freebsd-nq/sys/cam/cam_xpt.c
Kenneth D. Merry 06e794928b Add Serial Management Protocol (SMP) passthrough support to CAM.
This includes support in the kernel, camcontrol(8), libcam and the mps(4)
driver for SMP passthrough.

The CAM SCSI probe code has been modified to fetch Inquiry VPD page 0x00
to determine supported pages, and will now fetch page 0x83 in addition to
page 0x80 if supported.

Add two new CAM CCBs, XPT_SMP_IO, and XPT_GDEV_ADVINFO.  The SMP CCB is
intended for SMP requests and responses.  The ADVINFO is currently used to
fetch cached VPD page 0x83 data from the transport layer, but is intended
to be extensible to fetch other types of device-specific data.

SMP-only devices are not currently represented in the CAM topology, and so
the current semantics are that the SIM will route SMP CCBs to either the
addressed device, if it contains an SMP target, or its parent, if it
contains an SMP target.  (This is noted in cam_ccb.h, since it will change
later once we have the ability to have SMP-only devices in CAM's topology.)

smp_all.c,
smp_all.h:		New helper routines for SMP.  This includes
			SMP request building routines, response parsing
			routines, error decoding routines, and structure
			definitions for a number of SMP commands.

libcam/Makefile:	Add smp_all.c to libcam, so that SMP functionality
			is available to userland applications.

camcontrol.8,
camcontrol.c:		Add smp passthrough support to camcontrol.  Several
			new subcommands are now available:

			'smpcmd' functions much like 'cmd', except that it
			allows the user to send generic SMP commands.

			'smprg' sends the SMP report general command, and
			displays the decoded output.  It will automatically
			fetch extended output if it is available.

			'smppc' sends the SMP phy control command, with any
			number of potential options.  Among other things,
			this allows the user to reset a phy on a SAS
			expander, or disable a phy on an expander.

			'smpmaninfo' sends the SMP report manufacturer
			information and displays the decoded output.

			'smpphylist' displays a list of phys on an
			expander, and the CAM devices attached to those
			phys, if any.

cam.h,
cam.c:			Add a status value for SMP errors
			(CAM_SMP_STATUS_ERROR).

			Add a missing description for CAM_SCSI_IT_NEXUS_LOST.

			Add support for SMP commands to cam_error_string().

cam_ccb.h:		Rename the CAM_DIR_RESV flag to CAM_DIR_BOTH.  SMP
			commands are by nature bi-directional, and we may
			need to support bi-directional SCSI commands later.

			Add the XPT_SMP_IO CCB.  Since SMP commands are
			bi-directional, there are pointers for both the
			request and response.

			Add a fill routine for SMP CCBs.

			Add the XPT_GDEV_ADVINFO CCB.  This is currently
			used to fetch cached page 0x83 data from the
			transport later, but is extensible to fetch many
			other types of data.

cam_periph.c:		Add support in cam_periph_mapmem() for XPT_SMP_IO
			and XPT_GDEV_ADVINFO CCBs.

cam_xpt.c:		Add support for executing XPT_SMP_IO CCBs.

cam_xpt_internal.h:	Add fields for VPD pages 0x00 and 0x83 in struct
			cam_ed.

scsi_all.c:		Add scsi_get_sas_addr(), a function that parses
			VPD page 0x83 data and pulls out a SAS address.

scsi_all.h:		Add VPD page 0x00 and 0x83 structures, and a
			prototype for scsi_get_sas_addr().

scsi_pass.c:		Add support for mapping buffers in XPT_SMP_IO and
			XPT_GDEV_ADVINFO CCBs.

scsi_xpt.c:		In the SCSI probe code, first ask the device for
			VPD page 0x00.  If any VPD pages are supported,
			that page is required to be implemented.  Based on
			the response, we may probe for the serial number
			(page 0x80) or device id (page 0x83).

			Add support for the XPT_GDEV_ADVINFO CCB.

sys/conf/files:		Add smp_all.c.

mps.c:			Add support for passing in a uio in mps_map_command(),
			so we can map a S/G list at once.

			Add support for SMP passthrough commands in
			mps_data_cb().  SMP is a special case, because the
			first buffer in the S/G list is outbound and the
			second buffer is inbound.

			Add support for warning the user if the busdma code
			comes back with more buffers than will work for the
			command.  This will, for example, help the user
			determine why an SMP command failed if busdma comes
			back with three buffers.

mps_pci.c:		Add sys/uio.h.

mps_sas.c:		Add the SAS address and the parent handle to the
			list of fields we pull from device page 0 and cache
			in struct mpssas_target.  These are needed for SMP
			passthrough.

			Add support for the XPT_SMP_IO CCB.  For now, this
			CCB is routed to the addressed device if it supports
			SMP, or to its parent if it does not and the parent
			does.  This is necessary because CAM does not
			currently support SMP-only nodes in the topology.

			Make SMP passthrough support conditional on
			__FreeBSD_version >= 900026.  This will make it
			easier to MFC this change to the driver without
			MFCing the CAM changes as well.

mps_user.c:		Un-staticize mpi_init_sge() so we can use it for
			the SMP passthrough code.

mpsvar.h:		Add a uio and iovecs into struct mps_command for
			SMP passthrough commands.

			Add a cm_max_segs field to struct mps_command so
			that we can warn the user if busdma comes back with
			too many segments.

			Clear the cm_reply when a command gets freed.  If
			it is not cleared, reply frames will eventually get
			freed into the pool multiple times and corrupt the
			pool.  (This fix is from scottl.)

			Add a prototype for mpi_init_sge().

sys/param.h:		Bump __FreeBSD_version to 900026 for the for the
			inclusion of the XPT_GDEV_ADVINFO and XPT_SMP_IO
			CAM CCBs.
2010-11-30 22:39:46 +00:00

