / 4 &&
atomic_cmpset_int(&eq->equiq, 0, 1)) {
/*
* XXX: This is not 100% reliable with some
* types of WRs. But this is a very unusual
* situation for an ofld/ctrl queue anyway.
*/
dst->equiq_to_len16 |= htobe32(F_FW_WR_EQUIQ |
F_FW_WR_EQUEQ);
}
ring_eq_db(wrq->adapter, eq, ndesc);
} else {
MPASS(IDXDIFF(next->pidx, pidx, eq->sidx) == ndesc);
next->pidx = pidx;
next->ndesc += ndesc;
}
} else {
MPASS(IDXDIFF(pidx, prev->pidx, eq->sidx) == prev->ndesc);
prev->ndesc += ndesc;
}
TAILQ_REMOVE(&wrq->incomplete_wrs, cookie, link);
if (TAILQ_EMPTY(&wrq->incomplete_wrs) && !STAILQ_EMPTY(&wrq->wr_list))
drain_wrq_wr_list(sc, wrq);
#ifdef INVARIANTS
if (TAILQ_EMPTY(&wrq->incomplete_wrs)) {
/* Doorbell must have caught up to the pidx. */
MPASS(wrq->eq.pidx == wrq->eq.dbidx);
}
#endif
EQ_UNLOCK(eq);
}
static u_int
can_resume_eth_tx(struct mp_ring *r)
{
struct sge_eq *eq = r->cookie;
return (total_available_tx_desc(eq) > eq->sidx / 8);
}
static inline bool
cannot_use_txpkts(struct mbuf *m)
{
/* maybe put a GL limit too, to avoid silliness? */
return (needs_tso(m) || (mbuf_cflags(m) & (MC_RAW_WR | MC_TLS)) != 0);
}
static inline int
discard_tx(struct sge_eq *eq)
{
return ((eq->flags & (EQ_ENABLED | EQ_QFLUSH)) != EQ_ENABLED);
}
static inline int
wr_can_update_eq(void *p)
{
struct fw_eth_tx_pkts_wr *wr = p;
switch (G_FW_WR_OP(be32toh(wr->op_pkd))) {
case FW_ULPTX_WR:
case FW_ETH_TX_PKT_WR:
case FW_ETH_TX_PKTS_WR:
case FW_ETH_TX_PKTS2_WR:
case FW_ETH_TX_PKT_VM_WR:
case FW_ETH_TX_PKTS_VM_WR:
return (1);
default:
return (0);
}
}
static inline void
set_txupdate_flags(struct sge_txq *txq, u_int avail,
struct fw_eth_tx_pkt_wr *wr)
{
struct sge_eq *eq = &txq->eq;
struct txpkts *txp = &txq->txp;
if ((txp->npkt > 0 || avail < eq->sidx / 2) &&
atomic_cmpset_int(&eq->equiq, 0, 1)) {
wr->equiq_to_len16 |= htobe32(F_FW_WR_EQUEQ | F_FW_WR_EQUIQ);
eq->equeqidx = eq->pidx;
} else if (IDXDIFF(eq->pidx, eq->equeqidx, eq->sidx) >= 32) {
wr->equiq_to_len16 |= htobe32(F_FW_WR_EQUEQ);
eq->equeqidx = eq->pidx;
}
}
#if defined(__i386__) || defined(__amd64__)
extern uint64_t tsc_freq;
#endif
static inline bool
record_eth_tx_time(struct sge_txq *txq)
{
const uint64_t cycles = get_cyclecount();
const uint64_t last_tx = txq->last_tx;
#if defined(__i386__) || defined(__amd64__)
const uint64_t itg = tsc_freq * t4_tx_coalesce_gap / 1000000;
#else
const uint64_t itg = 0;
#endif
MPASS(cycles >= last_tx);
txq->last_tx = cycles;
return (cycles - last_tx < itg);
}
/*
* r->items[cidx] to r->items[pidx], with a wraparound at r->size, are ready to
* be consumed. Return the actual number consumed. 0 indicates a stall.
*/
static u_int
eth_tx(struct mp_ring *r, u_int cidx, u_int pidx, bool *coalescing)
{
struct sge_txq *txq = r->cookie;
struct ifnet *ifp = txq->ifp;
struct sge_eq *eq = &txq->eq;
struct txpkts *txp = &txq->txp;
struct vi_info *vi = ifp->if_softc;
struct adapter *sc = vi->adapter;
u_int total, remaining; /* # of packets */
u_int n, avail, dbdiff; /* # of hardware descriptors */
int i, rc;
struct mbuf *m0;
bool snd, recent_tx;
void *wr; /* start of the last WR written to the ring */
TXQ_LOCK_ASSERT_OWNED(txq);
recent_tx = record_eth_tx_time(txq);
remaining = IDXDIFF(pidx, cidx, r->size);
if (__predict_false(discard_tx(eq))) {
for (i = 0; i < txp->npkt; i++)
m_freem(txp->mb[i]);
txp->npkt = 0;
while (cidx != pidx) {
m0 = r->items[cidx];
m_freem(m0);
if (++cidx == r->size)
cidx = 0;
}
reclaim_tx_descs(txq, eq->sidx);
*coalescing = false;
return (remaining); /* emptied */
}
/* How many hardware descriptors do we have readily available. */
if (eq->pidx == eq->cidx)
avail = eq->sidx - 1;
else
avail = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
total = 0;
if (remaining == 0) {
txp->score = 0;
txq->txpkts_flush++;
goto send_txpkts;
}
dbdiff = 0;
MPASS(remaining > 0);
while (remaining > 0) {
m0 = r->items[cidx];
M_ASSERTPKTHDR(m0);
MPASS(m0->m_nextpkt == NULL);
if (avail < 2 * SGE_MAX_WR_NDESC)
avail += reclaim_tx_descs(txq, 64);
if (t4_tx_coalesce == 0 && txp->npkt == 0)
goto skip_coalescing;
if (cannot_use_txpkts(m0))
txp->score = 0;
else if (recent_tx) {
if (++txp->score == 0)
txp->score = UINT8_MAX;
} else
txp->score = 1;
if (txp->npkt > 0 || remaining > 1 ||
txp->score >= t4_tx_coalesce_pkts ||
atomic_load_int(&txq->eq.equiq) != 0) {
if (vi->flags & TX_USES_VM_WR)
rc = add_to_txpkts_vf(sc, txq, m0, avail, &snd);
else
rc = add_to_txpkts_pf(sc, txq, m0, avail, &snd);
} else {
snd = false;
rc = EINVAL;
}
if (snd) {
MPASS(txp->npkt > 0);
for (i = 0; i < txp->npkt; i++)
ETHER_BPF_MTAP(ifp, txp->mb[i]);
if (txp->npkt > 1) {
MPASS(avail >= tx_len16_to_desc(txp->len16));
if (vi->flags & TX_USES_VM_WR)
n = write_txpkts_vm_wr(sc, txq);
else
n = write_txpkts_wr(sc, txq);
} else {
MPASS(avail >=
tx_len16_to_desc(mbuf_len16(txp->mb[0])));
if (vi->flags & TX_USES_VM_WR)
n = write_txpkt_vm_wr(sc, txq,
txp->mb[0]);
else
n = write_txpkt_wr(sc, txq, txp->mb[0],
avail);
}
MPASS(n <= SGE_MAX_WR_NDESC);
avail -= n;
dbdiff += n;
wr = &eq->desc[eq->pidx];
IDXINCR(eq->pidx, n, eq->sidx);
txp->npkt = 0; /* emptied */
}
if (rc == 0) {
/* m0 was coalesced into txq->txpkts. */
goto next_mbuf;
}
if (rc == EAGAIN) {
/*
* m0 is suitable for tx coalescing but could not be
* combined with the existing txq->txpkts, which has now
* been transmitted. Start a new txpkts with m0.
*/
MPASS(snd);
MPASS(txp->npkt == 0);
continue;
}
MPASS(rc != 0 && rc != EAGAIN);
MPASS(txp->npkt == 0);
skip_coalescing:
n = tx_len16_to_desc(mbuf_len16(m0));
if (__predict_false(avail < n)) {
avail += reclaim_tx_descs(txq, min(n, 32));
if (avail < n)
break; /* out of descriptors */
}
wr = &eq->desc[eq->pidx];
if (mbuf_cflags(m0) & MC_RAW_WR) {
n = write_raw_wr(txq, wr, m0, avail);
#ifdef KERN_TLS
} else if (mbuf_cflags(m0) & MC_TLS) {
ETHER_BPF_MTAP(ifp, m0);
n = t6_ktls_write_wr(txq, wr, m0, mbuf_nsegs(m0),
avail);
#endif
} else {
ETHER_BPF_MTAP(ifp, m0);
if (vi->flags & TX_USES_VM_WR)
n = write_txpkt_vm_wr(sc, txq, m0);
else
n = write_txpkt_wr(sc, txq, m0, avail);
}
MPASS(n >= 1 && n <= avail);
if (!(mbuf_cflags(m0) & MC_TLS))
MPASS(n <= SGE_MAX_WR_NDESC);
avail -= n;
dbdiff += n;
IDXINCR(eq->pidx, n, eq->sidx);
if (dbdiff >= 512 / EQ_ESIZE) { /* X_FETCHBURSTMAX_512B */
if (wr_can_update_eq(wr))
set_txupdate_flags(txq, avail, wr);
ring_eq_db(sc, eq, dbdiff);
avail += reclaim_tx_descs(txq, 32);
dbdiff = 0;
}
next_mbuf:
total++;
remaining--;
if (__predict_false(++cidx == r->size))
cidx = 0;
}
if (dbdiff != 0) {
if (wr_can_update_eq(wr))
set_txupdate_flags(txq, avail, wr);
ring_eq_db(sc, eq, dbdiff);
reclaim_tx_descs(txq, 32);
} else if (eq->pidx == eq->cidx && txp->npkt > 0 &&
atomic_load_int(&txq->eq.equiq) == 0) {
/*
* If nothing was submitted to the chip for tx (it was coalesced
* into txpkts instead) and there is no tx update outstanding
* then we need to send txpkts now.
*/
send_txpkts:
MPASS(txp->npkt > 0);
for (i = 0; i < txp->npkt; i++)
ETHER_BPF_MTAP(ifp, txp->mb[i]);
if (txp->npkt > 1) {
MPASS(avail >= tx_len16_to_desc(txp->len16));
if (vi->flags & TX_USES_VM_WR)
n = write_txpkts_vm_wr(sc, txq);
else
n = write_txpkts_wr(sc, txq);
} else {
MPASS(avail >=
tx_len16_to_desc(mbuf_len16(txp->mb[0])));
if (vi->flags & TX_USES_VM_WR)
n = write_txpkt_vm_wr(sc, txq, txp->mb[0]);
else
n = write_txpkt_wr(sc, txq, txp->mb[0], avail);
}
MPASS(n <= SGE_MAX_WR_NDESC);
wr = &eq->desc[eq->pidx];
IDXINCR(eq->pidx, n, eq->sidx);
txp->npkt = 0; /* emptied */
MPASS(wr_can_update_eq(wr));
set_txupdate_flags(txq, avail - n, wr);
ring_eq_db(sc, eq, n);
reclaim_tx_descs(txq, 32);
}
*coalescing = txp->npkt > 0;
return (total);
}
static inline void
init_iq(struct sge_iq *iq, struct adapter *sc, int tmr_idx, int pktc_idx,
int qsize, int intr_idx, int cong)
{
KASSERT(tmr_idx >= 0 && tmr_idx < SGE_NTIMERS,
("%s: bad tmr_idx %d", __func__, tmr_idx));
KASSERT(pktc_idx < SGE_NCOUNTERS, /* -ve is ok, means don't use */
("%s: bad pktc_idx %d", __func__, pktc_idx));
KASSERT(intr_idx >= -1 && intr_idx < sc->intr_count,
("%s: bad intr_idx %d", __func__, intr_idx));
iq->flags = 0;
iq->state = IQS_DISABLED;
iq->adapter = sc;
iq->intr_params = V_QINTR_TIMER_IDX(tmr_idx);
iq->intr_pktc_idx = SGE_NCOUNTERS - 1;
if (pktc_idx >= 0) {
iq->intr_params |= F_QINTR_CNT_EN;
iq->intr_pktc_idx = pktc_idx;
}
iq->qsize = roundup2(qsize, 16); /* See FW_IQ_CMD/iqsize */
iq->sidx = iq->qsize - sc->params.sge.spg_len / IQ_ESIZE;
iq->intr_idx = intr_idx;
iq->cong = cong;
}
static inline void
init_fl(struct adapter *sc, struct sge_fl *fl, int qsize, int maxp, char *name)
{
struct sge_params *sp = &sc->params.sge;
fl->qsize = qsize;
fl->sidx = qsize - sc->params.sge.spg_len / EQ_ESIZE;
strlcpy(fl->lockname, name, sizeof(fl->lockname));
mtx_init(&fl->fl_lock, fl->lockname, NULL, MTX_DEF);
if (sc->flags & BUF_PACKING_OK &&
((!is_t4(sc) && buffer_packing) || /* T5+: enabled unless 0 */
(is_t4(sc) && buffer_packing == 1)))/* T4: disabled unless 1 */
fl->flags |= FL_BUF_PACKING;
fl->zidx = find_refill_source(sc, maxp, fl->flags & FL_BUF_PACKING);
fl->safe_zidx = sc->sge.safe_zidx;
if (fl->flags & FL_BUF_PACKING) {
fl->lowat = roundup2(sp->fl_starve_threshold2, 8);
fl->buf_boundary = sp->pack_boundary;
} else {
fl->lowat = roundup2(sp->fl_starve_threshold, 8);
fl->buf_boundary = 16;
}
if (fl_pad && fl->buf_boundary < sp->pad_boundary)
fl->buf_boundary = sp->pad_boundary;
}
static inline void
init_eq(struct adapter *sc, struct sge_eq *eq, int eqtype, int qsize,
uint8_t tx_chan, struct sge_iq *iq, char *name)
{
KASSERT(eqtype >= EQ_CTRL && eqtype <= EQ_OFLD,
("%s: bad qtype %d", __func__, eqtype));
eq->type = eqtype;
eq->tx_chan = tx_chan;
eq->iq = iq;
eq->sidx = qsize - sc->params.sge.spg_len / EQ_ESIZE;
strlcpy(eq->lockname, name, sizeof(eq->lockname));
mtx_init(&eq->eq_lock, eq->lockname, NULL, MTX_DEF);
}
int
alloc_ring(struct adapter *sc, size_t len, bus_dma_tag_t *tag,
bus_dmamap_t *map, bus_addr_t *pa, void **va)
{
int rc;
rc = bus_dma_tag_create(sc->dmat, 512, 0, BUS_SPACE_MAXADDR,
BUS_SPACE_MAXADDR, NULL, NULL, len, 1, len, 0, NULL, NULL, tag);
if (rc != 0) {
CH_ERR(sc, "cannot allocate DMA tag: %d\n", rc);
goto done;
}
rc = bus_dmamem_alloc(*tag, va,
BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO, map);
if (rc != 0) {
CH_ERR(sc, "cannot allocate DMA memory: %d\n", rc);
goto done;
}
rc = bus_dmamap_load(*tag, *map, *va, len, oneseg_dma_callback, pa, 0);
if (rc != 0) {
CH_ERR(sc, "cannot load DMA map: %d\n", rc);
goto done;
}
done:
if (rc)
free_ring(sc, *tag, *map, *pa, *va);
return (rc);
}
int
free_ring(struct adapter *sc, bus_dma_tag_t tag, bus_dmamap_t map,
bus_addr_t pa, void *va)
{
if (pa)
bus_dmamap_unload(tag, map);
if (va)
bus_dmamem_free(tag, va, map);
if (tag)
bus_dma_tag_destroy(tag);
return (0);
}
/*
* Allocates the software resources (mainly memory and sysctl nodes) for an
* ingress queue and an optional freelist.
*
* Sets IQ_SW_ALLOCATED and returns 0 on success.
*/
static int
alloc_iq_fl(struct vi_info *vi, struct sge_iq *iq, struct sge_fl *fl,
struct sysctl_ctx_list *ctx, struct sysctl_oid *oid)
{
int rc;
size_t len;
struct adapter *sc = vi->adapter;
MPASS(!(iq->flags & IQ_SW_ALLOCATED));
len = iq->qsize * IQ_ESIZE;
rc = alloc_ring(sc, len, &iq->desc_tag, &iq->desc_map, &iq->ba,
(void **)&iq->desc);
if (rc != 0)
return (rc);
if (fl) {
len = fl->qsize * EQ_ESIZE;
rc = alloc_ring(sc, len, &fl->desc_tag, &fl->desc_map,
&fl->ba, (void **)&fl->desc);
if (rc) {
free_ring(sc, iq->desc_tag, iq->desc_map, iq->ba,
iq->desc);
return (rc);
}
/* Allocate space for one software descriptor per buffer. */
fl->sdesc = malloc(fl->sidx * 8 * sizeof(struct fl_sdesc),
M_CXGBE, M_ZERO | M_WAITOK);
add_fl_sysctls(sc, ctx, oid, fl);
iq->flags |= IQ_HAS_FL;
}
add_iq_sysctls(ctx, oid, iq);
iq->flags |= IQ_SW_ALLOCATED;
return (0);
}
/*
* Frees all software resources (memory and locks) associated with an ingress
* queue and an optional freelist.
*/
static void
free_iq_fl(struct adapter *sc, struct sge_iq *iq, struct sge_fl *fl)
{
MPASS(iq->flags & IQ_SW_ALLOCATED);
if (fl) {
MPASS(iq->flags & IQ_HAS_FL);
free_ring(sc, fl->desc_tag, fl->desc_map, fl->ba, fl->desc);
free_fl_buffers(sc, fl);
free(fl->sdesc, M_CXGBE);
mtx_destroy(&fl->fl_lock);
bzero(fl, sizeof(*fl));
}
free_ring(sc, iq->desc_tag, iq->desc_map, iq->ba, iq->desc);
bzero(iq, sizeof(*iq));
}
/*
* Allocates a hardware ingress queue and an optional freelist that will be
* associated with it.
*
* Returns errno on failure. Resources allocated up to that point may still be
* allocated. Caller is responsible for cleanup in case this function fails.
