freebsd-nq/sys/pc98/i386/machdep.c

1794 lines
50 KiB
C

/*-
* Copyright (c) 1992 Terrence R. Lambert.
* Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
* All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* William Jolitz.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* from: @(#)machdep.c 7.4 (Berkeley) 6/3/91
* $Id: machdep.c,v 1.59 1997/10/12 11:58:09 kato Exp $
*/
#include "apm.h"
#include "npx.h"
#include "opt_sysvipc.h"
#include "opt_ddb.h"
#include "opt_bounce.h"
#include "opt_maxmem.h"
#include "opt_perfmon.h"
#include "opt_smp.h"
#include "opt_userconfig.h"
#include "opt_vm86.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sysproto.h>
#include <sys/signalvar.h>
#include <sys/kernel.h>
#include <sys/proc.h>
#include <sys/buf.h>
#include <sys/reboot.h>
#include <sys/conf.h>
#include <sys/callout.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/msgbuf.h>
#include <sys/sysent.h>
#include <sys/sysctl.h>
#include <sys/vmmeter.h>
#ifdef SYSVSHM
#include <sys/shm.h>
#endif
#ifdef SYSVMSG
#include <sys/msg.h>
#endif
#ifdef SYSVSEM
#include <sys/sem.h>
#endif
#include <vm/vm.h>
#include <vm/vm_param.h>
#include <vm/vm_prot.h>
#include <sys/lock.h>
#include <vm/vm_kern.h>
#include <vm/vm_object.h>
#include <vm/vm_page.h>
#include <vm/vm_map.h>
#include <vm/vm_pager.h>
#include <vm/vm_extern.h>
#include <sys/user.h>
#include <sys/exec.h>
#include <ddb/ddb.h>
#include <net/netisr.h>
#if NAPM > 0
#include <machine/apm_bios.h>
#endif
#include <machine/cpu.h>
#include <machine/reg.h>
#include <machine/clock.h>
#include <machine/specialreg.h>
#include <machine/cons.h>
#include <machine/bootinfo.h>
#include <machine/md_var.h>
#include <machine/pcb_ext.h> /* pcb.h included via sys/user.h */
#ifdef SMP
#include <machine/smp.h>
#endif
#ifdef PERFMON
#include <machine/perfmon.h>
#endif
#include <i386/isa/isa_device.h>
#include <i386/isa/intr_machdep.h>
#ifdef PC98
#include <pc98/pc98/pc98_machdep.h>
#else
#include <i386/isa/rtc.h>
#endif
#include <machine/random.h>
extern void init386 __P((int first));
extern int ptrace_set_pc __P((struct proc *p, unsigned int addr));
extern int ptrace_single_step __P((struct proc *p));
extern int ptrace_write_u __P((struct proc *p, vm_offset_t off, int data));
extern void dblfault_handler __P((void));
extern void printcpuinfo(void); /* XXX header file */
extern void earlysetcpuclass(void); /* same header file */
extern void finishidentcpu(void);
extern void panicifcpuunsupported(void);
extern void initializecpu(void);
static void cpu_startup __P((void *));
SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL)
#ifdef PC98
int need_pre_dma_flush; /* If 1, use wbinvd befor DMA transfer. */
int need_post_dma_flush; /* If 1, use invd after DMA transfer. */
#endif
#ifdef BOUNCE_BUFFERS
extern char *bouncememory;
extern int maxbkva;
#ifdef BOUNCEPAGES
int bouncepages = BOUNCEPAGES;
#else
int bouncepages = 0;
#endif
#endif /* BOUNCE_BUFFERS */
extern int freebufspace;
int msgbufmapped = 0; /* set when safe to use msgbuf */
int _udatasel, _ucodesel;
u_int atdevbase;
static MALLOC_DEFINE(M_MBUF, "mbuf", "mbuf");
int physmem = 0;
int cold = 1;
static int
sysctl_hw_physmem SYSCTL_HANDLER_ARGS
{
int error = sysctl_handle_int(oidp, 0, ctob(physmem), req);
return (error);
}
SYSCTL_PROC(_hw, HW_PHYSMEM, physmem, CTLTYPE_INT|CTLFLAG_RD,
0, 0, sysctl_hw_physmem, "I", "");
static int
sysctl_hw_usermem SYSCTL_HANDLER_ARGS
{
int error = sysctl_handle_int(oidp, 0,
ctob(physmem - cnt.v_wire_count), req);
return (error);
}
SYSCTL_PROC(_hw, HW_USERMEM, usermem, CTLTYPE_INT|CTLFLAG_RD,
0, 0, sysctl_hw_usermem, "I", "");
int boothowto = 0, bootverbose = 0, Maxmem = 0;
#ifdef PC98
int Maxmem_under16M = 0;
#endif
long dumplo;
extern int bootdev;
vm_offset_t phys_avail[10];
/* must be 2 less so 0 0 can signal end of chunks */
#define PHYS_AVAIL_ARRAY_END ((sizeof(phys_avail) / sizeof(vm_offset_t)) - 2)
static void setup_netisrs __P((struct linker_set *)); /* XXX declare elsewhere */
static vm_offset_t buffer_sva, buffer_eva;
vm_offset_t clean_sva, clean_eva;
static vm_offset_t pager_sva, pager_eva;
extern struct linker_set netisr_set;
#define offsetof(type, member) ((size_t)(&((type *)0)->member))
static void
cpu_startup(dummy)
void *dummy;
{
register unsigned i;
register caddr_t v;
vm_offset_t maxaddr;
vm_size_t size = 0;
int firstaddr;
vm_offset_t minaddr;
if (boothowto & RB_VERBOSE)
bootverbose++;
/*
* Good {morning,afternoon,evening,night}.
*/
printf(version);
earlysetcpuclass();
startrtclock();
printcpuinfo();
panicifcpuunsupported();
#ifdef PERFMON
perfmon_init();
#endif
printf("real memory = %d (%dK bytes)\n", ptoa(Maxmem), ptoa(Maxmem) / 1024);
/*
* Display any holes after the first chunk of extended memory.
*/
if (bootverbose) {
int indx;
printf("Physical memory chunk(s):\n");
for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
int size = phys_avail[indx + 1] - phys_avail[indx];
printf("0x%08lx - 0x%08lx, %d bytes (%d pages)\n", phys_avail[indx],
phys_avail[indx + 1] - 1, size, size / PAGE_SIZE);
}
}
/*
* Quickly wire in netisrs.
*/
setup_netisrs(&netisr_set);
/*
* Calculate callout wheel size
*/
for (callwheelsize = 1, callwheelbits = 0;
callwheelsize < ncallout;
callwheelsize <<= 1, ++callwheelbits)
;
callwheelmask = callwheelsize - 1;
/*
* Allocate space for system data structures.
* The first available kernel virtual address is in "v".
* As pages of kernel virtual memory are allocated, "v" is incremented.
* As pages of memory are allocated and cleared,
* "firstaddr" is incremented.
* An index into the kernel page table corresponding to the
* virtual memory address maintained in "v" is kept in "mapaddr".
*/
/*
* Make two passes. The first pass calculates how much memory is
* needed and allocates it. The second pass assigns virtual
* addresses to the various data structures.