4843 lines
123 KiB
C

/*-
* Implementation of the Common Access Method Transport (XPT) layer.
*
* Copyright (c) 1997, 1998, 1999 Justin T. Gibbs.
* Copyright (c) 1997, 1998, 1999 Kenneth D. Merry.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions, and the following disclaimer,
* without modification, immediately at the beginning of the file.
* 2. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/bus.h>
#include <sys/systm.h>
#include <sys/types.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/time.h>
#include <sys/conf.h>
#include <sys/fcntl.h>
#include <sys/interrupt.h>
#include <sys/sbuf.h>
#include <sys/taskqueue.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/sysctl.h>
#include <sys/kthread.h>
#ifdef PC98
#include <pc98/pc98/pc98_machdep.h> /* geometry translation */
#endif
#include <cam/cam.h>
#include <cam/cam_ccb.h>
#include <cam/cam_periph.h>
#include <cam/cam_queue.h>
#include <cam/cam_sim.h>
#include <cam/cam_xpt.h>
#include <cam/cam_xpt_sim.h>
#include <cam/cam_xpt_periph.h>
#include <cam/cam_xpt_internal.h>
#include <cam/cam_debug.h>
#include <cam/scsi/scsi_all.h>
#include <cam/scsi/scsi_message.h>
#include <cam/scsi/scsi_pass.h>
#include <machine/stdarg.h> /* for xpt_print below */
#include "opt_cam.h"
/*
* This is the maximum number of high powered commands (e.g. start unit)
* that can be outstanding at a particular time.
*/
#ifndef CAM_MAX_HIGHPOWER
#define CAM_MAX_HIGHPOWER 4
#endif
/* Datastructures internal to the xpt layer */
MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers");
/* Object for defering XPT actions to a taskqueue */
struct xpt_task {
struct task task;
void *data1;
uintptr_t data2;
};
typedef enum {
XPT_FLAG_OPEN = 0x01
} xpt_flags;
struct xpt_softc {
xpt_flags flags;
u_int32_t xpt_generation;
/* number of high powered commands that can go through right now */
STAILQ_HEAD(highpowerlist, ccb_hdr) highpowerq;
int num_highpower;
/* queue for handling async rescan requests. */
TAILQ_HEAD(, ccb_hdr) ccb_scanq;
int buses_to_config;
int buses_config_done;
/* Registered busses */
TAILQ_HEAD(,cam_eb) xpt_busses;
u_int bus_generation;
struct intr_config_hook *xpt_config_hook;
int boot_delay;
struct callout boot_callout;
struct mtx xpt_topo_lock;
struct mtx xpt_lock;
};
typedef enum {
DM_RET_COPY = 0x01,
DM_RET_FLAG_MASK = 0x0f,
DM_RET_NONE = 0x00,
DM_RET_STOP = 0x10,
DM_RET_DESCEND = 0x20,
DM_RET_ERROR = 0x30,
DM_RET_ACTION_MASK = 0xf0
} dev_match_ret;
typedef enum {
XPT_DEPTH_BUS,
XPT_DEPTH_TARGET,
XPT_DEPTH_DEVICE,
XPT_DEPTH_PERIPH
} xpt_traverse_depth;
struct xpt_traverse_config {
xpt_traverse_depth depth;
void *tr_func;
void *tr_arg;
};
typedef int xpt_busfunc_t (struct cam_eb *bus, void *arg);
typedef int xpt_targetfunc_t (struct cam_et *target, void *arg);
typedef int xpt_devicefunc_t (struct cam_ed *device, void *arg);
typedef int xpt_periphfunc_t (struct cam_periph *periph, void *arg);
typedef int xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg);
/* Transport layer configuration information */
static struct xpt_softc xsoftc;
TUNABLE_INT("kern.cam.boot_delay", &xsoftc.boot_delay);
SYSCTL_INT(_kern_cam, OID_AUTO, boot_delay, CTLFLAG_RDTUN,
&xsoftc.boot_delay, 0, "Bus registration wait time");
/* Queues for our software interrupt handler */
typedef TAILQ_HEAD(cam_isrq, ccb_hdr) cam_isrq_t;
typedef TAILQ_HEAD(cam_simq, cam_sim) cam_simq_t;
static cam_simq_t cam_simq;
static struct mtx cam_simq_lock;
/* Pointers to software interrupt handlers */
static void *cambio_ih;
struct cam_periph *xpt_periph;
static periph_init_t xpt_periph_init;
static struct periph_driver xpt_driver =
{
xpt_periph_init, "xpt",
TAILQ_HEAD_INITIALIZER(xpt_driver.units), /* generation */ 0,
CAM_PERIPH_DRV_EARLY
};
PERIPHDRIVER_DECLARE(xpt, xpt_driver);
static d_open_t xptopen;
static d_close_t xptclose;
static d_ioctl_t xptioctl;
static struct cdevsw xpt_cdevsw = {
.d_version = D_VERSION,
.d_flags = 0,
.d_open = xptopen,
.d_close = xptclose,
.d_ioctl = xptioctl,
.d_name = "xpt",
};
/* Storage for debugging datastructures */
#ifdef CAMDEBUG
struct cam_path *cam_dpath;
#ifdef CAM_DEBUG_FLAGS
u_int32_t cam_dflags = CAM_DEBUG_FLAGS;
#else
u_int32_t cam_dflags = CAM_DEBUG_NONE;
#endif
TUNABLE_INT("kern.cam.dflags", &cam_dflags);
SYSCTL_INT(_kern_cam, OID_AUTO, dflags, CTLFLAG_RW,
&cam_dflags, 0, "Cam Debug Flags");
u_int32_t cam_debug_delay;
TUNABLE_INT("kern.cam.debug_delay", &cam_debug_delay);
SYSCTL_INT(_kern_cam, OID_AUTO, debug_delay, CTLFLAG_RW,
&cam_debug_delay, 0, "Cam Debug Flags");
#endif
/* Our boot-time initialization hook */
static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *);
static moduledata_t cam_moduledata = {
"cam",
cam_module_event_handler,
NULL
};
static int xpt_init(void *);
DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND);
MODULE_VERSION(cam, 1);
static void xpt_async_bcast(struct async_list *async_head,
u_int32_t async_code,
struct cam_path *path,
void *async_arg);
static path_id_t xptnextfreepathid(void);
static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus);
static union ccb *xpt_get_ccb(struct cam_ed *device);
static void xpt_run_dev_allocq(struct cam_eb *bus);
static void xpt_run_dev_sendq(struct cam_eb *bus);
static timeout_t xpt_release_devq_timeout;
static void xpt_release_simq_timeout(void *arg) __unused;
static void xpt_release_bus(struct cam_eb *bus);
static void xpt_release_devq_device(struct cam_ed *dev, cam_rl rl,
u_int count, int run_queue);
static struct cam_et*
xpt_alloc_target(struct cam_eb *bus, target_id_t target_id);
static void xpt_release_target(struct cam_et *target);
static struct cam_eb*
xpt_find_bus(path_id_t path_id);
static struct cam_et*
xpt_find_target(struct cam_eb *bus, target_id_t target_id);
static struct cam_ed*
xpt_find_device(struct cam_et *target, lun_id_t lun_id);
static void xpt_config(void *arg);
static xpt_devicefunc_t xptpassannouncefunc;
static void xptaction(struct cam_sim *sim, union ccb *work_ccb);
static void xptpoll(struct cam_sim *sim);
static void camisr(void *);
static void camisr_runqueue(void *);
static dev_match_ret xptbusmatch(struct dev_match_pattern *patterns,
u_int num_patterns, struct cam_eb *bus);
static dev_match_ret xptdevicematch(struct dev_match_pattern *patterns,
u_int num_patterns,
struct cam_ed *device);
static dev_match_ret xptperiphmatch(struct dev_match_pattern *patterns,
u_int num_patterns,
struct cam_periph *periph);
static xpt_busfunc_t xptedtbusfunc;
static xpt_targetfunc_t xptedttargetfunc;
static xpt_devicefunc_t xptedtdevicefunc;
static xpt_periphfunc_t xptedtperiphfunc;
static xpt_pdrvfunc_t xptplistpdrvfunc;
static xpt_periphfunc_t xptplistperiphfunc;
static int xptedtmatch(struct ccb_dev_match *cdm);
static int xptperiphlistmatch(struct ccb_dev_match *cdm);
static int xptbustraverse(struct cam_eb *start_bus,
xpt_busfunc_t *tr_func, void *arg);
static int xpttargettraverse(struct cam_eb *bus,
struct cam_et *start_target,
xpt_targetfunc_t *tr_func, void *arg);
static int xptdevicetraverse(struct cam_et *target,
struct cam_ed *start_device,
xpt_devicefunc_t *tr_func, void *arg);
static int xptperiphtraverse(struct cam_ed *device,
struct cam_periph *start_periph,
xpt_periphfunc_t *tr_func, void *arg);
static int xptpdrvtraverse(struct periph_driver **start_pdrv,
xpt_pdrvfunc_t *tr_func, void *arg);
static int xptpdperiphtraverse(struct periph_driver **pdrv,
struct cam_periph *start_periph,
xpt_periphfunc_t *tr_func,
void *arg);
static xpt_busfunc_t xptdefbusfunc;
static xpt_targetfunc_t xptdeftargetfunc;
static xpt_devicefunc_t xptdefdevicefunc;
static xpt_periphfunc_t xptdefperiphfunc;
static void xpt_finishconfig_task(void *context, int pending);
static int xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg);
static int xpt_for_all_devices(xpt_devicefunc_t *tr_func,
void *arg);
static void xpt_dev_async_default(u_int32_t async_code,
struct cam_eb *bus,
struct cam_et *target,
struct cam_ed *device,
void *async_arg);
static struct cam_ed * xpt_alloc_device_default(struct cam_eb *bus,
struct cam_et *target,
lun_id_t lun_id);
static xpt_devicefunc_t xptsetasyncfunc;
static xpt_busfunc_t xptsetasyncbusfunc;
static cam_status xptregister(struct cam_periph *periph,
void *arg);
static __inline int periph_is_queued(struct cam_periph *periph);
static __inline int device_is_alloc_queued(struct cam_ed *device);
static __inline int device_is_send_queued(struct cam_ed *device);
static __inline int
xpt_schedule_dev_allocq(struct cam_eb *bus, struct cam_ed *dev)
{
int retval;
if ((dev->drvq.entries > 0) &&
(dev->ccbq.devq_openings > 0) &&
(cam_ccbq_frozen(&dev->ccbq, CAM_PRIORITY_TO_RL(
CAMQ_GET_PRIO(&dev->drvq))) == 0)) {
/*
* The priority of a device waiting for CCB resources
* is that of the the highest priority peripheral driver
* enqueued.
*/
retval = xpt_schedule_dev(&bus->sim->devq->alloc_queue,
&dev->alloc_ccb_entry.pinfo,
CAMQ_GET_PRIO(&dev->drvq));
} else {
retval = 0;
}
return (retval);
}
static __inline int
xpt_schedule_dev_sendq(struct cam_eb *bus, struct cam_ed *dev)
{
int retval;
if ((dev->ccbq.queue.entries > 0) &&
(dev->ccbq.dev_openings > 0) &&
(cam_ccbq_frozen_top(&dev->ccbq) == 0)) {
/*
* The priority of a device waiting for controller
* resources is that of the the highest priority CCB
* enqueued.
*/
retval =
xpt_schedule_dev(&bus->sim->devq->send_queue,
&dev->send_ccb_entry.pinfo,
CAMQ_GET_PRIO(&dev->ccbq.queue));
} else {
retval = 0;
}
return (retval);
}
static __inline int
periph_is_queued(struct cam_periph *periph)
{
return (periph->pinfo.index != CAM_UNQUEUED_INDEX);
}
static __inline int
device_is_alloc_queued(struct cam_ed *device)
{
return (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX);
}
static __inline int
device_is_send_queued(struct cam_ed *device)
{
return (device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX);
}
static void
xpt_periph_init()
{
make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0");
}
static void
xptdone(struct cam_periph *periph, union ccb *done_ccb)
{
/* Caller will release the CCB */
wakeup(&done_ccb->ccb_h.cbfcnp);
}
static int
xptopen(struct cdev *dev, int flags, int fmt, struct thread *td)
{
/*
* Only allow read-write access.
*/
if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0))
return(EPERM);
/*
* We don't allow nonblocking access.
*/
if ((flags & O_NONBLOCK) != 0) {
printf("%s: can't do nonblocking access\n", devtoname(dev));
return(ENODEV);
}
/* Mark ourselves open */
mtx_lock(&xsoftc.xpt_lock);
xsoftc.flags |= XPT_FLAG_OPEN;
mtx_unlock(&xsoftc.xpt_lock);
return(0);
}
static int
xptclose(struct cdev *dev, int flag, int fmt, struct thread *td)
{
/* Mark ourselves closed */
mtx_lock(&xsoftc.xpt_lock);
xsoftc.flags &= ~XPT_FLAG_OPEN;
mtx_unlock(&xsoftc.xpt_lock);
return(0);
}
/*
* Don't automatically grab the xpt softc lock here even though this is going
* through the xpt device. The xpt device is really just a back door for
* accessing other devices and SIMs, so the right thing to do is to grab
* the appropriate SIM lock once the bus/SIM is located.
*/
static int
xptioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
{
int error;
error = 0;
switch(cmd) {
/*
* For the transport layer CAMIOCOMMAND ioctl, we really only want
* to accept CCB types that don't quite make sense to send through a
* passthrough driver. XPT_PATH_INQ is an exception to this, as stated
* in the CAM spec.
*/
case CAMIOCOMMAND: {
union ccb *ccb;
union ccb *inccb;
struct cam_eb *bus;
inccb = (union ccb *)addr;
bus = xpt_find_bus(inccb->ccb_h.path_id);
if (bus == NULL)
return (EINVAL);
switch (inccb->ccb_h.func_code) {
case XPT_SCAN_BUS:
case XPT_RESET_BUS:
if (inccb->ccb_h.target_id != CAM_TARGET_WILDCARD ||
inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) {
xpt_release_bus(bus);
return (EINVAL);
}
break;
case XPT_SCAN_TGT:
if (inccb->ccb_h.target_id == CAM_TARGET_WILDCARD ||
inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) {
xpt_release_bus(bus);
return (EINVAL);
}
break;
default:
break;
}
switch(inccb->ccb_h.func_code) {
case XPT_SCAN_BUS:
case XPT_RESET_BUS:
case XPT_PATH_INQ:
case XPT_ENG_INQ:
case XPT_SCAN_LUN:
case XPT_SCAN_TGT:
ccb = xpt_alloc_ccb();
CAM_SIM_LOCK(bus->sim);
/*
* Create a path using the bus, target, and lun the
* user passed in.
*/
if (xpt_create_path(&ccb->ccb_h.path, xpt_periph,
inccb->ccb_h.path_id,
inccb->ccb_h.target_id,
inccb->ccb_h.target_lun) !=
CAM_REQ_CMP){
error = EINVAL;
CAM_SIM_UNLOCK(bus->sim);
xpt_free_ccb(ccb);
break;
}
/* Ensure all of our fields are correct */
xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path,
inccb->ccb_h.pinfo.priority);
xpt_merge_ccb(ccb, inccb);
ccb->ccb_h.cbfcnp = xptdone;
cam_periph_runccb(ccb, NULL, 0, 0, NULL);
bcopy(ccb, inccb, sizeof(union ccb));
xpt_free_path(ccb->ccb_h.path);
xpt_free_ccb(ccb);
CAM_SIM_UNLOCK(bus->sim);
break;
case XPT_DEBUG: {
union ccb ccb;
/*
* This is an immediate CCB, so it's okay to
* allocate it on the stack.
*/
CAM_SIM_LOCK(bus->sim);
/*
* Create a path using the bus, target, and lun the
* user passed in.
*/
if (xpt_create_path(&ccb.ccb_h.path, xpt_periph,
inccb->ccb_h.path_id,
inccb->ccb_h.target_id,
inccb->ccb_h.target_lun) !=
CAM_REQ_CMP){
error = EINVAL;
CAM_SIM_UNLOCK(bus->sim);
break;
}
/* Ensure all of our fields are correct */
xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path,
inccb->ccb_h.pinfo.priority);
xpt_merge_ccb(&ccb, inccb);
ccb.ccb_h.cbfcnp = xptdone;
xpt_action(&ccb);
CAM_SIM_UNLOCK(bus->sim);
bcopy(&ccb, inccb, sizeof(union ccb));
xpt_free_path(ccb.ccb_h.path);
break;
}
case XPT_DEV_MATCH: {
struct cam_periph_map_info mapinfo;
struct cam_path *old_path;
/*
* We can't deal with physical addresses for this
* type of transaction.
*/
if (inccb->ccb_h.flags & CAM_DATA_PHYS) {
error = EINVAL;
break;
}
/*
* Save this in case the caller had it set to
* something in particular.
*/
old_path = inccb->ccb_h.path;
/*
* We really don't need a path for the matching
* code. The path is needed because of the
* debugging statements in xpt_action(). They
* assume that the CCB has a valid path.
*/
inccb->ccb_h.path = xpt_periph->path;
bzero(&mapinfo, sizeof(mapinfo));
/*
* Map the pattern and match buffers into kernel
* virtual address space.
*/
error = cam_periph_mapmem(inccb, &mapinfo);
if (error) {
inccb->ccb_h.path = old_path;
break;
}
/*
* This is an immediate CCB, we can send it on directly.
*/
xpt_action(inccb);
/*
* Map the buffers back into user space.
*/
cam_periph_unmapmem(inccb, &mapinfo);
inccb->ccb_h.path = old_path;
error = 0;
break;
}
default:
error = ENOTSUP;
break;
}
xpt_release_bus(bus);
break;
}
/*
* This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input,
* with the periphal driver name and unit name filled in. The other
* fields don't really matter as input. The passthrough driver name
* ("pass"), and unit number are passed back in the ccb. The current
* device generation number, and the index into the device peripheral
* driver list, and the status are also passed back. Note that
* since we do everything in one pass, unlike the XPT_GDEVLIST ccb,
* we never return a status of CAM_GDEVLIST_LIST_CHANGED. It is
* (or rather should be) impossible for the device peripheral driver
* list to change since we look at the whole thing in one pass, and
* we do it with lock protection.
*
*/
case CAMGETPASSTHRU: {
union ccb *ccb;
struct cam_periph *periph;
struct periph_driver **p_drv;
char *name;
u_int unit;
u_int cur_generation;
int base_periph_found;
int splbreaknum;
ccb = (union ccb *)addr;
unit = ccb->cgdl.unit_number;
name = ccb->cgdl.periph_name;
/*
* Every 100 devices, we want to drop our lock protection to
* give the software interrupt handler a chance to run.
* Most systems won't run into this check, but this should
* avoid starvation in the software interrupt handler in
* large systems.
*/
splbreaknum = 100;
ccb = (union ccb *)addr;
base_periph_found = 0;
/*
* Sanity check -- make sure we don't get a null peripheral
* driver name.
*/
if (*ccb->cgdl.periph_name == '\0') {
error = EINVAL;
break;
}
/* Keep the list from changing while we traverse it */
mtx_lock(&xsoftc.xpt_topo_lock);
ptstartover:
cur_generation = xsoftc.xpt_generation;
/* first find our driver in the list of drivers */
for (p_drv = periph_drivers; *p_drv != NULL; p_drv++)
if (strcmp((*p_drv)->driver_name, name) == 0)
break;
if (*p_drv == NULL) {
mtx_unlock(&xsoftc.xpt_topo_lock);
ccb->ccb_h.status = CAM_REQ_CMP_ERR;
ccb->cgdl.status = CAM_GDEVLIST_ERROR;
*ccb->cgdl.periph_name = '\0';
ccb->cgdl.unit_number = 0;
error = ENOENT;
break;
}
/*
* Run through every peripheral instance of this driver