*/
static int
alloc_iq_fl_hwq(struct vi_info *vi, struct sge_iq *iq, struct sge_fl *fl)
{
int rc, i, cntxt_id;
struct fw_iq_cmd c;
struct adapter *sc = vi->adapter;
__be32 v = 0;
MPASS (!(iq->flags & IQ_HW_ALLOCATED));
bzero(&c, sizeof(c));
c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(sc->pf) |
V_FW_IQ_CMD_VFN(0));
c.alloc_to_len16 = htobe32(F_FW_IQ_CMD_ALLOC | F_FW_IQ_CMD_IQSTART |
FW_LEN16(c));
/* Special handling for firmware event queue */
if (iq == &sc->sge.fwq)
v |= F_FW_IQ_CMD_IQASYNCH;
if (iq->intr_idx < 0) {
/* Forwarded interrupts, all headed to fwq */
v |= F_FW_IQ_CMD_IQANDST;
v |= V_FW_IQ_CMD_IQANDSTINDEX(sc->sge.fwq.cntxt_id);
} else {
KASSERT(iq->intr_idx < sc->intr_count,
("%s: invalid direct intr_idx %d", __func__, iq->intr_idx));
v |= V_FW_IQ_CMD_IQANDSTINDEX(iq->intr_idx);
}
bzero(iq->desc, iq->qsize * IQ_ESIZE);
c.type_to_iqandstindex = htobe32(v |
V_FW_IQ_CMD_TYPE(FW_IQ_TYPE_FL_INT_CAP) |
V_FW_IQ_CMD_VIID(vi->viid) |
V_FW_IQ_CMD_IQANUD(X_UPDATEDELIVERY_INTERRUPT));
c.iqdroprss_to_iqesize = htobe16(V_FW_IQ_CMD_IQPCIECH(vi->pi->tx_chan) |
F_FW_IQ_CMD_IQGTSMODE |
V_FW_IQ_CMD_IQINTCNTTHRESH(iq->intr_pktc_idx) |
V_FW_IQ_CMD_IQESIZE(ilog2(IQ_ESIZE) - 4));
c.iqsize = htobe16(iq->qsize);
c.iqaddr = htobe64(iq->ba);
if (iq->cong >= 0)
c.iqns_to_fl0congen = htobe32(F_FW_IQ_CMD_IQFLINTCONGEN);
if (fl) {
bzero(fl->desc, fl->sidx * EQ_ESIZE + sc->params.sge.spg_len);
c.iqns_to_fl0congen |=
htobe32(V_FW_IQ_CMD_FL0HOSTFCMODE(X_HOSTFCMODE_NONE) |
F_FW_IQ_CMD_FL0FETCHRO | F_FW_IQ_CMD_FL0DATARO |
(fl_pad ? F_FW_IQ_CMD_FL0PADEN : 0) |
(fl->flags & FL_BUF_PACKING ? F_FW_IQ_CMD_FL0PACKEN :
0));
if (iq->cong >= 0) {
c.iqns_to_fl0congen |=
htobe32(V_FW_IQ_CMD_FL0CNGCHMAP(iq->cong) |
F_FW_IQ_CMD_FL0CONGCIF |
F_FW_IQ_CMD_FL0CONGEN);
}
c.fl0dcaen_to_fl0cidxfthresh =
htobe16(V_FW_IQ_CMD_FL0FBMIN(chip_id(sc) <= CHELSIO_T5 ?
X_FETCHBURSTMIN_128B : X_FETCHBURSTMIN_64B_T6) |
V_FW_IQ_CMD_FL0FBMAX(chip_id(sc) <= CHELSIO_T5 ?
X_FETCHBURSTMAX_512B : X_FETCHBURSTMAX_256B));
c.fl0size = htobe16(fl->qsize);
c.fl0addr = htobe64(fl->ba);
}
rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
if (rc != 0) {
CH_ERR(sc, "failed to create hw ingress queue: %d\n", rc);
return (rc);
}
iq->cidx = 0;
iq->gen = F_RSPD_GEN;
iq->cntxt_id = be16toh(c.iqid);
iq->abs_id = be16toh(c.physiqid);
cntxt_id = iq->cntxt_id - sc->sge.iq_start;
if (cntxt_id >= sc->sge.iqmap_sz) {
panic ("%s: iq->cntxt_id (%d) more than the max (%d)", __func__,
cntxt_id, sc->sge.iqmap_sz - 1);
}
sc->sge.iqmap[cntxt_id] = iq;
if (fl) {
u_int qid;
#ifdef INVARIANTS
MPASS(!(fl->flags & FL_BUF_RESUME));
for (i = 0; i < fl->sidx * 8; i++)
MPASS(fl->sdesc[i].cl == NULL);
#endif
fl->cntxt_id = be16toh(c.fl0id);
fl->pidx = fl->cidx = fl->hw_cidx = fl->dbidx = 0;
fl->rx_offset = 0;
fl->flags &= ~(FL_STARVING | FL_DOOMED);
cntxt_id = fl->cntxt_id - sc->sge.eq_start;
if (cntxt_id >= sc->sge.eqmap_sz) {
panic("%s: fl->cntxt_id (%d) more than the max (%d)",
__func__, cntxt_id, sc->sge.eqmap_sz - 1);
}
sc->sge.eqmap[cntxt_id] = (void *)fl;
qid = fl->cntxt_id;
if (isset(&sc->doorbells, DOORBELL_UDB)) {
uint32_t s_qpp = sc->params.sge.eq_s_qpp;
uint32_t mask = (1 << s_qpp) - 1;
volatile uint8_t *udb;
udb = sc->udbs_base + UDBS_DB_OFFSET;
udb += (qid >> s_qpp) << PAGE_SHIFT;
qid &= mask;
if (qid < PAGE_SIZE / UDBS_SEG_SIZE) {
udb += qid << UDBS_SEG_SHIFT;
qid = 0;
}
fl->udb = (volatile void *)udb;
}
fl->dbval = V_QID(qid) | sc->chip_params->sge_fl_db;
FL_LOCK(fl);
/* Enough to make sure the SGE doesn't think it's starved */
refill_fl(sc, fl, fl->lowat);
FL_UNLOCK(fl);
}
if (chip_id(sc) >= CHELSIO_T5 && !(sc->flags & IS_VF) && iq->cong >= 0) {
uint32_t param, val;
param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_CONM_CTXT) |
V_FW_PARAMS_PARAM_YZ(iq->cntxt_id);
if (iq->cong == 0)
val = 1 << 19;
else {
val = 2 << 19;
for (i = 0; i < 4; i++) {
if (iq->cong & (1 << i))
val |= 1 << (i << 2);
}
}
rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
if (rc != 0) {
/* report error but carry on */
CH_ERR(sc, "failed to set congestion manager context "
"for ingress queue %d: %d\n", iq->cntxt_id, rc);
}
}
/* Enable IQ interrupts */
atomic_store_rel_int(&iq->state, IQS_IDLE);
t4_write_reg(sc, sc->sge_gts_reg, V_SEINTARM(iq->intr_params) |
V_INGRESSQID(iq->cntxt_id));
iq->flags |= IQ_HW_ALLOCATED;
return (0);
}
static int
free_iq_fl_hwq(struct adapter *sc, struct sge_iq *iq, struct sge_fl *fl)
{
int rc;
MPASS(iq->flags & IQ_HW_ALLOCATED);
rc = -t4_iq_free(sc, sc->mbox, sc->pf, 0, FW_IQ_TYPE_FL_INT_CAP,
iq->cntxt_id, fl ? fl->cntxt_id : 0xffff, 0xffff);
if (rc != 0) {
CH_ERR(sc, "failed to free iq %p: %d\n", iq, rc);
return (rc);
}
iq->flags &= ~IQ_HW_ALLOCATED;
return (0);
}
static void
add_iq_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *oid,
struct sge_iq *iq)
{
struct sysctl_oid_list *children;
if (ctx == NULL || oid == NULL)
return;
children = SYSCTL_CHILDREN(oid);
SYSCTL_ADD_UAUTO(ctx, children, OID_AUTO, "ba", CTLFLAG_RD, &iq->ba,
"bus address of descriptor ring");
SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL,
iq->qsize * IQ_ESIZE, "descriptor ring size in bytes");
SYSCTL_ADD_U16(ctx, children, OID_AUTO, "abs_id", CTLFLAG_RD,
&iq->abs_id, 0, "absolute id of the queue");
SYSCTL_ADD_U16(ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
&iq->cntxt_id, 0, "SGE context id of the queue");
SYSCTL_ADD_U16(ctx, children, OID_AUTO, "cidx", CTLFLAG_RD, &iq->cidx,
0, "consumer index");
}
static void
add_fl_sysctls(struct adapter *sc, struct sysctl_ctx_list *ctx,
struct sysctl_oid *oid, struct sge_fl *fl)
{
struct sysctl_oid_list *children;
if (ctx == NULL || oid == NULL)
return;
children = SYSCTL_CHILDREN(oid);
oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "fl",
CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "freelist");
children = SYSCTL_CHILDREN(oid);
SYSCTL_ADD_UAUTO(ctx, children, OID_AUTO, "ba", CTLFLAG_RD,
&fl->ba, "bus address of descriptor ring");
SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL,
fl->sidx * EQ_ESIZE + sc->params.sge.spg_len,
"desc ring size in bytes");
SYSCTL_ADD_U16(ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
&fl->cntxt_id, 0, "SGE context id of the freelist");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "padding", CTLFLAG_RD, NULL,
fl_pad ? 1 : 0, "padding enabled");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "packing", CTLFLAG_RD, NULL,
fl->flags & FL_BUF_PACKING ? 1 : 0, "packing enabled");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cidx", CTLFLAG_RD, &fl->cidx,
0, "consumer index");
if (fl->flags & FL_BUF_PACKING) {
SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rx_offset",
CTLFLAG_RD, &fl->rx_offset, 0, "packing rx offset");
}
SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "pidx", CTLFLAG_RD, &fl->pidx,
0, "producer index");
SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_allocated",
CTLFLAG_RD, &fl->cl_allocated, "# of clusters allocated");
SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_recycled",
CTLFLAG_RD, &fl->cl_recycled, "# of clusters recycled");
SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_fast_recycled",
CTLFLAG_RD, &fl->cl_fast_recycled, "# of clusters recycled (fast)");
}
/*
* Idempotent.
*/
static int
alloc_fwq(struct adapter *sc)
{
int rc, intr_idx;
struct sge_iq *fwq = &sc->sge.fwq;
struct vi_info *vi = &sc->port[0]->vi[0];
if (!(fwq->flags & IQ_SW_ALLOCATED)) {
MPASS(!(fwq->flags & IQ_HW_ALLOCATED));
if (sc->flags & IS_VF)
intr_idx = 0;
else
intr_idx = sc->intr_count > 1 ? 1 : 0;
init_iq(fwq, sc, 0, 0, FW_IQ_QSIZE, intr_idx, -1);
rc = alloc_iq_fl(vi, fwq, NULL, &sc->ctx, sc->fwq_oid);
if (rc != 0) {
CH_ERR(sc, "failed to allocate fwq: %d\n", rc);
return (rc);
}
MPASS(fwq->flags & IQ_SW_ALLOCATED);
}
if (!(fwq->flags & IQ_HW_ALLOCATED)) {
MPASS(fwq->flags & IQ_SW_ALLOCATED);
rc = alloc_iq_fl_hwq(vi, fwq, NULL);
if (rc != 0) {
CH_ERR(sc, "failed to create hw fwq: %d\n", rc);
return (rc);
}
MPASS(fwq->flags & IQ_HW_ALLOCATED);
}
return (0);
}
/*
* Idempotent.
*/
static void
free_fwq(struct adapter *sc)
{
struct sge_iq *fwq = &sc->sge.fwq;
if (fwq->flags & IQ_HW_ALLOCATED) {
MPASS(fwq->flags & IQ_SW_ALLOCATED);
free_iq_fl_hwq(sc, fwq, NULL);
MPASS(!(fwq->flags & IQ_HW_ALLOCATED));
}
if (fwq->flags & IQ_SW_ALLOCATED) {
MPASS(!(fwq->flags & IQ_HW_ALLOCATED));
free_iq_fl(sc, fwq, NULL);
MPASS(!(fwq->flags & IQ_SW_ALLOCATED));
}
}
/*
* Idempotent.
*/
static int
alloc_ctrlq(struct adapter *sc, int idx)
{
int rc;
char name[16];
struct sysctl_oid *oid;
struct sge_wrq *ctrlq = &sc->sge.ctrlq[idx];
MPASS(idx < sc->params.nports);
if (!(ctrlq->eq.flags & EQ_SW_ALLOCATED)) {
MPASS(!(ctrlq->eq.flags & EQ_HW_ALLOCATED));
snprintf(name, sizeof(name), "%d", idx);
oid = SYSCTL_ADD_NODE(&sc->ctx, SYSCTL_CHILDREN(sc->ctrlq_oid),
OID_AUTO, name, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
"ctrl queue");
snprintf(name, sizeof(name), "%s ctrlq%d",
device_get_nameunit(sc->dev), idx);
init_eq(sc, &ctrlq->eq, EQ_CTRL, CTRL_EQ_QSIZE,
sc->port[idx]->tx_chan, &sc->sge.fwq, name);
rc = alloc_wrq(sc, NULL, ctrlq, &sc->ctx, oid);
if (rc != 0) {
CH_ERR(sc, "failed to allocate ctrlq%d: %d\n", idx, rc);
sysctl_remove_oid(oid, 1, 1);
return (rc);
}
MPASS(ctrlq->eq.flags & EQ_SW_ALLOCATED);
}
if (!(ctrlq->eq.flags & EQ_HW_ALLOCATED)) {
MPASS(ctrlq->eq.flags & EQ_SW_ALLOCATED);
rc = alloc_eq_hwq(sc, NULL, &ctrlq->eq);
if (rc != 0) {
CH_ERR(sc, "failed to create hw ctrlq%d: %d\n", idx, rc);
return (rc);
}
MPASS(ctrlq->eq.flags & EQ_HW_ALLOCATED);
}
return (0);
}
/*
* Idempotent.
*/
static void
free_ctrlq(struct adapter *sc, int idx)
{
struct sge_wrq *ctrlq = &sc->sge.ctrlq[idx];
if (ctrlq->eq.flags & EQ_HW_ALLOCATED) {
MPASS(ctrlq->eq.flags & EQ_SW_ALLOCATED);
free_eq_hwq(sc, NULL, &ctrlq->eq);
MPASS(!(ctrlq->eq.flags & EQ_HW_ALLOCATED));
}
if (ctrlq->eq.flags & EQ_SW_ALLOCATED) {
MPASS(!(ctrlq->eq.flags & EQ_HW_ALLOCATED));
free_wrq(sc, ctrlq);
MPASS(!(ctrlq->eq.flags & EQ_SW_ALLOCATED));
}
}
int
tnl_cong(struct port_info *pi, int drop)
{
if (drop == -1)
return (-1);
else if (drop == 1)
return (0);
else
return (pi->rx_e_chan_map);
}
/*
* Idempotent.
*/
static int
alloc_rxq(struct vi_info *vi, struct sge_rxq *rxq, int idx, int intr_idx,
int maxp)
{
int rc;
struct adapter *sc = vi->adapter;
struct ifnet *ifp = vi->ifp;
struct sysctl_oid *oid;
char name[16];
if (!(rxq->iq.flags & IQ_SW_ALLOCATED)) {
MPASS(!(rxq->iq.flags & IQ_HW_ALLOCATED));
#if defined(INET) || defined(INET6)
rc = tcp_lro_init_args(&rxq->lro, ifp, lro_entries, lro_mbufs);
if (rc != 0)
return (rc);
MPASS(rxq->lro.ifp == ifp); /* also indicates LRO init'ed */
#endif
rxq->ifp = ifp;
snprintf(name, sizeof(name), "%d", idx);
oid = SYSCTL_ADD_NODE(&vi->ctx, SYSCTL_CHILDREN(vi->rxq_oid),
OID_AUTO, name, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
"rx queue");
init_iq(&rxq->iq, sc, vi->tmr_idx, vi->pktc_idx, vi->qsize_rxq,
intr_idx, tnl_cong(vi->pi, cong_drop));
#if defined(INET) || defined(INET6)
if (ifp->if_capenable & IFCAP_LRO)
rxq->iq.flags |= IQ_LRO_ENABLED;
#endif
if (ifp->if_capenable & IFCAP_HWRXTSTMP)
rxq->iq.flags |= IQ_RX_TIMESTAMP;
snprintf(name, sizeof(name), "%s rxq%d-fl",
device_get_nameunit(vi->dev), idx);
init_fl(sc, &rxq->fl, vi->qsize_rxq / 8, maxp, name);
rc = alloc_iq_fl(vi, &rxq->iq, &rxq->fl, &vi->ctx, oid);
if (rc != 0) {
CH_ERR(vi, "failed to allocate rxq%d: %d\n", idx, rc);
sysctl_remove_oid(oid, 1, 1);
#if defined(INET) || defined(INET6)
tcp_lro_free(&rxq->lro);
rxq->lro.ifp = NULL;
#endif
return (rc);
}
MPASS(rxq->iq.flags & IQ_SW_ALLOCATED);
add_rxq_sysctls(&vi->ctx, oid, rxq);
}
if (!(rxq->iq.flags & IQ_HW_ALLOCATED)) {
MPASS(rxq->iq.flags & IQ_SW_ALLOCATED);
rc = alloc_iq_fl_hwq(vi, &rxq->iq, &rxq->fl);
if (rc != 0) {
CH_ERR(vi, "failed to create hw rxq%d: %d\n", idx, rc);
return (rc);
}
MPASS(rxq->iq.flags & IQ_HW_ALLOCATED);
if (idx == 0)
sc->sge.iq_base = rxq->iq.abs_id - rxq->iq.cntxt_id;
else
KASSERT(rxq->iq.cntxt_id + sc->sge.iq_base == rxq->iq.abs_id,
("iq_base mismatch"));
KASSERT(sc->sge.iq_base == 0 || sc->flags & IS_VF,
("PF with non-zero iq_base"));
/*
* The freelist is just barely above the starvation threshold
* right now, fill it up a bit more.
