freebsd-nq/sys/powerpc/fpu/fpu_div.c
Pedro F. Giffuni 51369649b0 sys: further adoption of SPDX licensing ID tags.
Mainly focus on files that use BSD 3-Clause license.

The Software Package Data Exchange (SPDX) group provides a specification
to make it easier for automated tools to detect and summarize well known
opensource licenses. We are gradually adopting the specification, noting
that the tags are considered only advisory and do not, in any way,
superceed or replace the license texts.

Special thanks to Wind River for providing access to "The Duke of
Highlander" tool: an older (2014) run over FreeBSD tree was useful as a
starting point.
2017-11-20 19:43:44 +00:00

295 lines
8.4 KiB
C

/* $NetBSD: fpu_div.c,v 1.4 2005/12/11 12:18:42 christos Exp $ */
/*-
* SPDX-License-Identifier: BSD-3-Clause
*
* Copyright (c) 1992, 1993
* The Regents of the University of California. All rights reserved.
*
* This software was developed by the Computer Systems Engineering group
* at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
* contributed to Berkeley.
*
* All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Lawrence Berkeley Laboratory.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)fpu_div.c 8.1 (Berkeley) 6/11/93
*/
/*
* Perform an FPU divide (return x / y).
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/types.h>
#include <sys/systm.h>
#include <machine/fpu.h>
#include <machine/reg.h>
#include <powerpc/fpu/fpu_arith.h>
#include <powerpc/fpu/fpu_emu.h>
/*
* Division of normal numbers is done as follows:
*
* x and y are floating point numbers, i.e., in the form 1.bbbb * 2^e.
* If X and Y are the mantissas (1.bbbb's), the quotient is then:
*
* q = (X / Y) * 2^((x exponent) - (y exponent))
*
* Since X and Y are both in [1.0,2.0), the quotient's mantissa (X / Y)
* will be in [0.5,2.0). Moreover, it will be less than 1.0 if and only
* if X < Y. In that case, it will have to be shifted left one bit to
* become a normal number, and the exponent decremented. Thus, the
* desired exponent is:
*
* left_shift = x->fp_mant < y->fp_mant;
* result_exp = x->fp_exp - y->fp_exp - left_shift;
*
* The quotient mantissa X/Y can then be computed one bit at a time
* using the following algorithm:
*
* Q = 0; -- Initial quotient.
* R = X; -- Initial remainder,
* if (left_shift) -- but fixed up in advance.
* R *= 2;
* for (bit = FP_NMANT; --bit >= 0; R *= 2) {
* if (R >= Y) {
* Q |= 1 << bit;
* R -= Y;
* }
* }
*
* The subtraction R -= Y always removes the uppermost bit from R (and
* can sometimes remove additional lower-order 1 bits); this proof is
* left to the reader.
*
* This loop correctly calculates the guard and round bits since they are
* included in the expanded internal representation. The sticky bit
* is to be set if and only if any other bits beyond guard and round
* would be set. From the above it is obvious that this is true if and
* only if the remainder R is nonzero when the loop terminates.
*
* Examining the loop above, we can see that the quotient Q is built
* one bit at a time ``from the top down''. This means that we can
* dispense with the multi-word arithmetic and just build it one word
* at a time, writing each result word when it is done.
*
* Furthermore, since X and Y are both in [1.0,2.0), we know that,
* initially, R >= Y. (Recall that, if X < Y, R is set to X * 2 and
* is therefore at in [2.0,4.0).) Thus Q is sure to have bit FP_NMANT-1
* set, and R can be set initially to either X - Y (when X >= Y) or
* 2X - Y (when X < Y). In addition, comparing R and Y is difficult,
* so we will simply calculate R - Y and see if that underflows.
* This leads to the following revised version of the algorithm:
*
* R = X;
* bit = FP_1;
* D = R - Y;
* if (D >= 0) {
* result_exp = x->fp_exp - y->fp_exp;
* R = D;
* q = bit;
* bit >>= 1;
* } else {
* result_exp = x->fp_exp - y->fp_exp - 1;
* q = 0;
* }
* R <<= 1;
* do {
* D = R - Y;
* if (D >= 0) {
* q |= bit;
* R = D;
* }
* R <<= 1;
* } while ((bit >>= 1) != 0);
* Q[0] = q;
* for (i = 1; i < 4; i++) {
* q = 0, bit = 1 << 31;
* do {
* D = R - Y;
* if (D >= 0) {
* q |= bit;
* R = D;
* }
* R <<= 1;
* } while ((bit >>= 1) != 0);
* Q[i] = q;
* }
*
* This can be refined just a bit further by moving the `R <<= 1'
* calculations to the front of the do-loops and eliding the first one.
* The process can be terminated immediately whenever R becomes 0, but
* this is relatively rare, and we do not bother.
*/
struct fpn *
fpu_div(struct fpemu *fe)
{
struct fpn *x = &fe->fe_f1, *y = &fe->fe_f2;
u_int q, bit;
u_int r0, r1, r2, r3, d0, d1, d2, d3, y0, y1, y2, y3;
FPU_DECL_CARRY
/*
* Since divide is not commutative, we cannot just use ORDER.
* Check either operand for NaN first; if there is at least one,
* order the signalling one (if only one) onto the right, then
* return it. Otherwise we have the following cases:
*
* Inf / Inf = NaN, plus NV exception
* Inf / num = Inf [i.e., return x]
* Inf / 0 = Inf [i.e., return x]
* 0 / Inf = 0 [i.e., return x]
* 0 / num = 0 [i.e., return x]
* 0 / 0 = NaN, plus NV exception
* num / Inf = 0
* num / num = num (do the divide)
* num / 0 = Inf, plus DZ exception
*/
DPRINTF(FPE_REG, ("fpu_div:\n"));
DUMPFPN(FPE_REG, x);
DUMPFPN(FPE_REG, y);
DPRINTF(FPE_REG, ("=>\n"));
if (ISNAN(x) || ISNAN(y)) {
ORDER(x, y);
fe->fe_cx |= FPSCR_VXSNAN;
DUMPFPN(FPE_REG, y);
return (y);
}
/*
* Need to split the following out cause they generate different
* exceptions.
*/
if (ISINF(x)) {
if (x->fp_class == y->fp_class) {
fe->fe_cx |= FPSCR_VXIDI;
return (fpu_newnan(fe));
}
DUMPFPN(FPE_REG, x);
return (x);
}
if (ISZERO(x)) {
fe->fe_cx |= FPSCR_ZX;
if (x->fp_class == y->fp_class) {
fe->fe_cx |= FPSCR_VXZDZ;
return (fpu_newnan(fe));
}
DUMPFPN(FPE_REG, x);
return (x);
}
/* all results at this point use XOR of operand signs */
x->fp_sign ^= y->fp_sign;
if (ISINF(y)) {
x->fp_class = FPC_ZERO;
DUMPFPN(FPE_REG, x);
return (x);
}
if (ISZERO(y)) {
fe->fe_cx = FPSCR_ZX;
x->fp_class = FPC_INF;
DUMPFPN(FPE_REG, x);
return (x);
}
/*
* Macros for the divide. See comments at top for algorithm.
* Note that we expand R, D, and Y here.
*/
#define SUBTRACT /* D = R - Y */ \
FPU_SUBS(d3, r3, y3); FPU_SUBCS(d2, r2, y2); \
FPU_SUBCS(d1, r1, y1); FPU_SUBC(d0, r0, y0)
#define NONNEGATIVE /* D >= 0 */ \
((int)d0 >= 0)
#ifdef FPU_SHL1_BY_ADD
#define SHL1 /* R <<= 1 */ \
FPU_ADDS(r3, r3, r3); FPU_ADDCS(r2, r2, r2); \
FPU_ADDCS(r1, r1, r1); FPU_ADDC(r0, r0, r0)
#else
#define SHL1 \
r0 = (r0 << 1) | (r1 >> 31), r1 = (r1 << 1) | (r2 >> 31), \
r2 = (r2 << 1) | (r3 >> 31), r3 <<= 1
#endif
#define LOOP /* do ... while (bit >>= 1) */ \
do { \
SHL1; \
SUBTRACT; \
if (NONNEGATIVE) { \
q |= bit; \
r0 = d0, r1 = d1, r2 = d2, r3 = d3; \
} \
} while ((bit >>= 1) != 0)
#define WORD(r, i) /* calculate r->fp_mant[i] */ \
q = 0; \
bit = 1 << 31; \
LOOP; \
(x)->fp_mant[i] = q
/* Setup. Note that we put our result in x. */
r0 = x->fp_mant[0];
r1 = x->fp_mant[1];
r2 = x->fp_mant[2];
r3 = x->fp_mant[3];
y0 = y->fp_mant[0];
y1 = y->fp_mant[1];
y2 = y->fp_mant[2];
y3 = y->fp_mant[3];
bit = FP_1;
SUBTRACT;
if (NONNEGATIVE) {
x->fp_exp -= y->fp_exp;
r0 = d0, r1 = d1, r2 = d2, r3 = d3;
q = bit;
bit >>= 1;
} else {
x->fp_exp -= y->fp_exp + 1;
q = 0;
}
LOOP;
x->fp_mant[0] = q;
WORD(x, 1);
WORD(x, 2);
WORD(x, 3);
x->fp_sticky = r0 | r1 | r2 | r3;
DUMPFPN(FPE_REG, x);
return (x);
}