* and check to see whether it matches the unit passed
* in by the user. If it does, get out of the loops and
* find the passthrough driver associated with that
* peripheral driver.
*/
for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL;
periph = TAILQ_NEXT(periph, unit_links)) {
if (periph->unit_number == unit) {
break;
} else if (--splbreaknum == 0) {
mtx_unlock(&xsoftc.xpt_topo_lock);
mtx_lock(&xsoftc.xpt_topo_lock);
splbreaknum = 100;
if (cur_generation != xsoftc.xpt_generation)
goto ptstartover;
}
}
/*
* If we found the peripheral driver that the user passed
* in, go through all of the peripheral drivers for that
* particular device and look for a passthrough driver.
*/
if (periph != NULL) {
struct cam_ed *device;
int i;
base_periph_found = 1;
device = periph->path->device;
for (i = 0, periph = SLIST_FIRST(&device->periphs);
periph != NULL;
periph = SLIST_NEXT(periph, periph_links), i++) {
/*
* Check to see whether we have a
* passthrough device or not.
*/
if (strcmp(periph->periph_name, "pass") == 0) {
/*
* Fill in the getdevlist fields.
*/
strcpy(ccb->cgdl.periph_name,
periph->periph_name);
ccb->cgdl.unit_number =
periph->unit_number;
if (SLIST_NEXT(periph, periph_links))
ccb->cgdl.status =
CAM_GDEVLIST_MORE_DEVS;
else
ccb->cgdl.status =
CAM_GDEVLIST_LAST_DEVICE;
ccb->cgdl.generation =
device->generation;
ccb->cgdl.index = i;
/*
* Fill in some CCB header fields
* that the user may want.
*/
ccb->ccb_h.path_id =
periph->path->bus->path_id;
ccb->ccb_h.target_id =
periph->path->target->target_id;
ccb->ccb_h.target_lun =
periph->path->device->lun_id;
ccb->ccb_h.status = CAM_REQ_CMP;
break;
}
}
}
/*
* If the periph is null here, one of two things has
* happened. The first possibility is that we couldn't
* find the unit number of the particular peripheral driver
* that the user is asking about. e.g. the user asks for
* the passthrough driver for "da11". We find the list of
* "da" peripherals all right, but there is no unit 11.
* The other possibility is that we went through the list
* of peripheral drivers attached to the device structure,
* but didn't find one with the name "pass". Either way,
* we return ENOENT, since we couldn't find something.
*/
if (periph == NULL) {
ccb->ccb_h.status = CAM_REQ_CMP_ERR;
ccb->cgdl.status = CAM_GDEVLIST_ERROR;
*ccb->cgdl.periph_name = '\0';
ccb->cgdl.unit_number = 0;
error = ENOENT;
/*
* It is unfortunate that this is even necessary,
* but there are many, many clueless users out there.
* If this is true, the user is looking for the
* passthrough driver, but doesn't have one in his
* kernel.
*/
if (base_periph_found == 1) {
printf("xptioctl: pass driver is not in the "
"kernel\n");
printf("xptioctl: put \"device pass\" in "
"your kernel config file\n");
}
}
mtx_unlock(&xsoftc.xpt_topo_lock);
break;
}
default:
error = ENOTTY;
break;
}
return(error);
}
static int
cam_module_event_handler(module_t mod, int what, void *arg)
{
int error;
switch (what) {
case MOD_LOAD:
if ((error = xpt_init(NULL)) != 0)
return (error);
break;
case MOD_UNLOAD:
return EBUSY;
default:
return EOPNOTSUPP;
}
return 0;
}
static void
xpt_rescan_done(struct cam_periph *periph, union ccb *done_ccb)
{
if (done_ccb->ccb_h.ppriv_ptr1 == NULL) {
xpt_free_path(done_ccb->ccb_h.path);
xpt_free_ccb(done_ccb);
} else {
done_ccb->ccb_h.cbfcnp = done_ccb->ccb_h.ppriv_ptr1;
(*done_ccb->ccb_h.cbfcnp)(periph, done_ccb);
}
xpt_release_boot();
}
/* thread to handle bus rescans */
static void
xpt_scanner_thread(void *dummy)
{
union ccb *ccb;
struct cam_sim *sim;
xpt_lock_buses();
for (;;) {
if (TAILQ_EMPTY(&xsoftc.ccb_scanq))
msleep(&xsoftc.ccb_scanq, &xsoftc.xpt_topo_lock, PRIBIO,
"ccb_scanq", 0);
if ((ccb = (union ccb *)TAILQ_FIRST(&xsoftc.ccb_scanq)) != NULL) {
TAILQ_REMOVE(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
xpt_unlock_buses();
sim = ccb->ccb_h.path->bus->sim;
CAM_SIM_LOCK(sim);
xpt_action(ccb);
CAM_SIM_UNLOCK(sim);
xpt_lock_buses();
}
}
}
void
xpt_rescan(union ccb *ccb)
{
struct ccb_hdr *hdr;
/* Prepare request */
if (ccb->ccb_h.path->target->target_id == CAM_TARGET_WILDCARD &&
ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD)
ccb->ccb_h.func_code = XPT_SCAN_BUS;
else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD &&
ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD)
ccb->ccb_h.func_code = XPT_SCAN_TGT;
else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD &&
ccb->ccb_h.path->device->lun_id != CAM_LUN_WILDCARD)
ccb->ccb_h.func_code = XPT_SCAN_LUN;
else {
xpt_print(ccb->ccb_h.path, "illegal scan path\n");
xpt_free_path(ccb->ccb_h.path);
xpt_free_ccb(ccb);
return;
}
ccb->ccb_h.ppriv_ptr1 = ccb->ccb_h.cbfcnp;
ccb->ccb_h.cbfcnp = xpt_rescan_done;
xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, CAM_PRIORITY_XPT);
/* Don't make duplicate entries for the same paths. */
xpt_lock_buses();
if (ccb->ccb_h.ppriv_ptr1 == NULL) {
TAILQ_FOREACH(hdr, &xsoftc.ccb_scanq, sim_links.tqe) {
if (xpt_path_comp(hdr->path, ccb->ccb_h.path) == 0) {
wakeup(&xsoftc.ccb_scanq);
xpt_unlock_buses();
xpt_print(ccb->ccb_h.path, "rescan already queued\n");
xpt_free_path(ccb->ccb_h.path);
xpt_free_ccb(ccb);
return;
}
}
}
TAILQ_INSERT_TAIL(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
xsoftc.buses_to_config++;
wakeup(&xsoftc.ccb_scanq);
xpt_unlock_buses();
}
/* Functions accessed by the peripheral drivers */
static int
xpt_init(void *dummy)
{
struct cam_sim *xpt_sim;
struct cam_path *path;
struct cam_devq *devq;
cam_status status;
TAILQ_INIT(&xsoftc.xpt_busses);
TAILQ_INIT(&cam_simq);
TAILQ_INIT(&xsoftc.ccb_scanq);
STAILQ_INIT(&xsoftc.highpowerq);
xsoftc.num_highpower = CAM_MAX_HIGHPOWER;
mtx_init(&cam_simq_lock, "CAM SIMQ lock", NULL, MTX_DEF);
mtx_init(&xsoftc.xpt_lock, "XPT lock", NULL, MTX_DEF);
mtx_init(&xsoftc.xpt_topo_lock, "XPT topology lock", NULL, MTX_DEF);
/*
* The xpt layer is, itself, the equivelent of a SIM.
* Allow 16 ccbs in the ccb pool for it. This should
* give decent parallelism when we probe busses and
* perform other XPT functions.
*/
devq = cam_simq_alloc(16);
xpt_sim = cam_sim_alloc(xptaction,
xptpoll,
"xpt",
/*softc*/NULL,
/*unit*/0,
/*mtx*/&xsoftc.xpt_lock,
/*max_dev_transactions*/0,
/*max_tagged_dev_transactions*/0,
devq);
if (xpt_sim == NULL)
return (ENOMEM);
mtx_lock(&xsoftc.xpt_lock);
if ((status = xpt_bus_register(xpt_sim, NULL, 0)) != CAM_SUCCESS) {
mtx_unlock(&xsoftc.xpt_lock);
printf("xpt_init: xpt_bus_register failed with status %#x,"
" failing attach\n", status);
return (EINVAL);
}
/*
* Looking at the XPT from the SIM layer, the XPT is
* the equivelent of a peripheral driver. Allocate
* a peripheral driver entry for us.
*/
if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID,
CAM_TARGET_WILDCARD,
CAM_LUN_WILDCARD)) != CAM_REQ_CMP) {
mtx_unlock(&xsoftc.xpt_lock);
printf("xpt_init: xpt_create_path failed with status %#x,"
" failing attach\n", status);
return (EINVAL);
}
cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO,
path, NULL, 0, xpt_sim);
xpt_free_path(path);
mtx_unlock(&xsoftc.xpt_lock);
/* Install our software interrupt handlers */
swi_add(NULL, "cambio", camisr, NULL, SWI_CAMBIO, INTR_MPSAFE, &cambio_ih);
/*
* Register a callback for when interrupts are enabled.
*/
xsoftc.xpt_config_hook =
(struct intr_config_hook *)malloc(sizeof(struct intr_config_hook),
M_CAMXPT, M_NOWAIT | M_ZERO);
if (xsoftc.xpt_config_hook == NULL) {
printf("xpt_init: Cannot malloc config hook "
"- failing attach\n");
return (ENOMEM);
}
xsoftc.xpt_config_hook->ich_func = xpt_config;
if (config_intrhook_establish(xsoftc.xpt_config_hook) != 0) {
free (xsoftc.xpt_config_hook, M_CAMXPT);
printf("xpt_init: config_intrhook_establish failed "
"- failing attach\n");
}
return (0);
}
static cam_status
xptregister(struct cam_periph *periph, void *arg)
{
struct cam_sim *xpt_sim;
if (periph == NULL) {
printf("xptregister: periph was NULL!!\n");
return(CAM_REQ_CMP_ERR);
}
xpt_sim = (struct cam_sim *)arg;
xpt_sim->softc = periph;
xpt_periph = periph;
periph->softc = NULL;
return(CAM_REQ_CMP);
}
int32_t
xpt_add_periph(struct cam_periph *periph)
{
struct cam_ed *device;
int32_t status;
struct periph_list *periph_head;
mtx_assert(periph->sim->mtx, MA_OWNED);
device = periph->path->device;
periph_head = &device->periphs;
status = CAM_REQ_CMP;
if (device != NULL) {
/*
* Make room for this peripheral
* so it will fit in the queue
* when it's scheduled to run
*/
status = camq_resize(&device->drvq,
device->drvq.array_size + 1);
device->generation++;
SLIST_INSERT_HEAD(periph_head, periph, periph_links);
}
mtx_lock(&xsoftc.xpt_topo_lock);
xsoftc.xpt_generation++;
mtx_unlock(&xsoftc.xpt_topo_lock);
return (status);
}
void
xpt_remove_periph(struct cam_periph *periph)
{
struct cam_ed *device;
mtx_assert(periph->sim->mtx, MA_OWNED);
device = periph->path->device;
if (device != NULL) {
struct periph_list *periph_head;
periph_head = &device->periphs;
/* Release the slot for this peripheral */
camq_resize(&device->drvq, device->drvq.array_size - 1);
device->generation++;
SLIST_REMOVE(periph_head, periph, cam_periph, periph_links);
}
mtx_lock(&xsoftc.xpt_topo_lock);
xsoftc.xpt_generation++;
mtx_unlock(&xsoftc.xpt_topo_lock);
}
void
xpt_announce_periph(struct cam_periph *periph, char *announce_string)
{
struct cam_path *path = periph->path;
mtx_assert(periph->sim->mtx, MA_OWNED);
printf("%s%d at %s%d bus %d scbus%d target %d lun %d\n",
periph->periph_name, periph->unit_number,
path->bus->sim->sim_name,
path->bus->sim->unit_number,
path->bus->sim->bus_id,
path->bus->path_id,
path->target->target_id,
path->device->lun_id);
printf("%s%d: ", periph->periph_name, periph->unit_number);
if (path->device->protocol == PROTO_SCSI)
scsi_print_inquiry(&path->device->inq_data);
else if (path->device->protocol == PROTO_ATA ||
path->device->protocol == PROTO_SATAPM)
ata_print_ident(&path->device->ident_data);
else
printf("Unknown protocol device\n");
if (bootverbose && path->device->serial_num_len > 0) {
/* Don't wrap the screen - print only the first 60 chars */
printf("%s%d: Serial Number %.60s\n", periph->periph_name,
periph->unit_number, path->device->serial_num);
}
/* Announce transport details. */
(*(path->bus->xport->announce))(periph);
/* Announce command queueing. */
if (path->device->inq_flags & SID_CmdQue
|| path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
printf("%s%d: Command Queueing enabled\n",
periph->periph_name, periph->unit_number);
}
/* Announce caller's details if they've passed in. */
if (announce_string != NULL)
printf("%s%d: %s\n", periph->periph_name,
periph->unit_number, announce_string);
}
static dev_match_ret
xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns,
struct cam_eb *bus)
{
dev_match_ret retval;
int i;
retval = DM_RET_NONE;
/*
* If we aren't given something to match against, that's an error.
*/
if (bus == NULL)
return(DM_RET_ERROR);
/*
* If there are no match entries, then this bus matches no
* matter what.
*/
if ((patterns == NULL) || (num_patterns == 0))
return(DM_RET_DESCEND | DM_RET_COPY);
for (i = 0; i < num_patterns; i++) {
struct bus_match_pattern *cur_pattern;
/*
* If the pattern in question isn't for a bus node, we
* aren't interested. However, we do indicate to the
* calling routine that we should continue descending the
* tree, since the user wants to match against lower-level
* EDT elements.
*/
if (patterns[i].type != DEV_MATCH_BUS) {
if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
retval |= DM_RET_DESCEND;
continue;
}
cur_pattern = &patterns[i].pattern.bus_pattern;
/*
* If they want to match any bus node, we give them any
* device node.
*/
if (cur_pattern->flags == BUS_MATCH_ANY) {
/* set the copy flag */
retval |= DM_RET_COPY;
/*
* If we've already decided on an action, go ahead
* and return.
*/
if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
return(retval);
}
/*
* Not sure why someone would do this...
*/
if (cur_pattern->flags == BUS_MATCH_NONE)
continue;
if (((cur_pattern->flags & BUS_MATCH_PATH) != 0)
&& (cur_pattern->path_id != bus->path_id))
continue;
if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0)
&& (cur_pattern->bus_id != bus->sim->bus_id))
continue;
if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0)
&& (cur_pattern->unit_number != bus->sim->unit_number))
continue;
if (((cur_pattern->flags & BUS_MATCH_NAME) != 0)
&& (strncmp(cur_pattern->dev_name, bus->sim->sim_name,
DEV_IDLEN) != 0))
continue;
/*
* If we get to this point, the user definitely wants
* information on this bus. So tell the caller to copy the
* data out.
*/
retval |= DM_RET_COPY;
/*
* If the return action has been set to descend, then we
* know that we've already seen a non-bus matching
* expression, therefore we need to further descend the tree.
* This won't change by continuing around the loop, so we
* go ahead and return. If we haven't seen a non-bus
* matching expression, we keep going around the loop until
* we exhaust the matching expressions. We'll set the stop
* flag once we fall out of the loop.
*/
if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
return(retval);
}
/*
* If the return action hasn't been set to descend yet, that means
* we haven't seen anything other than bus matching patterns. So
* tell the caller to stop descending the tree -- the user doesn't
* want to match against lower level tree elements.
*/
if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
retval |= DM_RET_STOP;
return(retval);
}
static dev_match_ret
xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns,
struct cam_ed *device)
{
dev_match_ret retval;
int i;
retval = DM_RET_NONE;
/*
* If we aren't given something to match against, that's an error.
*/
if (device == NULL)
return(DM_RET_ERROR);
/*
* If there are no match entries, then this device matches no
* matter what.
*/
if ((patterns == NULL) || (num_patterns == 0))
return(DM_RET_DESCEND | DM_RET_COPY);
for (i = 0; i < num_patterns; i++) {
struct device_match_pattern *cur_pattern;
/*
* If the pattern in question isn't for a device node, we
* aren't interested.
*/
if (patterns[i].type != DEV_MATCH_DEVICE) {
if ((patterns[i].type == DEV_MATCH_PERIPH)
&& ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE))
retval |= DM_RET_DESCEND;
continue;
}
cur_pattern = &patterns[i].pattern.device_pattern;
/*
* If they want to match any device node, we give them any
* device node.
*/
if (cur_pattern->flags == DEV_MATCH_ANY) {
/* set the copy flag */
retval |= DM_RET_COPY;
/*
* If we've already decided on an action, go ahead
* and return.
*/
if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
return(retval);
}
/*
* Not sure why someone would do this...
*/
if (cur_pattern->flags == DEV_MATCH_NONE)
continue;
if (((cur_pattern->flags & DEV_MATCH_PATH) != 0)
&& (cur_pattern->path_id != device->target->bus->path_id))
continue;
if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0)
&& (cur_pattern->target_id != device->target->target_id))
continue;
if (((cur_pattern->flags & DEV_MATCH_LUN) != 0)
&& (cur_pattern->target_lun != device->lun_id))
continue;
if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0)
&& (cam_quirkmatch((caddr_t)&device->inq_data,
(caddr_t)&cur_pattern->inq_pat,
1, sizeof(cur_pattern->inq_pat),
scsi_static_inquiry_match) == NULL))
continue;
/*
* If we get to this point, the user definitely wants
* information on this device. So tell the caller to copy
* the data out.
*/
retval |= DM_RET_COPY;
/*
* If the return action has been set to descend, then we
* know that we've already seen a peripheral matching
* expression, therefore we need to further descend the tree.
* This won't change by continuing around the loop, so we
* go ahead and return. If we haven't seen a peripheral
* matching expression, we keep going around the loop until
* we exhaust the matching expressions. We'll set the stop
* flag once we fall out of the loop.
*/
if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
return(retval);
}
/*
* If the return action hasn't been set to descend yet, that means
* we haven't seen any peripheral matching patterns. So tell the
* caller to stop descending the tree -- the user doesn't want to
* match against lower level tree elements.
*/
if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
retval |= DM_RET_STOP;
return(retval);
}
/*
* Match a single peripheral against any number of match patterns.
*/
static dev_match_ret
xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns,
struct cam_periph *periph)
{
dev_match_ret retval;
int i;
/*
* If we aren't given something to match against, that's an error.
*/
if (periph == NULL)
return(DM_RET_ERROR);
/*
* If there are no match entries, then this peripheral matches no