*/
FL_LOCK(&rxq->fl);
refill_fl(sc, &rxq->fl, 128);
FL_UNLOCK(&rxq->fl);
}
return (0);
}
/*
* Idempotent.
*/
static void
free_rxq(struct vi_info *vi, struct sge_rxq *rxq)
{
if (rxq->iq.flags & IQ_HW_ALLOCATED) {
MPASS(rxq->iq.flags & IQ_SW_ALLOCATED);
free_iq_fl_hwq(vi->adapter, &rxq->iq, &rxq->fl);
MPASS(!(rxq->iq.flags & IQ_HW_ALLOCATED));
}
if (rxq->iq.flags & IQ_SW_ALLOCATED) {
MPASS(!(rxq->iq.flags & IQ_HW_ALLOCATED));
#if defined(INET) || defined(INET6)
tcp_lro_free(&rxq->lro);
#endif
free_iq_fl(vi->adapter, &rxq->iq, &rxq->fl);
MPASS(!(rxq->iq.flags & IQ_SW_ALLOCATED));
bzero(rxq, sizeof(*rxq));
}
}
static void
add_rxq_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *oid,
struct sge_rxq *rxq)
{
struct sysctl_oid_list *children;
if (ctx == NULL || oid == NULL)
return;
children = SYSCTL_CHILDREN(oid);
#if defined(INET) || defined(INET6)
SYSCTL_ADD_U64(ctx, children, OID_AUTO, "lro_queued", CTLFLAG_RD,
&rxq->lro.lro_queued, 0, NULL);
SYSCTL_ADD_U64(ctx, children, OID_AUTO, "lro_flushed", CTLFLAG_RD,
&rxq->lro.lro_flushed, 0, NULL);
#endif
SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "rxcsum", CTLFLAG_RD,
&rxq->rxcsum, "# of times hardware assisted with checksum");
SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "vlan_extraction", CTLFLAG_RD,
&rxq->vlan_extraction, "# of times hardware extracted 802.1Q tag");
SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "vxlan_rxcsum", CTLFLAG_RD,
&rxq->vxlan_rxcsum,
"# of times hardware assisted with inner checksum (VXLAN)");
}
#ifdef TCP_OFFLOAD
/*
* Idempotent.
*/
static int
alloc_ofld_rxq(struct vi_info *vi, struct sge_ofld_rxq *ofld_rxq, int idx,
int intr_idx, int maxp)
{
int rc;
struct adapter *sc = vi->adapter;
struct sysctl_oid *oid;
char name[16];
if (!(ofld_rxq->iq.flags & IQ_SW_ALLOCATED)) {
MPASS(!(ofld_rxq->iq.flags & IQ_HW_ALLOCATED));
snprintf(name, sizeof(name), "%d", idx);
oid = SYSCTL_ADD_NODE(&vi->ctx,
SYSCTL_CHILDREN(vi->ofld_rxq_oid), OID_AUTO, name,
CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "offload rx queue");
init_iq(&ofld_rxq->iq, sc, vi->ofld_tmr_idx, vi->ofld_pktc_idx,
vi->qsize_rxq, intr_idx, 0);
snprintf(name, sizeof(name), "%s ofld_rxq%d-fl",
device_get_nameunit(vi->dev), idx);
init_fl(sc, &ofld_rxq->fl, vi->qsize_rxq / 8, maxp, name);
rc = alloc_iq_fl(vi, &ofld_rxq->iq, &ofld_rxq->fl, &vi->ctx,
oid);
if (rc != 0) {
CH_ERR(vi, "failed to allocate ofld_rxq%d: %d\n", idx,
rc);
sysctl_remove_oid(oid, 1, 1);
return (rc);
}
MPASS(ofld_rxq->iq.flags & IQ_SW_ALLOCATED);
ofld_rxq->rx_iscsi_ddp_setup_ok = counter_u64_alloc(M_WAITOK);
ofld_rxq->rx_iscsi_ddp_setup_error =
counter_u64_alloc(M_WAITOK);
add_ofld_rxq_sysctls(&vi->ctx, oid, ofld_rxq);
}
if (!(ofld_rxq->iq.flags & IQ_HW_ALLOCATED)) {
MPASS(ofld_rxq->iq.flags & IQ_SW_ALLOCATED);
rc = alloc_iq_fl_hwq(vi, &ofld_rxq->iq, &ofld_rxq->fl);
if (rc != 0) {
CH_ERR(vi, "failed to create hw ofld_rxq%d: %d\n", idx,
rc);
return (rc);
}
MPASS(ofld_rxq->iq.flags & IQ_HW_ALLOCATED);
}
return (rc);
}
/*
* Idempotent.
*/
static void
free_ofld_rxq(struct vi_info *vi, struct sge_ofld_rxq *ofld_rxq)
{
if (ofld_rxq->iq.flags & IQ_HW_ALLOCATED) {
MPASS(ofld_rxq->iq.flags & IQ_SW_ALLOCATED);
free_iq_fl_hwq(vi->adapter, &ofld_rxq->iq, &ofld_rxq->fl);
MPASS(!(ofld_rxq->iq.flags & IQ_HW_ALLOCATED));
}
if (ofld_rxq->iq.flags & IQ_SW_ALLOCATED) {
MPASS(!(ofld_rxq->iq.flags & IQ_HW_ALLOCATED));
free_iq_fl(vi->adapter, &ofld_rxq->iq, &ofld_rxq->fl);
MPASS(!(ofld_rxq->iq.flags & IQ_SW_ALLOCATED));
counter_u64_free(ofld_rxq->rx_iscsi_ddp_setup_ok);
counter_u64_free(ofld_rxq->rx_iscsi_ddp_setup_error);
bzero(ofld_rxq, sizeof(*ofld_rxq));
}
}
static void
add_ofld_rxq_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *oid,
struct sge_ofld_rxq *ofld_rxq)
{
struct sysctl_oid_list *children;
if (ctx == NULL || oid == NULL)
return;
children = SYSCTL_CHILDREN(oid);
SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
"rx_toe_tls_records", CTLFLAG_RD, &ofld_rxq->rx_toe_tls_records,
"# of TOE TLS records received");
SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
"rx_toe_tls_octets", CTLFLAG_RD, &ofld_rxq->rx_toe_tls_octets,
"# of payload octets in received TOE TLS records");
oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "iscsi",
CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE iSCSI statistics");
children = SYSCTL_CHILDREN(oid);
SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "ddp_setup_ok",
CTLFLAG_RD, &ofld_rxq->rx_iscsi_ddp_setup_ok,
"# of times DDP buffer was setup successfully.");
SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "ddp_setup_error",
CTLFLAG_RD, &ofld_rxq->rx_iscsi_ddp_setup_error,
"# of times DDP buffer setup failed.");
SYSCTL_ADD_U64(ctx, children, OID_AUTO, "ddp_octets",
CTLFLAG_RD, &ofld_rxq->rx_iscsi_ddp_octets, 0,
"# of octets placed directly");
SYSCTL_ADD_U64(ctx, children, OID_AUTO, "ddp_pdus",
CTLFLAG_RD, &ofld_rxq->rx_iscsi_ddp_pdus, 0,
"# of PDUs with data placed directly.");
SYSCTL_ADD_U64(ctx, children, OID_AUTO, "fl_octets",
CTLFLAG_RD, &ofld_rxq->rx_iscsi_fl_octets, 0,
"# of data octets delivered in freelist");
SYSCTL_ADD_U64(ctx, children, OID_AUTO, "fl_pdus",
CTLFLAG_RD, &ofld_rxq->rx_iscsi_fl_pdus, 0,
"# of PDUs with data delivered in freelist");
SYSCTL_ADD_U64(ctx, children, OID_AUTO, "padding_errors",
CTLFLAG_RD, &ofld_rxq->rx_iscsi_padding_errors, 0,
"# of PDUs with invalid padding");
SYSCTL_ADD_U64(ctx, children, OID_AUTO, "header_digest_errors",
CTLFLAG_RD, &ofld_rxq->rx_iscsi_header_digest_errors, 0,
"# of PDUs with invalid header digests");
SYSCTL_ADD_U64(ctx, children, OID_AUTO, "data_digest_errors",
CTLFLAG_RD, &ofld_rxq->rx_iscsi_data_digest_errors, 0,
"# of PDUs with invalid data digests");
}
#endif
/*
* Returns a reasonable automatic cidx flush threshold for a given queue size.
*/
static u_int
qsize_to_fthresh(int qsize)
{
u_int fthresh;
while (!powerof2(qsize))
qsize++;
fthresh = ilog2(qsize);
if (fthresh > X_CIDXFLUSHTHRESH_128)
fthresh = X_CIDXFLUSHTHRESH_128;
return (fthresh);
}
static int
ctrl_eq_alloc(struct adapter *sc, struct sge_eq *eq)
{
int rc, cntxt_id;
struct fw_eq_ctrl_cmd c;
int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
bzero(&c, sizeof(c));
c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) | F_FW_CMD_REQUEST |
F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_CTRL_CMD_PFN(sc->pf) |
V_FW_EQ_CTRL_CMD_VFN(0));
c.alloc_to_len16 = htobe32(F_FW_EQ_CTRL_CMD_ALLOC |
F_FW_EQ_CTRL_CMD_EQSTART | FW_LEN16(c));
c.cmpliqid_eqid = htonl(V_FW_EQ_CTRL_CMD_CMPLIQID(eq->iqid));
c.physeqid_pkd = htobe32(0);
c.fetchszm_to_iqid =
htobe32(V_FW_EQ_CTRL_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) |
V_FW_EQ_CTRL_CMD_PCIECHN(eq->tx_chan) |
F_FW_EQ_CTRL_CMD_FETCHRO | V_FW_EQ_CTRL_CMD_IQID(eq->iqid));
c.dcaen_to_eqsize =
htobe32(V_FW_EQ_CTRL_CMD_FBMIN(chip_id(sc) <= CHELSIO_T5 ?
X_FETCHBURSTMIN_64B : X_FETCHBURSTMIN_64B_T6) |
V_FW_EQ_CTRL_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
V_FW_EQ_CTRL_CMD_CIDXFTHRESH(qsize_to_fthresh(qsize)) |
V_FW_EQ_CTRL_CMD_EQSIZE(qsize));
c.eqaddr = htobe64(eq->ba);
rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
if (rc != 0) {
CH_ERR(sc, "failed to create hw ctrlq for tx_chan %d: %d\n",
eq->tx_chan, rc);
return (rc);
}
eq->cntxt_id = G_FW_EQ_CTRL_CMD_EQID(be32toh(c.cmpliqid_eqid));
eq->abs_id = G_FW_EQ_CTRL_CMD_PHYSEQID(be32toh(c.physeqid_pkd));
cntxt_id = eq->cntxt_id - sc->sge.eq_start;
if (cntxt_id >= sc->sge.eqmap_sz)
panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
cntxt_id, sc->sge.eqmap_sz - 1);
sc->sge.eqmap[cntxt_id] = eq;
return (rc);
}
static int
eth_eq_alloc(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq)
{
int rc, cntxt_id;
struct fw_eq_eth_cmd c;
int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
bzero(&c, sizeof(c));
c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_ETH_CMD) | F_FW_CMD_REQUEST |
F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_ETH_CMD_PFN(sc->pf) |
V_FW_EQ_ETH_CMD_VFN(0));
c.alloc_to_len16 = htobe32(F_FW_EQ_ETH_CMD_ALLOC |
F_FW_EQ_ETH_CMD_EQSTART | FW_LEN16(c));
c.autoequiqe_to_viid = htobe32(F_FW_EQ_ETH_CMD_AUTOEQUIQE |
F_FW_EQ_ETH_CMD_AUTOEQUEQE | V_FW_EQ_ETH_CMD_VIID(vi->viid));
c.fetchszm_to_iqid =
htobe32(V_FW_EQ_ETH_CMD_HOSTFCMODE(X_HOSTFCMODE_NONE) |
V_FW_EQ_ETH_CMD_PCIECHN(eq->tx_chan) | F_FW_EQ_ETH_CMD_FETCHRO |
V_FW_EQ_ETH_CMD_IQID(eq->iqid));
c.dcaen_to_eqsize =
htobe32(V_FW_EQ_ETH_CMD_FBMIN(chip_id(sc) <= CHELSIO_T5 ?
X_FETCHBURSTMIN_64B : X_FETCHBURSTMIN_64B_T6) |
V_FW_EQ_ETH_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
V_FW_EQ_ETH_CMD_EQSIZE(qsize));
c.eqaddr = htobe64(eq->ba);
rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
if (rc != 0) {
device_printf(vi->dev,
"failed to create Ethernet egress queue: %d\n", rc);
return (rc);
}
eq->cntxt_id = G_FW_EQ_ETH_CMD_EQID(be32toh(c.eqid_pkd));
eq->abs_id = G_FW_EQ_ETH_CMD_PHYSEQID(be32toh(c.physeqid_pkd));
cntxt_id = eq->cntxt_id - sc->sge.eq_start;
if (cntxt_id >= sc->sge.eqmap_sz)
panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
cntxt_id, sc->sge.eqmap_sz - 1);
sc->sge.eqmap[cntxt_id] = eq;
return (rc);
}
#if defined(TCP_OFFLOAD) || defined(RATELIMIT)
static int
ofld_eq_alloc(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq)
{
int rc, cntxt_id;
struct fw_eq_ofld_cmd c;
int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
bzero(&c, sizeof(c));
c.op_to_vfn = htonl(V_FW_CMD_OP(FW_EQ_OFLD_CMD) | F_FW_CMD_REQUEST |
F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_OFLD_CMD_PFN(sc->pf) |
V_FW_EQ_OFLD_CMD_VFN(0));
c.alloc_to_len16 = htonl(F_FW_EQ_OFLD_CMD_ALLOC |
F_FW_EQ_OFLD_CMD_EQSTART | FW_LEN16(c));
c.fetchszm_to_iqid =
htonl(V_FW_EQ_OFLD_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) |
V_FW_EQ_OFLD_CMD_PCIECHN(eq->tx_chan) |
F_FW_EQ_OFLD_CMD_FETCHRO | V_FW_EQ_OFLD_CMD_IQID(eq->iqid));
c.dcaen_to_eqsize =
htobe32(V_FW_EQ_OFLD_CMD_FBMIN(chip_id(sc) <= CHELSIO_T5 ?
