freebsd-nq/usr.bin/localedef/collate.c
Pedro F. Giffuni be4391a2d5 localedef(1): make better use of calloc(3) arguments.
The first argument of calloc(3) should be an ordinal type, and the
second a size: split a multiplication to make better use of calloc(3)
and detect overflows.

Do some other re-ordering and style fixes while here.

MFC after:	3 weeks
2016-09-14 16:47:17 +00:00

1314 lines
29 KiB
C

/*
* Copyright 2010 Nexenta Systems, Inc. All rights reserved.
* Copyright 2015 John Marino <draco@marino.st>
*
* This source code is derived from the illumos localedef command, and
* provided under BSD-style license terms by Nexenta Systems, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* LC_COLLATE database generation routines for localedef.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/types.h>
#include <sys/tree.h>
#include <stdio.h>
#include <stddef.h>
#include <stdlib.h>
#include <errno.h>
#include <string.h>
#include <unistd.h>
#include <wchar.h>
#include <limits.h>
#include "localedef.h"
#include "parser.h"
#include "collate.h"
/*
* Design notes.
*
* It will be extremely helpful to the reader if they have access to
* the localedef and locale file format specifications available.
* Latest versions of these are available from www.opengroup.org.
*
* The design for the collation code is a bit complex. The goal is a
* single collation database as described in collate.h (in
* libc/port/locale). However, there are some other tidbits:
*
* a) The substitution entries are now a directly indexable array. A
* priority elsewhere in the table is taken as an index into the
* substitution table if it has a high bit (COLLATE_SUBST_PRIORITY)
* set. (The bit is cleared and the result is the index into the
* table.
*
* b) We eliminate duplicate entries into the substitution table.
* This saves a lot of space.
*
* c) The priorities for each level are "compressed", so that each
* sorting level has consecutively numbered priorities starting at 1.
* (O is reserved for the ignore priority.) This means sort levels
* which only have a few distinct priorities can represent the
* priority level in fewer bits, which makes the strxfrm output
* smaller.
*
* d) We record the total number of priorities so that strxfrm can
* figure out how many bytes to expand a numeric priority into.
*
* e) For the UNDEFINED pass (the last pass), we record the maximum
* number of bits needed to uniquely prioritize these entries, so that
* the last pass can also use smaller strxfrm output when possible.
*
* f) Priorities with the sign bit set are verboten. This works out
* because no active character set needs that bit to carry significant
* information once the character is in wide form.
*
* To process the entire data to make the database, we actually run
* multiple passes over the data.
*
* The first pass, which is done at parse time, identifies elements,
* substitutions, and such, and records them in priority order. As
* some priorities can refer to other priorities, using forward
* references, we use a table of references indicating whether the
* priority's value has been resolved, or whether it is still a
* reference.
*
* The second pass walks over all the items in priority order, noting
* that they are used directly, and not just an indirect reference.
* This is done by creating a "weight" structure for the item. The
* weights are stashed in an RB tree sorted by relative "priority".
*
* The third pass walks over all the weight structures, in priority
* order, and assigns a new monotonically increasing (per sort level)
* weight value to them. These are the values that will actually be
* written to the file.
*
* The fourth pass just writes the data out.
*/
/*
* In order to resolve the priorities, we create a table of priorities.
* Entries in the table can be in one of three states.
*
* UNKNOWN is for newly allocated entries, and indicates that nothing
* is known about the priority. (For example, when new entries are created
* for collating-symbols, this is the value assigned for them until the
* collating symbol's order has been determined.
*
* RESOLVED is used for an entry where the priority indicates the final
* numeric weight.
*
* REFER is used for entries that reference other entries. Typically
* this is used for forward references. A collating-symbol can never
* have this value.
*
* The "pass" field is used during final resolution to aid in detection
* of referencing loops. (For example <A> depends on <B>, but <B> has its
* priority dependent on <A>.)
*/
typedef enum {
UNKNOWN, /* priority is totally unknown */
RESOLVED, /* priority value fully resolved */
REFER /* priority is a reference (index) */