*/
firstaddr = 0;
again:
v = (caddr_t)firstaddr;
#define valloc(name, type, num) \
(name) = (type *)v; v = (caddr_t)((name)+(num))
#define valloclim(name, type, num, lim) \
(name) = (type *)v; v = (caddr_t)((lim) = ((name)+(num)))
valloc(callout, struct callout, ncallout);
valloc(callwheel, struct callout_tailq, callwheelsize);
#ifdef SYSVSHM
valloc(shmsegs, struct shmid_ds, shminfo.shmmni);
#endif
#ifdef SYSVSEM
valloc(sema, struct semid_ds, seminfo.semmni);
valloc(sem, struct sem, seminfo.semmns);
/* This is pretty disgusting! */
valloc(semu, int, (seminfo.semmnu * seminfo.semusz) / sizeof(int));
#endif
#ifdef SYSVMSG
valloc(msgpool, char, msginfo.msgmax);
valloc(msgmaps, struct msgmap, msginfo.msgseg);
valloc(msghdrs, struct msg, msginfo.msgtql);
valloc(msqids, struct msqid_ds, msginfo.msgmni);
#endif
if (nbuf == 0) {
nbuf = 30;
if( physmem > 1024)
nbuf += min((physmem - 1024) / 8, 2048);
}
nswbuf = max(min(nbuf/4, 128), 16);
valloc(swbuf, struct buf, nswbuf);
valloc(buf, struct buf, nbuf);
#ifdef BOUNCE_BUFFERS
/*
* If there is more than 16MB of memory, allocate some bounce buffers
*/
if (Maxmem > 4096) {
if (bouncepages == 0) {
bouncepages = 64;
bouncepages += ((Maxmem - 4096) / 2048) * 32;
if (bouncepages > 128)
bouncepages = 128;
}
v = (caddr_t)((vm_offset_t)round_page(v));
valloc(bouncememory, char, bouncepages * PAGE_SIZE);
}
#endif
/*
* End of first pass, size has been calculated so allocate memory
*/
if (firstaddr == 0) {
size = (vm_size_t)(v - firstaddr);
firstaddr = (int)kmem_alloc(kernel_map, round_page(size));
if (firstaddr == 0)
panic("startup: no room for tables");
goto again;
}
/*
* End of second pass, addresses have been assigned
*/
if ((vm_size_t)(v - firstaddr) != size)
panic("startup: table size inconsistency");
#ifdef BOUNCE_BUFFERS
clean_map = kmem_suballoc(kernel_map, &clean_sva, &clean_eva,
(nbuf*BKVASIZE) + (nswbuf*MAXPHYS) +
maxbkva + pager_map_size, TRUE);
io_map = kmem_suballoc(clean_map, &minaddr, &maxaddr, maxbkva, FALSE);
#else
clean_map = kmem_suballoc(kernel_map, &clean_sva, &clean_eva,
(nbuf*BKVASIZE) + (nswbuf*MAXPHYS) + pager_map_size, TRUE);
#endif
buffer_map = kmem_suballoc(clean_map, &buffer_sva, &buffer_eva,
(nbuf*BKVASIZE), TRUE);
pager_map = kmem_suballoc(clean_map, &pager_sva, &pager_eva,
(nswbuf*MAXPHYS) + pager_map_size, TRUE);
pager_map->system_map = 1;
exec_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
(16*ARG_MAX), TRUE);
u_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
(maxproc*UPAGES*PAGE_SIZE), FALSE);
/*
* Finally, allocate mbuf pool. Since mclrefcnt is an off-size
* we use the more space efficient malloc in place of kmem_alloc.
*/
{
vm_offset_t mb_map_size;
mb_map_size = nmbufs * MSIZE + nmbclusters * MCLBYTES;
mb_map_size = roundup2(mb_map_size, max(MCLBYTES, PAGE_SIZE));
mclrefcnt = malloc(mb_map_size / MCLBYTES, M_MBUF, M_NOWAIT);
bzero(mclrefcnt, mb_map_size / MCLBYTES);
mb_map = kmem_suballoc(kmem_map, (vm_offset_t *)&mbutl, &maxaddr,
mb_map_size, FALSE);
mb_map->system_map = 1;
}
/*
* Initialize callouts
*/
SLIST_INIT(&callfree);
for (i = 0; i < ncallout; i++) {
SLIST_INSERT_HEAD(&callfree, &callout[i], c_links.sle);
}
for (i = 0; i < callwheelsize; i++) {
TAILQ_INIT(&callwheel[i]);
}
#if defined(USERCONFIG)
#if defined(USERCONFIG_BOOT)
if (1) {
#else
if (boothowto & RB_CONFIG) {
#endif
userconfig();
cninit(); /* the preferred console may have changed */
}
#endif
#ifdef BOUNCE_BUFFERS
/*
* init bounce buffers
*/
vm_bounce_init();
#endif
printf("avail memory = %d (%dK bytes)\n", ptoa(cnt.v_free_count),
ptoa(cnt.v_free_count) / 1024);
/*
* Set up buffers, so they can be used to read disk labels.
*/
bufinit();
vm_pager_bufferinit();
#ifdef SMP
/*
* OK, enough kmem_alloc/malloc state should be up, lets get on with it!
*/
mp_start(); /* fire up the APs and APICs */
mp_announce();
#endif /* SMP */
}
int
register_netisr(num, handler)
int num;
netisr_t *handler;
{
if (num < 0 || num >= (sizeof(netisrs)/sizeof(*netisrs)) ) {
printf("register_netisr: bad isr number: %d\n", num);
return (EINVAL);
}
netisrs[num] = handler;
return (0);
}
static void
setup_netisrs(ls)
struct linker_set *ls;
{
int i;
const struct netisrtab *nit;
for(i = 0; ls->ls_items[i]; i++) {
nit = (const struct netisrtab *)ls->ls_items[i];
register_netisr(nit->nit_num, nit->nit_isr);
}
}
/*
* Send an interrupt to process.
*
* Stack is set up to allow sigcode stored
* at top to call routine, followed by kcall
* to sigreturn routine below. After sigreturn
* resets the signal mask, the stack, and the
* frame pointer, it returns to the user
* specified pc, psl.
*/
void
sendsig(catcher, sig, mask, code)
sig_t catcher;
int sig, mask;
u_long code;
{
register struct proc *p = curproc;
register struct trapframe *regs;
register struct sigframe *fp;
struct sigframe sf;
struct sigacts *psp = p->p_sigacts;
int oonstack;
regs = p->p_md.md_regs;
oonstack = psp->ps_sigstk.ss_flags & SS_ONSTACK;
/*
* Allocate and validate space for the signal handler context.
*/
if ((psp->ps_flags & SAS_ALTSTACK) && !oonstack &&
(psp->ps_sigonstack & sigmask(sig))) {
fp = (struct sigframe *)(psp->ps_sigstk.ss_sp +
psp->ps_sigstk.ss_size - sizeof(struct sigframe));
psp->ps_sigstk.ss_flags |= SS_ONSTACK;
} else {
fp = (struct sigframe *)regs->tf_esp - 1;
}
/*
* grow() will return FALSE if the fp will not fit inside the stack
* and the stack can not be grown. useracc will return FALSE
* if access is denied.
*/
if ((grow(p, (int)fp) == FALSE) ||
(useracc((caddr_t)fp, sizeof(struct sigframe), B_WRITE) == FALSE)) {
/*
* Process has trashed its stack; give it an illegal
* instruction to halt it in its tracks.
*/
SIGACTION(p, SIGILL) = SIG_DFL;
sig = sigmask(SIGILL);
p->p_sigignore &= ~sig;
p->p_sigcatch &= ~sig;
p->p_sigmask &= ~sig;
psignal(p, SIGILL);
return;
}
/*
* Build the argument list for the signal handler.