* matter what.
*/
if ((patterns == NULL) || (num_patterns == 0))
return(DM_RET_STOP | DM_RET_COPY);
/*
* There aren't any nodes below a peripheral node, so there's no
* reason to descend the tree any further.
*/
retval = DM_RET_STOP;
for (i = 0; i < num_patterns; i++) {
struct periph_match_pattern *cur_pattern;
/*
* If the pattern in question isn't for a peripheral, we
* aren't interested.
*/
if (patterns[i].type != DEV_MATCH_PERIPH)
continue;
cur_pattern = &patterns[i].pattern.periph_pattern;
/*
* If they want to match on anything, then we will do so.
*/
if (cur_pattern->flags == PERIPH_MATCH_ANY) {
/* set the copy flag */
retval |= DM_RET_COPY;
/*
* We've already set the return action to stop,
* since there are no nodes below peripherals in
* the tree.
*/
return(retval);
}
/*
* Not sure why someone would do this...
*/
if (cur_pattern->flags == PERIPH_MATCH_NONE)
continue;
if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0)
&& (cur_pattern->path_id != periph->path->bus->path_id))
continue;
/*
* For the target and lun id's, we have to make sure the
* target and lun pointers aren't NULL. The xpt peripheral
* has a wildcard target and device.
*/
if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0)
&& ((periph->path->target == NULL)
||(cur_pattern->target_id != periph->path->target->target_id)))
continue;
if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0)
&& ((periph->path->device == NULL)
|| (cur_pattern->target_lun != periph->path->device->lun_id)))
continue;
if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0)
&& (cur_pattern->unit_number != periph->unit_number))
continue;
if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0)
&& (strncmp(cur_pattern->periph_name, periph->periph_name,
DEV_IDLEN) != 0))
continue;
/*
* If we get to this point, the user definitely wants
* information on this peripheral. So tell the caller to
* copy the data out.
*/
retval |= DM_RET_COPY;
/*
* The return action has already been set to stop, since
* peripherals don't have any nodes below them in the EDT.
*/
return(retval);
}
/*
* If we get to this point, the peripheral that was passed in
* doesn't match any of the patterns.
*/
return(retval);
}
static int
xptedtbusfunc(struct cam_eb *bus, void *arg)
{
struct ccb_dev_match *cdm;
dev_match_ret retval;
cdm = (struct ccb_dev_match *)arg;
/*
* If our position is for something deeper in the tree, that means
* that we've already seen this node. So, we keep going down.
*/
if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
&& (cdm->pos.cookie.bus == bus)
&& (cdm->pos.position_type & CAM_DEV_POS_TARGET)
&& (cdm->pos.cookie.target != NULL))
retval = DM_RET_DESCEND;
else
retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus);
/*
* If we got an error, bail out of the search.
*/
if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
cdm->status = CAM_DEV_MATCH_ERROR;
return(0);
}
/*
* If the copy flag is set, copy this bus out.
*/
if (retval & DM_RET_COPY) {
int spaceleft, j;
spaceleft = cdm->match_buf_len - (cdm->num_matches *
sizeof(struct dev_match_result));
/*
* If we don't have enough space to put in another
* match result, save our position and tell the
* user there are more devices to check.
*/
if (spaceleft < sizeof(struct dev_match_result)) {
bzero(&cdm->pos, sizeof(cdm->pos));
cdm->pos.position_type =
CAM_DEV_POS_EDT | CAM_DEV_POS_BUS;
cdm->pos.cookie.bus = bus;
cdm->pos.generations[CAM_BUS_GENERATION]=
xsoftc.bus_generation;
cdm->status = CAM_DEV_MATCH_MORE;
return(0);
}
j = cdm->num_matches;
cdm->num_matches++;
cdm->matches[j].type = DEV_MATCH_BUS;
cdm->matches[j].result.bus_result.path_id = bus->path_id;
cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id;
cdm->matches[j].result.bus_result.unit_number =
bus->sim->unit_number;
strncpy(cdm->matches[j].result.bus_result.dev_name,
bus->sim->sim_name, DEV_IDLEN);
}
/*
* If the user is only interested in busses, there's no
* reason to descend to the next level in the tree.
*/
if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
return(1);
/*
* If there is a target generation recorded, check it to
* make sure the target list hasn't changed.
*/
if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
&& (bus == cdm->pos.cookie.bus)
&& (cdm->pos.position_type & CAM_DEV_POS_TARGET)
&& (cdm->pos.generations[CAM_TARGET_GENERATION] != 0)
&& (cdm->pos.generations[CAM_TARGET_GENERATION] !=
bus->generation)) {
cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
return(0);
}
if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
&& (cdm->pos.cookie.bus == bus)
&& (cdm->pos.position_type & CAM_DEV_POS_TARGET)
&& (cdm->pos.cookie.target != NULL))
return(xpttargettraverse(bus,
(struct cam_et *)cdm->pos.cookie.target,
xptedttargetfunc, arg));
else
return(xpttargettraverse(bus, NULL, xptedttargetfunc, arg));
}
static int
xptedttargetfunc(struct cam_et *target, void *arg)
{
struct ccb_dev_match *cdm;
cdm = (struct ccb_dev_match *)arg;
/*
* If there is a device list generation recorded, check it to
* make sure the device list hasn't changed.
*/
if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
&& (cdm->pos.cookie.bus == target->bus)
&& (cdm->pos.position_type & CAM_DEV_POS_TARGET)
&& (cdm->pos.cookie.target == target)
&& (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
&& (cdm->pos.generations[CAM_DEV_GENERATION] != 0)
&& (cdm->pos.generations[CAM_DEV_GENERATION] !=
target->generation)) {
cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
return(0);
}
if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
&& (cdm->pos.cookie.bus == target->bus)
&& (cdm->pos.position_type & CAM_DEV_POS_TARGET)
&& (cdm->pos.cookie.target == target)
&& (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
&& (cdm->pos.cookie.device != NULL))
return(xptdevicetraverse(target,
(struct cam_ed *)cdm->pos.cookie.device,
xptedtdevicefunc, arg));
else
return(xptdevicetraverse(target, NULL, xptedtdevicefunc, arg));
}
static int
xptedtdevicefunc(struct cam_ed *device, void *arg)
{
struct ccb_dev_match *cdm;
dev_match_ret retval;
cdm = (struct ccb_dev_match *)arg;
/*
* If our position is for something deeper in the tree, that means
* that we've already seen this node. So, we keep going down.
*/
if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE)
&& (cdm->pos.cookie.device == device)
&& (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
&& (cdm->pos.cookie.periph != NULL))
retval = DM_RET_DESCEND;
else
retval = xptdevicematch(cdm->patterns, cdm->num_patterns,
device);
if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
cdm->status = CAM_DEV_MATCH_ERROR;
return(0);
}
/*
* If the copy flag is set, copy this device out.
*/
if (retval & DM_RET_COPY) {
int spaceleft, j;
spaceleft = cdm->match_buf_len - (cdm->num_matches *
sizeof(struct dev_match_result));
/*
* If we don't have enough space to put in another
* match result, save our position and tell the
* user there are more devices to check.
*/
if (spaceleft < sizeof(struct dev_match_result)) {
bzero(&cdm->pos, sizeof(cdm->pos));
cdm->pos.position_type =
CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE;
cdm->pos.cookie.bus = device->target->bus;
cdm->pos.generations[CAM_BUS_GENERATION]=
xsoftc.bus_generation;
cdm->pos.cookie.target = device->target;
cdm->pos.generations[CAM_TARGET_GENERATION] =
device->target->bus->generation;
cdm->pos.cookie.device = device;
cdm->pos.generations[CAM_DEV_GENERATION] =
device->target->generation;
cdm->status = CAM_DEV_MATCH_MORE;
return(0);
}
j = cdm->num_matches;
cdm->num_matches++;
cdm->matches[j].type = DEV_MATCH_DEVICE;
cdm->matches[j].result.device_result.path_id =
device->target->bus->path_id;
cdm->matches[j].result.device_result.target_id =
device->target->target_id;
cdm->matches[j].result.device_result.target_lun =
device->lun_id;
cdm->matches[j].result.device_result.protocol =
device->protocol;
bcopy(&device->inq_data,
&cdm->matches[j].result.device_result.inq_data,
sizeof(struct scsi_inquiry_data));
bcopy(&device->ident_data,
&cdm->matches[j].result.device_result.ident_data,
sizeof(struct ata_params));
/* Let the user know whether this device is unconfigured */
if (device->flags & CAM_DEV_UNCONFIGURED)
cdm->matches[j].result.device_result.flags =
DEV_RESULT_UNCONFIGURED;
else
cdm->matches[j].result.device_result.flags =
DEV_RESULT_NOFLAG;
}
/*
* If the user isn't interested in peripherals, don't descend
* the tree any further.
*/
if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
return(1);
/*
* If there is a peripheral list generation recorded, make sure
* it hasn't changed.
*/
if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
&& (device->target->bus == cdm->pos.cookie.bus)
&& (cdm->pos.position_type & CAM_DEV_POS_TARGET)
&& (device->target == cdm->pos.cookie.target)
&& (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
&& (device == cdm->pos.cookie.device)
&& (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
&& (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0)
&& (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
device->generation)){
cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
return(0);
}
if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
&& (cdm->pos.cookie.bus == device->target->bus)
&& (cdm->pos.position_type & CAM_DEV_POS_TARGET)
&& (cdm->pos.cookie.target == device->target)
&& (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
&& (cdm->pos.cookie.device == device)
&& (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
&& (cdm->pos.cookie.periph != NULL))
return(xptperiphtraverse(device,
(struct cam_periph *)cdm->pos.cookie.periph,
xptedtperiphfunc, arg));
else
return(xptperiphtraverse(device, NULL, xptedtperiphfunc, arg));
}
static int
xptedtperiphfunc(struct cam_periph *periph, void *arg)
{
struct ccb_dev_match *cdm;
dev_match_ret retval;
cdm = (struct ccb_dev_match *)arg;
retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
cdm->status = CAM_DEV_MATCH_ERROR;
return(0);
}
/*
* If the copy flag is set, copy this peripheral out.
*/
if (retval & DM_RET_COPY) {
int spaceleft, j;
spaceleft = cdm->match_buf_len - (cdm->num_matches *
sizeof(struct dev_match_result));
/*
* If we don't have enough space to put in another
* match result, save our position and tell the
* user there are more devices to check.
*/
if (spaceleft < sizeof(struct dev_match_result)) {
bzero(&cdm->pos, sizeof(cdm->pos));
cdm->pos.position_type =
CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE |
CAM_DEV_POS_PERIPH;
cdm->pos.cookie.bus = periph->path->bus;
cdm->pos.generations[CAM_BUS_GENERATION]=
xsoftc.bus_generation;
cdm->pos.cookie.target = periph->path->target;
cdm->pos.generations[CAM_TARGET_GENERATION] =
periph->path->bus->generation;
cdm->pos.cookie.device = periph->path->device;
cdm->pos.generations[CAM_DEV_GENERATION] =
periph->path->target->generation;
cdm->pos.cookie.periph = periph;
cdm->pos.generations[CAM_PERIPH_GENERATION] =
periph->path->device->generation;
cdm->status = CAM_DEV_MATCH_MORE;
return(0);
}
j = cdm->num_matches;
cdm->num_matches++;
cdm->matches[j].type = DEV_MATCH_PERIPH;
cdm->matches[j].result.periph_result.path_id =
periph->path->bus->path_id;
cdm->matches[j].result.periph_result.target_id =
periph->path->target->target_id;
cdm->matches[j].result.periph_result.target_lun =
periph->path->device->lun_id;
cdm->matches[j].result.periph_result.unit_number =
periph->unit_number;
strncpy(cdm->matches[j].result.periph_result.periph_name,
periph->periph_name, DEV_IDLEN);
}
return(1);
}
static int
xptedtmatch(struct ccb_dev_match *cdm)
{
int ret;
cdm->num_matches = 0;
/*
* Check the bus list generation. If it has changed, the user
* needs to reset everything and start over.
*/
if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
&& (cdm->pos.generations[CAM_BUS_GENERATION] != 0)
&& (cdm->pos.generations[CAM_BUS_GENERATION] != xsoftc.bus_generation)) {
cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
return(0);
}
if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
&& (cdm->pos.cookie.bus != NULL))
ret = xptbustraverse((struct cam_eb *)cdm->pos.cookie.bus,
xptedtbusfunc, cdm);
else
ret = xptbustraverse(NULL, xptedtbusfunc, cdm);
/*
* If we get back 0, that means that we had to stop before fully
* traversing the EDT. It also means that one of the subroutines
* has set the status field to the proper value. If we get back 1,
* we've fully traversed the EDT and copied out any matching entries.
*/
if (ret == 1)
cdm->status = CAM_DEV_MATCH_LAST;
return(ret);
}
static int
xptplistpdrvfunc(struct periph_driver **pdrv, void *arg)
{
struct ccb_dev_match *cdm;
cdm = (struct ccb_dev_match *)arg;
if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
&& (cdm->pos.cookie.pdrv == pdrv)
&& (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
&& (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0)
&& (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
(*pdrv)->generation)) {
cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
return(0);
}
if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
&& (cdm->pos.cookie.pdrv == pdrv)
&& (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
&& (cdm->pos.cookie.periph != NULL))
return(xptpdperiphtraverse(pdrv,
(struct cam_periph *)cdm->pos.cookie.periph,
xptplistperiphfunc, arg));
else
return(xptpdperiphtraverse(pdrv, NULL,xptplistperiphfunc, arg));
}
static int
xptplistperiphfunc(struct cam_periph *periph, void *arg)
{
struct ccb_dev_match *cdm;
dev_match_ret retval;
cdm = (struct ccb_dev_match *)arg;
retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
cdm->status = CAM_DEV_MATCH_ERROR;
return(0);
}
/*
* If the copy flag is set, copy this peripheral out.
*/
if (retval & DM_RET_COPY) {
int spaceleft, j;
spaceleft = cdm->match_buf_len - (cdm->num_matches *
sizeof(struct dev_match_result));
/*
* If we don't have enough space to put in another
* match result, save our position and tell the
* user there are more devices to check.
*/
if (spaceleft < sizeof(struct dev_match_result)) {
struct periph_driver **pdrv;
pdrv = NULL;
bzero(&cdm->pos, sizeof(cdm->pos));
cdm->pos.position_type =
CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR |
CAM_DEV_POS_PERIPH;
/*
* This may look a bit non-sensical, but it is
* actually quite logical. There are very few
* peripheral drivers, and bloating every peripheral
* structure with a pointer back to its parent
* peripheral driver linker set entry would cost
* more in the long run than doing this quick lookup.
*/
for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) {
if (strcmp((*pdrv)->driver_name,
periph->periph_name) == 0)
break;
}
if (*pdrv == NULL) {
cdm->status = CAM_DEV_MATCH_ERROR;
return(0);
}
cdm->pos.cookie.pdrv = pdrv;
/*
* The periph generation slot does double duty, as
* does the periph pointer slot. They are used for
* both edt and pdrv lookups and positioning.
*/
cdm->pos.cookie.periph = periph;
cdm->pos.generations[CAM_PERIPH_GENERATION] =
(*pdrv)->generation;
cdm->status = CAM_DEV_MATCH_MORE;
return(0);
}
j = cdm->num_matches;
cdm->num_matches++;
cdm->matches[j].type = DEV_MATCH_PERIPH;
cdm->matches[j].result.periph_result.path_id =
periph->path->bus->path_id;
/*
* The transport layer peripheral doesn't have a target or
* lun.
*/
if (periph->path->target)
cdm->matches[j].result.periph_result.target_id =
periph->path->target->target_id;
else
cdm->matches[j].result.periph_result.target_id = -1;
if (periph->path->device)
cdm->matches[j].result.periph_result.target_lun =
periph->path->device->lun_id;
else
cdm->matches[j].result.periph_result.target_lun = -1;
cdm->matches[j].result.periph_result.unit_number =
periph->unit_number;
strncpy(cdm->matches[j].result.periph_result.periph_name,
periph->periph_name, DEV_IDLEN);
}
return(1);
}
static int
xptperiphlistmatch(struct ccb_dev_match *cdm)
{
int ret;
cdm->num_matches = 0;
/*
* At this point in the edt traversal function, we check the bus
* list generation to make sure that no busses have been added or
* removed since the user last sent a XPT_DEV_MATCH ccb through.
* For the peripheral driver list traversal function, however, we
* don't have to worry about new peripheral driver types coming or
* going; they're in a linker set, and therefore can't change
* without a recompile.
*/
if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
&& (cdm->pos.cookie.pdrv != NULL))
ret = xptpdrvtraverse(
(struct periph_driver **)cdm->pos.cookie.pdrv,
xptplistpdrvfunc, cdm);
else
ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm);
/*
* If we get back 0, that means that we had to stop before fully
* traversing the peripheral driver tree. It also means that one of