X_FETCHBURSTMIN_64B : X_FETCHBURSTMIN_64B_T6) |
V_FW_EQ_OFLD_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
V_FW_EQ_OFLD_CMD_CIDXFTHRESH(qsize_to_fthresh(qsize)) |
V_FW_EQ_OFLD_CMD_EQSIZE(qsize));
c.eqaddr = htobe64(eq->ba);
rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
if (rc != 0) {
device_printf(vi->dev,
"failed to create egress queue for TCP offload: %d\n", rc);
return (rc);
}
eq->cntxt_id = G_FW_EQ_OFLD_CMD_EQID(be32toh(c.eqid_pkd));
eq->abs_id = G_FW_EQ_OFLD_CMD_PHYSEQID(be32toh(c.physeqid_pkd));
cntxt_id = eq->cntxt_id - sc->sge.eq_start;
if (cntxt_id >= sc->sge.eqmap_sz)
panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
cntxt_id, sc->sge.eqmap_sz - 1);
sc->sge.eqmap[cntxt_id] = eq;
return (rc);
}
#endif
/* SW only */
static int
alloc_eq(struct adapter *sc, struct sge_eq *eq, struct sysctl_ctx_list *ctx,
struct sysctl_oid *oid)
{
int rc, qsize;
size_t len;
MPASS(!(eq->flags & EQ_SW_ALLOCATED));
qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
len = qsize * EQ_ESIZE;
rc = alloc_ring(sc, len, &eq->desc_tag, &eq->desc_map, &eq->ba,
(void **)&eq->desc);
if (rc)
return (rc);
if (ctx != NULL && oid != NULL)
add_eq_sysctls(sc, ctx, oid, eq);
eq->flags |= EQ_SW_ALLOCATED;
return (0);
}
/* SW only */
static void
free_eq(struct adapter *sc, struct sge_eq *eq)
{
MPASS(eq->flags & EQ_SW_ALLOCATED);
if (eq->type == EQ_ETH)
MPASS(eq->pidx == eq->cidx);
free_ring(sc, eq->desc_tag, eq->desc_map, eq->ba, eq->desc);
mtx_destroy(&eq->eq_lock);
bzero(eq, sizeof(*eq));
}
static void
add_eq_sysctls(struct adapter *sc, struct sysctl_ctx_list *ctx,
struct sysctl_oid *oid, struct sge_eq *eq)
{
struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
SYSCTL_ADD_UAUTO(ctx, children, OID_AUTO, "ba", CTLFLAG_RD, &eq->ba,
"bus address of descriptor ring");
SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL,
eq->sidx * EQ_ESIZE + sc->params.sge.spg_len,
"desc ring size in bytes");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "abs_id", CTLFLAG_RD,
&eq->abs_id, 0, "absolute id of the queue");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
&eq->cntxt_id, 0, "SGE context id of the queue");
SYSCTL_ADD_U16(ctx, children, OID_AUTO, "cidx", CTLFLAG_RD, &eq->cidx,
0, "consumer index");
SYSCTL_ADD_U16(ctx, children, OID_AUTO, "pidx", CTLFLAG_RD, &eq->pidx,
0, "producer index");
SYSCTL_ADD_INT(ctx, children, OID_AUTO, "sidx", CTLFLAG_RD, NULL,
eq->sidx, "status page index");
}
static int
alloc_eq_hwq(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq)
{
int rc;
MPASS(!(eq->flags & EQ_HW_ALLOCATED));
eq->iqid = eq->iq->cntxt_id;
eq->pidx = eq->cidx = eq->dbidx = 0;
/* Note that equeqidx is not used with sge_wrq (OFLD/CTRL) queues. */
eq->equeqidx = 0;
eq->doorbells = sc->doorbells;
bzero(eq->desc, eq->sidx * EQ_ESIZE + sc->params.sge.spg_len);
switch (eq->type) {
case EQ_CTRL:
rc = ctrl_eq_alloc(sc, eq);
break;
case EQ_ETH:
rc = eth_eq_alloc(sc, vi, eq);
break;
#if defined(TCP_OFFLOAD) || defined(RATELIMIT)
case EQ_OFLD:
rc = ofld_eq_alloc(sc, vi, eq);
break;
#endif
default:
panic("%s: invalid eq type %d.", __func__, eq->type);
}
if (rc != 0) {
CH_ERR(sc, "failed to allocate egress queue(%d): %d\n",
eq->type, rc);
return (rc);
}
if (isset(&eq->doorbells, DOORBELL_UDB) ||
isset(&eq->doorbells, DOORBELL_UDBWC) ||
isset(&eq->doorbells, DOORBELL_WCWR)) {
uint32_t s_qpp = sc->params.sge.eq_s_qpp;
uint32_t mask = (1 << s_qpp) - 1;
volatile uint8_t *udb;
udb = sc->udbs_base + UDBS_DB_OFFSET;
udb += (eq->cntxt_id >> s_qpp) << PAGE_SHIFT; /* pg offset */
eq->udb_qid = eq->cntxt_id & mask; /* id in page */
if (eq->udb_qid >= PAGE_SIZE / UDBS_SEG_SIZE)
clrbit(&eq->doorbells, DOORBELL_WCWR);
else {
udb += eq->udb_qid << UDBS_SEG_SHIFT; /* seg offset */
eq->udb_qid = 0;
}
eq->udb = (volatile void *)udb;
}
eq->flags |= EQ_HW_ALLOCATED;
return (0);
}
static int
free_eq_hwq(struct adapter *sc, struct vi_info *vi __unused, struct sge_eq *eq)
{
int rc;
MPASS(eq->flags & EQ_HW_ALLOCATED);
switch (eq->type) {
case EQ_CTRL:
rc = -t4_ctrl_eq_free(sc, sc->mbox, sc->pf, 0, eq->cntxt_id);
break;
case EQ_ETH:
rc = -t4_eth_eq_free(sc, sc->mbox, sc->pf, 0, eq->cntxt_id);
break;
#if defined(TCP_OFFLOAD) || defined(RATELIMIT)
case EQ_OFLD:
rc = -t4_ofld_eq_free(sc, sc->mbox, sc->pf, 0, eq->cntxt_id);
break;
#endif
default:
panic("%s: invalid eq type %d.", __func__, eq->type);
}
if (rc != 0) {
CH_ERR(sc, "failed to free eq (type %d): %d\n", eq->type, rc);
return (rc);
}
eq->flags &= ~EQ_HW_ALLOCATED;
return (0);
}
static int
alloc_wrq(struct adapter *sc, struct vi_info *vi, struct sge_wrq *wrq,
struct sysctl_ctx_list *ctx, struct sysctl_oid *oid)
{
struct sge_eq *eq = &wrq->eq;
int rc;
MPASS(!(eq->flags & EQ_SW_ALLOCATED));
rc = alloc_eq(sc, eq, ctx, oid);
if (rc)
return (rc);
MPASS(eq->flags & EQ_SW_ALLOCATED);
/* Can't fail after this. */
wrq->adapter = sc;
TASK_INIT(&wrq->wrq_tx_task, 0, wrq_tx_drain, wrq);
TAILQ_INIT(&wrq->incomplete_wrs);
STAILQ_INIT(&wrq->wr_list);
wrq->nwr_pending = 0;
wrq->ndesc_needed = 0;
add_wrq_sysctls(ctx, oid, wrq);
return (0);
}
static void
free_wrq(struct adapter *sc, struct sge_wrq *wrq)
{
free_eq(sc, &wrq->eq);
MPASS(wrq->nwr_pending == 0);
MPASS(TAILQ_EMPTY(&wrq->incomplete_wrs));
MPASS(STAILQ_EMPTY(&wrq->wr_list));
bzero(wrq, sizeof(*wrq));
}
static void
add_wrq_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *oid,
struct sge_wrq *wrq)
{
struct sysctl_oid_list *children;
if (ctx == NULL || oid == NULL)
return;
children = SYSCTL_CHILDREN(oid);
SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs_direct", CTLFLAG_RD,
&wrq->tx_wrs_direct, "# of work requests (direct)");
SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs_copied", CTLFLAG_RD,
&wrq->tx_wrs_copied, "# of work requests (copied)");
SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs_sspace", CTLFLAG_RD,
&wrq->tx_wrs_ss, "# of work requests (copied from scratch space)");
}
/*
* Idempotent.
*/
static int
alloc_txq(struct vi_info *vi, struct sge_txq *txq, int idx)
{
int rc, iqidx;
struct port_info *pi = vi->pi;
struct adapter *sc = vi->adapter;
struct sge_eq *eq = &txq->eq;
struct txpkts *txp;
char name[16];
struct sysctl_oid *oid;
if (!(eq->flags & EQ_SW_ALLOCATED)) {
MPASS(!(eq->flags & EQ_HW_ALLOCATED));
snprintf(name, sizeof(name), "%d", idx);
oid = SYSCTL_ADD_NODE(&vi->ctx, SYSCTL_CHILDREN(vi->txq_oid),
OID_AUTO, name, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
"tx queue");
iqidx = vi->first_rxq + (idx % vi->nrxq);
snprintf(name, sizeof(name), "%s txq%d",
device_get_nameunit(vi->dev), idx);
init_eq(sc, &txq->eq, EQ_ETH, vi->qsize_txq, pi->tx_chan,
&sc->sge.rxq[iqidx].iq, name);
rc = mp_ring_alloc(&txq->r, eq->sidx, txq, eth_tx,
can_resume_eth_tx, M_CXGBE, &eq->eq_lock, M_WAITOK);
if (rc != 0) {
CH_ERR(vi, "failed to allocate mp_ring for txq%d: %d\n",
idx, rc);
failed:
sysctl_remove_oid(oid, 1, 1);
return (rc);
}
rc = alloc_eq(sc, eq, &vi->ctx, oid);
if (rc) {
CH_ERR(vi, "failed to allocate txq%d: %d\n", idx, rc);
mp_ring_free(txq->r);
goto failed;
}
MPASS(eq->flags & EQ_SW_ALLOCATED);
/* Can't fail after this point. */
TASK_INIT(&txq->tx_reclaim_task, 0, tx_reclaim, eq);
txq->ifp = vi->ifp;
txq->gl = sglist_alloc(TX_SGL_SEGS, M_WAITOK);
txq->sdesc = malloc(eq->sidx * sizeof(struct tx_sdesc), M_CXGBE,
M_ZERO | M_WAITOK);
add_txq_sysctls(vi, &vi->ctx, oid, txq);
}
if (!(eq->flags & EQ_HW_ALLOCATED)) {
MPASS(eq->flags & EQ_SW_ALLOCATED);
rc = alloc_eq_hwq(sc, vi, eq);
if (rc != 0) {
CH_ERR(vi, "failed to create hw txq%d: %d\n", idx, rc);
return (rc);
}
MPASS(eq->flags & EQ_HW_ALLOCATED);
/* Can't fail after this point. */
if (idx == 0)
sc->sge.eq_base = eq->abs_id - eq->cntxt_id;
else
KASSERT(eq->cntxt_id + sc->sge.eq_base == eq->abs_id,
("eq_base mismatch"));
KASSERT(sc->sge.eq_base == 0 || sc->flags & IS_VF,
("PF with non-zero eq_base"));
txp = &txq->txp;
MPASS(nitems(txp->mb) >= sc->params.max_pkts_per_eth_tx_pkts_wr);
txq->txp.max_npkt = min(nitems(txp->mb),
sc->params.max_pkts_per_eth_tx_pkts_wr);
if (vi->flags & TX_USES_VM_WR && !(sc->flags & IS_VF))
txq->txp.max_npkt--;
if (vi->flags & TX_USES_VM_WR)
txq->cpl_ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) |
V_TXPKT_INTF(pi->tx_chan));
else
txq->cpl_ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) |
V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(sc->pf) |
V_TXPKT_VF(vi->vin) | V_TXPKT_VF_VLD(vi->vfvld));
txq->tc_idx = -1;
}
return (0);
}
/*
* Idempotent.
*/
static void
free_txq(struct vi_info *vi, struct sge_txq *txq)
{
struct adapter *sc = vi->adapter;
struct sge_eq *eq = &txq->eq;
if (eq->flags & EQ_HW_ALLOCATED) {
MPASS(eq->flags & EQ_SW_ALLOCATED);
free_eq_hwq(sc, NULL, eq);
MPASS(!(eq->flags & EQ_HW_ALLOCATED));
}
if (eq->flags & EQ_SW_ALLOCATED) {
MPASS(!(eq->flags & EQ_HW_ALLOCATED));
sglist_free(txq->gl);
free(txq->sdesc, M_CXGBE);
mp_ring_free(txq->r);
free_eq(sc, eq);
MPASS(!(eq->flags & EQ_SW_ALLOCATED));
bzero(txq, sizeof(*txq));
}
}
static void
add_txq_sysctls(struct vi_info *vi, struct sysctl_ctx_list *ctx,
struct sysctl_oid *oid, struct sge_txq *txq)
{
struct adapter *sc;
struct sysctl_oid_list *children;
if (ctx == NULL || oid == NULL)
return;
sc = vi->adapter;
children = SYSCTL_CHILDREN(oid);
mp_ring_sysctls(txq->r, ctx, children);
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tc",
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, txq - sc->sge.txq,
sysctl_tc, "I", "traffic class (-1 means none)");
SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "txcsum", CTLFLAG_RD,
&txq->txcsum, "# of times hardware assisted with checksum");
SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "vlan_insertion", CTLFLAG_RD,
&txq->vlan_insertion, "# of times hardware inserted 802.1Q tag");
SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tso_wrs", CTLFLAG_RD,
&txq->tso_wrs, "# of TSO work requests");
SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "imm_wrs", CTLFLAG_RD,
&txq->imm_wrs, "# of work requests with immediate data");
SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "sgl_wrs", CTLFLAG_RD,
&txq->sgl_wrs, "# of work requests with direct SGL");
SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "txpkt_wrs", CTLFLAG_RD,
&txq->txpkt_wrs, "# of txpkt work requests (one pkt/WR)");
SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "txpkts0_wrs", CTLFLAG_RD,
&txq->txpkts0_wrs, "# of txpkts (type 0) work requests");
SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "txpkts1_wrs", CTLFLAG_RD,
&txq->txpkts1_wrs, "# of txpkts (type 1) work requests");
SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "txpkts0_pkts", CTLFLAG_RD,
&txq->txpkts0_pkts,
"# of frames tx'd using type0 txpkts work requests");
SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "txpkts1_pkts", CTLFLAG_RD,
&txq->txpkts1_pkts,
"# of frames tx'd using type1 txpkts work requests");
SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "txpkts_flush", CTLFLAG_RD,
&txq->txpkts_flush,
"# of times txpkts had to be flushed out by an egress-update");
SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "raw_wrs", CTLFLAG_RD,
&txq->raw_wrs, "# of raw work requests (non-packets)");
SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "vxlan_tso_wrs", CTLFLAG_RD,
&txq->vxlan_tso_wrs, "# of VXLAN TSO work requests");
SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "vxlan_txcsum", CTLFLAG_RD,
&txq->vxlan_txcsum,
"# of times hardware assisted with inner checksums (VXLAN)");
#ifdef KERN_TLS
if (is_ktls(sc)) {
SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_records",
CTLFLAG_RD, &txq->kern_tls_records,
"# of NIC TLS records transmitted");
SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_short",
CTLFLAG_RD, &txq->kern_tls_short,
"# of short NIC TLS records transmitted");
SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_partial",
CTLFLAG_RD, &txq->kern_tls_partial,
"# of partial NIC TLS records transmitted");
SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_full",
CTLFLAG_RD, &txq->kern_tls_full,
"# of full NIC TLS records transmitted");
SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_octets",
CTLFLAG_RD, &txq->kern_tls_octets,
"# of payload octets in transmitted NIC TLS records");
SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_waste",
CTLFLAG_RD, &txq->kern_tls_waste,
"# of octets DMAd but not transmitted in NIC TLS records");
SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_options",
CTLFLAG_RD, &txq->kern_tls_options,
"# of NIC TLS options-only packets transmitted");
SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_header",
CTLFLAG_RD, &txq->kern_tls_header,
"# of NIC TLS header-only packets transmitted");
SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_fin",
CTLFLAG_RD, &txq->kern_tls_fin,
"# of NIC TLS FIN-only packets transmitted");
SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_fin_short",
CTLFLAG_RD, &txq->kern_tls_fin_short,
"# of NIC TLS padded FIN packets on short TLS records");
SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_cbc",
CTLFLAG_RD, &txq->kern_tls_cbc,
"# of NIC TLS sessions using AES-CBC");
SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_gcm",
CTLFLAG_RD, &txq->kern_tls_gcm,
"# of NIC TLS sessions using AES-GCM");
}
#endif
}
#if defined(TCP_OFFLOAD) || defined(RATELIMIT)
/*
* Idempotent.
*/
static int
alloc_ofld_txq(struct vi_info *vi, struct sge_ofld_txq *ofld_txq, int idx)
{
struct sysctl_oid *oid;
struct port_info *pi = vi->pi;
struct adapter *sc = vi->adapter;
struct sge_eq *eq = &ofld_txq->wrq.eq;
int rc, iqidx;
char name[16];
MPASS(idx >= 0);
MPASS(idx < vi->nofldtxq);
if (!(eq->flags & EQ_SW_ALLOCATED)) {
snprintf(name, sizeof(name), "%d", idx);
oid = SYSCTL_ADD_NODE(&vi->ctx,
SYSCTL_CHILDREN(vi->ofld_txq_oid), OID_AUTO, name,
CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "offload tx queue");
snprintf(name, sizeof(name), "%s ofld_txq%d",
device_get_nameunit(vi->dev), idx);
if (vi->nofldrxq > 0) {
iqidx = vi->first_ofld_rxq + (idx % vi->nofldrxq);
init_eq(sc, eq, EQ_OFLD, vi->qsize_txq, pi->tx_chan,
&sc->sge.ofld_rxq[iqidx].iq, name);
} else {
iqidx = vi->first_rxq + (idx % vi->nrxq);
init_eq(sc, eq, EQ_OFLD, vi->qsize_txq, pi->tx_chan,
&sc->sge.rxq[iqidx].iq, name);
}
rc = alloc_wrq(sc, vi, &ofld_txq->wrq, &vi->ctx, oid);
if (rc != 0) {
CH_ERR(vi, "failed to allocate ofld_txq%d: %d\n", idx,
rc);
sysctl_remove_oid(oid, 1, 1);
return (rc);
}
MPASS(eq->flags & EQ_SW_ALLOCATED);
/* Can't fail after this point. */
ofld_txq->tx_iscsi_pdus = counter_u64_alloc(M_WAITOK);
ofld_txq->tx_iscsi_octets = counter_u64_alloc(M_WAITOK);
ofld_txq->tx_iscsi_iso_wrs = counter_u64_alloc(M_WAITOK);
ofld_txq->tx_toe_tls_records = counter_u64_alloc(M_WAITOK);
ofld_txq->tx_toe_tls_octets = counter_u64_alloc(M_WAITOK);
add_ofld_txq_sysctls(&vi->ctx, oid, ofld_txq);
}
if (!(eq->flags & EQ_HW_ALLOCATED)) {
rc = alloc_eq_hwq(sc, vi, eq);
if (rc != 0) {
CH_ERR(vi, "failed to create hw ofld_txq%d: %d\n", idx,
rc);
return (rc);
}
MPASS(eq->flags & EQ_HW_ALLOCATED);
}
return (0);
}
/*
* Idempotent.
*/
static void
free_ofld_txq(struct vi_info *vi, struct sge_ofld_txq *ofld_txq)
{
struct adapter *sc = vi->adapter;
struct sge_eq *eq = &ofld_txq->wrq.eq;
if (eq->flags & EQ_HW_ALLOCATED) {
MPASS(eq->flags & EQ_SW_ALLOCATED);
free_eq_hwq(sc, NULL, eq);
MPASS(!(eq->flags & EQ_HW_ALLOCATED));
}
if (eq->flags & EQ_SW_ALLOCATED) {
MPASS(!(eq->flags & EQ_HW_ALLOCATED));
counter_u64_free(ofld_txq->tx_iscsi_pdus);
counter_u64_free(ofld_txq->tx_iscsi_octets);
counter_u64_free(ofld_txq->tx_iscsi_iso_wrs);
counter_u64_free(ofld_txq->tx_toe_tls_records);
counter_u64_free(ofld_txq->tx_toe_tls_octets);
free_wrq(sc, &ofld_txq->wrq);
MPASS(!(eq->flags & EQ_SW_ALLOCATED));
bzero(ofld_txq, sizeof(*ofld_txq));
}
}
static void
add_ofld_txq_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *oid,
struct sge_ofld_txq *ofld_txq)
{
struct sysctl_oid_list *children;
if (ctx == NULL || oid == NULL)
return;
children = SYSCTL_CHILDREN(oid);
SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "tx_iscsi_pdus",
CTLFLAG_RD, &ofld_txq->tx_iscsi_pdus,
"# of iSCSI PDUs transmitted");
SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "tx_iscsi_octets",
CTLFLAG_RD, &ofld_txq->tx_iscsi_octets,
"# of payload octets in transmitted iSCSI PDUs");
SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "tx_iscsi_iso_wrs",
CTLFLAG_RD, &ofld_txq->tx_iscsi_iso_wrs,
"# of iSCSI segmentation offload work requests");
SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "tx_toe_tls_records",
CTLFLAG_RD, &ofld_txq->tx_toe_tls_records,
"# of TOE TLS records transmitted");
SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "tx_toe_tls_octets",
CTLFLAG_RD, &ofld_txq->tx_toe_tls_octets,
"# of payload octets in transmitted TOE TLS records");
}
#endif
static void
oneseg_dma_callback(void *arg, bus_dma_segment_t *segs, int nseg, int error)
{
bus_addr_t *ba = arg;
KASSERT(nseg == 1,
("%s meant for single segment mappings only.", __func__));
*ba = error ? 0 : segs->ds_addr;
}
static inline void
ring_fl_db(struct adapter *sc, struct sge_fl *fl)
{
uint32_t n, v;
n = IDXDIFF(fl->pidx >> 3, fl->dbidx, fl->sidx);
MPASS(n > 0);
wmb();
v = fl->dbval | V_PIDX(n);
if (fl->udb)
*fl->udb = htole32(v);
else
t4_write_reg(sc, sc->sge_kdoorbell_reg, v);
IDXINCR(fl->dbidx, n, fl->sidx);
}
/*
* Fills up the freelist by allocating up to 'n' buffers. Buffers that are
* recycled do not count towards this allocation budget.