*/
if (p->p_sysent->sv_sigtbl) {
if (sig < p->p_sysent->sv_sigsize)
sig = p->p_sysent->sv_sigtbl[sig];
else
sig = p->p_sysent->sv_sigsize + 1;
}
sf.sf_signum = sig;
sf.sf_code = code;
sf.sf_scp = &fp->sf_sc;
sf.sf_addr = (char *) regs->tf_err;
sf.sf_handler = catcher;
/* save scratch registers */
sf.sf_sc.sc_eax = regs->tf_eax;
sf.sf_sc.sc_ebx = regs->tf_ebx;
sf.sf_sc.sc_ecx = regs->tf_ecx;
sf.sf_sc.sc_edx = regs->tf_edx;
sf.sf_sc.sc_esi = regs->tf_esi;
sf.sf_sc.sc_edi = regs->tf_edi;
sf.sf_sc.sc_cs = regs->tf_cs;
sf.sf_sc.sc_ds = regs->tf_ds;
sf.sf_sc.sc_ss = regs->tf_ss;
sf.sf_sc.sc_es = regs->tf_es;
sf.sf_sc.sc_isp = regs->tf_isp;
/*
* Build the signal context to be used by sigreturn.
*/
sf.sf_sc.sc_onstack = oonstack;
sf.sf_sc.sc_mask = mask;
sf.sf_sc.sc_sp = regs->tf_esp;
sf.sf_sc.sc_fp = regs->tf_ebp;
sf.sf_sc.sc_pc = regs->tf_eip;
sf.sf_sc.sc_ps = regs->tf_eflags;
sf.sf_sc.sc_trapno = regs->tf_trapno;
sf.sf_sc.sc_err = regs->tf_err;
/*
* If we're a vm86 process, we want to save the segment registers.
* We also change eflags to be our emulated eflags, not the actual
* eflags.
*/
if (regs->tf_eflags & PSL_VM) {
struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
struct vm86_kernel *vm86 = &p->p_addr->u_pcb.pcb_ext->ext_vm86;
sf.sf_sc.sc_gs = tf->tf_vm86_gs;
sf.sf_sc.sc_fs = tf->tf_vm86_fs;
sf.sf_sc.sc_es = tf->tf_vm86_es;
sf.sf_sc.sc_ds = tf->tf_vm86_ds;
if (vm86->vm86_has_vme == 0)
sf.sf_sc.sc_ps = (tf->tf_eflags & ~(PSL_VIF | PSL_VIP))
| (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
/*
* We should never have PSL_T set when returning from vm86
* mode. It may be set here if we deliver a signal before
* getting to vm86 mode, so turn it off.
*/
tf->tf_eflags &= ~(PSL_VM | PSL_T | PSL_VIF | PSL_VIP);
}
/*
* Copy the sigframe out to the user's stack.
*/
if (copyout(&sf, fp, sizeof(struct sigframe)) != 0) {
/*
* Something is wrong with the stack pointer.
* ...Kill the process.
*/
sigexit(p, SIGILL);
}
regs->tf_esp = (int)fp;
regs->tf_eip = (int)(((char *)PS_STRINGS) - *(p->p_sysent->sv_szsigcode));
regs->tf_cs = _ucodesel;
regs->tf_ds = _udatasel;
regs->tf_es = _udatasel;
regs->tf_ss = _udatasel;
}
/*
* System call to cleanup state after a signal
* has been taken. Reset signal mask and
* stack state from context left by sendsig (above).
* Return to previous pc and psl as specified by
* context left by sendsig. Check carefully to
* make sure that the user has not modified the
* state to gain improper privileges.
*/
int
sigreturn(p, uap, retval)
struct proc *p;
struct sigreturn_args /* {
struct sigcontext *sigcntxp;
} */ *uap;
int *retval;
{
register struct sigcontext *scp;
register struct sigframe *fp;
register struct trapframe *regs = p->p_md.md_regs;
int eflags;
/*
* (XXX old comment) regs->tf_esp points to the return address.
* The user scp pointer is above that.
* The return address is faked in the signal trampoline code
* for consistency.
*/
scp = uap->sigcntxp;
fp = (struct sigframe *)
((caddr_t)scp - offsetof(struct sigframe, sf_sc));
if (useracc((caddr_t)fp, sizeof (*fp), B_WRITE) == 0)
return(EFAULT);
eflags = scp->sc_ps;
if (eflags & PSL_VM) {
struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
struct vm86_kernel *vm86;
/*
* if pcb_ext == 0 or vm86_inited == 0, the user hasn't
* set up the vm86 area, and we can't enter vm86 mode.
*/
if (p->p_addr->u_pcb.pcb_ext == 0)
return (EINVAL);
vm86 = &p->p_addr->u_pcb.pcb_ext->ext_vm86;
if (vm86->vm86_inited == 0)
return (EINVAL);
/* go back to user mode if both flags are set */
if ((eflags & PSL_VIP) && (eflags & PSL_VIF))
trapsignal(p, SIGBUS, 0);
#define VM_USERCHANGE (PSL_USERCHANGE | PSL_RF)
#define VME_USERCHANGE (VM_USERCHANGE | PSL_VIP | PSL_VIF)
if (vm86->vm86_has_vme) {
eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
(eflags & VME_USERCHANGE) | PSL_VM;
} else {
vm86->vm86_eflags = eflags; /* save VIF, VIP */
eflags = (tf->tf_eflags & ~VM_USERCHANGE) | (eflags & VM_USERCHANGE) | PSL_VM;
}
tf->tf_vm86_ds = scp->sc_ds;
tf->tf_vm86_es = scp->sc_es;
tf->tf_vm86_fs = scp->sc_fs;
tf->tf_vm86_gs = scp->sc_gs;
tf->tf_ds = _udatasel;
tf->tf_es = _udatasel;
} else {
/*
* Don't allow users to change privileged or reserved flags.
*/
#define EFLAGS_SECURE(ef, oef) ((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
/*
* XXX do allow users to change the privileged flag PSL_RF.
* The cpu sets PSL_RF in tf_eflags for faults. Debuggers
* should sometimes set it there too. tf_eflags is kept in
* the signal context during signal handling and there is no
* other place to remember it, so the PSL_RF bit may be
* corrupted by the signal handler without us knowing.
* Corruption of the PSL_RF bit at worst causes one more or
* one less debugger trap, so allowing it is fairly harmless.
*/
if (!EFLAGS_SECURE(eflags & ~PSL_RF, regs->tf_eflags & ~PSL_RF)) {
#ifdef DEBUG
printf("sigreturn: eflags = 0x%x\n", eflags);
#endif
return(EINVAL);
}
/*
* Don't allow users to load a valid privileged %cs. Let the
* hardware check for invalid selectors, excess privilege in
* other selectors, invalid %eip's and invalid %esp's.