* the subroutines has set the status field to the proper value. If
* we get back 1, we've fully traversed the EDT and copied out any
* matching entries.
*/
if (ret == 1)
cdm->status = CAM_DEV_MATCH_LAST;
return(ret);
}
static int
xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg)
{
struct cam_eb *bus, *next_bus;
int retval;
retval = 1;
mtx_lock(&xsoftc.xpt_topo_lock);
for (bus = (start_bus ? start_bus : TAILQ_FIRST(&xsoftc.xpt_busses));
bus != NULL;
bus = next_bus) {
next_bus = TAILQ_NEXT(bus, links);
mtx_unlock(&xsoftc.xpt_topo_lock);
CAM_SIM_LOCK(bus->sim);
retval = tr_func(bus, arg);
CAM_SIM_UNLOCK(bus->sim);
if (retval == 0)
return(retval);
mtx_lock(&xsoftc.xpt_topo_lock);
}
mtx_unlock(&xsoftc.xpt_topo_lock);
return(retval);
}
int
xpt_sim_opened(struct cam_sim *sim)
{
struct cam_eb *bus;
struct cam_et *target;
struct cam_ed *device;
struct cam_periph *periph;
KASSERT(sim->refcount >= 1, ("sim->refcount >= 1"));
mtx_assert(sim->mtx, MA_OWNED);
mtx_lock(&xsoftc.xpt_topo_lock);
TAILQ_FOREACH(bus, &xsoftc.xpt_busses, links) {
if (bus->sim != sim)
continue;
TAILQ_FOREACH(target, &bus->et_entries, links) {
TAILQ_FOREACH(device, &target->ed_entries, links) {
SLIST_FOREACH(periph, &device->periphs,
periph_links) {
if (periph->refcount > 0) {
mtx_unlock(&xsoftc.xpt_topo_lock);
return (1);
}
}
}
}
}
mtx_unlock(&xsoftc.xpt_topo_lock);
return (0);
}
static int
xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target,
xpt_targetfunc_t *tr_func, void *arg)
{
struct cam_et *target, *next_target;
int retval;
retval = 1;
for (target = (start_target ? start_target :
TAILQ_FIRST(&bus->et_entries));
target != NULL; target = next_target) {
next_target = TAILQ_NEXT(target, links);
retval = tr_func(target, arg);
if (retval == 0)
return(retval);
}
return(retval);
}
static int
xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device,
xpt_devicefunc_t *tr_func, void *arg)
{
struct cam_ed *device, *next_device;
int retval;
retval = 1;
for (device = (start_device ? start_device :
TAILQ_FIRST(&target->ed_entries));
device != NULL;
device = next_device) {
next_device = TAILQ_NEXT(device, links);
retval = tr_func(device, arg);
if (retval == 0)
return(retval);
}
return(retval);
}
static int
xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph,
xpt_periphfunc_t *tr_func, void *arg)
{
struct cam_periph *periph, *next_periph;
int retval;
retval = 1;
for (periph = (start_periph ? start_periph :
SLIST_FIRST(&device->periphs));
periph != NULL;
periph = next_periph) {
next_periph = SLIST_NEXT(periph, periph_links);
retval = tr_func(periph, arg);
if (retval == 0)
return(retval);
}
return(retval);
}
static int
xptpdrvtraverse(struct periph_driver **start_pdrv,
xpt_pdrvfunc_t *tr_func, void *arg)
{
struct periph_driver **pdrv;
int retval;
retval = 1;
/*
* We don't traverse the peripheral driver list like we do the
* other lists, because it is a linker set, and therefore cannot be
* changed during runtime. If the peripheral driver list is ever
* re-done to be something other than a linker set (i.e. it can
* change while the system is running), the list traversal should
* be modified to work like the other traversal functions.
*/
for (pdrv = (start_pdrv ? start_pdrv : periph_drivers);
*pdrv != NULL; pdrv++) {
retval = tr_func(pdrv, arg);
if (retval == 0)
return(retval);
}
return(retval);
}
static int
xptpdperiphtraverse(struct periph_driver **pdrv,
struct cam_periph *start_periph,
xpt_periphfunc_t *tr_func, void *arg)
{
struct cam_periph *periph, *next_periph;
int retval;
retval = 1;
xpt_lock_buses();
for (periph = (start_periph ? start_periph :
TAILQ_FIRST(&(*pdrv)->units)); periph != NULL;
periph = next_periph) {
next_periph = TAILQ_NEXT(periph, unit_links);
retval = tr_func(periph, arg);
if (retval == 0) {
xpt_unlock_buses();
return(retval);
}
}
xpt_unlock_buses();
return(retval);
}
static int
xptdefbusfunc(struct cam_eb *bus, void *arg)
{
struct xpt_traverse_config *tr_config;
tr_config = (struct xpt_traverse_config *)arg;
if (tr_config->depth == XPT_DEPTH_BUS) {
xpt_busfunc_t *tr_func;
tr_func = (xpt_busfunc_t *)tr_config->tr_func;
return(tr_func(bus, tr_config->tr_arg));
} else
return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg));
}
static int
xptdeftargetfunc(struct cam_et *target, void *arg)
{
struct xpt_traverse_config *tr_config;
tr_config = (struct xpt_traverse_config *)arg;
if (tr_config->depth == XPT_DEPTH_TARGET) {
xpt_targetfunc_t *tr_func;
tr_func = (xpt_targetfunc_t *)tr_config->tr_func;
return(tr_func(target, tr_config->tr_arg));
} else
return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg));
}
static int
xptdefdevicefunc(struct cam_ed *device, void *arg)
{
struct xpt_traverse_config *tr_config;
tr_config = (struct xpt_traverse_config *)arg;
if (tr_config->depth == XPT_DEPTH_DEVICE) {
xpt_devicefunc_t *tr_func;
tr_func = (xpt_devicefunc_t *)tr_config->tr_func;
return(tr_func(device, tr_config->tr_arg));
} else
return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg));
}
static int
xptdefperiphfunc(struct cam_periph *periph, void *arg)
{
struct xpt_traverse_config *tr_config;
xpt_periphfunc_t *tr_func;
tr_config = (struct xpt_traverse_config *)arg;
tr_func = (xpt_periphfunc_t *)tr_config->tr_func;
/*
* Unlike the other default functions, we don't check for depth
* here. The peripheral driver level is the last level in the EDT,
* so if we're here, we should execute the function in question.
*/
return(tr_func(periph, tr_config->tr_arg));
}
/*
* Execute the given function for every bus in the EDT.
*/
static int
xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg)
{
struct xpt_traverse_config tr_config;
tr_config.depth = XPT_DEPTH_BUS;
tr_config.tr_func = tr_func;
tr_config.tr_arg = arg;
return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
}
/*
* Execute the given function for every device in the EDT.
*/
static int
xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg)
{
struct xpt_traverse_config tr_config;
tr_config.depth = XPT_DEPTH_DEVICE;
tr_config.tr_func = tr_func;
tr_config.tr_arg = arg;
return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
}
static int
xptsetasyncfunc(struct cam_ed *device, void *arg)
{
struct cam_path path;
struct ccb_getdev cgd;
struct ccb_setasync *csa = (struct ccb_setasync *)arg;
/*
* Don't report unconfigured devices (Wildcard devs,
* devices only for target mode, device instances
* that have been invalidated but are waiting for
* their last reference count to be released).
*/
if ((device->flags & CAM_DEV_UNCONFIGURED) != 0)
return (1);
xpt_compile_path(&path,
NULL,
device->target->bus->path_id,
device->target->target_id,
device->lun_id);
xpt_setup_ccb(&cgd.ccb_h, &path, CAM_PRIORITY_NORMAL);
cgd.ccb_h.func_code = XPT_GDEV_TYPE;
xpt_action((union ccb *)&cgd);
csa->callback(csa->callback_arg,
AC_FOUND_DEVICE,
&path, &cgd);
xpt_release_path(&path);
return(1);
}
static int
xptsetasyncbusfunc(struct cam_eb *bus, void *arg)
{
struct cam_path path;
struct ccb_pathinq cpi;
struct ccb_setasync *csa = (struct ccb_setasync *)arg;
xpt_compile_path(&path, /*periph*/NULL,
bus->sim->path_id,
CAM_TARGET_WILDCARD,
CAM_LUN_WILDCARD);
xpt_setup_ccb(&cpi.ccb_h, &path, CAM_PRIORITY_NORMAL);
cpi.ccb_h.func_code = XPT_PATH_INQ;
xpt_action((union ccb *)&cpi);
csa->callback(csa->callback_arg,
AC_PATH_REGISTERED,
&path, &cpi);
xpt_release_path(&path);
return(1);
}
void
xpt_action(union ccb *start_ccb)
{
CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_action\n"));
start_ccb->ccb_h.status = CAM_REQ_INPROG;
/* Compatibility for RL-unaware code. */
if (CAM_PRIORITY_TO_RL(start_ccb->ccb_h.pinfo.priority) == 0)
start_ccb->ccb_h.pinfo.priority += CAM_PRIORITY_NORMAL - 1;
(*(start_ccb->ccb_h.path->bus->xport->action))(start_ccb);
}
void
xpt_action_default(union ccb *start_ccb)
{
CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_action_default\n"));
switch (start_ccb->ccb_h.func_code) {
case XPT_SCSI_IO:
{
struct cam_ed *device;
#ifdef CAMDEBUG
char cdb_str[(SCSI_MAX_CDBLEN * 3) + 1];
struct cam_path *path;
path = start_ccb->ccb_h.path;
#endif
/*
* For the sake of compatibility with SCSI-1
* devices that may not understand the identify
* message, we include lun information in the
* second byte of all commands. SCSI-1 specifies
* that luns are a 3 bit value and reserves only 3
* bits for lun information in the CDB. Later
* revisions of the SCSI spec allow for more than 8
* luns, but have deprecated lun information in the
* CDB. So, if the lun won't fit, we must omit.
*
* Also be aware that during initial probing for devices,
* the inquiry information is unknown but initialized to 0.
* This means that this code will be exercised while probing
* devices with an ANSI revision greater than 2.
*/
device = start_ccb->ccb_h.path->device;
if (device->protocol_version <= SCSI_REV_2
&& start_ccb->ccb_h.target_lun < 8
&& (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) {
start_ccb->csio.cdb_io.cdb_bytes[1] |=
start_ccb->ccb_h.target_lun << 5;
}
start_ccb->csio.scsi_status = SCSI_STATUS_OK;
CAM_DEBUG(path, CAM_DEBUG_CDB,("%s. CDB: %s\n",
scsi_op_desc(start_ccb->csio.cdb_io.cdb_bytes[0],
&path->device->inq_data),
scsi_cdb_string(start_ccb->csio.cdb_io.cdb_bytes,
cdb_str, sizeof(cdb_str))));
}
/* FALLTHROUGH */
case XPT_TARGET_IO:
case XPT_CONT_TARGET_IO:
start_ccb->csio.sense_resid = 0;
start_ccb->csio.resid = 0;
/* FALLTHROUGH */
case XPT_ATA_IO:
if (start_ccb->ccb_h.func_code == XPT_ATA_IO) {
start_ccb->ataio.resid = 0;
}
/* FALLTHROUGH */
case XPT_RESET_DEV:
case XPT_ENG_EXEC:
case XPT_SMP_IO:
{
struct cam_path *path = start_ccb->ccb_h.path;
int frozen;
frozen = cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb);
path->device->sim->devq->alloc_openings += frozen;
if (frozen > 0)
xpt_run_dev_allocq(path->bus);
if (xpt_schedule_dev_sendq(path->bus, path->device))
xpt_run_dev_sendq(path->bus);
break;
}
case XPT_CALC_GEOMETRY:
{
struct cam_sim *sim;
/* Filter out garbage */
if (start_ccb->ccg.block_size == 0
|| start_ccb->ccg.volume_size == 0) {
start_ccb->ccg.cylinders = 0;
start_ccb->ccg.heads = 0;
start_ccb->ccg.secs_per_track = 0;
start_ccb->ccb_h.status = CAM_REQ_CMP;
break;
}
#ifdef PC98
/*
* In a PC-98 system, geometry translation depens on
* the "real" device geometry obtained from mode page 4.
* SCSI geometry translation is performed in the
* initialization routine of the SCSI BIOS and the result
* stored in host memory. If the translation is available
* in host memory, use it. If not, rely on the default
* translation the device driver performs.
*/
if (scsi_da_bios_params(&start_ccb->ccg) != 0) {
start_ccb->ccb_h.status = CAM_REQ_CMP;
break;
}
#endif
sim = start_ccb->ccb_h.path->bus->sim;
(*(sim->sim_action))(sim, start_ccb);
break;
}
case XPT_ABORT:
{
union ccb* abort_ccb;
abort_ccb = start_ccb->cab.abort_ccb;
if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) {
if (abort_ccb->ccb_h.pinfo.index >= 0) {
struct cam_ccbq *ccbq;
struct cam_ed *device;
device = abort_ccb->ccb_h.path->device;
ccbq = &device->ccbq;
device->sim->devq->alloc_openings -=
cam_ccbq_remove_ccb(ccbq, abort_ccb);
abort_ccb->ccb_h.status =
CAM_REQ_ABORTED|CAM_DEV_QFRZN;
xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
xpt_done(abort_ccb);
start_ccb->ccb_h.status = CAM_REQ_CMP;
break;
}
if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX
&& (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) {
/*
* We've caught this ccb en route to
* the SIM. Flag it for abort and the
* SIM will do so just before starting
* real work on the CCB.
*/
abort_ccb->ccb_h.status =
CAM_REQ_ABORTED|CAM_DEV_QFRZN;
xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
start_ccb->ccb_h.status = CAM_REQ_CMP;
break;
}
}
if (XPT_FC_IS_QUEUED(abort_ccb)
&& (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) {
/*
* It's already completed but waiting
* for our SWI to get to it.
*/
start_ccb->ccb_h.status = CAM_UA_ABORT;
break;
}
/*
* If we weren't able to take care of the abort request
* in the XPT, pass the request down to the SIM for processing.
*/
}
/* FALLTHROUGH */
case XPT_ACCEPT_TARGET_IO:
case XPT_EN_LUN:
case XPT_IMMED_NOTIFY:
case XPT_NOTIFY_ACK:
case XPT_RESET_BUS:
case XPT_IMMEDIATE_NOTIFY:
case XPT_NOTIFY_ACKNOWLEDGE:
case XPT_GET_SIM_KNOB:
case XPT_SET_SIM_KNOB:
{
struct cam_sim *sim;
sim = start_ccb->ccb_h.path->bus->sim;
(*(sim->sim_action))(sim, start_ccb);
break;
}
case XPT_PATH_INQ:
{
struct cam_sim *sim;
sim = start_ccb->ccb_h.path->bus->sim;
(*(sim->sim_action))(sim, start_ccb);
break;
}
case XPT_PATH_STATS:
start_ccb->cpis.last_reset =
start_ccb->ccb_h.path->bus->last_reset;
start_ccb->ccb_h.status = CAM_REQ_CMP;
break;
case XPT_GDEV_TYPE:
{
struct cam_ed *dev;
dev = start_ccb->ccb_h.path->device;
if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
} else {
struct ccb_getdev *cgd;
struct cam_eb *bus;
struct cam_et *tar;
cgd = &start_ccb->cgd;
bus = cgd->ccb_h.path->bus;
tar = cgd->ccb_h.path->target;
cgd->protocol = dev->protocol;
cgd->inq_data = dev->inq_data;
cgd->ident_data = dev->ident_data;
cgd->inq_flags = dev->inq_flags;
cgd->ccb_h.status = CAM_REQ_CMP;
cgd->serial_num_len = dev->serial_num_len;
if ((dev->serial_num_len > 0)
&& (dev->serial_num != NULL))
bcopy(dev->serial_num, cgd->serial_num,
dev->serial_num_len);
}
break;
}
case XPT_GDEV_STATS:
{
struct cam_ed *dev;
dev = start_ccb->ccb_h.path->device;
if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
} else {
struct ccb_getdevstats *cgds;
struct cam_eb *bus;
struct cam_et *tar;
cgds = &start_ccb->cgds;
bus = cgds->ccb_h.path->bus;
tar = cgds->ccb_h.path->target;
cgds->dev_openings = dev->ccbq.dev_openings;
cgds->dev_active = dev->ccbq.dev_active;
cgds->devq_openings = dev->ccbq.devq_openings;
cgds->devq_queued = dev->ccbq.queue.entries;
cgds->held = dev->ccbq.held;
cgds->last_reset = tar->last_reset;
cgds->maxtags = dev->maxtags;
cgds->mintags = dev->mintags;
if (timevalcmp(&tar->last_reset, &bus->last_reset, <))
cgds->last_reset = bus->last_reset;
cgds->ccb_h.status = CAM_REQ_CMP;
}
break;
}
case XPT_GDEVLIST:
{
struct cam_periph *nperiph;
struct periph_list *periph_head;
struct ccb_getdevlist *cgdl;
u_int i;
struct cam_ed *device;
int found;
found = 0;
/*
* Don't want anyone mucking with our data.
*/
device = start_ccb->ccb_h.path->device;
periph_head = &device->periphs;
cgdl = &start_ccb->cgdl;
/*
* Check and see if the list has changed since the user
* last requested a list member. If so, tell them that the
* list has changed, and therefore they need to start over
* from the beginning.
*/
if ((cgdl->index != 0) &&
(cgdl->generation != device->generation)) {
cgdl->status = CAM_GDEVLIST_LIST_CHANGED;
break;
}
/*
* Traverse the list of peripherals and attempt to find
* the requested peripheral.
*/
for (nperiph = SLIST_FIRST(periph_head), i = 0;
(nperiph != NULL) && (i <= cgdl->index);
nperiph = SLIST_NEXT(nperiph, periph_links), i++) {
if (i == cgdl->index) {
strncpy(cgdl->periph_name,
nperiph->periph_name,
DEV_IDLEN);
cgdl->unit_number = nperiph->unit_number;
found = 1;
}
}
if (found == 0) {
cgdl->status = CAM_GDEVLIST_ERROR;
break;
}
if (nperiph == NULL)
cgdl->status = CAM_GDEVLIST_LAST_DEVICE;
else
cgdl->status = CAM_GDEVLIST_MORE_DEVS;
cgdl->index++;
cgdl->generation = device->generation;
cgdl->ccb_h.status = CAM_REQ_CMP;
break;
}
case XPT_DEV_MATCH:
{
dev_pos_type position_type;
struct ccb_dev_match *cdm;
cdm = &start_ccb->cdm;
/*
* There are two ways of getting at information in the EDT.
* The first way is via the primary EDT tree. It starts
* with a list of busses, then a list of targets on a bus,
* then devices/luns on a target, and then peripherals on a
* device/lun. The "other" way is by the peripheral driver
* lists. The peripheral driver lists are organized by
* peripheral driver. (obviously) So it makes sense to
* use the peripheral driver list if the user is looking
* for something like "da1", or all "da" devices. If the
* user is looking for something on a particular bus/target
* or lun, it's generally better to go through the EDT tree.
*/
if (cdm->pos.position_type != CAM_DEV_POS_NONE)
position_type = cdm->pos.position_type;
else {
u_int i;
position_type = CAM_DEV_POS_NONE;
for (i = 0; i < cdm->num_patterns; i++) {
if ((cdm->patterns[i].type == DEV_MATCH_BUS)
||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){
position_type = CAM_DEV_POS_EDT;
break;
}
}
if (cdm->num_patterns == 0)
position_type = CAM_DEV_POS_EDT;
else if (position_type == CAM_DEV_POS_NONE)
position_type = CAM_DEV_POS_PDRV;
}
switch(position_type & CAM_DEV_POS_TYPEMASK) {
case CAM_DEV_POS_EDT:
xptedtmatch(cdm);