*
* Returns non-zero to indicate that this freelist should be added to the list
* of starving freelists.
*/
static int
refill_fl(struct adapter *sc, struct sge_fl *fl, int n)
{
__be64 *d;
struct fl_sdesc *sd;
uintptr_t pa;
caddr_t cl;
struct rx_buf_info *rxb;
struct cluster_metadata *clm;
uint16_t max_pidx, zidx = fl->zidx;
uint16_t hw_cidx = fl->hw_cidx; /* stable snapshot */
FL_LOCK_ASSERT_OWNED(fl);
/*
* We always stop at the beginning of the hardware descriptor that's just
* before the one with the hw cidx. This is to avoid hw pidx = hw cidx,
* which would mean an empty freelist to the chip.
*/
max_pidx = __predict_false(hw_cidx == 0) ? fl->sidx - 1 : hw_cidx - 1;
if (fl->pidx == max_pidx * 8)
return (0);
d = &fl->desc[fl->pidx];
sd = &fl->sdesc[fl->pidx];
rxb = &sc->sge.rx_buf_info[zidx];
while (n > 0) {
if (sd->cl != NULL) {
if (sd->nmbuf == 0) {
/*
* Fast recycle without involving any atomics on
* the cluster's metadata (if the cluster has
* metadata). This happens when all frames
* received in the cluster were small enough to
* fit within a single mbuf each.
*/
fl->cl_fast_recycled++;
goto recycled;
}
/*
* Cluster is guaranteed to have metadata. Clusters
* without metadata always take the fast recycle path
* when they're recycled.
*/
clm = cl_metadata(sd);
MPASS(clm != NULL);
if (atomic_fetchadd_int(&clm->refcount, -1) == 1) {
fl->cl_recycled++;
counter_u64_add(extfree_rels, 1);
goto recycled;
}
sd->cl = NULL; /* gave up my reference */
}
MPASS(sd->cl == NULL);
cl = uma_zalloc(rxb->zone, M_NOWAIT);
if (__predict_false(cl == NULL)) {
if (zidx != fl->safe_zidx) {
zidx = fl->safe_zidx;
rxb = &sc->sge.rx_buf_info[zidx];
cl = uma_zalloc(rxb->zone, M_NOWAIT);
}
if (cl == NULL)
break;
}
fl->cl_allocated++;
n--;
pa = pmap_kextract((vm_offset_t)cl);
sd->cl = cl;
sd->zidx = zidx;
if (fl->flags & FL_BUF_PACKING) {
*d = htobe64(pa | rxb->hwidx2);
sd->moff = rxb->size2;
} else {
*d = htobe64(pa | rxb->hwidx1);
sd->moff = 0;
}
recycled:
sd->nmbuf = 0;
d++;
sd++;
if (__predict_false((++fl->pidx & 7) == 0)) {
uint16_t pidx = fl->pidx >> 3;
if (__predict_false(pidx == fl->sidx)) {
fl->pidx = 0;
pidx = 0;
sd = fl->sdesc;
d = fl->desc;
}
if (n < 8 || pidx == max_pidx)
break;
if (IDXDIFF(pidx, fl->dbidx, fl->sidx) >= 4)
ring_fl_db(sc, fl);
}
}
if ((fl->pidx >> 3) != fl->dbidx)
ring_fl_db(sc, fl);
return (FL_RUNNING_LOW(fl) && !(fl->flags & FL_STARVING));
}
/*
* Attempt to refill all starving freelists.
*/
static void
refill_sfl(void *arg)
{
struct adapter *sc = arg;
struct sge_fl *fl, *fl_temp;
mtx_assert(&sc->sfl_lock, MA_OWNED);
TAILQ_FOREACH_SAFE(fl, &sc->sfl, link, fl_temp) {
FL_LOCK(fl);
refill_fl(sc, fl, 64);
if (FL_NOT_RUNNING_LOW(fl) || fl->flags & FL_DOOMED) {
TAILQ_REMOVE(&sc->sfl, fl, link);
fl->flags &= ~FL_STARVING;
}
FL_UNLOCK(fl);
}
if (!TAILQ_EMPTY(&sc->sfl))
callout_schedule(&sc->sfl_callout, hz / 5);
}
/*
* Release the driver's reference on all buffers in the given freelist. Buffers
* with kernel references cannot be freed and will prevent the driver from being
* unloaded safely.
*/
void
free_fl_buffers(struct adapter *sc, struct sge_fl *fl)
{
struct fl_sdesc *sd;
struct cluster_metadata *clm;
int i;
sd = fl->sdesc;
for (i = 0; i < fl->sidx * 8; i++, sd++) {
if (sd->cl == NULL)
continue;
if (sd->nmbuf == 0)
uma_zfree(sc->sge.rx_buf_info[sd->zidx].zone, sd->cl);
else if (fl->flags & FL_BUF_PACKING) {
clm = cl_metadata(sd);
if (atomic_fetchadd_int(&clm->refcount, -1) == 1) {
uma_zfree(sc->sge.rx_buf_info[sd->zidx].zone,
sd->cl);
counter_u64_add(extfree_rels, 1);
}
}
sd->cl = NULL;
}
if (fl->flags & FL_BUF_RESUME) {
m_freem(fl->m0);
fl->flags &= ~FL_BUF_RESUME;
}
}
static inline void
get_pkt_gl(struct mbuf *m, struct sglist *gl)
{
int rc;
M_ASSERTPKTHDR(m);
sglist_reset(gl);
rc = sglist_append_mbuf(gl, m);
if (__predict_false(rc != 0)) {
panic("%s: mbuf %p (%d segs) was vetted earlier but now fails "
"with %d.", __func__, m, mbuf_nsegs(m), rc);
}
KASSERT(gl->sg_nseg == mbuf_nsegs(m),
("%s: nsegs changed for mbuf %p from %d to %d", __func__, m,
mbuf_nsegs(m), gl->sg_nseg));
#if 0 /* vm_wr not readily available here. */
KASSERT(gl->sg_nseg > 0 && gl->sg_nseg <= max_nsegs_allowed(m, vm_wr),
("%s: %d segments, should have been 1 <= nsegs <= %d", __func__,
gl->sg_nseg, max_nsegs_allowed(m, vm_wr)));
#endif
}
/*
* len16 for a txpkt WR with a GL. Includes the firmware work request header.
*/
static inline u_int
txpkt_len16(u_int nsegs, const u_int extra)
{
u_int n;
MPASS(nsegs > 0);
nsegs--; /* first segment is part of ulptx_sgl */
n = extra + sizeof(struct fw_eth_tx_pkt_wr) +
sizeof(struct cpl_tx_pkt_core) +
sizeof(struct ulptx_sgl) + 8 * ((3 * nsegs) / 2 + (nsegs & 1));
return (howmany(n, 16));
}
/*
* len16 for a txpkt_vm WR with a GL. Includes the firmware work
* request header.
*/
static inline u_int
txpkt_vm_len16(u_int nsegs, const u_int extra)
{
u_int n;
MPASS(nsegs > 0);
nsegs--; /* first segment is part of ulptx_sgl */
n = extra + sizeof(struct fw_eth_tx_pkt_vm_wr) +
sizeof(struct cpl_tx_pkt_core) +
sizeof(struct ulptx_sgl) + 8 * ((3 * nsegs) / 2 + (nsegs & 1));
return (howmany(n, 16));
}
static inline void
calculate_mbuf_len16(struct mbuf *m, bool vm_wr)
{
const int lso = sizeof(struct cpl_tx_pkt_lso_core);
const int tnl_lso = sizeof(struct cpl_tx_tnl_lso);
if (vm_wr) {
if (needs_tso(m))
set_mbuf_len16(m, txpkt_vm_len16(mbuf_nsegs(m), lso));
else
set_mbuf_len16(m, txpkt_vm_len16(mbuf_nsegs(m), 0));
return;
}
if (needs_tso(m)) {
if (needs_vxlan_tso(m))
set_mbuf_len16(m, txpkt_len16(mbuf_nsegs(m), tnl_lso));
else
set_mbuf_len16(m, txpkt_len16(mbuf_nsegs(m), lso));
} else
set_mbuf_len16(m, txpkt_len16(mbuf_nsegs(m), 0));
}
/*
* len16 for a txpkts type 0 WR with a GL. Does not include the firmware work
* request header.
*/
static inline u_int
txpkts0_len16(u_int nsegs)
{
u_int n;
MPASS(nsegs > 0);
nsegs--; /* first segment is part of ulptx_sgl */
n = sizeof(struct ulp_txpkt) + sizeof(struct ulptx_idata) +
sizeof(struct cpl_tx_pkt_core) + sizeof(struct ulptx_sgl) +
8 * ((3 * nsegs) / 2 + (nsegs & 1));
return (howmany(n, 16));
}
/*
* len16 for a txpkts type 1 WR with a GL. Does not include the firmware work
* request header.
*/
static inline u_int
txpkts1_len16(void)
{
u_int n;
n = sizeof(struct cpl_tx_pkt_core) + sizeof(struct ulptx_sgl);
return (howmany(n, 16));
}
static inline u_int
imm_payload(u_int ndesc)
{
u_int n;
n = ndesc * EQ_ESIZE - sizeof(struct fw_eth_tx_pkt_wr) -
sizeof(struct cpl_tx_pkt_core);
return (n);
}
static inline uint64_t
csum_to_ctrl(struct adapter *sc, struct mbuf *m)
{
uint64_t ctrl;
int csum_type, l2hlen, l3hlen;
int x, y;
static const int csum_types[3][2] = {
{TX_CSUM_TCPIP, TX_CSUM_TCPIP6},
{TX_CSUM_UDPIP, TX_CSUM_UDPIP6},
{TX_CSUM_IP, 0}
};
M_ASSERTPKTHDR(m);
if (!needs_hwcsum(m))
return (F_TXPKT_IPCSUM_DIS | F_TXPKT_L4CSUM_DIS);
MPASS(m->m_pkthdr.l2hlen >= ETHER_HDR_LEN);
MPASS(m->m_pkthdr.l3hlen >= sizeof(struct ip));
if (needs_vxlan_csum(m)) {
MPASS(m->m_pkthdr.l4hlen > 0);
MPASS(m->m_pkthdr.l5hlen > 0);
MPASS(m->m_pkthdr.inner_l2hlen >= ETHER_HDR_LEN);
MPASS(m->m_pkthdr.inner_l3hlen >= sizeof(struct ip));
l2hlen = m->m_pkthdr.l2hlen + m->m_pkthdr.l3hlen +
m->m_pkthdr.l4hlen + m->m_pkthdr.l5hlen +
m->m_pkthdr.inner_l2hlen - ETHER_HDR_LEN;
l3hlen = m->m_pkthdr.inner_l3hlen;
} else {
l2hlen = m->m_pkthdr.l2hlen - ETHER_HDR_LEN;
l3hlen = m->m_pkthdr.l3hlen;
}
ctrl = 0;
if (!needs_l3_csum(m))
ctrl |= F_TXPKT_IPCSUM_DIS;
if (m->m_pkthdr.csum_flags & (CSUM_IP_TCP | CSUM_INNER_IP_TCP |
CSUM_IP6_TCP | CSUM_INNER_IP6_TCP))
x = 0; /* TCP */
else if (m->m_pkthdr.csum_flags & (CSUM_IP_UDP | CSUM_INNER_IP_UDP |
CSUM_IP6_UDP | CSUM_INNER_IP6_UDP))
x = 1; /* UDP */
else
x = 2;
if (m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_IP_TCP | CSUM_IP_UDP |
CSUM_INNER_IP | CSUM_INNER_IP_TCP | CSUM_INNER_IP_UDP))
y = 0; /* IPv4 */
else {
MPASS(m->m_pkthdr.csum_flags & (CSUM_IP6_TCP | CSUM_IP6_UDP |
CSUM_INNER_IP6_TCP | CSUM_INNER_IP6_UDP));
y = 1; /* IPv6 */
}
/*
* needs_hwcsum returned true earlier so there must be some kind of
* checksum to calculate.
*/
csum_type = csum_types[x][y];
MPASS(csum_type != 0);
if (csum_type == TX_CSUM_IP)
ctrl |= F_TXPKT_L4CSUM_DIS;
ctrl |= V_TXPKT_CSUM_TYPE(csum_type) | V_TXPKT_IPHDR_LEN(l3hlen);
if (chip_id(sc) <= CHELSIO_T5)
ctrl |= V_TXPKT_ETHHDR_LEN(l2hlen);
else
ctrl |= V_T6_TXPKT_ETHHDR_LEN(l2hlen);
return (ctrl);
}
static inline void *
write_lso_cpl(void *cpl, struct mbuf *m0)
{
struct cpl_tx_pkt_lso_core *lso;
uint32_t ctrl;
KASSERT(m0->m_pkthdr.l2hlen > 0 && m0->m_pkthdr.l3hlen > 0 &&
m0->m_pkthdr.l4hlen > 0,
("%s: mbuf %p needs TSO but missing header lengths",
__func__, m0));
ctrl = V_LSO_OPCODE(CPL_TX_PKT_LSO) |
F_LSO_FIRST_SLICE | F_LSO_LAST_SLICE |
V_LSO_ETHHDR_LEN((m0->m_pkthdr.l2hlen - ETHER_HDR_LEN) >> 2) |
V_LSO_IPHDR_LEN(m0->m_pkthdr.l3hlen >> 2) |
V_LSO_TCPHDR_LEN(m0->m_pkthdr.l4hlen >> 2);
if (m0->m_pkthdr.l3hlen == sizeof(struct ip6_hdr))
ctrl |= F_LSO_IPV6;
lso = cpl;
lso->lso_ctrl = htobe32(ctrl);
lso->ipid_ofst = htobe16(0);
lso->mss = htobe16(m0->m_pkthdr.tso_segsz);
lso->seqno_offset = htobe32(0);
lso->len = htobe32(m0->m_pkthdr.len);
return (lso + 1);
}
static void *
write_tnl_lso_cpl(void *cpl, struct mbuf *m0)
{
struct cpl_tx_tnl_lso *tnl_lso = cpl;
uint32_t ctrl;
KASSERT(m0->m_pkthdr.inner_l2hlen > 0 &&
m0->m_pkthdr.inner_l3hlen > 0 && m0->m_pkthdr.inner_l4hlen > 0 &&
m0->m_pkthdr.inner_l5hlen > 0,
("%s: mbuf %p needs VXLAN_TSO but missing inner header lengths",
__func__, m0));
KASSERT(m0->m_pkthdr.l2hlen > 0 && m0->m_pkthdr.l3hlen > 0 &&
m0->m_pkthdr.l4hlen > 0 && m0->m_pkthdr.l5hlen > 0,
("%s: mbuf %p needs VXLAN_TSO but missing outer header lengths",
__func__, m0));
/* Outer headers. */
ctrl = V_CPL_TX_TNL_LSO_OPCODE(CPL_TX_TNL_LSO) |
F_CPL_TX_TNL_LSO_FIRST | F_CPL_TX_TNL_LSO_LAST |
V_CPL_TX_TNL_LSO_ETHHDRLENOUT(
(m0->m_pkthdr.l2hlen - ETHER_HDR_LEN) >> 2) |
V_CPL_TX_TNL_LSO_IPHDRLENOUT(m0->m_pkthdr.l3hlen >> 2) |
F_CPL_TX_TNL_LSO_IPLENSETOUT;
if (m0->m_pkthdr.l3hlen == sizeof(struct ip6_hdr))
ctrl |= F_CPL_TX_TNL_LSO_IPV6OUT;
else {
ctrl |= F_CPL_TX_TNL_LSO_IPHDRCHKOUT |
F_CPL_TX_TNL_LSO_IPIDINCOUT;
}
tnl_lso->op_to_IpIdSplitOut = htobe32(ctrl);
tnl_lso->IpIdOffsetOut = 0;
tnl_lso->UdpLenSetOut_to_TnlHdrLen =
htobe16(F_CPL_TX_TNL_LSO_UDPCHKCLROUT |
F_CPL_TX_TNL_LSO_UDPLENSETOUT |
V_CPL_TX_TNL_LSO_TNLHDRLEN(m0->m_pkthdr.l2hlen +
m0->m_pkthdr.l3hlen + m0->m_pkthdr.l4hlen +
m0->m_pkthdr.l5hlen) |
V_CPL_TX_TNL_LSO_TNLTYPE(TX_TNL_TYPE_VXLAN));
tnl_lso->r1 = 0;
/* Inner headers. */
ctrl = V_CPL_TX_TNL_LSO_ETHHDRLEN(
(m0->m_pkthdr.inner_l2hlen - ETHER_HDR_LEN) >> 2) |
V_CPL_TX_TNL_LSO_IPHDRLEN(m0->m_pkthdr.inner_l3hlen >> 2) |
V_CPL_TX_TNL_LSO_TCPHDRLEN(m0->m_pkthdr.inner_l4hlen >> 2);
if (m0->m_pkthdr.inner_l3hlen == sizeof(struct ip6_hdr))
ctrl |= F_CPL_TX_TNL_LSO_IPV6;
tnl_lso->Flow_to_TcpHdrLen = htobe32(ctrl);
tnl_lso->IpIdOffset = 0;
tnl_lso->IpIdSplit_to_Mss =
htobe16(V_CPL_TX_TNL_LSO_MSS(m0->m_pkthdr.tso_segsz));
tnl_lso->TCPSeqOffset = 0;
tnl_lso->EthLenOffset_Size =
htobe32(V_CPL_TX_TNL_LSO_SIZE(m0->m_pkthdr.len));
return (tnl_lso + 1);
}
#define VM_TX_L2HDR_LEN 16 /* ethmacdst to vlantci */
/*
* Write a VM txpkt WR for this packet to the hardware descriptors, update the
* software descriptor, and advance the pidx. It is guaranteed that enough
* descriptors are available.
*
* The return value is the # of hardware descriptors used.