*/
#define CS_SECURE(cs) (ISPL(cs) == SEL_UPL)
if (!CS_SECURE(scp->sc_cs)) {
#ifdef DEBUG
printf("sigreturn: cs = 0x%x\n", scp->sc_cs);
#endif
trapsignal(p, SIGBUS, T_PROTFLT);
return(EINVAL);
}
regs->tf_ds = scp->sc_ds;
regs->tf_es = scp->sc_es;
}
/* restore scratch registers */
regs->tf_eax = scp->sc_eax;
regs->tf_ebx = scp->sc_ebx;
regs->tf_ecx = scp->sc_ecx;
regs->tf_edx = scp->sc_edx;
regs->tf_esi = scp->sc_esi;
regs->tf_edi = scp->sc_edi;
regs->tf_cs = scp->sc_cs;
regs->tf_ss = scp->sc_ss;
regs->tf_isp = scp->sc_isp;
if (useracc((caddr_t)scp, sizeof (*scp), B_WRITE) == 0)
return(EINVAL);
if (scp->sc_onstack & 01)
p->p_sigacts->ps_sigstk.ss_flags |= SS_ONSTACK;
else
p->p_sigacts->ps_sigstk.ss_flags &= ~SS_ONSTACK;
p->p_sigmask = scp->sc_mask & ~sigcantmask;
regs->tf_ebp = scp->sc_fp;
regs->tf_esp = scp->sc_sp;
regs->tf_eip = scp->sc_pc;
regs->tf_eflags = eflags;
return(EJUSTRETURN);
}
/*
* Machine dependent boot() routine
*
* I haven't seen anything to put here yet
* Possibly some stuff might be grafted back here from boot()
*/
void
cpu_boot(int howto)
{
}
/*
* Shutdown the CPU as much as possible
*/
void
cpu_halt(void)
{
for (;;)
__asm__ ("hlt");
}
/*
* Turn the power off.
*/
void
cpu_power_down(void)
{
#if NAPM > 0
apm_power_off();
#endif
}
/*
* Clear registers on exec
*/
void
setregs(p, entry, stack)
struct proc *p;
u_long entry;
u_long stack;
{
struct trapframe *regs = p->p_md.md_regs;
#ifdef USER_LDT
struct pcb *pcb = &p->p_addr->u_pcb;
/* was i386_user_cleanup() in NetBSD */
if (pcb->pcb_ldt) {
if (pcb == curpcb)
lldt(GSEL(GUSERLDT_SEL, SEL_KPL));
kmem_free(kernel_map, (vm_offset_t)pcb->pcb_ldt,
pcb->pcb_ldt_len * sizeof(union descriptor));
pcb->pcb_ldt_len = (int)pcb->pcb_ldt = 0;
}
#endif
bzero((char *)regs, sizeof(struct trapframe));
regs->tf_eip = entry;
regs->tf_esp = stack;
regs->tf_eflags = PSL_USER | (regs->tf_eflags & PSL_T);
regs->tf_ss = _udatasel;
regs->tf_ds = _udatasel;
regs->tf_es = _udatasel;
regs->tf_cs = _ucodesel;
/*
* Initialize the math emulator (if any) for the current process.
* Actually, just clear the bit that says that the emulator has
* been initialized. Initialization is delayed until the process
* traps to the emulator (if it is done at all) mainly because
* emulators don't provide an entry point for initialization.
*/
p->p_addr->u_pcb.pcb_flags &= ~FP_SOFTFP;
/*
* Arrange to trap the next npx or `fwait' instruction (see npx.c
* for why fwait must be trapped at least if there is an npx or an
* emulator). This is mainly to handle the case where npx0 is not
* configured, since the npx routines normally set up the trap
* otherwise. It should be done only at boot time, but doing it
* here allows modifying `npx_exists' for testing the emulator on
* systems with an npx.
*/
load_cr0(rcr0() | CR0_MP | CR0_TS);
#if NNPX > 0
/* Initialize the npx (if any) for the current process. */
npxinit(__INITIAL_NPXCW__);
#endif
}
static int
sysctl_machdep_adjkerntz SYSCTL_HANDLER_ARGS
{
int error;
error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
req);
if (!error && req->newptr)
resettodr();
return (error);
}
SYSCTL_PROC(_machdep, CPU_ADJKERNTZ, adjkerntz, CTLTYPE_INT|CTLFLAG_RW,
&adjkerntz, 0, sysctl_machdep_adjkerntz, "I", "");
SYSCTL_INT(_machdep, CPU_DISRTCSET, disable_rtc_set,
CTLFLAG_RW, &disable_rtc_set, 0, "");
SYSCTL_STRUCT(_machdep, CPU_BOOTINFO, bootinfo,
CTLFLAG_RD, &bootinfo, bootinfo, "");
SYSCTL_INT(_machdep, CPU_WALLCLOCK, wall_cmos_clock,
CTLFLAG_RW, &wall_cmos_clock, 0, "");
/*
* Initialize 386 and configure to run kernel
*/
/*
* Initialize segments & interrupt table
*/
int currentldt;
int _default_ldt;
#ifdef SMP
union descriptor gdt[NGDT + NCPU]; /* global descriptor table */
#else
union descriptor gdt[NGDT]; /* global descriptor table */
#endif
struct gate_descriptor idt[NIDT]; /* interrupt descriptor table */
union descriptor ldt[NLDT]; /* local descriptor table */
#ifdef SMP
/* table descriptors - used to load tables by microp */
struct region_descriptor r_gdt, r_idt;
#endif
#ifdef SMP
extern struct i386tss common_tss; /* One tss per cpu */
#ifdef VM86
extern struct segment_descriptor common_tssd;
extern int private_tss;
extern u_int my_tr;
#endif /* VM86 */
#else
struct i386tss common_tss;
#ifdef VM86
struct segment_descriptor common_tssd;
u_int private_tss; /* flag indicating private tss */
u_int my_tr; /* which task register setting */
#endif /* VM86 */
#endif
static struct i386tss dblfault_tss;
static char dblfault_stack[PAGE_SIZE];
extern struct user *proc0paddr;
/* software prototypes -- in more palatable form */
struct soft_segment_descriptor gdt_segs[
#ifdef SMP
NGDT + NCPU
#endif
] = {
/* GNULL_SEL 0 Null Descriptor */
{ 0x0, /* segment base address */
0x0, /* length */
0, /* segment type */
0, /* segment descriptor priority level */
0, /* segment descriptor present */
0, 0,
0, /* default 32 vs 16 bit size */
0 /* limit granularity (byte/page units)*/ },
/* GCODE_SEL 1 Code Descriptor for kernel */
{ 0x0, /* segment base address */
0xfffff, /* length - all address space */
SDT_MEMERA, /* segment type */
0, /* segment descriptor priority level */
1, /* segment descriptor present */
0, 0,
1, /* default 32 vs 16 bit size */
1 /* limit granularity (byte/page units)*/ },
/* GDATA_SEL 2 Data Descriptor for kernel */
{ 0x0, /* segment base address */
0xfffff, /* length - all address space */
SDT_MEMRWA, /* segment type */
0, /* segment descriptor priority level */
1, /* segment descriptor present */
0, 0,
1, /* default 32 vs 16 bit size */
1 /* limit granularity (byte/page units)*/ },
/* GLDT_SEL 3 LDT Descriptor */
{ (int) ldt, /* segment base address */
sizeof(ldt)-1, /* length - all address space */
SDT_SYSLDT, /* segment type */
SEL_UPL, /* segment descriptor priority level */
1, /* segment descriptor present */
0, 0,
0, /* unused - default 32 vs 16 bit size */
0 /* limit granularity (byte/page units)*/ },
/* GTGATE_SEL 4 Null Descriptor - Placeholder */
{ 0x0, /* segment base address */
0x0, /* length - all address space */