break;
case CAM_DEV_POS_PDRV:
xptperiphlistmatch(cdm);
break;
default:
cdm->status = CAM_DEV_MATCH_ERROR;
break;
}
if (cdm->status == CAM_DEV_MATCH_ERROR)
start_ccb->ccb_h.status = CAM_REQ_CMP_ERR;
else
start_ccb->ccb_h.status = CAM_REQ_CMP;
break;
}
case XPT_SASYNC_CB:
{
struct ccb_setasync *csa;
struct async_node *cur_entry;
struct async_list *async_head;
u_int32_t added;
csa = &start_ccb->csa;
added = csa->event_enable;
async_head = &csa->ccb_h.path->device->asyncs;
/*
* If there is already an entry for us, simply
* update it.
*/
cur_entry = SLIST_FIRST(async_head);
while (cur_entry != NULL) {
if ((cur_entry->callback_arg == csa->callback_arg)
&& (cur_entry->callback == csa->callback))
break;
cur_entry = SLIST_NEXT(cur_entry, links);
}
if (cur_entry != NULL) {
/*
* If the request has no flags set,
* remove the entry.
*/
added &= ~cur_entry->event_enable;
if (csa->event_enable == 0) {
SLIST_REMOVE(async_head, cur_entry,
async_node, links);
xpt_release_device(csa->ccb_h.path->device);
free(cur_entry, M_CAMXPT);
} else {
cur_entry->event_enable = csa->event_enable;
}
csa->event_enable = added;
} else {
cur_entry = malloc(sizeof(*cur_entry), M_CAMXPT,
M_NOWAIT);
if (cur_entry == NULL) {
csa->ccb_h.status = CAM_RESRC_UNAVAIL;
break;
}
cur_entry->event_enable = csa->event_enable;
cur_entry->callback_arg = csa->callback_arg;
cur_entry->callback = csa->callback;
SLIST_INSERT_HEAD(async_head, cur_entry, links);
xpt_acquire_device(csa->ccb_h.path->device);
}
start_ccb->ccb_h.status = CAM_REQ_CMP;
break;
}
case XPT_REL_SIMQ:
{
struct ccb_relsim *crs;
struct cam_ed *dev;
crs = &start_ccb->crs;
dev = crs->ccb_h.path->device;
if (dev == NULL) {
crs->ccb_h.status = CAM_DEV_NOT_THERE;
break;
}
if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) {
if (INQ_DATA_TQ_ENABLED(&dev->inq_data)) {
/* Don't ever go below one opening */
if (crs->openings > 0) {
xpt_dev_ccbq_resize(crs->ccb_h.path,
crs->openings);
if (bootverbose) {
xpt_print(crs->ccb_h.path,
"tagged openings now %d\n",
crs->openings);
}
}
}
}
if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) {
if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
/*
* Just extend the old timeout and decrement
* the freeze count so that a single timeout
* is sufficient for releasing the queue.
*/
start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
callout_stop(&dev->callout);
} else {
start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
}
callout_reset(&dev->callout,
(crs->release_timeout * hz) / 1000,
xpt_release_devq_timeout, dev);
dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING;
}
if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) {
if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) {
/*
* Decrement the freeze count so that a single
* completion is still sufficient to unfreeze
* the queue.
*/
start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
} else {
dev->flags |= CAM_DEV_REL_ON_COMPLETE;
start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
}
}
if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) {
if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
|| (dev->ccbq.dev_active == 0)) {
start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
} else {
dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY;
start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
}
}
if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0) {
xpt_release_devq_rl(crs->ccb_h.path, /*runlevel*/
(crs->release_flags & RELSIM_RELEASE_RUNLEVEL) ?
crs->release_timeout : 0,
/*count*/1, /*run_queue*/TRUE);
}
start_ccb->crs.qfrozen_cnt = dev->ccbq.queue.qfrozen_cnt[0];
start_ccb->ccb_h.status = CAM_REQ_CMP;
break;
}
case XPT_DEBUG: {
#ifdef CAMDEBUG
#ifdef CAM_DEBUG_DELAY
cam_debug_delay = CAM_DEBUG_DELAY;
#endif
cam_dflags = start_ccb->cdbg.flags;
if (cam_dpath != NULL) {
xpt_free_path(cam_dpath);
cam_dpath = NULL;
}
if (cam_dflags != CAM_DEBUG_NONE) {
if (xpt_create_path(&cam_dpath, xpt_periph,
start_ccb->ccb_h.path_id,
start_ccb->ccb_h.target_id,
start_ccb->ccb_h.target_lun) !=
CAM_REQ_CMP) {
start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
cam_dflags = CAM_DEBUG_NONE;
} else {
start_ccb->ccb_h.status = CAM_REQ_CMP;
xpt_print(cam_dpath, "debugging flags now %x\n",
cam_dflags);
}
} else {
cam_dpath = NULL;
start_ccb->ccb_h.status = CAM_REQ_CMP;
}
#else /* !CAMDEBUG */
start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL;
#endif /* CAMDEBUG */
break;
}
case XPT_FREEZE_QUEUE:
{
struct ccb_relsim *crs = &start_ccb->crs;
xpt_freeze_devq_rl(crs->ccb_h.path, /*runlevel*/
(crs->release_flags & RELSIM_RELEASE_RUNLEVEL) ?
crs->release_timeout : 0, /*count*/1);
start_ccb->ccb_h.status = CAM_REQ_CMP;
break;
}
case XPT_NOOP:
if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0)
xpt_freeze_devq(start_ccb->ccb_h.path, 1);
start_ccb->ccb_h.status = CAM_REQ_CMP;
break;
default:
case XPT_SDEV_TYPE:
case XPT_TERM_IO:
case XPT_ENG_INQ:
/* XXX Implement */
start_ccb->ccb_h.status = CAM_PROVIDE_FAIL;
if (start_ccb->ccb_h.func_code & XPT_FC_DEV_QUEUED) {
xpt_done(start_ccb);
}
break;
}
}
void
xpt_polled_action(union ccb *start_ccb)
{
u_int32_t timeout;
struct cam_sim *sim;
struct cam_devq *devq;
struct cam_ed *dev;
timeout = start_ccb->ccb_h.timeout * 10;
sim = start_ccb->ccb_h.path->bus->sim;
devq = sim->devq;
dev = start_ccb->ccb_h.path->device;
mtx_assert(sim->mtx, MA_OWNED);
/*
* Steal an opening so that no other queued requests
* can get it before us while we simulate interrupts.
*/
dev->ccbq.devq_openings--;
dev->ccbq.dev_openings--;
while(((devq != NULL && devq->send_openings <= 0) ||
dev->ccbq.dev_openings < 0) && (--timeout > 0)) {
DELAY(100);
(*(sim->sim_poll))(sim);
camisr_runqueue(&sim->sim_doneq);
}
dev->ccbq.devq_openings++;
dev->ccbq.dev_openings++;
if (timeout != 0) {
xpt_action(start_ccb);
while(--timeout > 0) {
(*(sim->sim_poll))(sim);
camisr_runqueue(&sim->sim_doneq);
if ((start_ccb->ccb_h.status & CAM_STATUS_MASK)
!= CAM_REQ_INPROG)
break;
DELAY(100);
}
if (timeout == 0) {
/*
* XXX Is it worth adding a sim_timeout entry
* point so we can attempt recovery? If
* this is only used for dumps, I don't think
* it is.
*/
start_ccb->ccb_h.status = CAM_CMD_TIMEOUT;
}
} else {
start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
}
}
/*
* Schedule a peripheral driver to receive a ccb when it's
* target device has space for more transactions.
*/
void
xpt_schedule(struct cam_periph *perph, u_int32_t new_priority)
{
struct cam_ed *device;
int runq = 0;
mtx_assert(perph->sim->mtx, MA_OWNED);
CAM_DEBUG(perph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n"));
device = perph->path->device;
if (periph_is_queued(perph)) {
/* Simply reorder based on new priority */
CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
(" change priority to %d\n", new_priority));
if (new_priority < perph->pinfo.priority) {
camq_change_priority(&device->drvq,
perph->pinfo.index,
new_priority);
runq = xpt_schedule_dev_allocq(perph->path->bus, device);
}
} else {
/* New entry on the queue */
CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
(" added periph to queue\n"));
perph->pinfo.priority = new_priority;
perph->pinfo.generation = ++device->drvq.generation;
camq_insert(&device->drvq, &perph->pinfo);
runq = xpt_schedule_dev_allocq(perph->path->bus, device);
}
if (runq != 0) {
CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
(" calling xpt_run_devq\n"));
xpt_run_dev_allocq(perph->path->bus);
}
}
/*
* Schedule a device to run on a given queue.
* If the device was inserted as a new entry on the queue,
* return 1 meaning the device queue should be run. If we
* were already queued, implying someone else has already
* started the queue, return 0 so the caller doesn't attempt
* to run the queue.
*/
int
xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo,
u_int32_t new_priority)
{
int retval;
u_int32_t old_priority;
CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n"));
old_priority = pinfo->priority;
/*
* Are we already queued?
*/
if (pinfo->index != CAM_UNQUEUED_INDEX) {
/* Simply reorder based on new priority */
if (new_priority < old_priority) {
camq_change_priority(queue, pinfo->index,
new_priority);
CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
("changed priority to %d\n",
new_priority));
retval = 1;
} else
retval = 0;
} else {
/* New entry on the queue */
if (new_priority < old_priority)
pinfo->priority = new_priority;
CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
("Inserting onto queue\n"));
pinfo->generation = ++queue->generation;
camq_insert(queue, pinfo);
retval = 1;
}
return (retval);
}
static void
xpt_run_dev_allocq(struct cam_eb *bus)
{
struct cam_devq *devq;
CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_allocq\n"));
devq = bus->sim->devq;
CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
(" qfrozen_cnt == 0x%x, entries == %d, "
"openings == %d, active == %d\n",
devq->alloc_queue.qfrozen_cnt[0],
devq->alloc_queue.entries,
devq->alloc_openings,
devq->alloc_active));
devq->alloc_queue.qfrozen_cnt[0]++;
while ((devq->alloc_queue.entries > 0)
&& (devq->alloc_openings > 0)
&& (devq->alloc_queue.qfrozen_cnt[0] <= 1)) {
struct cam_ed_qinfo *qinfo;
struct cam_ed *device;
union ccb *work_ccb;
struct cam_periph *drv;
struct camq *drvq;
qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->alloc_queue,
CAMQ_HEAD);
device = qinfo->device;
CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
("running device %p\n", device));
drvq = &device->drvq;
#ifdef CAMDEBUG
if (drvq->entries <= 0) {
panic("xpt_run_dev_allocq: "
"Device on queue without any work to do");
}
#endif
if ((work_ccb = xpt_get_ccb(device)) != NULL) {
devq->alloc_openings--;
devq->alloc_active++;
drv = (struct cam_periph*)camq_remove(drvq, CAMQ_HEAD);
xpt_setup_ccb(&work_ccb->ccb_h, drv->path,
drv->pinfo.priority);
CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
("calling periph start\n"));
drv->periph_start(drv, work_ccb);
} else {
/*
* Malloc failure in alloc_ccb
*/
/*
* XXX add us to a list to be run from free_ccb
* if we don't have any ccbs active on this
* device queue otherwise we may never get run
* again.
*/
break;
}
/* We may have more work. Attempt to reschedule. */
xpt_schedule_dev_allocq(bus, device);
}
devq->alloc_queue.qfrozen_cnt[0]--;
}
static void
xpt_run_dev_sendq(struct cam_eb *bus)
{
struct cam_devq *devq;
CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_sendq\n"));
devq = bus->sim->devq;
devq->send_queue.qfrozen_cnt[0]++;
while ((devq->send_queue.entries > 0)
&& (devq->send_openings > 0)
&& (devq->send_queue.qfrozen_cnt[0] <= 1)) {
struct cam_ed_qinfo *qinfo;
struct cam_ed *device;
union ccb *work_ccb;
struct cam_sim *sim;
qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->send_queue,
CAMQ_HEAD);
device = qinfo->device;
CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
("running device %p\n", device));
work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD);
if (work_ccb == NULL) {
printf("device on run queue with no ccbs???\n");
continue;
}
if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) {
mtx_lock(&xsoftc.xpt_lock);
if (xsoftc.num_highpower <= 0) {
/*
* We got a high power command, but we
* don't have any available slots. Freeze
* the device queue until we have a slot
* available.
*/
xpt_freeze_devq(work_ccb->ccb_h.path, 1);
STAILQ_INSERT_TAIL(&xsoftc.highpowerq,
&work_ccb->ccb_h,
xpt_links.stqe);
mtx_unlock(&xsoftc.xpt_lock);
continue;
} else {
/*
* Consume a high power slot while
* this ccb runs.
*/
xsoftc.num_highpower--;
}
mtx_unlock(&xsoftc.xpt_lock);
}
cam_ccbq_remove_ccb(&device->ccbq, work_ccb);
cam_ccbq_send_ccb(&device->ccbq, work_ccb);
devq->send_openings--;
devq->send_active++;
xpt_schedule_dev_sendq(bus, device);
if (work_ccb && (work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0){
/*
* The client wants to freeze the queue
* after this CCB is sent.
*/
xpt_freeze_devq(work_ccb->ccb_h.path, 1);
}
/* In Target mode, the peripheral driver knows best... */
if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) {
if ((device->inq_flags & SID_CmdQue) != 0
&& work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE)
work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID;
else
/*
* Clear this in case of a retried CCB that
* failed due to a rejected tag.
*/
work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID;
}
/*
* Device queues can be shared among multiple sim instances
* that reside on different busses. Use the SIM in the queue
* CCB's path, rather than the one in the bus that was passed
* into this function.
*/
sim = work_ccb->ccb_h.path->bus->sim;
(*(sim->sim_action))(sim, work_ccb);
}
devq->send_queue.qfrozen_cnt[0]--;
}
/*
* This function merges stuff from the slave ccb into the master ccb, while
* keeping important fields in the master ccb constant.
*/
void
xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb)
{
/*
* Pull fields that are valid for peripheral drivers to set
* into the master CCB along with the CCB "payload".
*/
master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count;
master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code;
master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout;
master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags;
bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1],
sizeof(union ccb) - sizeof(struct ccb_hdr));
}
void
xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority)
{
CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n"));
ccb_h->pinfo.priority = priority;
ccb_h->path = path;
ccb_h->path_id = path->bus->path_id;
if (path->target)
ccb_h->target_id = path->target->target_id;
else
ccb_h->target_id = CAM_TARGET_WILDCARD;
if (path->device) {
ccb_h->target_lun = path->device->lun_id;
ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation;
} else {
ccb_h->target_lun = CAM_TARGET_WILDCARD;
}
ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
ccb_h->flags = 0;
}
/* Path manipulation functions */
cam_status
xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph,
path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
{
struct cam_path *path;
cam_status status;
path = (struct cam_path *)malloc(sizeof(*path), M_CAMXPT, M_NOWAIT);
if (path == NULL) {
status = CAM_RESRC_UNAVAIL;
return(status);
}
status = xpt_compile_path(path, perph, path_id, target_id, lun_id);
if (status != CAM_REQ_CMP) {
free(path, M_CAMXPT);
path = NULL;
}
*new_path_ptr = path;
return (status);
}
cam_status
xpt_create_path_unlocked(struct cam_path **new_path_ptr,
struct cam_periph *periph, path_id_t path_id,
target_id_t target_id, lun_id_t lun_id)
{
struct cam_path *path;
struct cam_eb *bus = NULL;
cam_status status;
int need_unlock = 0;
path = (struct cam_path *)malloc(sizeof(*path), M_CAMXPT, M_WAITOK);
if (path_id != CAM_BUS_WILDCARD) {
bus = xpt_find_bus(path_id);
if (bus != NULL) {
need_unlock = 1;
CAM_SIM_LOCK(bus->sim);
}
}
status = xpt_compile_path(path, periph, path_id, target_id, lun_id);
if (need_unlock)
CAM_SIM_UNLOCK(bus->sim);
if (status != CAM_REQ_CMP) {
free(path, M_CAMXPT);
path = NULL;
}
*new_path_ptr = path;
return (status);
}
cam_status
xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph,
path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
{
struct cam_eb *bus;
struct cam_et *target;
struct cam_ed *device;
cam_status status;
status = CAM_REQ_CMP; /* Completed without error */
target = NULL; /* Wildcarded */
device = NULL; /* Wildcarded */
/*
* We will potentially modify the EDT, so block interrupts
* that may attempt to create cam paths.
*/
bus = xpt_find_bus(path_id);
if (bus == NULL) {
status = CAM_PATH_INVALID;
} else {
target = xpt_find_target(bus, target_id);
if (target == NULL) {
/* Create one */
struct cam_et *new_target;
new_target = xpt_alloc_target(bus, target_id);
if (new_target == NULL) {
status = CAM_RESRC_UNAVAIL;
} else {
target = new_target;
}
}
if (target != NULL) {
device = xpt_find_device(target, lun_id);
if (device == NULL) {
/* Create one */
struct cam_ed *new_device;
new_device =
(*(bus->xport->alloc_device))(bus,
target,
lun_id);
if (new_device == NULL) {
status = CAM_RESRC_UNAVAIL;
} else {
device = new_device;
}
}
}
}
/*
* Only touch the user's data if we are successful.
*/
if (status == CAM_REQ_CMP) {
new_path->periph = perph;
new_path->bus = bus;
new_path->target = target;
new_path->device = device;
CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n"));
} else {
if (device != NULL)
xpt_release_device(device);
if (target != NULL)
xpt_release_target(target);
if (bus != NULL)
xpt_release_bus(bus);
}
return (status);
}
void