*/
static u_int
write_txpkt_vm_wr(struct adapter *sc, struct sge_txq *txq, struct mbuf *m0)
{
struct sge_eq *eq;
struct fw_eth_tx_pkt_vm_wr *wr;
struct tx_sdesc *txsd;
struct cpl_tx_pkt_core *cpl;
uint32_t ctrl; /* used in many unrelated places */
uint64_t ctrl1;
int len16, ndesc, pktlen;
caddr_t dst;
TXQ_LOCK_ASSERT_OWNED(txq);
M_ASSERTPKTHDR(m0);
len16 = mbuf_len16(m0);
pktlen = m0->m_pkthdr.len;
ctrl = sizeof(struct cpl_tx_pkt_core);
if (needs_tso(m0))
ctrl += sizeof(struct cpl_tx_pkt_lso_core);
ndesc = tx_len16_to_desc(len16);
/* Firmware work request header */
eq = &txq->eq;
wr = (void *)&eq->desc[eq->pidx];
wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_PKT_VM_WR) |
V_FW_ETH_TX_PKT_WR_IMMDLEN(ctrl));
ctrl = V_FW_WR_LEN16(len16);
wr->equiq_to_len16 = htobe32(ctrl);
wr->r3[0] = 0;
wr->r3[1] = 0;
/*
* Copy over ethmacdst, ethmacsrc, ethtype, and vlantci.
* vlantci is ignored unless the ethtype is 0x8100, so it's
* simpler to always copy it rather than making it
* conditional. Also, it seems that we do not have to set
* vlantci or fake the ethtype when doing VLAN tag insertion.
*/
m_copydata(m0, 0, VM_TX_L2HDR_LEN, wr->ethmacdst);
if (needs_tso(m0)) {
cpl = write_lso_cpl(wr + 1, m0);
txq->tso_wrs++;
} else
cpl = (void *)(wr + 1);
/* Checksum offload */
ctrl1 = csum_to_ctrl(sc, m0);
if (ctrl1 != (F_TXPKT_IPCSUM_DIS | F_TXPKT_L4CSUM_DIS))
txq->txcsum++; /* some hardware assistance provided */
/* VLAN tag insertion */
if (needs_vlan_insertion(m0)) {
ctrl1 |= F_TXPKT_VLAN_VLD |
V_TXPKT_VLAN(m0->m_pkthdr.ether_vtag);
txq->vlan_insertion++;
}
/* CPL header */
cpl->ctrl0 = txq->cpl_ctrl0;
cpl->pack = 0;
cpl->len = htobe16(pktlen);
cpl->ctrl1 = htobe64(ctrl1);
/* SGL */
dst = (void *)(cpl + 1);
/*
* A packet using TSO will use up an entire descriptor for the
* firmware work request header, LSO CPL, and TX_PKT_XT CPL.
* If this descriptor is the last descriptor in the ring, wrap
* around to the front of the ring explicitly for the start of
* the sgl.
*/
if (dst == (void *)&eq->desc[eq->sidx]) {
dst = (void *)&eq->desc[0];
write_gl_to_txd(txq, m0, &dst, 0);
} else
write_gl_to_txd(txq, m0, &dst, eq->sidx - ndesc < eq->pidx);
txq->sgl_wrs++;
txq->txpkt_wrs++;
txsd = &txq->sdesc[eq->pidx];
txsd->m = m0;
txsd->desc_used = ndesc;
return (ndesc);
}
/*
* Write a raw WR to the hardware descriptors, update the software
* descriptor, and advance the pidx. It is guaranteed that enough
* descriptors are available.
*
* The return value is the # of hardware descriptors used.
*/
static u_int
write_raw_wr(struct sge_txq *txq, void *wr, struct mbuf *m0, u_int available)
{
struct sge_eq *eq = &txq->eq;
struct tx_sdesc *txsd;
struct mbuf *m;
caddr_t dst;
int len16, ndesc;
len16 = mbuf_len16(m0);
ndesc = tx_len16_to_desc(len16);
MPASS(ndesc <= available);
dst = wr;
for (m = m0; m != NULL; m = m->m_next)
copy_to_txd(eq, mtod(m, caddr_t), &dst, m->m_len);
txq->raw_wrs++;
txsd = &txq->sdesc[eq->pidx];
txsd->m = m0;
txsd->desc_used = ndesc;
return (ndesc);
}
/*
* Write a txpkt WR for this packet to the hardware descriptors, update the
* software descriptor, and advance the pidx. It is guaranteed that enough
* descriptors are available.
*
* The return value is the # of hardware descriptors used.
*/
static u_int
write_txpkt_wr(struct adapter *sc, struct sge_txq *txq, struct mbuf *m0,
u_int available)
{
struct sge_eq *eq;
struct fw_eth_tx_pkt_wr *wr;
struct tx_sdesc *txsd;
struct cpl_tx_pkt_core *cpl;
uint32_t ctrl; /* used in many unrelated places */
uint64_t ctrl1;
int len16, ndesc, pktlen, nsegs;
caddr_t dst;
TXQ_LOCK_ASSERT_OWNED(txq);
M_ASSERTPKTHDR(m0);
len16 = mbuf_len16(m0);
nsegs = mbuf_nsegs(m0);
pktlen = m0->m_pkthdr.len;
ctrl = sizeof(struct cpl_tx_pkt_core);
if (needs_tso(m0)) {
if (needs_vxlan_tso(m0))
ctrl += sizeof(struct cpl_tx_tnl_lso);
else
ctrl += sizeof(struct cpl_tx_pkt_lso_core);
} else if (!(mbuf_cflags(m0) & MC_NOMAP) && pktlen <= imm_payload(2) &&
available >= 2) {
/* Immediate data. Recalculate len16 and set nsegs to 0. */
ctrl += pktlen;
len16 = howmany(sizeof(struct fw_eth_tx_pkt_wr) +
sizeof(struct cpl_tx_pkt_core) + pktlen, 16);
nsegs = 0;
}
ndesc = tx_len16_to_desc(len16);
MPASS(ndesc <= available);
/* Firmware work request header */
eq = &txq->eq;
wr = (void *)&eq->desc[eq->pidx];
wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_PKT_WR) |
V_FW_ETH_TX_PKT_WR_IMMDLEN(ctrl));
ctrl = V_FW_WR_LEN16(len16);
wr->equiq_to_len16 = htobe32(ctrl);
wr->r3 = 0;
if (needs_tso(m0)) {
if (needs_vxlan_tso(m0)) {
cpl = write_tnl_lso_cpl(wr + 1, m0);
txq->vxlan_tso_wrs++;
} else {
cpl = write_lso_cpl(wr + 1, m0);
txq->tso_wrs++;
}
} else
cpl = (void *)(wr + 1);
/* Checksum offload */
ctrl1 = csum_to_ctrl(sc, m0);
if (ctrl1 != (F_TXPKT_IPCSUM_DIS | F_TXPKT_L4CSUM_DIS)) {
/* some hardware assistance provided */
if (needs_vxlan_csum(m0))
txq->vxlan_txcsum++;
else
txq->txcsum++;
}
/* VLAN tag insertion */
if (needs_vlan_insertion(m0)) {
ctrl1 |= F_TXPKT_VLAN_VLD |
V_TXPKT_VLAN(m0->m_pkthdr.ether_vtag);
txq->vlan_insertion++;
}
/* CPL header */
cpl->ctrl0 = txq->cpl_ctrl0;
cpl->pack = 0;
cpl->len = htobe16(pktlen);
cpl->ctrl1 = htobe64(ctrl1);
/* SGL */
dst = (void *)(cpl + 1);
if (__predict_false((uintptr_t)dst == (uintptr_t)&eq->desc[eq->sidx]))
dst = (caddr_t)&eq->desc[0];
if (nsegs > 0) {
write_gl_to_txd(txq, m0, &dst, eq->sidx - ndesc < eq->pidx);
txq->sgl_wrs++;
} else {
struct mbuf *m;
for (m = m0; m != NULL; m = m->m_next) {
copy_to_txd(eq, mtod(m, caddr_t), &dst, m->m_len);
#ifdef INVARIANTS
pktlen -= m->m_len;
#endif
}
#ifdef INVARIANTS
KASSERT(pktlen == 0, ("%s: %d bytes left.", __func__, pktlen));
#endif
txq->imm_wrs++;
}
txq->txpkt_wrs++;
txsd = &txq->sdesc[eq->pidx];
txsd->m = m0;
txsd->desc_used = ndesc;
return (ndesc);
}
static inline bool
cmp_l2hdr(struct txpkts *txp, struct mbuf *m)
{
int len;
MPASS(txp->npkt > 0);
MPASS(m->m_len >= VM_TX_L2HDR_LEN);
if (txp->ethtype == be16toh(ETHERTYPE_VLAN))
len = VM_TX_L2HDR_LEN;
else
len = sizeof(struct ether_header);
return (memcmp(m->m_data, &txp->ethmacdst[0], len) != 0);
}
static inline void
save_l2hdr(struct txpkts *txp, struct mbuf *m)
{
MPASS(m->m_len >= VM_TX_L2HDR_LEN);
memcpy(&txp->ethmacdst[0], mtod(m, const void *), VM_TX_L2HDR_LEN);
}
static int
add_to_txpkts_vf(struct adapter *sc, struct sge_txq *txq, struct mbuf *m,
int avail, bool *send)
{
struct txpkts *txp = &txq->txp;
/* Cannot have TSO and coalesce at the same time. */
if (cannot_use_txpkts(m)) {
cannot_coalesce:
*send = txp->npkt > 0;
return (EINVAL);
}
/* VF allows coalescing of type 1 (1 GL) only */
if (mbuf_nsegs(m) > 1)
goto cannot_coalesce;
*send = false;
if (txp->npkt > 0) {
MPASS(tx_len16_to_desc(txp->len16) <= avail);
MPASS(txp->npkt < txp->max_npkt);
MPASS(txp->wr_type == 1); /* VF supports type 1 only */
if (tx_len16_to_desc(txp->len16 + txpkts1_len16()) > avail) {
retry_after_send:
*send = true;
return (EAGAIN);
}
if (m->m_pkthdr.len + txp->plen > 65535)
goto retry_after_send;
if (cmp_l2hdr(txp, m))
goto retry_after_send;
txp->len16 += txpkts1_len16();
txp->plen += m->m_pkthdr.len;
txp->mb[txp->npkt++] = m;
if (txp->npkt == txp->max_npkt)
*send = true;
} else {
txp->len16 = howmany(sizeof(struct fw_eth_tx_pkts_vm_wr), 16) +
txpkts1_len16();
if (tx_len16_to_desc(txp->len16) > avail)
goto cannot_coalesce;
txp->npkt = 1;
txp->wr_type = 1;
txp->plen = m->m_pkthdr.len;
txp->mb[0] = m;
save_l2hdr(txp, m);
}
return (0);
}
static int
add_to_txpkts_pf(struct adapter *sc, struct sge_txq *txq, struct mbuf *m,
int avail, bool *send)
{
struct txpkts *txp = &txq->txp;
int nsegs;
MPASS(!(sc->flags & IS_VF));
/* Cannot have TSO and coalesce at the same time. */
if (cannot_use_txpkts(m)) {
cannot_coalesce:
*send = txp->npkt > 0;
return (EINVAL);
}
*send = false;
nsegs = mbuf_nsegs(m);
if (txp->npkt == 0) {
if (m->m_pkthdr.len > 65535)
goto cannot_coalesce;
if (nsegs > 1) {
txp->wr_type = 0;
txp->len16 =
howmany(sizeof(struct fw_eth_tx_pkts_wr), 16) +
txpkts0_len16(nsegs);
} else {
txp->wr_type = 1;
txp->len16 =
howmany(sizeof(struct fw_eth_tx_pkts_wr), 16) +
txpkts1_len16();
}
if (tx_len16_to_desc(txp->len16) > avail)
goto cannot_coalesce;
txp->npkt = 1;
txp->plen = m->m_pkthdr.len;
txp->mb[0] = m;
} else {
MPASS(tx_len16_to_desc(txp->len16) <= avail);
MPASS(txp->npkt < txp->max_npkt);
if (m->m_pkthdr.len + txp->plen > 65535) {
retry_after_send:
*send = true;
return (EAGAIN);
}
MPASS(txp->wr_type == 0 || txp->wr_type == 1);
if (txp->wr_type == 0) {
if (tx_len16_to_desc(txp->len16 +
txpkts0_len16(nsegs)) > min(avail, SGE_MAX_WR_NDESC))
goto retry_after_send;
txp->len16 += txpkts0_len16(nsegs);
} else {
if (nsegs != 1)
goto retry_after_send;
if (tx_len16_to_desc(txp->len16 + txpkts1_len16()) >
avail)
goto retry_after_send;
txp->len16 += txpkts1_len16();
}
txp->plen += m->m_pkthdr.len;
txp->mb[txp->npkt++] = m;
if (txp->npkt == txp->max_npkt)
*send = true;
}
return (0);
}
/*
* Write a txpkts WR for the packets in txp to the hardware descriptors, update
* the software descriptor, and advance the pidx. It is guaranteed that enough
* descriptors are available.
*
* The return value is the # of hardware descriptors used.
*/
static u_int
write_txpkts_wr(struct adapter *sc, struct sge_txq *txq)
{
const struct txpkts *txp = &txq->txp;
struct sge_eq *eq = &txq->eq;
struct fw_eth_tx_pkts_wr *wr;
struct tx_sdesc *txsd;
struct cpl_tx_pkt_core *cpl;
uint64_t ctrl1;
int ndesc, i, checkwrap;
struct mbuf *m, *last;
void *flitp;
TXQ_LOCK_ASSERT_OWNED(txq);
MPASS(txp->npkt > 0);
MPASS(txp->len16 <= howmany(SGE_MAX_WR_LEN, 16));
wr = (void *)&eq->desc[eq->pidx];
wr->op_pkd = htobe32(V_FW_WR_OP(FW_ETH_TX_PKTS_WR));
wr->equiq_to_len16 = htobe32(V_FW_WR_LEN16(txp->len16));
wr->plen = htobe16(txp->plen);
wr->npkt = txp->npkt;
wr->r3 = 0;
wr->type = txp->wr_type;
flitp = wr + 1;
/*
* At this point we are 16B into a hardware descriptor. If checkwrap is
* set then we know the WR is going to wrap around somewhere. We'll
* check for that at appropriate points.
*/
ndesc = tx_len16_to_desc(txp->len16);
last = NULL;
checkwrap = eq->sidx - ndesc < eq->pidx;
for (i = 0; i < txp->npkt; i++) {
m = txp->mb[i];
if (txp->wr_type == 0) {
struct ulp_txpkt *ulpmc;
struct ulptx_idata *ulpsc;
/* ULP master command */
ulpmc = flitp;
ulpmc->cmd_dest = htobe32(V_ULPTX_CMD(ULP_TX_PKT) |
V_ULP_TXPKT_DEST(0) | V_ULP_TXPKT_FID(eq->iqid));
ulpmc->len = htobe32(txpkts0_len16(mbuf_nsegs(m)));
/* ULP subcommand */
ulpsc = (void *)(ulpmc + 1);
ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM) |
F_ULP_TX_SC_MORE);
ulpsc->len = htobe32(sizeof(struct cpl_tx_pkt_core));
cpl = (void *)(ulpsc + 1);
if (checkwrap &&
(uintptr_t)cpl == (uintptr_t)&eq->desc[eq->sidx])
cpl = (void *)&eq->desc[0];
} else {
cpl = flitp;
}
/* Checksum offload */
ctrl1 = csum_to_ctrl(sc, m);
if (ctrl1 != (F_TXPKT_IPCSUM_DIS | F_TXPKT_L4CSUM_DIS)) {
/* some hardware assistance provided */
if (needs_vxlan_csum(m))
txq->vxlan_txcsum++;
else
txq->txcsum++;
}
/* VLAN tag insertion */
if (needs_vlan_insertion(m)) {
ctrl1 |= F_TXPKT_VLAN_VLD |
V_TXPKT_VLAN(m->m_pkthdr.ether_vtag);
txq->vlan_insertion++;
}
/* CPL header */
cpl->ctrl0 = txq->cpl_ctrl0;
cpl->pack = 0;
cpl->len = htobe16(m->m_pkthdr.len);
cpl->ctrl1 = htobe64(ctrl1);
flitp = cpl + 1;
if (checkwrap &&
(uintptr_t)flitp == (uintptr_t)&eq->desc[eq->sidx])
flitp = (void *)&eq->desc[0];
write_gl_to_txd(txq, m, (caddr_t *)(&flitp), checkwrap);
if (last != NULL)
last->m_nextpkt = m;
last = m;
}
txq->sgl_wrs++;
if (txp->wr_type == 0) {
txq->txpkts0_pkts += txp->npkt;
txq->txpkts0_wrs++;
} else {
txq->txpkts1_pkts += txp->npkt;
txq->txpkts1_wrs++;
}
txsd = &txq->sdesc[eq->pidx];
txsd->m = txp->mb[0];
txsd->desc_used = ndesc;
return (ndesc);
}
static u_int
write_txpkts_vm_wr(struct adapter *sc, struct sge_txq *txq)
{
const struct txpkts *txp = &txq->txp;
struct sge_eq *eq = &txq->eq;
struct fw_eth_tx_pkts_vm_wr *wr;
struct tx_sdesc *txsd;
struct cpl_tx_pkt_core *cpl;
uint64_t ctrl1;
int ndesc, i;
struct mbuf *m, *last;
void *flitp;
TXQ_LOCK_ASSERT_OWNED(txq);
MPASS(txp->npkt > 0);
MPASS(txp->wr_type == 1); /* VF supports type 1 only */
MPASS(txp->mb[0] != NULL);
MPASS(txp->len16 <= howmany(SGE_MAX_WR_LEN, 16));
wr = (void *)&eq->desc[eq->pidx];
wr->op_pkd = htobe32(V_FW_WR_OP(FW_ETH_TX_PKTS_VM_WR));
wr->equiq_to_len16 = htobe32(V_FW_WR_LEN16(txp->len16));
wr->r3 = 0;
wr->plen = htobe16(txp->plen);
wr->npkt = txp->npkt;
wr->r4 = 0;
memcpy(&wr->ethmacdst[0], &txp->ethmacdst[0], 16);
flitp = wr + 1;
/*
* At this point we are 32B into a hardware descriptor. Each mbuf in
* the WR will take 32B so we check for the end of the descriptor ring
* before writing odd mbufs (mb[1], 3, 5, ..)