0, /* segment type */
0, /* segment descriptor priority level */
0, /* segment descriptor present */
0, 0,
0, /* default 32 vs 16 bit size */
0 /* limit granularity (byte/page units)*/ },
/* GPANIC_SEL 5 Panic Tss Descriptor */
{ (int) &dblfault_tss, /* segment base address */
sizeof(struct i386tss)-1,/* length - all address space */
SDT_SYS386TSS, /* segment type */
0, /* segment descriptor priority level */
1, /* segment descriptor present */
0, 0,
0, /* unused - default 32 vs 16 bit size */
0 /* limit granularity (byte/page units)*/ },
/* GPROC0_SEL 6 Proc 0 Tss Descriptor */
{
(int) &common_tss, /* segment base address */
sizeof(struct i386tss)-1,/* length - all address space */
SDT_SYS386TSS, /* segment type */
0, /* segment descriptor priority level */
1, /* segment descriptor present */
0, 0,
0, /* unused - default 32 vs 16 bit size */
0 /* limit granularity (byte/page units)*/ },
/* GUSERLDT_SEL 7 User LDT Descriptor per process */
{ (int) ldt, /* segment base address */
(512 * sizeof(union descriptor)-1), /* length */
SDT_SYSLDT, /* segment type */
0, /* segment descriptor priority level */
1, /* segment descriptor present */
0, 0,
0, /* unused - default 32 vs 16 bit size */
0 /* limit granularity (byte/page units)*/ },
/* GAPMCODE32_SEL 8 APM BIOS 32-bit interface (32bit Code) */
{ 0, /* segment base address (overwritten by APM) */
0xfffff, /* length */
SDT_MEMERA, /* segment type */
0, /* segment descriptor priority level */
1, /* segment descriptor present */
0, 0,
1, /* default 32 vs 16 bit size */
1 /* limit granularity (byte/page units)*/ },
/* GAPMCODE16_SEL 9 APM BIOS 32-bit interface (16bit Code) */
{ 0, /* segment base address (overwritten by APM) */
0xfffff, /* length */
SDT_MEMERA, /* segment type */
0, /* segment descriptor priority level */
1, /* segment descriptor present */
0, 0,
0, /* default 32 vs 16 bit size */
1 /* limit granularity (byte/page units)*/ },
/* GAPMDATA_SEL 10 APM BIOS 32-bit interface (Data) */
{ 0, /* segment base address (overwritten by APM) */
0xfffff, /* length */
SDT_MEMRWA, /* segment type */
0, /* segment descriptor priority level */
1, /* segment descriptor present */
0, 0,
1, /* default 32 vs 16 bit size */
1 /* limit granularity (byte/page units)*/ },
};
static struct soft_segment_descriptor ldt_segs[] = {
/* Null Descriptor - overwritten by call gate */
{ 0x0, /* segment base address */
0x0, /* length - all address space */
0, /* segment type */
0, /* segment descriptor priority level */
0, /* segment descriptor present */
0, 0,
0, /* default 32 vs 16 bit size */
0 /* limit granularity (byte/page units)*/ },
/* Null Descriptor - overwritten by call gate */
{ 0x0, /* segment base address */
0x0, /* length - all address space */
0, /* segment type */
0, /* segment descriptor priority level */
0, /* segment descriptor present */
0, 0,
0, /* default 32 vs 16 bit size */
0 /* limit granularity (byte/page units)*/ },
/* Null Descriptor - overwritten by call gate */
{ 0x0, /* segment base address */
0x0, /* length - all address space */
0, /* segment type */
0, /* segment descriptor priority level */
0, /* segment descriptor present */
0, 0,
0, /* default 32 vs 16 bit size */
0 /* limit granularity (byte/page units)*/ },
/* Code Descriptor for user */
{ 0x0, /* segment base address */
0xfffff, /* length - all address space */
SDT_MEMERA, /* segment type */
SEL_UPL, /* segment descriptor priority level */
1, /* segment descriptor present */
0, 0,
1, /* default 32 vs 16 bit size */
1 /* limit granularity (byte/page units)*/ },
/* Data Descriptor for user */
{ 0x0, /* segment base address */
0xfffff, /* length - all address space */
SDT_MEMRWA, /* segment type */
SEL_UPL, /* segment descriptor priority level */
1, /* segment descriptor present */
0, 0,
1, /* default 32 vs 16 bit size */
1 /* limit granularity (byte/page units)*/ },
};
void
setidt(idx, func, typ, dpl, selec)
int idx;
inthand_t *func;
int typ;
int dpl;
int selec;
{
struct gate_descriptor *ip = idt + idx;
ip->gd_looffset = (int)func;
ip->gd_selector = selec;
ip->gd_stkcpy = 0;
ip->gd_xx = 0;
ip->gd_type = typ;
ip->gd_dpl = dpl;
ip->gd_p = 1;
ip->gd_hioffset = ((int)func)>>16 ;
}
#define IDTVEC(name) __CONCAT(X,name)
extern inthand_t
IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
IDTVEC(syscall), IDTVEC(int0x80_syscall);
void
sdtossd(sd, ssd)
struct segment_descriptor *sd;
struct soft_segment_descriptor *ssd;
{
ssd->ssd_base = (sd->sd_hibase << 24) | sd->sd_lobase;
ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
ssd->ssd_type = sd->sd_type;
ssd->ssd_dpl = sd->sd_dpl;
ssd->ssd_p = sd->sd_p;
ssd->ssd_def32 = sd->sd_def32;
ssd->ssd_gran = sd->sd_gran;
}
void
init386(first)
int first;
{
int x;
unsigned biosbasemem, biosextmem;
struct gate_descriptor *gdp;
int gsel_tss;
struct isa_device *idp;
#ifndef SMP
/* table descriptors - used to load tables by microp */
struct region_descriptor r_gdt, r_idt;
#endif
int pagesinbase, pagesinext;
int target_page, pa_indx;
int off;
int speculative_mprobe;
proc0.p_addr = proc0paddr;
atdevbase = ISA_HOLE_START + KERNBASE;
/*
* Initialize the console before we print anything out.
*/
cninit();
#ifdef PC98
/*
* Initialize DMAC
*/
pc98_init_dmac();
#endif
/*
* make gdt memory segments, the code segment goes up to end of the
* page with etext in it, the data segment goes to the end of
* the address space
*/
/*
* XXX text protection is temporarily (?) disabled. The limit was
* i386_btop(round_page(etext)) - 1.
*/
gdt_segs[GCODE_SEL].ssd_limit = i386_btop(0) - 1;
gdt_segs[GDATA_SEL].ssd_limit = i386_btop(0) - 1;
#ifdef BDE_DEBUGGER
#define NGDT1 8 /* avoid overwriting db entries with APM ones */
#else
#define NGDT1 (sizeof gdt_segs / sizeof gdt_segs[0])
#endif
for (x = 0; x < NGDT1; x++)
ssdtosd(&gdt_segs[x], &gdt[x].sd);
#ifdef VM86
common_tssd = gdt[GPROC0_SEL].sd;
#endif /* VM86 */
#ifdef SMP
/*
* Spin these up now. init_secondary() grabs them. We could use
* #for(x,y,z) / #endfor cpp directives if they existed.