xpt_release_path(struct cam_path *path)
{
CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n"));
if (path->device != NULL) {
xpt_release_device(path->device);
path->device = NULL;
}
if (path->target != NULL) {
xpt_release_target(path->target);
path->target = NULL;
}
if (path->bus != NULL) {
xpt_release_bus(path->bus);
path->bus = NULL;
}
}
void
xpt_free_path(struct cam_path *path)
{
CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n"));
xpt_release_path(path);
free(path, M_CAMXPT);
}
/*
* Return -1 for failure, 0 for exact match, 1 for match with wildcards
* in path1, 2 for match with wildcards in path2.
*/
int
xpt_path_comp(struct cam_path *path1, struct cam_path *path2)
{
int retval = 0;
if (path1->bus != path2->bus) {
if (path1->bus->path_id == CAM_BUS_WILDCARD)
retval = 1;
else if (path2->bus->path_id == CAM_BUS_WILDCARD)
retval = 2;
else
return (-1);
}
if (path1->target != path2->target) {
if (path1->target->target_id == CAM_TARGET_WILDCARD) {
if (retval == 0)
retval = 1;
} else if (path2->target->target_id == CAM_TARGET_WILDCARD)
retval = 2;
else
return (-1);
}
if (path1->device != path2->device) {
if (path1->device->lun_id == CAM_LUN_WILDCARD) {
if (retval == 0)
retval = 1;
} else if (path2->device->lun_id == CAM_LUN_WILDCARD)
retval = 2;
else
return (-1);
}
return (retval);
}
void
xpt_print_path(struct cam_path *path)
{
if (path == NULL)
printf("(nopath): ");
else {
if (path->periph != NULL)
printf("(%s%d:", path->periph->periph_name,
path->periph->unit_number);
else
printf("(noperiph:");
if (path->bus != NULL)
printf("%s%d:%d:", path->bus->sim->sim_name,
path->bus->sim->unit_number,
path->bus->sim->bus_id);
else
printf("nobus:");
if (path->target != NULL)
printf("%d:", path->target->target_id);
else
printf("X:");
if (path->device != NULL)
printf("%d): ", path->device->lun_id);
else
printf("X): ");
}
}
void
xpt_print(struct cam_path *path, const char *fmt, ...)
{
va_list ap;
xpt_print_path(path);
va_start(ap, fmt);
vprintf(fmt, ap);
va_end(ap);
}
int
xpt_path_string(struct cam_path *path, char *str, size_t str_len)
{
struct sbuf sb;
#ifdef INVARIANTS
if (path != NULL && path->bus != NULL)
mtx_assert(path->bus->sim->mtx, MA_OWNED);
#endif
sbuf_new(&sb, str, str_len, 0);
if (path == NULL)
sbuf_printf(&sb, "(nopath): ");
else {
if (path->periph != NULL)
sbuf_printf(&sb, "(%s%d:", path->periph->periph_name,
path->periph->unit_number);
else
sbuf_printf(&sb, "(noperiph:");
if (path->bus != NULL)
sbuf_printf(&sb, "%s%d:%d:", path->bus->sim->sim_name,
path->bus->sim->unit_number,
path->bus->sim->bus_id);
else
sbuf_printf(&sb, "nobus:");
if (path->target != NULL)
sbuf_printf(&sb, "%d:", path->target->target_id);
else
sbuf_printf(&sb, "X:");
if (path->device != NULL)
sbuf_printf(&sb, "%d): ", path->device->lun_id);
else
sbuf_printf(&sb, "X): ");
}
sbuf_finish(&sb);
return(sbuf_len(&sb));
}
path_id_t
xpt_path_path_id(struct cam_path *path)
{
mtx_assert(path->bus->sim->mtx, MA_OWNED);
return(path->bus->path_id);
}
target_id_t
xpt_path_target_id(struct cam_path *path)
{
mtx_assert(path->bus->sim->mtx, MA_OWNED);
if (path->target != NULL)
return (path->target->target_id);
else
return (CAM_TARGET_WILDCARD);
}
lun_id_t
xpt_path_lun_id(struct cam_path *path)
{
mtx_assert(path->bus->sim->mtx, MA_OWNED);
if (path->device != NULL)
return (path->device->lun_id);
else
return (CAM_LUN_WILDCARD);
}
struct cam_sim *
xpt_path_sim(struct cam_path *path)
{
return (path->bus->sim);
}
struct cam_periph*
xpt_path_periph(struct cam_path *path)
{
mtx_assert(path->bus->sim->mtx, MA_OWNED);
return (path->periph);
}
/*
* Release a CAM control block for the caller. Remit the cost of the structure
* to the device referenced by the path. If the this device had no 'credits'
* and peripheral drivers have registered async callbacks for this notification
* call them now.
*/
void
xpt_release_ccb(union ccb *free_ccb)
{
struct cam_path *path;
struct cam_ed *device;
struct cam_eb *bus;
struct cam_sim *sim;
CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n"));
path = free_ccb->ccb_h.path;
device = path->device;
bus = path->bus;
sim = bus->sim;
mtx_assert(sim->mtx, MA_OWNED);
cam_ccbq_release_opening(&device->ccbq);
if (device->flags & CAM_DEV_RESIZE_QUEUE_NEEDED) {
device->flags &= ~CAM_DEV_RESIZE_QUEUE_NEEDED;
cam_ccbq_resize(&device->ccbq,
device->ccbq.dev_openings + device->ccbq.dev_active);
}
if (sim->ccb_count > sim->max_ccbs) {
xpt_free_ccb(free_ccb);
sim->ccb_count--;
} else {
SLIST_INSERT_HEAD(&sim->ccb_freeq, &free_ccb->ccb_h,
xpt_links.sle);
}
if (sim->devq == NULL) {
return;
}
sim->devq->alloc_openings++;
sim->devq->alloc_active--;
if (device_is_alloc_queued(device) == 0)
xpt_schedule_dev_allocq(bus, device);
xpt_run_dev_allocq(bus);
}
/* Functions accessed by SIM drivers */
static struct xpt_xport xport_default = {
.alloc_device = xpt_alloc_device_default,
.action = xpt_action_default,
.async = xpt_dev_async_default,
};
/*
* A sim structure, listing the SIM entry points and instance
* identification info is passed to xpt_bus_register to hook the SIM
* into the CAM framework. xpt_bus_register creates a cam_eb entry
* for this new bus and places it in the array of busses and assigns
* it a path_id. The path_id may be influenced by "hard wiring"
* information specified by the user. Once interrupt services are
* available, the bus will be probed.
*/
int32_t
xpt_bus_register(struct cam_sim *sim, device_t parent, u_int32_t bus)
{
struct cam_eb *new_bus;
struct cam_eb *old_bus;
struct ccb_pathinq cpi;
struct cam_path *path;
cam_status status;
mtx_assert(sim->mtx, MA_OWNED);
sim->bus_id = bus;
new_bus = (struct cam_eb *)malloc(sizeof(*new_bus),
M_CAMXPT, M_NOWAIT);
if (new_bus == NULL) {
/* Couldn't satisfy request */
return (CAM_RESRC_UNAVAIL);
}
path = (struct cam_path *)malloc(sizeof(*path), M_CAMXPT, M_NOWAIT);
if (path == NULL) {
free(new_bus, M_CAMXPT);
return (CAM_RESRC_UNAVAIL);
}
if (strcmp(sim->sim_name, "xpt") != 0) {
sim->path_id =
xptpathid(sim->sim_name, sim->unit_number, sim->bus_id);
}
TAILQ_INIT(&new_bus->et_entries);
new_bus->path_id = sim->path_id;
cam_sim_hold(sim);
new_bus->sim = sim;
timevalclear(&new_bus->last_reset);
new_bus->flags = 0;
new_bus->refcount = 1; /* Held until a bus_deregister event */
new_bus->generation = 0;
mtx_lock(&xsoftc.xpt_topo_lock);
old_bus = TAILQ_FIRST(&xsoftc.xpt_busses);
while (old_bus != NULL
&& old_bus->path_id < new_bus->path_id)
old_bus = TAILQ_NEXT(old_bus, links);
if (old_bus != NULL)
TAILQ_INSERT_BEFORE(old_bus, new_bus, links);
else
TAILQ_INSERT_TAIL(&xsoftc.xpt_busses, new_bus, links);
xsoftc.bus_generation++;
mtx_unlock(&xsoftc.xpt_topo_lock);
/*
* Set a default transport so that a PATH_INQ can be issued to
* the SIM. This will then allow for probing and attaching of
* a more appropriate transport.
*/
new_bus->xport = &xport_default;
status = xpt_compile_path(path, /*periph*/NULL, sim->path_id,
CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
if (status != CAM_REQ_CMP)
printf("xpt_compile_path returned %d\n", status);
xpt_setup_ccb(&cpi.ccb_h, path, CAM_PRIORITY_NORMAL);
cpi.ccb_h.func_code = XPT_PATH_INQ;
xpt_action((union ccb *)&cpi);
if (cpi.ccb_h.status == CAM_REQ_CMP) {
switch (cpi.transport) {
case XPORT_SPI:
case XPORT_SAS:
case XPORT_FC:
case XPORT_USB:
case XPORT_ISCSI:
case XPORT_PPB:
new_bus->xport = scsi_get_xport();
break;
case XPORT_ATA:
case XPORT_SATA:
new_bus->xport = ata_get_xport();
break;
default:
new_bus->xport = &xport_default;
break;
}
}
/* Notify interested parties */
if (sim->path_id != CAM_XPT_PATH_ID) {
union ccb *scan_ccb;
xpt_async(AC_PATH_REGISTERED, path, &cpi);
/* Initiate bus rescan. */
scan_ccb = xpt_alloc_ccb_nowait();
scan_ccb->ccb_h.path = path;
scan_ccb->ccb_h.func_code = XPT_SCAN_BUS;
scan_ccb->crcn.flags = 0;
xpt_rescan(scan_ccb);
} else
xpt_free_path(path);
return (CAM_SUCCESS);
}
int32_t
xpt_bus_deregister(path_id_t pathid)
{
struct cam_path bus_path;
cam_status status;
status = xpt_compile_path(&bus_path, NULL, pathid,
CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
if (status != CAM_REQ_CMP)
return (status);
xpt_async(AC_LOST_DEVICE, &bus_path, NULL);
xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL);
/* Release the reference count held while registered. */
xpt_release_bus(bus_path.bus);
xpt_release_path(&bus_path);
return (CAM_REQ_CMP);
}
static path_id_t
xptnextfreepathid(void)
{
struct cam_eb *bus;
path_id_t pathid;
const char *strval;
pathid = 0;
mtx_lock(&xsoftc.xpt_topo_lock);
bus = TAILQ_FIRST(&xsoftc.xpt_busses);
retry:
/* Find an unoccupied pathid */
while (bus != NULL && bus->path_id <= pathid) {
if (bus->path_id == pathid)
pathid++;
bus = TAILQ_NEXT(bus, links);
}
mtx_unlock(&xsoftc.xpt_topo_lock);
/*
* Ensure that this pathid is not reserved for
* a bus that may be registered in the future.
*/
if (resource_string_value("scbus", pathid, "at", &strval) == 0) {
++pathid;
/* Start the search over */
mtx_lock(&xsoftc.xpt_topo_lock);
goto retry;
}
return (pathid);
}
static path_id_t
xptpathid(const char *sim_name, int sim_unit, int sim_bus)
{
path_id_t pathid;
int i, dunit, val;
char buf[32];
const char *dname;
pathid = CAM_XPT_PATH_ID;
snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit);
i = 0;
while ((resource_find_match(&i, &dname, &dunit, "at", buf)) == 0) {
if (strcmp(dname, "scbus")) {
/* Avoid a bit of foot shooting. */
continue;
}
if (dunit < 0) /* unwired?! */
continue;
if (resource_int_value("scbus", dunit, "bus", &val) == 0) {
if (sim_bus == val) {
pathid = dunit;
break;
}
} else if (sim_bus == 0) {
/* Unspecified matches bus 0 */
pathid = dunit;
break;
} else {
printf("Ambiguous scbus configuration for %s%d "
"bus %d, cannot wire down. The kernel "
"config entry for scbus%d should "
"specify a controller bus.\n"
"Scbus will be assigned dynamically.\n",
sim_name, sim_unit, sim_bus, dunit);
break;
}
}
if (pathid == CAM_XPT_PATH_ID)
pathid = xptnextfreepathid();
return (pathid);
}
void
xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg)
{
struct cam_eb *bus;
struct cam_et *target, *next_target;
struct cam_ed *device, *next_device;
mtx_assert(path->bus->sim->mtx, MA_OWNED);
CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_async\n"));
/*
* Most async events come from a CAM interrupt context. In
* a few cases, the error recovery code at the peripheral layer,
* which may run from our SWI or a process context, may signal
* deferred events with a call to xpt_async.
*/
bus = path->bus;
if (async_code == AC_BUS_RESET) {
/* Update our notion of when the last reset occurred */
microtime(&bus->last_reset);
}
for (target = TAILQ_FIRST(&bus->et_entries);
target != NULL;
target = next_target) {
next_target = TAILQ_NEXT(target, links);
if (path->target != target
&& path->target->target_id != CAM_TARGET_WILDCARD
&& target->target_id != CAM_TARGET_WILDCARD)
continue;
if (async_code == AC_SENT_BDR) {
/* Update our notion of when the last reset occurred */
microtime(&path->target->last_reset);
}
for (device = TAILQ_FIRST(&target->ed_entries);
device != NULL;
device = next_device) {
next_device = TAILQ_NEXT(device, links);
if (path->device != device
&& path->device->lun_id != CAM_LUN_WILDCARD
&& device->lun_id != CAM_LUN_WILDCARD)
continue;
/*
* The async callback could free the device.
* If it is a broadcast async, it doesn't hold
* device reference, so take our own reference.
*/
xpt_acquire_device(device);
(*(bus->xport->async))(async_code, bus,
target, device,
async_arg);
xpt_async_bcast(&device->asyncs, async_code,
path, async_arg);
xpt_release_device(device);
}
}
/*
* If this wasn't a fully wildcarded async, tell all
* clients that want all async events.
*/
if (bus != xpt_periph->path->bus)
xpt_async_bcast(&xpt_periph->path->device->asyncs, async_code,
path, async_arg);
}
static void
xpt_async_bcast(struct async_list *async_head,
u_int32_t async_code,
struct cam_path *path, void *async_arg)
{
struct async_node *cur_entry;
cur_entry = SLIST_FIRST(async_head);
while (cur_entry != NULL) {
struct async_node *next_entry;
/*
* Grab the next list entry before we call the current
* entry's callback. This is because the callback function
* can delete its async callback entry.
*/
next_entry = SLIST_NEXT(cur_entry, links);
if ((cur_entry->event_enable & async_code) != 0)
cur_entry->callback(cur_entry->callback_arg,
async_code, path,
async_arg);
cur_entry = next_entry;
}
}
static void
xpt_dev_async_default(u_int32_t async_code, struct cam_eb *bus,
struct cam_et *target, struct cam_ed *device,
void *async_arg)
{
printf("%s called\n", __func__);
}
u_int32_t
xpt_freeze_devq_rl(struct cam_path *path, cam_rl rl, u_int count)
{
struct cam_ed *dev = path->device;
mtx_assert(path->bus->sim->mtx, MA_OWNED);
dev->sim->devq->alloc_openings +=
cam_ccbq_freeze(&dev->ccbq, rl, count);
/* Remove frozen device from allocq. */
if (device_is_alloc_queued(dev) &&
cam_ccbq_frozen(&dev->ccbq, CAM_PRIORITY_TO_RL(
CAMQ_GET_PRIO(&dev->drvq)))) {
camq_remove(&dev->sim->devq->alloc_queue,
dev->alloc_ccb_entry.pinfo.index);
}
/* Remove frozen device from sendq. */
if (device_is_send_queued(dev) &&
cam_ccbq_frozen_top(&dev->ccbq)) {
camq_remove(&dev->sim->devq->send_queue,
dev->send_ccb_entry.pinfo.index);
}
return (dev->ccbq.queue.qfrozen_cnt[rl]);
}
u_int32_t
xpt_freeze_devq(struct cam_path *path, u_int count)
{
return (xpt_freeze_devq_rl(path, 0, count));
}
u_int32_t
xpt_freeze_simq(struct cam_sim *sim, u_int count)
{
mtx_assert(sim->mtx, MA_OWNED);
sim->devq->send_queue.qfrozen_cnt[0] += count;
return (sim->devq->send_queue.qfrozen_cnt[0]);
}
static void
xpt_release_devq_timeout(void *arg)
{
struct cam_ed *device;
device = (struct cam_ed *)arg;
xpt_release_devq_device(device, /*rl*/0, /*count*/1, /*run_queue*/TRUE);
}
void
xpt_release_devq(struct cam_path *path, u_int count, int run_queue)
{
mtx_assert(path->bus->sim->mtx, MA_OWNED);
xpt_release_devq_device(path->device, /*rl*/0, count, run_queue);
}
void
xpt_release_devq_rl(struct cam_path *path, cam_rl rl, u_int count, int run_queue)
{
mtx_assert(path->bus->sim->mtx, MA_OWNED);
xpt_release_devq_device(path->device, rl, count, run_queue);
}
static void
xpt_release_devq_device(struct cam_ed *dev, cam_rl rl, u_int count, int run_queue)
{
if (count > dev->ccbq.queue.qfrozen_cnt[rl]) {
#ifdef INVARIANTS
printf("xpt_release_devq(%d): requested %u > present %u\n",
rl, count, dev->ccbq.queue.qfrozen_cnt[rl]);
#endif
count = dev->ccbq.queue.qfrozen_cnt[rl];
}
dev->sim->devq->alloc_openings -=
cam_ccbq_release(&dev->ccbq, rl, count);
if (cam_ccbq_frozen(&dev->ccbq, CAM_PRIORITY_TO_RL(
CAMQ_GET_PRIO(&dev->drvq))) == 0) {
if (xpt_schedule_dev_allocq(dev->target->bus, dev))
xpt_run_dev_allocq(dev->target->bus);
}
if (cam_ccbq_frozen_top(&dev->ccbq) == 0) {
/*
* No longer need to wait for a successful
* command completion.
*/
dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
/*
* Remove any timeouts that might be scheduled
* to release this queue.
*/
if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
callout_stop(&dev->callout);
dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING;
}
if (run_queue == 0)
return;
/*
* Now that we are unfrozen schedule the
* device so any pending transactions are
* run.
*/
if (xpt_schedule_dev_sendq(dev->target->bus, dev))
xpt_run_dev_sendq(dev->target->bus);
}
}
void
xpt_release_simq(struct cam_sim *sim, int run_queue)
{
struct camq *sendq;
mtx_assert(sim->mtx, MA_OWNED);
sendq = &(sim->devq->send_queue);
if (sendq->qfrozen_cnt[0] <= 0) {
#ifdef INVARIANTS
printf("xpt_release_simq: requested 1 > present %u\n",
sendq->qfrozen_cnt[0]);
#endif
} else
sendq->qfrozen_cnt[0]--;
if (sendq->qfrozen_cnt[0] == 0) {
/*
* If there is a timeout scheduled to release this
* sim queue, remove it. The queue frozen count is
* already at 0.
*/
if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){
callout_stop(&sim->callout);
sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING;
}
if (run_queue) {
struct cam_eb *bus;
/*
* Now that we are unfrozen run the send queue.
*/
bus = xpt_find_bus(sim->path_id);
xpt_run_dev_sendq(bus);
xpt_release_bus(bus);
}
}
}
/*
* XXX Appears to be unused.
*/
static void
xpt_release_simq_timeout(void *arg)
{
struct cam_sim *sim;
sim = (struct cam_sim *)arg;
xpt_release_simq(sim, /* run_queue */ TRUE);
}
void
xpt_done(union ccb *done_ccb)
{
struct cam_sim *sim;
int first;
CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_done\n"));
if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) != 0) {
/*
* Queue up the request for handling by our SWI handler
* any of the "non-immediate" type of ccbs.
*/
sim = done_ccb->ccb_h.path->bus->sim;