*/
ndesc = tx_len16_to_desc(txp->len16);
last = NULL;
for (i = 0; i < txp->npkt; i++) {
m = txp->mb[i];
if (i & 1 && (uintptr_t)flitp == (uintptr_t)&eq->desc[eq->sidx])
flitp = &eq->desc[0];
cpl = flitp;
/* Checksum offload */
ctrl1 = csum_to_ctrl(sc, m);
if (ctrl1 != (F_TXPKT_IPCSUM_DIS | F_TXPKT_L4CSUM_DIS))
txq->txcsum++; /* some hardware assistance provided */
/* VLAN tag insertion */
if (needs_vlan_insertion(m)) {
ctrl1 |= F_TXPKT_VLAN_VLD |
V_TXPKT_VLAN(m->m_pkthdr.ether_vtag);
txq->vlan_insertion++;
}
/* CPL header */
cpl->ctrl0 = txq->cpl_ctrl0;
cpl->pack = 0;
cpl->len = htobe16(m->m_pkthdr.len);
cpl->ctrl1 = htobe64(ctrl1);
flitp = cpl + 1;
MPASS(mbuf_nsegs(m) == 1);
write_gl_to_txd(txq, m, (caddr_t *)(&flitp), 0);
if (last != NULL)
last->m_nextpkt = m;
last = m;
}
txq->sgl_wrs++;
txq->txpkts1_pkts += txp->npkt;
txq->txpkts1_wrs++;
txsd = &txq->sdesc[eq->pidx];
txsd->m = txp->mb[0];
txsd->desc_used = ndesc;
return (ndesc);
}
/*
* If the SGL ends on an address that is not 16 byte aligned, this function will
* add a 0 filled flit at the end.
*/
static void
write_gl_to_txd(struct sge_txq *txq, struct mbuf *m, caddr_t *to, int checkwrap)
{
struct sge_eq *eq = &txq->eq;
struct sglist *gl = txq->gl;
struct sglist_seg *seg;
__be64 *flitp, *wrap;
struct ulptx_sgl *usgl;
int i, nflits, nsegs;
KASSERT(((uintptr_t)(*to) & 0xf) == 0,
("%s: SGL must start at a 16 byte boundary: %p", __func__, *to));
MPASS((uintptr_t)(*to) >= (uintptr_t)&eq->desc[0]);
MPASS((uintptr_t)(*to) < (uintptr_t)&eq->desc[eq->sidx]);
get_pkt_gl(m, gl);
nsegs = gl->sg_nseg;
MPASS(nsegs > 0);
nflits = (3 * (nsegs - 1)) / 2 + ((nsegs - 1) & 1) + 2;
flitp = (__be64 *)(*to);
wrap = (__be64 *)(&eq->desc[eq->sidx]);
seg = &gl->sg_segs[0];
usgl = (void *)flitp;
/*
* We start at a 16 byte boundary somewhere inside the tx descriptor
* ring, so we're at least 16 bytes away from the status page. There is
* no chance of a wrap around in the middle of usgl (which is 16 bytes).
*/
usgl->cmd_nsge = htobe32(V_ULPTX_CMD(ULP_TX_SC_DSGL) |
V_ULPTX_NSGE(nsegs));
usgl->len0 = htobe32(seg->ss_len);
usgl->addr0 = htobe64(seg->ss_paddr);
seg++;
if (checkwrap == 0 || (uintptr_t)(flitp + nflits) <= (uintptr_t)wrap) {
/* Won't wrap around at all */
for (i = 0; i < nsegs - 1; i++, seg++) {
usgl->sge[i / 2].len[i & 1] = htobe32(seg->ss_len);
usgl->sge[i / 2].addr[i & 1] = htobe64(seg->ss_paddr);
}
if (i & 1)
usgl->sge[i / 2].len[1] = htobe32(0);
flitp += nflits;
} else {
/* Will wrap somewhere in the rest of the SGL */
/* 2 flits already written, write the rest flit by flit */
flitp = (void *)(usgl + 1);
for (i = 0; i < nflits - 2; i++) {
if (flitp == wrap)
flitp = (void *)eq->desc;
*flitp++ = get_flit(seg, nsegs - 1, i);
}
}
if (nflits & 1) {
MPASS(((uintptr_t)flitp) & 0xf);
*flitp++ = 0;
}
MPASS((((uintptr_t)flitp) & 0xf) == 0);
if (__predict_false(flitp == wrap))
*to = (void *)eq->desc;
else
*to = (void *)flitp;
}
static inline void
copy_to_txd(struct sge_eq *eq, caddr_t from, caddr_t *to, int len)
{
MPASS((uintptr_t)(*to) >= (uintptr_t)&eq->desc[0]);
MPASS((uintptr_t)(*to) < (uintptr_t)&eq->desc[eq->sidx]);
if (__predict_true((uintptr_t)(*to) + len <=
(uintptr_t)&eq->desc[eq->sidx])) {
bcopy(from, *to, len);
(*to) += len;
} else {
int portion = (uintptr_t)&eq->desc[eq->sidx] - (uintptr_t)(*to);
bcopy(from, *to, portion);
from += portion;
portion = len - portion; /* remaining */
bcopy(from, (void *)eq->desc, portion);
(*to) = (caddr_t)eq->desc + portion;
}
}
static inline void
ring_eq_db(struct adapter *sc, struct sge_eq *eq, u_int n)
{
u_int db;
MPASS(n > 0);
db = eq->doorbells;
if (n > 1)
clrbit(&db, DOORBELL_WCWR);
wmb();
switch (ffs(db) - 1) {
case DOORBELL_UDB:
*eq->udb = htole32(V_QID(eq->udb_qid) | V_PIDX(n));
break;
case DOORBELL_WCWR: {
volatile uint64_t *dst, *src;
int i;
/*
* Queues whose 128B doorbell segment fits in the page do not
* use relative qid (udb_qid is always 0). Only queues with
* doorbell segments can do WCWR.
*/
KASSERT(eq->udb_qid == 0 && n == 1,
("%s: inappropriate doorbell (0x%x, %d, %d) for eq %p",
__func__, eq->doorbells, n, eq->dbidx, eq));
dst = (volatile void *)((uintptr_t)eq->udb + UDBS_WR_OFFSET -
UDBS_DB_OFFSET);
i = eq->dbidx;
src = (void *)&eq->desc[i];
while (src != (void *)&eq->desc[i + 1])
*dst++ = *src++;
wmb();
break;
}
case DOORBELL_UDBWC:
*eq->udb = htole32(V_QID(eq->udb_qid) | V_PIDX(n));
wmb();
break;
case DOORBELL_KDB:
t4_write_reg(sc, sc->sge_kdoorbell_reg,
V_QID(eq->cntxt_id) | V_PIDX(n));
break;
}
IDXINCR(eq->dbidx, n, eq->sidx);
}
static inline u_int
reclaimable_tx_desc(struct sge_eq *eq)
{
uint16_t hw_cidx;
hw_cidx = read_hw_cidx(eq);
return (IDXDIFF(hw_cidx, eq->cidx, eq->sidx));
}
static inline u_int
total_available_tx_desc(struct sge_eq *eq)
{
uint16_t hw_cidx, pidx;
hw_cidx = read_hw_cidx(eq);
pidx = eq->pidx;
if (pidx == hw_cidx)
return (eq->sidx - 1);
else
return (IDXDIFF(hw_cidx, pidx, eq->sidx) - 1);
}
static inline uint16_t
read_hw_cidx(struct sge_eq *eq)
{
struct sge_qstat *spg = (void *)&eq->desc[eq->sidx];
uint16_t cidx = spg->cidx; /* stable snapshot */
return (be16toh(cidx));
}
/*
* Reclaim 'n' descriptors approximately.
*/
static u_int
reclaim_tx_descs(struct sge_txq *txq, u_int n)
{
struct tx_sdesc *txsd;
struct sge_eq *eq = &txq->eq;
u_int can_reclaim, reclaimed;
TXQ_LOCK_ASSERT_OWNED(txq);
MPASS(n > 0);
reclaimed = 0;
can_reclaim = reclaimable_tx_desc(eq);
while (can_reclaim && reclaimed < n) {
int ndesc;
struct mbuf *m, *nextpkt;
txsd = &txq->sdesc[eq->cidx];
ndesc = txsd->desc_used;
/* Firmware doesn't return "partial" credits. */
KASSERT(can_reclaim >= ndesc,
("%s: unexpected number of credits: %d, %d",
__func__, can_reclaim, ndesc));
KASSERT(ndesc != 0,
("%s: descriptor with no credits: cidx %d",
__func__, eq->cidx));
for (m = txsd->m; m != NULL; m = nextpkt) {
nextpkt = m->m_nextpkt;
m->m_nextpkt = NULL;
m_freem(m);
}
reclaimed += ndesc;
can_reclaim -= ndesc;
IDXINCR(eq->cidx, ndesc, eq->sidx);
}
return (reclaimed);
}
static void
tx_reclaim(void *arg, int n)
{
struct sge_txq *txq = arg;
struct sge_eq *eq = &txq->eq;
do {
if (TXQ_TRYLOCK(txq) == 0)
break;
n = reclaim_tx_descs(txq, 32);
if (eq->cidx == eq->pidx)
eq->equeqidx = eq->pidx;
TXQ_UNLOCK(txq);
} while (n > 0);
}
static __be64
get_flit(struct sglist_seg *segs, int nsegs, int idx)
{
int i = (idx / 3) * 2;
switch (idx % 3) {
case 0: {
uint64_t rc;
rc = (uint64_t)segs[i].ss_len << 32;
if (i + 1 < nsegs)
rc |= (uint64_t)(segs[i + 1].ss_len);
return (htobe64(rc));
}
case 1:
return (htobe64(segs[i].ss_paddr));
case 2:
return (htobe64(segs[i + 1].ss_paddr));
}
return (0);
}
static int
find_refill_source(struct adapter *sc, int maxp, bool packing)
{
int i, zidx = -1;
struct rx_buf_info *rxb = &sc->sge.rx_buf_info[0];
if (packing) {
for (i = 0; i < SW_ZONE_SIZES; i++, rxb++) {
if (rxb->hwidx2 == -1)
continue;
if (rxb->size1 < PAGE_SIZE &&
rxb->size1 < largest_rx_cluster)
continue;
if (rxb->size1 > largest_rx_cluster)
break;
MPASS(rxb->size1 - rxb->size2 >= CL_METADATA_SIZE);
if (rxb->size2 >= maxp)
return (i);
zidx = i;
}
} else {
for (i = 0; i < SW_ZONE_SIZES; i++, rxb++) {
if (rxb->hwidx1 == -1)
continue;
if (rxb->size1 > largest_rx_cluster)
break;
if (rxb->size1 >= maxp)
return (i);
zidx = i;
}
}
return (zidx);
}
static void
add_fl_to_sfl(struct adapter *sc, struct sge_fl *fl)
{
mtx_lock(&sc->sfl_lock);
FL_LOCK(fl);
if ((fl->flags & FL_DOOMED) == 0) {
fl->flags |= FL_STARVING;
TAILQ_INSERT_TAIL(&sc->sfl, fl, link);
callout_reset(&sc->sfl_callout, hz / 5, refill_sfl, sc);
}
FL_UNLOCK(fl);
mtx_unlock(&sc->sfl_lock);
}
static void
handle_wrq_egr_update(struct adapter *sc, struct sge_eq *eq)
{
struct sge_wrq *wrq = (void *)eq;
atomic_readandclear_int(&eq->equiq);
taskqueue_enqueue(sc->tq[eq->tx_chan], &wrq->wrq_tx_task);
}
static void
handle_eth_egr_update(struct adapter *sc, struct sge_eq *eq)
{
struct sge_txq *txq = (void *)eq;
MPASS(eq->type == EQ_ETH);
atomic_readandclear_int(&eq->equiq);
if (mp_ring_is_idle(txq->r))
taskqueue_enqueue(sc->tq[eq->tx_chan], &txq->tx_reclaim_task);
else
mp_ring_check_drainage(txq->r, 64);
}
static int
handle_sge_egr_update(struct sge_iq *iq, const struct rss_header *rss,
struct mbuf *m)
{
const struct cpl_sge_egr_update *cpl = (const void *)(rss + 1);
unsigned int qid = G_EGR_QID(ntohl(cpl->opcode_qid));
struct adapter *sc = iq->adapter;
struct sge *s = &sc->sge;
struct sge_eq *eq;
static void (*h[])(struct adapter *, struct sge_eq *) = {NULL,
&handle_wrq_egr_update, &handle_eth_egr_update,
&handle_wrq_egr_update};
KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__,
rss->opcode));
eq = s->eqmap[qid - s->eq_start - s->eq_base];
(*h[eq->type])(sc, eq);
return (0);
}
/* handle_fw_msg works for both fw4_msg and fw6_msg because this is valid */
CTASSERT(offsetof(struct cpl_fw4_msg, data) == \
offsetof(struct cpl_fw6_msg, data));
static int
handle_fw_msg(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
{
struct adapter *sc = iq->adapter;
const struct cpl_fw6_msg *cpl = (const void *)(rss + 1);
KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__,
rss->opcode));
if (cpl->type == FW_TYPE_RSSCPL || cpl->type == FW6_TYPE_RSSCPL) {
const struct rss_header *rss2;
rss2 = (const struct rss_header *)&cpl->data[0];
return (t4_cpl_handler[rss2->opcode](iq, rss2, m));
}
return (t4_fw_msg_handler[cpl->type](sc, &cpl->data[0]));
}
/**
* t4_handle_wrerr_rpl - process a FW work request error message
* @adap: the adapter
* @rpl: start of the FW message
*/
static int
t4_handle_wrerr_rpl(struct adapter *adap, const __be64 *rpl)
{
u8 opcode = *(const u8 *)rpl;
const struct fw_error_cmd *e = (const void *)rpl;
unsigned int i;
if (opcode != FW_ERROR_CMD) {
log(LOG_ERR,
"%s: Received WRERR_RPL message with opcode %#x\n",
device_get_nameunit(adap->dev), opcode);
return (EINVAL);
}
log(LOG_ERR, "%s: FW_ERROR (%s) ", device_get_nameunit(adap->dev),
G_FW_ERROR_CMD_FATAL(be32toh(e->op_to_type)) ? "fatal" :
"non-fatal");
switch (G_FW_ERROR_CMD_TYPE(be32toh(e->op_to_type))) {
case FW_ERROR_TYPE_EXCEPTION:
log(LOG_ERR, "exception info:\n");
for (i = 0; i < nitems(e->u.exception.info); i++)
log(LOG_ERR, "%s%08x", i == 0 ? "\t" : " ",
be32toh(e->u.exception.info[i]));
log(LOG_ERR, "\n");
break;
case FW_ERROR_TYPE_HWMODULE:
log(LOG_ERR, "HW module regaddr %08x regval %08x\n",
be32toh(e->u.hwmodule.regaddr),
be32toh(e->u.hwmodule.regval));
break;
case FW_ERROR_TYPE_WR:
log(LOG_ERR, "WR cidx %d PF %d VF %d eqid %d hdr:\n",
be16toh(e->u.wr.cidx),
G_FW_ERROR_CMD_PFN(be16toh(e->u.wr.pfn_vfn)),
G_FW_ERROR_CMD_VFN(be16toh(e->u.wr.pfn_vfn)),
be32toh(e->u.wr.eqid));
for (i = 0; i < nitems(e->u.wr.wrhdr); i++)
log(LOG_ERR, "%s%02x", i == 0 ? "\t" : " ",
e->u.wr.wrhdr[i]);
log(LOG_ERR, "\n");
break;
case FW_ERROR_TYPE_ACL:
log(LOG_ERR, "ACL cidx %d PF %d VF %d eqid %d %s",
be16toh(e->u.acl.cidx),
G_FW_ERROR_CMD_PFN(be16toh(e->u.acl.pfn_vfn)),
G_FW_ERROR_CMD_VFN(be16toh(e->u.acl.pfn_vfn)),
be32toh(e->u.acl.eqid),
G_FW_ERROR_CMD_MV(be16toh(e->u.acl.mv_pkd)) ? "vlanid" :
"MAC");
for (i = 0; i < nitems(e->u.acl.val); i++)
log(LOG_ERR, " %02x", e->u.acl.val[i]);
log(LOG_ERR, "\n");
break;
default:
log(LOG_ERR, "type %#x\n",
G_FW_ERROR_CMD_TYPE(be32toh(e->op_to_type)));
return (EINVAL);
}
return (0);
}
static inline bool
bufidx_used(struct adapter *sc, int idx)
{
struct rx_buf_info *rxb = &sc->sge.rx_buf_info[0];
int i;
for (i = 0; i < SW_ZONE_SIZES; i++, rxb++) {
if (rxb->size1 > largest_rx_cluster)
continue;
if (rxb->hwidx1 == idx || rxb->hwidx2 == idx)
return (true);
}
return (false);
}
static int
sysctl_bufsizes(SYSCTL_HANDLER_ARGS)
{
struct adapter *sc = arg1;
struct sge_params *sp = &sc->params.sge;
int i, rc;
struct sbuf sb;
char c;
sbuf_new(&sb, NULL, 128, SBUF_AUTOEXTEND);
for (i = 0; i < SGE_FLBUF_SIZES; i++) {
if (bufidx_used(sc, i))
c = '*';
else
c = '\0';
sbuf_printf(&sb, "%u%c ", sp->sge_fl_buffer_size[i], c);
}
sbuf_trim(&sb);
sbuf_finish(&sb);
rc = sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req);
sbuf_delete(&sb);
return (rc);
}
#ifdef RATELIMIT
#if defined(INET) || defined(INET6)
/*
* len16 for a txpkt WR with a GL. Includes the firmware work request header.