*/
for (x = 0; x < NCPU; x++) {
gdt_segs[NGDT + x] = gdt_segs[GPROC0_SEL];
ssdtosd(&gdt_segs[NGDT + x], &gdt[NGDT + x].sd);
}
#endif
/* make ldt memory segments */
/*
* The data segment limit must not cover the user area because we
* don't want the user area to be writable in copyout() etc. (page
* level protection is lost in kernel mode on 386's). Also, we
* don't want the user area to be writable directly (page level
* protection of the user area is not available on 486's with
* CR0_WP set, because there is no user-read/kernel-write mode).
*
* XXX - VM_MAXUSER_ADDRESS is an end address, not a max. And it
* should be spelled ...MAX_USER...
*/
#define VM_END_USER_RW_ADDRESS VM_MAXUSER_ADDRESS
/*
* The code segment limit has to cover the user area until we move
* the signal trampoline out of the user area. This is safe because
* the code segment cannot be written to directly.
*/
#define VM_END_USER_R_ADDRESS (VM_END_USER_RW_ADDRESS + UPAGES * PAGE_SIZE)
ldt_segs[LUCODE_SEL].ssd_limit = i386_btop(VM_END_USER_R_ADDRESS) - 1;
ldt_segs[LUDATA_SEL].ssd_limit = i386_btop(VM_END_USER_RW_ADDRESS) - 1;
for (x = 0; x < sizeof ldt_segs / sizeof ldt_segs[0]; x++)
ssdtosd(&ldt_segs[x], &ldt[x].sd);
/* exceptions */
for (x = 0; x < NIDT; x++)
setidt(x, &IDTVEC(rsvd), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
setidt(0, &IDTVEC(div), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
setidt(1, &IDTVEC(dbg), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
setidt(2, &IDTVEC(nmi), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
setidt(3, &IDTVEC(bpt), SDT_SYS386TGT, SEL_UPL, GSEL(GCODE_SEL, SEL_KPL));
setidt(4, &IDTVEC(ofl), SDT_SYS386TGT, SEL_UPL, GSEL(GCODE_SEL, SEL_KPL));
setidt(5, &IDTVEC(bnd), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
setidt(6, &IDTVEC(ill), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
setidt(7, &IDTVEC(dna), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
setidt(8, 0, SDT_SYSTASKGT, SEL_KPL, GSEL(GPANIC_SEL, SEL_KPL));
setidt(9, &IDTVEC(fpusegm), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
setidt(10, &IDTVEC(tss), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
setidt(11, &IDTVEC(missing), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
setidt(12, &IDTVEC(stk), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
setidt(13, &IDTVEC(prot), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
#ifdef CPU_BUGGY_CYRIX
setidt(14, &IDTVEC(page), SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
#else
setidt(14, &IDTVEC(page), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
#endif
setidt(15, &IDTVEC(rsvd), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
setidt(16, &IDTVEC(fpu), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
setidt(17, &IDTVEC(align), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
setidt(18, &IDTVEC(mchk), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
setidt(0x80, &IDTVEC(int0x80_syscall),
SDT_SYS386TGT, SEL_UPL, GSEL(GCODE_SEL, SEL_KPL));
#include "isa.h"
#if NISA >0
isa_defaultirq();
#endif
rand_initialize();
r_gdt.rd_limit = sizeof(gdt) - 1;
r_gdt.rd_base = (int) gdt;
lgdt(&r_gdt);
r_idt.rd_limit = sizeof(idt) - 1;
r_idt.rd_base = (int) idt;
lidt(&r_idt);
_default_ldt = GSEL(GLDT_SEL, SEL_KPL);
lldt(_default_ldt);
currentldt = _default_ldt;
#ifdef DDB
kdb_init();
if (boothowto & RB_KDB)
Debugger("Boot flags requested debugger");
#endif
finishidentcpu(); /* Final stage of CPU initialization */
setidt(6, &IDTVEC(ill), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
initializecpu(); /* Initialize CPU registers */
#ifdef PC98
pc98_getmemsize();
biosbasemem = 640; /* 640KB */
biosextmem = (Maxmem * PAGE_SIZE - 0x100000)/1024; /* extent memory */
#else /* IBM-PC */
/* Use BIOS values stored in RTC CMOS RAM, since probing
* breaks certain 386 AT relics.
*/
biosbasemem = rtcin(RTC_BASELO)+ (rtcin(RTC_BASEHI)<<8);
biosextmem = rtcin(RTC_EXTLO)+ (rtcin(RTC_EXTHI)<<8);
/*
* If BIOS tells us that it has more than 640k in the basemem,
* don't believe it - set it to 640k.
*/
if (biosbasemem > 640) {
printf("Preposterous RTC basemem of %dK, truncating to 640K\n",
biosbasemem);
biosbasemem = 640;
}
if (bootinfo.bi_memsizes_valid && bootinfo.bi_basemem > 640) {
printf("Preposterous BIOS basemem of %dK, truncating to 640K\n",
bootinfo.bi_basemem);
bootinfo.bi_basemem = 640;
}
/*
* Warn if the official BIOS interface disagrees with the RTC
* interface used above about the amount of base memory or the
* amount of extended memory. Prefer the BIOS value for the base
* memory. This is necessary for machines that `steal' base
* memory for use as BIOS memory, at least if we are going to use
* the BIOS for apm. Prefer the RTC value for extended memory.
* Eventually the hackish interface shouldn't even be looked at.
*/
if (bootinfo.bi_memsizes_valid) {
if (bootinfo.bi_basemem != biosbasemem) {
vm_offset_t pa;
printf(
"BIOS basemem (%ldK) != RTC basemem (%dK), setting to BIOS value\n",
bootinfo.bi_basemem, biosbasemem);
biosbasemem = bootinfo.bi_basemem;
/*
* XXX if biosbasemem is now < 640, there is `hole'
* between the end of base memory and the start of
* ISA memory. The hole may be empty or it may
* contain BIOS code or data. Map it read/write so
* that the BIOS can write to it. (Memory from 0 to
* the physical end of the kernel is mapped read-only
* to begin with and then parts of it are remapped.
* The parts that aren't remapped form holes that
* remain read-only and are unused by the kernel.
* The base memory area is below the physical end of
* the kernel and right now forms a read-only hole.
* The part of it from 0 to
* (trunc_page(biosbasemem * 1024) - 1) will be
* remapped and used by the kernel later.)
*
* This code is similar to the code used in
* pmap_mapdev, but since no memory needs to be
* allocated we simply change the mapping.
*/
for (pa = trunc_page(biosbasemem * 1024);
pa < ISA_HOLE_START; pa += PAGE_SIZE) {
unsigned *pte;
pte = (unsigned *)vtopte(pa + KERNBASE);
*pte = pa | PG_RW | PG_V;
}
}
if (bootinfo.bi_extmem != biosextmem)
printf("BIOS extmem (%ldK) != RTC extmem (%dK)\n",
bootinfo.bi_extmem, biosextmem);
}
#endif
#ifdef SMP
/* make hole for AP bootstrap code */
pagesinbase = mp_bootaddress(biosbasemem) / PAGE_SIZE;
#else
pagesinbase = biosbasemem * 1024 / PAGE_SIZE;
#endif
pagesinext = biosextmem * 1024 / PAGE_SIZE;
/*
* Special hack for chipsets that still remap the 384k hole when
* there's 16MB of memory - this really confuses people that
* are trying to use bus mastering ISA controllers with the
* "16MB limit"; they only have 16MB, but the remapping puts
* them beyond the limit.
*/
#ifndef PC98
/*
* If extended memory is between 15-16MB (16-17MB phys address range),
* chop it to 15MB.