TAILQ_INSERT_TAIL(&sim->sim_doneq, &done_ccb->ccb_h,
sim_links.tqe);
done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX;
if ((sim->flags & CAM_SIM_ON_DONEQ) == 0) {
mtx_lock(&cam_simq_lock);
first = TAILQ_EMPTY(&cam_simq);
TAILQ_INSERT_TAIL(&cam_simq, sim, links);
mtx_unlock(&cam_simq_lock);
sim->flags |= CAM_SIM_ON_DONEQ;
if (first)
swi_sched(cambio_ih, 0);
}
}
}
union ccb *
xpt_alloc_ccb()
{
union ccb *new_ccb;
new_ccb = malloc(sizeof(*new_ccb), M_CAMXPT, M_ZERO|M_WAITOK);
return (new_ccb);
}
union ccb *
xpt_alloc_ccb_nowait()
{
union ccb *new_ccb;
new_ccb = malloc(sizeof(*new_ccb), M_CAMXPT, M_ZERO|M_NOWAIT);
return (new_ccb);
}
void
xpt_free_ccb(union ccb *free_ccb)
{
free(free_ccb, M_CAMXPT);
}
/* Private XPT functions */
/*
* Get a CAM control block for the caller. Charge the structure to the device
* referenced by the path. If the this device has no 'credits' then the
* device already has the maximum number of outstanding operations under way
* and we return NULL. If we don't have sufficient resources to allocate more
* ccbs, we also return NULL.
*/
static union ccb *
xpt_get_ccb(struct cam_ed *device)
{
union ccb *new_ccb;
struct cam_sim *sim;
sim = device->sim;
if ((new_ccb = (union ccb *)SLIST_FIRST(&sim->ccb_freeq)) == NULL) {
new_ccb = xpt_alloc_ccb_nowait();
if (new_ccb == NULL) {
return (NULL);
}
if ((sim->flags & CAM_SIM_MPSAFE) == 0)
callout_handle_init(&new_ccb->ccb_h.timeout_ch);
SLIST_INSERT_HEAD(&sim->ccb_freeq, &new_ccb->ccb_h,
xpt_links.sle);
sim->ccb_count++;
}
cam_ccbq_take_opening(&device->ccbq);
SLIST_REMOVE_HEAD(&sim->ccb_freeq, xpt_links.sle);
return (new_ccb);
}
static void
xpt_release_bus(struct cam_eb *bus)
{
if ((--bus->refcount == 0)
&& (TAILQ_FIRST(&bus->et_entries) == NULL)) {
mtx_lock(&xsoftc.xpt_topo_lock);
TAILQ_REMOVE(&xsoftc.xpt_busses, bus, links);
xsoftc.bus_generation++;
mtx_unlock(&xsoftc.xpt_topo_lock);
cam_sim_release(bus->sim);
free(bus, M_CAMXPT);
}
}
static struct cam_et *
xpt_alloc_target(struct cam_eb *bus, target_id_t target_id)
{
struct cam_et *target;
target = (struct cam_et *)malloc(sizeof(*target), M_CAMXPT, M_NOWAIT);
if (target != NULL) {
struct cam_et *cur_target;
TAILQ_INIT(&target->ed_entries);
target->bus = bus;
target->target_id = target_id;
target->refcount = 1;
target->generation = 0;
target->luns = NULL;
timevalclear(&target->last_reset);
/*
* Hold a reference to our parent bus so it
* will not go away before we do.
*/
bus->refcount++;
/* Insertion sort into our bus's target list */
cur_target = TAILQ_FIRST(&bus->et_entries);
while (cur_target != NULL && cur_target->target_id < target_id)
cur_target = TAILQ_NEXT(cur_target, links);
if (cur_target != NULL) {
TAILQ_INSERT_BEFORE(cur_target, target, links);
} else {
TAILQ_INSERT_TAIL(&bus->et_entries, target, links);
}
bus->generation++;
}
return (target);
}
static void
xpt_release_target(struct cam_et *target)
{
if ((--target->refcount == 0)
&& (TAILQ_FIRST(&target->ed_entries) == NULL)) {
TAILQ_REMOVE(&target->bus->et_entries, target, links);
target->bus->generation++;
xpt_release_bus(target->bus);
if (target->luns)
free(target->luns, M_CAMXPT);
free(target, M_CAMXPT);
}
}
static struct cam_ed *
xpt_alloc_device_default(struct cam_eb *bus, struct cam_et *target,
lun_id_t lun_id)
{
struct cam_ed *device, *cur_device;
device = xpt_alloc_device(bus, target, lun_id);
if (device == NULL)
return (NULL);
device->mintags = 1;
device->maxtags = 1;
bus->sim->max_ccbs += device->ccbq.devq_openings;
cur_device = TAILQ_FIRST(&target->ed_entries);
while (cur_device != NULL && cur_device->lun_id < lun_id)
cur_device = TAILQ_NEXT(cur_device, links);
if (cur_device != NULL) {
TAILQ_INSERT_BEFORE(cur_device, device, links);
} else {
TAILQ_INSERT_TAIL(&target->ed_entries, device, links);
}
target->generation++;
return (device);
}
struct cam_ed *
xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id)
{
struct cam_ed *device;
struct cam_devq *devq;
cam_status status;
/* Make space for us in the device queue on our bus */
devq = bus->sim->devq;
status = cam_devq_resize(devq, devq->alloc_queue.array_size + 1);
if (status != CAM_REQ_CMP) {
device = NULL;
} else {
device = (struct cam_ed *)malloc(sizeof(*device),
M_CAMXPT, M_NOWAIT);
}
if (device != NULL) {
cam_init_pinfo(&device->alloc_ccb_entry.pinfo);
device->alloc_ccb_entry.device = device;
cam_init_pinfo(&device->send_ccb_entry.pinfo);
device->send_ccb_entry.device = device;
device->target = target;
device->lun_id = lun_id;
device->sim = bus->sim;
/* Initialize our queues */
if (camq_init(&device->drvq, 0) != 0) {
free(device, M_CAMXPT);
return (NULL);
}
if (cam_ccbq_init(&device->ccbq,
bus->sim->max_dev_openings) != 0) {
camq_fini(&device->drvq);
free(device, M_CAMXPT);
return (NULL);
}
SLIST_INIT(&device->asyncs);
SLIST_INIT(&device->periphs);
device->generation = 0;
device->owner = NULL;
device->flags = CAM_DEV_UNCONFIGURED;
device->tag_delay_count = 0;
device->tag_saved_openings = 0;
device->refcount = 1;
callout_init_mtx(&device->callout, bus->sim->mtx, 0);
/*
* Hold a reference to our parent target so it
* will not go away before we do.
*/
target->refcount++;
}
return (device);
}
void
xpt_acquire_device(struct cam_ed *device)
{
device->refcount++;
}
void
xpt_release_device(struct cam_ed *device)
{
if (--device->refcount == 0) {
struct cam_devq *devq;
if (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX
|| device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX)
panic("Removing device while still queued for ccbs");
if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0)
callout_stop(&device->callout);
TAILQ_REMOVE(&device->target->ed_entries, device,links);
device->target->generation++;
device->target->bus->sim->max_ccbs -= device->ccbq.devq_openings;
/* Release our slot in the devq */
devq = device->target->bus->sim->devq;
cam_devq_resize(devq, devq->alloc_queue.array_size - 1);
camq_fini(&device->drvq);
cam_ccbq_fini(&device->ccbq);
xpt_release_target(device->target);
free(device, M_CAMXPT);
}
}
u_int32_t
xpt_dev_ccbq_resize(struct cam_path *path, int newopenings)
{
int diff;
int result;
struct cam_ed *dev;
dev = path->device;
diff = newopenings - (dev->ccbq.dev_active + dev->ccbq.dev_openings);
result = cam_ccbq_resize(&dev->ccbq, newopenings);
if (result == CAM_REQ_CMP && (diff < 0)) {
dev->flags |= CAM_DEV_RESIZE_QUEUE_NEEDED;
}
if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
|| (dev->inq_flags & SID_CmdQue) != 0)
dev->tag_saved_openings = newopenings;
/* Adjust the global limit */
dev->sim->max_ccbs += diff;
return (result);
}
static struct cam_eb *
xpt_find_bus(path_id_t path_id)
{
struct cam_eb *bus;
mtx_lock(&xsoftc.xpt_topo_lock);
for (bus = TAILQ_FIRST(&xsoftc.xpt_busses);
bus != NULL;
bus = TAILQ_NEXT(bus, links)) {
if (bus->path_id == path_id) {
bus->refcount++;
break;
}
}
mtx_unlock(&xsoftc.xpt_topo_lock);
return (bus);
}
static struct cam_et *
xpt_find_target(struct cam_eb *bus, target_id_t target_id)
{
struct cam_et *target;
for (target = TAILQ_FIRST(&bus->et_entries);
target != NULL;
target = TAILQ_NEXT(target, links)) {
if (target->target_id == target_id) {
target->refcount++;
break;
}
}
return (target);
}
static struct cam_ed *
xpt_find_device(struct cam_et *target, lun_id_t lun_id)
{
struct cam_ed *device;
for (device = TAILQ_FIRST(&target->ed_entries);
device != NULL;
device = TAILQ_NEXT(device, links)) {
if (device->lun_id == lun_id) {
device->refcount++;
break;
}
}
return (device);
}
void
xpt_start_tags(struct cam_path *path)
{
struct ccb_relsim crs;
struct cam_ed *device;
struct cam_sim *sim;
int newopenings;
device = path->device;
sim = path->bus->sim;
device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
xpt_freeze_devq(path, /*count*/1);
device->inq_flags |= SID_CmdQue;
if (device->tag_saved_openings != 0)
newopenings = device->tag_saved_openings;
else
newopenings = min(device->maxtags,
sim->max_tagged_dev_openings);
xpt_dev_ccbq_resize(path, newopenings);
xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
crs.ccb_h.func_code = XPT_REL_SIMQ;
crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
crs.openings
= crs.release_timeout
= crs.qfrozen_cnt
= 0;
xpt_action((union ccb *)&crs);
}
void
xpt_stop_tags(struct cam_path *path)
{
struct ccb_relsim crs;
struct cam_ed *device;
struct cam_sim *sim;
device = path->device;
sim = path->bus->sim;
device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
device->tag_delay_count = 0;
xpt_freeze_devq(path, /*count*/1);
device->inq_flags &= ~SID_CmdQue;
xpt_dev_ccbq_resize(path, sim->max_dev_openings);
xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
crs.ccb_h.func_code = XPT_REL_SIMQ;
crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
crs.openings
= crs.release_timeout
= crs.qfrozen_cnt
= 0;
xpt_action((union ccb *)&crs);
}
static void
xpt_boot_delay(void *arg)
{
xpt_release_boot();
}
static void
xpt_config(void *arg)
{
/*
* Now that interrupts are enabled, go find our devices
*/
#ifdef CAMDEBUG
/* Setup debugging flags and path */
#ifdef CAM_DEBUG_BUS
if (cam_dflags != CAM_DEBUG_NONE) {
/*
* Locking is specifically omitted here. No SIMs have
* registered yet, so xpt_create_path will only be searching
* empty lists of targets and devices.
*/
if (xpt_create_path(&cam_dpath, xpt_periph,
CAM_DEBUG_BUS, CAM_DEBUG_TARGET,
CAM_DEBUG_LUN) != CAM_REQ_CMP) {
printf("xpt_config: xpt_create_path() failed for debug"
" target %d:%d:%d, debugging disabled\n",
CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN);
cam_dflags = CAM_DEBUG_NONE;
}
} else
cam_dpath = NULL;
#else /* !CAM_DEBUG_BUS */
cam_dpath = NULL;
#endif /* CAM_DEBUG_BUS */
#endif /* CAMDEBUG */
periphdriver_init(1);
xpt_hold_boot();
callout_init(&xsoftc.boot_callout, 1);
callout_reset(&xsoftc.boot_callout, hz * xsoftc.boot_delay / 1000,
xpt_boot_delay, NULL);
/* Fire up rescan thread. */
if (kproc_create(xpt_scanner_thread, NULL, NULL, 0, 0, "xpt_thrd")) {
printf("xpt_config: failed to create rescan thread.\n");
}
}
void
xpt_hold_boot(void)
{
xpt_lock_buses();
xsoftc.buses_to_config++;
xpt_unlock_buses();
}
void
xpt_release_boot(void)
{
xpt_lock_buses();
xsoftc.buses_to_config--;
if (xsoftc.buses_to_config == 0 && xsoftc.buses_config_done == 0) {
struct xpt_task *task;
xsoftc.buses_config_done = 1;
xpt_unlock_buses();
/* Call manually because we don't have any busses */
task = malloc(sizeof(struct xpt_task), M_CAMXPT, M_NOWAIT);
if (task != NULL) {
TASK_INIT(&task->task, 0, xpt_finishconfig_task, task);
taskqueue_enqueue(taskqueue_thread, &task->task);
}
} else
xpt_unlock_buses();
}
/*
* If the given device only has one peripheral attached to it, and if that
* peripheral is the passthrough driver, announce it. This insures that the
* user sees some sort of announcement for every peripheral in their system.
*/
static int
xptpassannouncefunc(struct cam_ed *device, void *arg)
{
struct cam_periph *periph;
int i;
for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL;
periph = SLIST_NEXT(periph, periph_links), i++);
periph = SLIST_FIRST(&device->periphs);
if ((i == 1)
&& (strncmp(periph->periph_name, "pass", 4) == 0))
xpt_announce_periph(periph, NULL);
return(1);
}
static void
xpt_finishconfig_task(void *context, int pending)
{
periphdriver_init(2);
/*
* Check for devices with no "standard" peripheral driver
* attached. For any devices like that, announce the
* passthrough driver so the user will see something.
*/
xpt_for_all_devices(xptpassannouncefunc, NULL);
/* Release our hook so that the boot can continue. */
config_intrhook_disestablish(xsoftc.xpt_config_hook);
free(xsoftc.xpt_config_hook, M_CAMXPT);
xsoftc.xpt_config_hook = NULL;
free(context, M_CAMXPT);
}
cam_status
xpt_register_async(int event, ac_callback_t *cbfunc, void *cbarg,
struct cam_path *path)
{
struct ccb_setasync csa;
cam_status status;
int xptpath = 0;
if (path == NULL) {
mtx_lock(&xsoftc.xpt_lock);
status = xpt_create_path(&path, /*periph*/NULL, CAM_XPT_PATH_ID,
CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
if (status != CAM_REQ_CMP) {
mtx_unlock(&xsoftc.xpt_lock);
return (status);
}
xptpath = 1;
}
xpt_setup_ccb(&csa.ccb_h, path, CAM_PRIORITY_NORMAL);
csa.ccb_h.func_code = XPT_SASYNC_CB;
csa.event_enable = event;
csa.callback = cbfunc;
csa.callback_arg = cbarg;
xpt_action((union ccb *)&csa);
status = csa.ccb_h.status;
if (xptpath) {
xpt_free_path(path);
mtx_unlock(&xsoftc.xpt_lock);
if ((status == CAM_REQ_CMP) &&
(csa.event_enable & AC_FOUND_DEVICE)) {
/*
* Get this peripheral up to date with all
* the currently existing devices.
*/
xpt_for_all_devices(xptsetasyncfunc, &csa);
}
if ((status == CAM_REQ_CMP) &&
(csa.event_enable & AC_PATH_REGISTERED)) {
/*
* Get this peripheral up to date with all
* the currently existing busses.
*/
xpt_for_all_busses(xptsetasyncbusfunc, &csa);
}
}
return (status);
}
static void
xptaction(struct cam_sim *sim, union ccb *work_ccb)
{
CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n"));
switch (work_ccb->ccb_h.func_code) {
/* Common cases first */
case XPT_PATH_INQ: /* Path routing inquiry */
{
struct ccb_pathinq *cpi;
cpi = &work_ccb->cpi;
cpi->version_num = 1; /* XXX??? */
cpi->hba_inquiry = 0;
cpi->target_sprt = 0;
cpi->hba_misc = 0;
cpi->hba_eng_cnt = 0;
cpi->max_target = 0;
cpi->max_lun = 0;
cpi->initiator_id = 0;
strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
strncpy(cpi->hba_vid, "", HBA_IDLEN);
strncpy(cpi->dev_name, sim->sim_name, DEV_IDLEN);
cpi->unit_number = sim->unit_number;
cpi->bus_id = sim->bus_id;
cpi->base_transfer_speed = 0;
cpi->protocol = PROTO_UNSPECIFIED;
cpi->protocol_version = PROTO_VERSION_UNSPECIFIED;
cpi->transport = XPORT_UNSPECIFIED;
cpi->transport_version = XPORT_VERSION_UNSPECIFIED;
cpi->ccb_h.status = CAM_REQ_CMP;
xpt_done(work_ccb);
break;
}
default:
work_ccb->ccb_h.status = CAM_REQ_INVALID;
xpt_done(work_ccb);
break;
}
}
/*
* The xpt as a "controller" has no interrupt sources, so polling
* is a no-op.
*/
static void
xptpoll(struct cam_sim *sim)
{
}
void
xpt_lock_buses(void)
{
mtx_lock(&xsoftc.xpt_topo_lock);
}
void
xpt_unlock_buses(void)
{
mtx_unlock(&xsoftc.xpt_topo_lock);
}
static void
camisr(void *dummy)
{
cam_simq_t queue;
struct cam_sim *sim;
mtx_lock(&cam_simq_lock);
TAILQ_INIT(&queue);
while (!TAILQ_EMPTY(&cam_simq)) {
TAILQ_CONCAT(&queue, &cam_simq, links);
mtx_unlock(&cam_simq_lock);
while ((sim = TAILQ_FIRST(&queue)) != NULL) {
TAILQ_REMOVE(&queue, sim, links);
CAM_SIM_LOCK(sim);
sim->flags &= ~CAM_SIM_ON_DONEQ;
camisr_runqueue(&sim->sim_doneq);
CAM_SIM_UNLOCK(sim);
}
mtx_lock(&cam_simq_lock);
}
mtx_unlock(&cam_simq_lock);
}
static void
camisr_runqueue(void *V_queue)
{
cam_isrq_t *queue = V_queue;
struct ccb_hdr *ccb_h;
while ((ccb_h = TAILQ_FIRST(queue)) != NULL) {
int runq;
TAILQ_REMOVE(queue, ccb_h, sim_links.tqe);
ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
CAM_DEBUG(ccb_h->path, CAM_DEBUG_TRACE,
("camisr\n"));
runq = FALSE;
if (ccb_h->flags & CAM_HIGH_POWER) {
struct highpowerlist *hphead;
union ccb *send_ccb;
mtx_lock(&xsoftc.xpt_lock);
hphead = &xsoftc.highpowerq;
send_ccb = (union ccb *)STAILQ_FIRST(hphead);
/*
* Increment the count since this command is done.
*/
xsoftc.num_highpower++;
/*
* Any high powered commands queued up?
*/
if (send_ccb != NULL) {
STAILQ_REMOVE_HEAD(hphead, xpt_links.stqe);
mtx_unlock(&xsoftc.xpt_lock);
xpt_release_devq(send_ccb->ccb_h.path,
/*count*/1, /*runqueue*/TRUE);
} else
mtx_unlock(&xsoftc.xpt_lock);
}
if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) {
struct cam_ed *dev;
dev = ccb_h->path->device;
cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h);
ccb_h->path->bus->sim->devq->send_active--;
ccb_h->path->bus->sim->devq->send_openings++;
runq = TRUE;
if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0
&& (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ)
|| ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
&& (dev->ccbq.dev_active == 0))) {
xpt_release_devq(ccb_h->path, /*count*/1,
/*run_queue*/FALSE);
}
if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
&& (--dev->tag_delay_count == 0))
xpt_start_tags(ccb_h->path);
if (!device_is_send_queued(dev))
xpt_schedule_dev_sendq(ccb_h->path->bus, dev);
}
if (ccb_h->status & CAM_RELEASE_SIMQ) {
xpt_release_simq(ccb_h->path->bus->sim,
/*run_queue*/TRUE);
ccb_h->status &= ~CAM_RELEASE_SIMQ;
runq = FALSE;
}
if ((ccb_h->flags & CAM_DEV_QFRZDIS)
&& (ccb_h->status & CAM_DEV_QFRZN)) {
xpt_release_devq(ccb_h->path, /*count*/1,
/*run_queue*/TRUE);
ccb_h->status &= ~CAM_DEV_QFRZN;
} else if (runq) {
xpt_run_dev_sendq(ccb_h->path->bus);
}
/* Call the peripheral driver's callback */
(*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h);
}
}