*/
static inline u_int
txpkt_eo_len16(u_int nsegs, u_int immhdrs, u_int tso)
{
u_int n;
MPASS(immhdrs > 0);
n = roundup2(sizeof(struct fw_eth_tx_eo_wr) +
sizeof(struct cpl_tx_pkt_core) + immhdrs, 16);
if (__predict_false(nsegs == 0))
goto done;
nsegs--; /* first segment is part of ulptx_sgl */
n += sizeof(struct ulptx_sgl) + 8 * ((3 * nsegs) / 2 + (nsegs & 1));
if (tso)
n += sizeof(struct cpl_tx_pkt_lso_core);
done:
return (howmany(n, 16));
}
#endif
#define ETID_FLOWC_NPARAMS 6
#define ETID_FLOWC_LEN (roundup2((sizeof(struct fw_flowc_wr) + \
ETID_FLOWC_NPARAMS * sizeof(struct fw_flowc_mnemval)), 16))
#define ETID_FLOWC_LEN16 (howmany(ETID_FLOWC_LEN, 16))
static int
send_etid_flowc_wr(struct cxgbe_rate_tag *cst, struct port_info *pi,
struct vi_info *vi)
{
struct wrq_cookie cookie;
u_int pfvf = pi->adapter->pf << S_FW_VIID_PFN;
struct fw_flowc_wr *flowc;
mtx_assert(&cst->lock, MA_OWNED);
MPASS((cst->flags & (EO_FLOWC_PENDING | EO_FLOWC_RPL_PENDING)) ==
EO_FLOWC_PENDING);
flowc = start_wrq_wr(&cst->eo_txq->wrq, ETID_FLOWC_LEN16, &cookie);
if (__predict_false(flowc == NULL))
return (ENOMEM);
bzero(flowc, ETID_FLOWC_LEN);
flowc->op_to_nparams = htobe32(V_FW_WR_OP(FW_FLOWC_WR) |
V_FW_FLOWC_WR_NPARAMS(ETID_FLOWC_NPARAMS) | V_FW_WR_COMPL(0));
flowc->flowid_len16 = htonl(V_FW_WR_LEN16(ETID_FLOWC_LEN16) |
V_FW_WR_FLOWID(cst->etid));
flowc->mnemval[0].mnemonic = FW_FLOWC_MNEM_PFNVFN;
flowc->mnemval[0].val = htobe32(pfvf);
flowc->mnemval[1].mnemonic = FW_FLOWC_MNEM_CH;
flowc->mnemval[1].val = htobe32(pi->tx_chan);
flowc->mnemval[2].mnemonic = FW_FLOWC_MNEM_PORT;
flowc->mnemval[2].val = htobe32(pi->tx_chan);
flowc->mnemval[3].mnemonic = FW_FLOWC_MNEM_IQID;
flowc->mnemval[3].val = htobe32(cst->iqid);
flowc->mnemval[4].mnemonic = FW_FLOWC_MNEM_EOSTATE;
flowc->mnemval[4].val = htobe32(FW_FLOWC_MNEM_EOSTATE_ESTABLISHED);
flowc->mnemval[5].mnemonic = FW_FLOWC_MNEM_SCHEDCLASS;
flowc->mnemval[5].val = htobe32(cst->schedcl);
commit_wrq_wr(&cst->eo_txq->wrq, flowc, &cookie);
cst->flags &= ~EO_FLOWC_PENDING;
cst->flags |= EO_FLOWC_RPL_PENDING;
MPASS(cst->tx_credits >= ETID_FLOWC_LEN16); /* flowc is first WR. */
cst->tx_credits -= ETID_FLOWC_LEN16;
return (0);
}
#define ETID_FLUSH_LEN16 (howmany(sizeof (struct fw_flowc_wr), 16))
void
send_etid_flush_wr(struct cxgbe_rate_tag *cst)
{
struct fw_flowc_wr *flowc;
struct wrq_cookie cookie;
mtx_assert(&cst->lock, MA_OWNED);
flowc = start_wrq_wr(&cst->eo_txq->wrq, ETID_FLUSH_LEN16, &cookie);
if (__predict_false(flowc == NULL))
CXGBE_UNIMPLEMENTED(__func__);
bzero(flowc, ETID_FLUSH_LEN16 * 16);
flowc->op_to_nparams = htobe32(V_FW_WR_OP(FW_FLOWC_WR) |
V_FW_FLOWC_WR_NPARAMS(0) | F_FW_WR_COMPL);
flowc->flowid_len16 = htobe32(V_FW_WR_LEN16(ETID_FLUSH_LEN16) |
V_FW_WR_FLOWID(cst->etid));
commit_wrq_wr(&cst->eo_txq->wrq, flowc, &cookie);
cst->flags |= EO_FLUSH_RPL_PENDING;
MPASS(cst->tx_credits >= ETID_FLUSH_LEN16);
cst->tx_credits -= ETID_FLUSH_LEN16;
cst->ncompl++;
}
static void
write_ethofld_wr(struct cxgbe_rate_tag *cst, struct fw_eth_tx_eo_wr *wr,
struct mbuf *m0, int compl)
{
struct cpl_tx_pkt_core *cpl;
uint64_t ctrl1;
uint32_t ctrl; /* used in many unrelated places */
int len16, pktlen, nsegs, immhdrs;
uintptr_t p;
struct ulptx_sgl *usgl;
struct sglist sg;
struct sglist_seg segs[38]; /* XXX: find real limit. XXX: get off the stack */
mtx_assert(&cst->lock, MA_OWNED);
M_ASSERTPKTHDR(m0);
KASSERT(m0->m_pkthdr.l2hlen > 0 && m0->m_pkthdr.l3hlen > 0 &&
m0->m_pkthdr.l4hlen > 0,
("%s: ethofld mbuf %p is missing header lengths", __func__, m0));
len16 = mbuf_eo_len16(m0);
nsegs = mbuf_eo_nsegs(m0);
pktlen = m0->m_pkthdr.len;
ctrl = sizeof(struct cpl_tx_pkt_core);
if (needs_tso(m0))
ctrl += sizeof(struct cpl_tx_pkt_lso_core);
immhdrs = m0->m_pkthdr.l2hlen + m0->m_pkthdr.l3hlen + m0->m_pkthdr.l4hlen;
ctrl += immhdrs;
wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_EO_WR) |
V_FW_ETH_TX_EO_WR_IMMDLEN(ctrl) | V_FW_WR_COMPL(!!compl));
wr->equiq_to_len16 = htobe32(V_FW_WR_LEN16(len16) |
V_FW_WR_FLOWID(cst->etid));
wr->r3 = 0;
if (needs_outer_udp_csum(m0)) {
wr->u.udpseg.type = FW_ETH_TX_EO_TYPE_UDPSEG;
wr->u.udpseg.ethlen = m0->m_pkthdr.l2hlen;
wr->u.udpseg.iplen = htobe16(m0->m_pkthdr.l3hlen);
wr->u.udpseg.udplen = m0->m_pkthdr.l4hlen;
wr->u.udpseg.rtplen = 0;
wr->u.udpseg.r4 = 0;
wr->u.udpseg.mss = htobe16(pktlen - immhdrs);
wr->u.udpseg.schedpktsize = wr->u.udpseg.mss;
wr->u.udpseg.plen = htobe32(pktlen - immhdrs);
cpl = (void *)(wr + 1);
} else {
MPASS(needs_outer_tcp_csum(m0));
wr->u.tcpseg.type = FW_ETH_TX_EO_TYPE_TCPSEG;
wr->u.tcpseg.ethlen = m0->m_pkthdr.l2hlen;
wr->u.tcpseg.iplen = htobe16(m0->m_pkthdr.l3hlen);
wr->u.tcpseg.tcplen = m0->m_pkthdr.l4hlen;
wr->u.tcpseg.tsclk_tsoff = mbuf_eo_tsclk_tsoff(m0);
wr->u.tcpseg.r4 = 0;
wr->u.tcpseg.r5 = 0;
wr->u.tcpseg.plen = htobe32(pktlen - immhdrs);
if (needs_tso(m0)) {
struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
wr->u.tcpseg.mss = htobe16(m0->m_pkthdr.tso_segsz);
ctrl = V_LSO_OPCODE(CPL_TX_PKT_LSO) |
F_LSO_FIRST_SLICE | F_LSO_LAST_SLICE |
V_LSO_ETHHDR_LEN((m0->m_pkthdr.l2hlen -
ETHER_HDR_LEN) >> 2) |
V_LSO_IPHDR_LEN(m0->m_pkthdr.l3hlen >> 2) |
V_LSO_TCPHDR_LEN(m0->m_pkthdr.l4hlen >> 2);
if (m0->m_pkthdr.l3hlen == sizeof(struct ip6_hdr))
ctrl |= F_LSO_IPV6;
lso->lso_ctrl = htobe32(ctrl);
lso->ipid_ofst = htobe16(0);
lso->mss = htobe16(m0->m_pkthdr.tso_segsz);
lso->seqno_offset = htobe32(0);
lso->len = htobe32(pktlen);
cpl = (void *)(lso + 1);
} else {
wr->u.tcpseg.mss = htobe16(0xffff);
cpl = (void *)(wr + 1);
}
}
/* Checksum offload must be requested for ethofld. */
MPASS(needs_outer_l4_csum(m0));
ctrl1 = csum_to_ctrl(cst->adapter, m0);
/* VLAN tag insertion */
if (needs_vlan_insertion(m0)) {
ctrl1 |= F_TXPKT_VLAN_VLD |
V_TXPKT_VLAN(m0->m_pkthdr.ether_vtag);
}
/* CPL header */
cpl->ctrl0 = cst->ctrl0;
cpl->pack = 0;
cpl->len = htobe16(pktlen);
cpl->ctrl1 = htobe64(ctrl1);
/* Copy Ethernet, IP & TCP/UDP hdrs as immediate data */
p = (uintptr_t)(cpl + 1);
m_copydata(m0, 0, immhdrs, (void *)p);
/* SGL */
if (nsegs > 0) {
int i, pad;
/* zero-pad upto next 16Byte boundary, if not 16Byte aligned */
p += immhdrs;
pad = 16 - (immhdrs & 0xf);
bzero((void *)p, pad);
usgl = (void *)(p + pad);
usgl->cmd_nsge = htobe32(V_ULPTX_CMD(ULP_TX_SC_DSGL) |
V_ULPTX_NSGE(nsegs));
sglist_init(&sg, nitems(segs), segs);
for (; m0 != NULL; m0 = m0->m_next) {
if (__predict_false(m0->m_len == 0))
continue;
if (immhdrs >= m0->m_len) {
immhdrs -= m0->m_len;
continue;
}
if (m0->m_flags & M_EXTPG)
sglist_append_mbuf_epg(&sg, m0,
mtod(m0, vm_offset_t), m0->m_len);
else
sglist_append(&sg, mtod(m0, char *) + immhdrs,
m0->m_len - immhdrs);
immhdrs = 0;
}
MPASS(sg.sg_nseg == nsegs);
/*
* Zero pad last 8B in case the WR doesn't end on a 16B
* boundary.
*/
*(uint64_t *)((char *)wr + len16 * 16 - 8) = 0;
usgl->len0 = htobe32(segs[0].ss_len);
usgl->addr0 = htobe64(segs[0].ss_paddr);
for (i = 0; i < nsegs - 1; i++) {
usgl->sge[i / 2].len[i & 1] = htobe32(segs[i + 1].ss_len);
usgl->sge[i / 2].addr[i & 1] = htobe64(segs[i + 1].ss_paddr);
}
if (i & 1)
usgl->sge[i / 2].len[1] = htobe32(0);
}
}
static void
ethofld_tx(struct cxgbe_rate_tag *cst)
{
struct mbuf *m;
struct wrq_cookie cookie;
int next_credits, compl;
struct fw_eth_tx_eo_wr *wr;
mtx_assert(&cst->lock, MA_OWNED);
while ((m = mbufq_first(&cst->pending_tx)) != NULL) {
M_ASSERTPKTHDR(m);
/* How many len16 credits do we need to send this mbuf. */
next_credits = mbuf_eo_len16(m);
MPASS(next_credits > 0);
if (next_credits > cst->tx_credits) {
/*
* Tx will make progress eventually because there is at
* least one outstanding fw4_ack that will return
* credits and kick the tx.
*/
MPASS(cst->ncompl > 0);
return;
}
wr = start_wrq_wr(&cst->eo_txq->wrq, next_credits, &cookie);
if (__predict_false(wr == NULL)) {
/* XXX: wishful thinking, not a real assertion. */
MPASS(cst->ncompl > 0);
return;
}
cst->tx_credits -= next_credits;
cst->tx_nocompl += next_credits;
compl = cst->ncompl == 0 || cst->tx_nocompl >= cst->tx_total / 2;
ETHER_BPF_MTAP(cst->com.ifp, m);
write_ethofld_wr(cst, wr, m, compl);
commit_wrq_wr(&cst->eo_txq->wrq, wr, &cookie);
if (compl) {
cst->ncompl++;
cst->tx_nocompl = 0;
}
(void) mbufq_dequeue(&cst->pending_tx);
/*
* Drop the mbuf's reference on the tag now rather
* than waiting until m_freem(). This ensures that
* cxgbe_rate_tag_free gets called when the inp drops
* its reference on the tag and there are no more
* mbufs in the pending_tx queue and can flush any
* pending requests. Otherwise if the last mbuf
* doesn't request a completion the etid will never be
* released.
*/
m->m_pkthdr.snd_tag = NULL;
m->m_pkthdr.csum_flags &= ~CSUM_SND_TAG;
m_snd_tag_rele(&cst->com);
mbufq_enqueue(&cst->pending_fwack, m);
}
}
int
ethofld_transmit(struct ifnet *ifp, struct mbuf *m0)
{
struct cxgbe_rate_tag *cst;
int rc;
MPASS(m0->m_nextpkt == NULL);
MPASS(m0->m_pkthdr.csum_flags & CSUM_SND_TAG);
MPASS(m0->m_pkthdr.snd_tag != NULL);
cst = mst_to_crt(m0->m_pkthdr.snd_tag);
mtx_lock(&cst->lock);
MPASS(cst->flags & EO_SND_TAG_REF);
if (__predict_false(cst->flags & EO_FLOWC_PENDING)) {
struct vi_info *vi = ifp->if_softc;
struct port_info *pi = vi->pi;
struct adapter *sc = pi->adapter;
const uint32_t rss_mask = vi->rss_size - 1;
uint32_t rss_hash;
cst->eo_txq = &sc->sge.ofld_txq[vi->first_ofld_txq];
if (M_HASHTYPE_ISHASH(m0))
rss_hash = m0->m_pkthdr.flowid;
else
rss_hash = arc4random();
/* We assume RSS hashing */
cst->iqid = vi->rss[rss_hash & rss_mask];
cst->eo_txq += rss_hash % vi->nofldtxq;
rc = send_etid_flowc_wr(cst, pi, vi);
if (rc != 0)
goto done;
}
if (__predict_false(cst->plen + m0->m_pkthdr.len > eo_max_backlog)) {
rc = ENOBUFS;
goto done;
}
mbufq_enqueue(&cst->pending_tx, m0);
cst->plen += m0->m_pkthdr.len;
/*
* Hold an extra reference on the tag while generating work
* requests to ensure that we don't try to free the tag during
* ethofld_tx() in case we are sending the final mbuf after
* the inp was freed.
*/
m_snd_tag_ref(&cst->com);
ethofld_tx(cst);
mtx_unlock(&cst->lock);
m_snd_tag_rele(&cst->com);
return (0);
done:
mtx_unlock(&cst->lock);
if (__predict_false(rc != 0))
m_freem(m0);
return (rc);
}
static int
ethofld_fw4_ack(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m0)
{
struct adapter *sc = iq->adapter;
const struct cpl_fw4_ack *cpl = (const void *)(rss + 1);
struct mbuf *m;
u_int etid = G_CPL_FW4_ACK_FLOWID(be32toh(OPCODE_TID(cpl)));
struct cxgbe_rate_tag *cst;
uint8_t credits = cpl->credits;
cst = lookup_etid(sc, etid);
mtx_lock(&cst->lock);
if (__predict_false(cst->flags & EO_FLOWC_RPL_PENDING)) {
MPASS(credits >= ETID_FLOWC_LEN16);
credits -= ETID_FLOWC_LEN16;
cst->flags &= ~EO_FLOWC_RPL_PENDING;
}
KASSERT(cst->ncompl > 0,
("%s: etid %u (%p) wasn't expecting completion.",
__func__, etid, cst));
cst->ncompl--;
while (credits > 0) {
m = mbufq_dequeue(&cst->pending_fwack);
if (__predict_false(m == NULL)) {
/*
* The remaining credits are for the final flush that
* was issued when the tag was freed by the kernel.
*/
MPASS((cst->flags &
(EO_FLUSH_RPL_PENDING | EO_SND_TAG_REF)) ==
EO_FLUSH_RPL_PENDING);
MPASS(credits == ETID_FLUSH_LEN16);
MPASS(cst->tx_credits + cpl->credits == cst->tx_total);
MPASS(cst->ncompl == 0);
cst->flags &= ~EO_FLUSH_RPL_PENDING;
cst->tx_credits += cpl->credits;
cxgbe_rate_tag_free_locked(cst);
return (0); /* cst is gone. */
}
KASSERT(m != NULL,
("%s: too many credits (%u, %u)", __func__, cpl->credits,
credits));
KASSERT(credits >= mbuf_eo_len16(m),
("%s: too few credits (%u, %u, %u)", __func__,
cpl->credits, credits, mbuf_eo_len16(m)));
credits -= mbuf_eo_len16(m);
cst->plen -= m->m_pkthdr.len;
m_freem(m);
}
cst->tx_credits += cpl->credits;
MPASS(cst->tx_credits <= cst->tx_total);
if (cst->flags & EO_SND_TAG_REF) {
/*
* As with ethofld_transmit(), hold an extra reference
* so that the tag is stable across ethold_tx().
*/
m_snd_tag_ref(&cst->com);
m = mbufq_first(&cst->pending_tx);
if (m != NULL && cst->tx_credits >= mbuf_eo_len16(m))
ethofld_tx(cst);
mtx_unlock(&cst->lock);
m_snd_tag_rele(&cst->com);
} else {
/*
* There shouldn't be any pending packets if the tag
* was freed by the kernel since any pending packet
* should hold a reference to the tag.
*/
MPASS(mbufq_first(&cst->pending_tx) == NULL);
mtx_unlock(&cst->lock);
}
return (0);
}
#endif