*/
if ((pagesinext > 3840) && (pagesinext < 4096))
pagesinext = 3840;
#endif
/*
* Maxmem isn't the "maximum memory", it's one larger than the
* highest page of the physical address space. It should be
* called something like "Maxphyspage".
*/
Maxmem = pagesinext + 0x100000/PAGE_SIZE;
/*
* Indicate that we wish to do a speculative search for memory beyond
* the end of the reported size if the indicated amount is 64MB (0x4000
* pages) - which is the largest amount that the BIOS/bootblocks can
* currently report. If a specific amount of memory is indicated via
* the MAXMEM option or the npx0 "msize", then don't do the speculative
* memory probe.
*/
if (Maxmem >= 0x4000)
speculative_mprobe = TRUE;
else
speculative_mprobe = FALSE;
#ifdef MAXMEM
Maxmem = MAXMEM/4;
speculative_mprobe = FALSE;
#endif
#if NNPX > 0
idp = find_isadev(isa_devtab_null, &npxdriver, 0);
if (idp != NULL && idp->id_msize != 0) {
Maxmem = idp->id_msize / 4;
speculative_mprobe = FALSE;
}
#endif
#ifdef SMP
/* look for the MP hardware - needed for apic addresses */
mp_probe();
#endif
/* call pmap initialization to make new kernel address space */
pmap_bootstrap (first, 0);
/*
* Size up each available chunk of physical memory.
*/
/*
* We currently don't bother testing base memory.
* XXX ...but we probably should.
*/
pa_indx = 0;
if (pagesinbase > 1) {
phys_avail[pa_indx++] = PAGE_SIZE; /* skip first page of memory */
phys_avail[pa_indx] = ptoa(pagesinbase);/* memory up to the ISA hole */
physmem = pagesinbase - 1;
} else {
/* point at first chunk end */
pa_indx++;
}
for (target_page = avail_start; target_page < ptoa(Maxmem); target_page += PAGE_SIZE) {
int tmp, page_bad;
page_bad = FALSE;
#ifdef PC98
/* skip system area */
if (target_page>=ptoa(Maxmem_under16M) &&
target_page < ptoa(4096))
page_bad = TRUE;
#endif
/*
* map page into kernel: valid, read/write, non-cacheable
*/
*(int *)CMAP1 = PG_V | PG_RW | PG_N | target_page;
invltlb();
tmp = *(int *)CADDR1;
/*
* Test for alternating 1's and 0's
*/
*(volatile int *)CADDR1 = 0xaaaaaaaa;
if (*(volatile int *)CADDR1 != 0xaaaaaaaa) {
page_bad = TRUE;
}
/*
* Test for alternating 0's and 1's
*/
*(volatile int *)CADDR1 = 0x55555555;
if (*(volatile int *)CADDR1 != 0x55555555) {
page_bad = TRUE;
}
/*
* Test for all 1's
*/
*(volatile int *)CADDR1 = 0xffffffff;
if (*(volatile int *)CADDR1 != 0xffffffff) {
page_bad = TRUE;
}
/*
* Test for all 0's
*/
*(volatile int *)CADDR1 = 0x0;
if (*(volatile int *)CADDR1 != 0x0) {
/*
* test of page failed
*/
page_bad = TRUE;
}
/*
* Restore original value.
*/
*(int *)CADDR1 = tmp;
/*
* Adjust array of valid/good pages.
*/
if (page_bad == FALSE) {
/*
* If this good page is a continuation of the
* previous set of good pages, then just increase
* the end pointer. Otherwise start a new chunk.
* Note that "end" points one higher than end,
* making the range >= start and < end.
* If we're also doing a speculative memory
* test and we at or past the end, bump up Maxmem
* so that we keep going. The first bad page
* will terminate the loop.
*/
if (phys_avail[pa_indx] == target_page) {
phys_avail[pa_indx] += PAGE_SIZE;
if (speculative_mprobe == TRUE &&
phys_avail[pa_indx] >= (64*1024*1024))
Maxmem++;
} else {
pa_indx++;
if (pa_indx == PHYS_AVAIL_ARRAY_END) {
printf("Too many holes in the physical address space, giving up\n");
pa_indx--;
break;
}
phys_avail[pa_indx++] = target_page; /* start */
phys_avail[pa_indx] = target_page + PAGE_SIZE; /* end */
}
physmem++;
}
}
*(int *)CMAP1 = 0;
invltlb();
/*
* XXX
* The last chunk must contain at least one page plus the message
* buffer to avoid complicating other code (message buffer address
* calculation, etc.).
*/
while (phys_avail[pa_indx - 1] + PAGE_SIZE +
round_page(sizeof(struct msgbuf)) >= phys_avail[pa_indx]) {
physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
phys_avail[pa_indx--] = 0;
phys_avail[pa_indx--] = 0;
}
Maxmem = atop(phys_avail[pa_indx]);
/* Trim off space for the message buffer. */
phys_avail[pa_indx] -= round_page(sizeof(struct msgbuf));
avail_end = phys_avail[pa_indx];
/* now running on new page tables, configured,and u/iom is accessible */
/* Map the message buffer. */
for (off = 0; off < round_page(sizeof(struct msgbuf)); off += PAGE_SIZE)
pmap_enter(kernel_pmap, (vm_offset_t)msgbufp + off,
avail_end + off, VM_PROT_ALL, TRUE);
msgbufmapped = 1;
/* make an initial tss so cpu can get interrupt stack on syscall! */
#ifdef VM86
common_tss.tss_esp0 = (int) proc0.p_addr + UPAGES*PAGE_SIZE - 16;
#else
common_tss.tss_esp0 = (int) proc0.p_addr + UPAGES*PAGE_SIZE;
#endif /* VM86 */
common_tss.tss_ss0 = GSEL(GDATA_SEL, SEL_KPL) ;
common_tss.tss_ioopt = (sizeof common_tss) << 16;
gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
ltr(gsel_tss);
#ifdef VM86
private_tss = 0;
my_tr = GPROC0_SEL;
#endif
dblfault_tss.tss_esp = dblfault_tss.tss_esp0 = dblfault_tss.tss_esp1 =
dblfault_tss.tss_esp2 = (int) &dblfault_stack[sizeof(dblfault_stack)];
dblfault_tss.tss_ss = dblfault_tss.tss_ss0 = dblfault_tss.tss_ss1 =
dblfault_tss.tss_ss2 = GSEL(GDATA_SEL, SEL_KPL);
dblfault_tss.tss_cr3 = (int)IdlePTD;
dblfault_tss.tss_eip = (int) dblfault_handler;
dblfault_tss.tss_eflags = PSL_KERNEL;
dblfault_tss.tss_ds = dblfault_tss.tss_es = dblfault_tss.tss_fs =
dblfault_tss.tss_gs = GSEL(GDATA_SEL, SEL_KPL);
dblfault_tss.tss_cs = GSEL(GCODE_SEL, SEL_KPL);
dblfault_tss.tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
/* make a call gate to reenter kernel with */
gdp = &ldt[LSYS5CALLS_SEL].gd;
x = (int) &IDTVEC(syscall);
gdp->gd_looffset = x++;
gdp->gd_selector = GSEL(GCODE_SEL,SEL_KPL);
gdp->gd_stkcpy = 1;
gdp->gd_type = SDT_SYS386CGT;
gdp->gd_dpl = SEL_UPL;
gdp->gd_p = 1;
gdp->gd_hioffset = ((int) &IDTVEC(syscall)) >>16;
/* XXX does this work? */
ldt[LBSDICALLS_SEL] = ldt[LSYS5CALLS_SEL];
/* transfer to user mode */
_ucodesel = LSEL(LUCODE_SEL, SEL_UPL);
_udatasel = LSEL(LUDATA_SEL, SEL_UPL);
/* setup proc 0's pcb */
proc0.p_addr->u_pcb.pcb_flags = 0;
proc0.p_addr->u_pcb.pcb_cr3 = (int)IdlePTD;
proc0.p_addr->u_pcb.pcb_mpnest = 1;
proc0.p_addr->u_pcb.pcb_ext = 0;
}
int
ptrace_set_pc(p, addr)
struct proc *p;
unsigned int addr;
{
p->p_md.md_regs->tf_eip = addr;
return (0);
}
int
ptrace_single_step(p)
struct proc *p;
{
p->p_md.md_regs->tf_eflags |= PSL_T;
return (0);
}
int ptrace_write_u(p, off, data)
struct proc *p;
vm_offset_t off;
int data;
{
struct trapframe frame_copy;
vm_offset_t min;
struct trapframe *tp;
/*
* Privileged kernel state is scattered all over the user area.
* Only allow write access to parts of regs and to fpregs.
*/
min = (char *)p->p_md.md_regs - (char *)p->p_addr;
if (off >= min && off <= min + sizeof(struct trapframe) - sizeof(int)) {
tp = p->p_md.md_regs;
frame_copy = *tp;
*(int *)((char *)&frame_copy + (off - min)) = data;
if (!EFLAGS_SECURE(frame_copy.tf_eflags, tp->tf_eflags) ||
!CS_SECURE(frame_copy.tf_cs))
return (EINVAL);
*(int*)((char *)p->p_addr + off) = data;
return (0);
}
min = offsetof(struct user, u_pcb) + offsetof(struct pcb, pcb_savefpu);
if (off >= min && off <= min + sizeof(struct save87) - sizeof(int)) {
*(int*)((char *)p->p_addr + off) = data;
return (0);
}
return (EFAULT);
}
int
fill_regs(p, regs)
struct proc *p;
struct reg *regs;
{
struct pcb *pcb;
struct trapframe *tp;
tp = p->p_md.md_regs;
regs->r_es = tp->tf_es;
regs->r_ds = tp->tf_ds;
regs->r_edi = tp->tf_edi;
regs->r_esi = tp->tf_esi;
regs->r_ebp = tp->tf_ebp;
regs->r_ebx = tp->tf_ebx;
regs->r_edx = tp->tf_edx;
regs->r_ecx = tp->tf_ecx;
regs->r_eax = tp->tf_eax;
regs->r_eip = tp->tf_eip;
regs->r_cs = tp->tf_cs;
regs->r_eflags = tp->tf_eflags;
regs->r_esp = tp->tf_esp;
regs->r_ss = tp->tf_ss;
pcb = &p->p_addr->u_pcb;
regs->r_fs = pcb->pcb_fs;
regs->r_gs = pcb->pcb_gs;
return (0);
}
int
set_regs(p, regs)
struct proc *p;
struct reg *regs;
{
struct pcb *pcb;
struct trapframe *tp;
tp = p->p_md.md_regs;
if (!EFLAGS_SECURE(regs->r_eflags, tp->tf_eflags) ||
!CS_SECURE(regs->r_cs))
return (EINVAL);
tp->tf_es = regs->r_es;
tp->tf_ds = regs->r_ds;
tp->tf_edi = regs->r_edi;
tp->tf_esi = regs->r_esi;
tp->tf_ebp = regs->r_ebp;
tp->tf_ebx = regs->r_ebx;
tp->tf_edx = regs->r_edx;
tp->tf_ecx = regs->r_ecx;
tp->tf_eax = regs->r_eax;
tp->tf_eip = regs->r_eip;
tp->tf_cs = regs->r_cs;
tp->tf_eflags = regs->r_eflags;
tp->tf_esp = regs->r_esp;
tp->tf_ss = regs->r_ss;
pcb = &p->p_addr->u_pcb;
pcb->pcb_fs = regs->r_fs;
pcb->pcb_gs = regs->r_gs;
return (0);
}
#ifndef DDB
void
Debugger(const char *msg)
{
printf("Debugger(\"%s\") called.\n", msg);
}
#endif /* no DDB */
#include <sys/disklabel.h>
/*
* Determine the size of the transfer, and make sure it is
* within the boundaries of the partition. Adjust transfer
* if needed, and signal errors or early completion.
*/
int
bounds_check_with_label(struct buf *bp, struct disklabel *lp, int wlabel)
{
struct partition *p = lp->d_partitions + dkpart(bp->b_dev);
int labelsect = lp->d_partitions[0].p_offset;
int maxsz = p->p_size,
sz = (bp->b_bcount + DEV_BSIZE - 1) >> DEV_BSHIFT;
/* overwriting disk label ? */
/* XXX should also protect bootstrap in first 8K */
if (bp->b_blkno + p->p_offset <= LABELSECTOR + labelsect &&
#if LABELSECTOR != 0
bp->b_blkno + p->p_offset + sz > LABELSECTOR + labelsect &&
#endif
(bp->b_flags & B_READ) == 0 && wlabel == 0) {
bp->b_error = EROFS;
goto bad;
}
#if defined(DOSBBSECTOR) && defined(notyet)
/* overwriting master boot record? */
if (bp->b_blkno + p->p_offset <= DOSBBSECTOR &&
(bp->b_flags & B_READ) == 0 && wlabel == 0) {
bp->b_error = EROFS;
goto bad;
}
#endif
/* beyond partition? */
if (bp->b_blkno < 0 || bp->b_blkno + sz > maxsz) {
/* if exactly at end of disk, return an EOF */
if (bp->b_blkno == maxsz) {
bp->b_resid = bp->b_bcount;
return(0);
}
/* or truncate if part of it fits */
sz = maxsz - bp->b_blkno;
if (sz <= 0) {
bp->b_error = EINVAL;
goto bad;
}
bp->b_bcount = sz << DEV_BSHIFT;
}
bp->b_pblkno = bp->b_blkno + p->p_offset;
return(1);
bad:
bp->b_flags |= B_ERROR;
return(-1);
}
#ifdef DDB
/*
* Provide inb() and outb() as functions. They are normally only
* available as macros calling inlined functions, thus cannot be
* called inside DDB.
*
* The actual code is stolen from <machine/cpufunc.h>, and de-inlined.
*/
#undef inb
#undef outb
/* silence compiler warnings */
u_char inb(u_int);
void outb(u_int, u_char);
u_char
inb(u_int port)
{
u_char data;
/*
* We use %%dx and not %1 here because i/o is done at %dx and not at
* %edx, while gcc generates inferior code (movw instead of movl)
* if we tell it to load (u_short) port.
*/
__asm __volatile("inb %%dx,%0" : "=a" (data) : "d" (port));
return (data);
}
void
outb(u_int port, u_char data)
{
u_char al;
/*
* Use an unnecessary assignment to help gcc's register allocator.
* This make a large difference for gcc-1.40 and a tiny difference
* for gcc-2.6.0. For gcc-1.40, al had to be ``asm("ax")'' for
* best results. gcc-2.6.0 can't handle this.
*/
al = data;
__asm __volatile("outb %0,%%dx" : : "a" (al), "d" (port));
}
#endif /* DDB */