} res_t;
typedef struct weight {
int32_t pri;
int opt;
RB_ENTRY(weight) entry;
} weight_t;
typedef struct priority {
res_t res;
int32_t pri;
int pass;
int lineno;
} collpri_t;
#define NUM_WT collinfo.directive_count
/*
* These are the abstract collating symbols, which are just a symbolic
* way to reference a priority.
*/
struct collsym {
char *name;
int32_t ref;
RB_ENTRY(collsym) entry;
};
/*
* These are also abstract collating symbols, but we allow them to have
* different priorities at different levels.
*/
typedef struct collundef {
char *name;
int32_t ref[COLL_WEIGHTS_MAX];
RB_ENTRY(collundef) entry;
} collundef_t;
/*
* These are called "chains" in libc. This records the fact that two
* more characters should be treated as a single collating entity when
* they appear together. For example, in Spanish <C><h> gets collated
* as a character between <C> and <D>.
*/
struct collelem {
char *symbol;
wchar_t *expand;
int32_t ref[COLL_WEIGHTS_MAX];
RB_ENTRY(collelem) rb_bysymbol;
RB_ENTRY(collelem) rb_byexpand;
};
/*
* Individual characters have a sequence of weights as well.
*/
typedef struct collchar {
wchar_t wc;
int32_t ref[COLL_WEIGHTS_MAX];
RB_ENTRY(collchar) entry;
} collchar_t;
/*
* Substitution entries. The key is itself a priority. Note that
* when we create one of these, we *automatically* wind up with a
* fully resolved priority for the key, because creation of
* substitutions creates a resolved priority at the same time.
*/
typedef struct subst{
int32_t key;
int32_t ref[COLLATE_STR_LEN];
RB_ENTRY(subst) entry;
RB_ENTRY(subst) entry_ref;
} subst_t;
static RB_HEAD(collsyms, collsym) collsyms;
static RB_HEAD(collundefs, collundef) collundefs;
static RB_HEAD(elem_by_symbol, collelem) elem_by_symbol;
static RB_HEAD(elem_by_expand, collelem) elem_by_expand;
static RB_HEAD(collchars, collchar) collchars;
static RB_HEAD(substs, subst) substs[COLL_WEIGHTS_MAX];
static RB_HEAD(substs_ref, subst) substs_ref[COLL_WEIGHTS_MAX];
static RB_HEAD(weights, weight) weights[COLL_WEIGHTS_MAX];
static int32_t nweight[COLL_WEIGHTS_MAX];
/*
* This is state tracking for the ellipsis token. Note that we start
* the initial values so that the ellipsis logic will think we got a
* magic starting value of NUL. It starts at minus one because the
* starting point is exclusive -- i.e. the starting point is not
* itself handled by the ellipsis code.
*/
static int currorder = EOF;
static int lastorder = EOF;
static collelem_t *currelem;
static collchar_t *currchar;
static collundef_t *currundef;
static wchar_t ellipsis_start = 0;
static int32_t ellipsis_weights[COLL_WEIGHTS_MAX];
/*
* We keep a running tally of weights.
*/
static int nextpri = 1;
static int nextsubst[COLL_WEIGHTS_MAX] = { 0 };
/*
* This array collects up the weights for each level.
*/
static int32_t order_weights[COLL_WEIGHTS_MAX];
static int curr_weight = 0;
static int32_t subst_weights[COLLATE_STR_LEN];
static int curr_subst = 0;
/*
* Some initial priority values.
*/
static int32_t pri_undefined[COLL_WEIGHTS_MAX];
static int32_t pri_ignore;
static collate_info_t collinfo;
static collpri_t *prilist = NULL;
static int numpri = 0;
static int maxpri = 0;
static void start_order(int);
static int32_t
new_pri(void)
{
int i;
if (numpri >= maxpri) {
maxpri = maxpri ? maxpri * 2 : 1024;
prilist = realloc(prilist, sizeof (collpri_t) * maxpri);
if (prilist == NULL) {
fprintf(stderr,"out of memory");
return (-1);
}
for (i = numpri; i < maxpri; i++) {
prilist[i].res = UNKNOWN;
prilist[i].pri = 0;
prilist[i].pass = 0;
}
}
return (numpri++);
}
static collpri_t *
get_pri(int32_t ref)
{
if ((ref < 0) || (ref > numpri)) {
INTERR;
return (NULL);
}
return (&prilist[ref]);
}
static void
set_pri(int32_t ref, int32_t v, res_t res)
{
collpri_t *pri;
pri = get_pri(ref);
if ((res == REFER) && ((v < 0) || (v >= numpri))) {
INTERR;
}
/* Resolve self references */
if ((res == REFER) && (ref == v)) {
v = nextpri;
res = RESOLVED;
}
if (pri->res != UNKNOWN) {
warn("repeated item in order list (first on %d)",
pri->lineno);
return;
}
pri->lineno = lineno;
pri->pri = v;
pri->res = res;
}
static int32_t
resolve_pri(int32_t ref)
{
collpri_t *pri;
static int32_t pass = 0;
pri = get_pri(ref);
pass++;
while (pri->res == REFER) {
if (pri->pass == pass) {
/* report a line with the circular symbol */
lineno = pri->lineno;
fprintf(stderr,"circular reference in order list");
return (-1);
}
if ((pri->pri < 0) || (pri->pri >= numpri)) {
INTERR;
return (-1);
}
pri->pass = pass;
pri = &prilist[pri->pri];
}
if (pri->res == UNKNOWN) {
return (-1);
}
if (pri->res != RESOLVED)
INTERR;
return (pri->pri);
}
static int
weight_compare(const void *n1, const void *n2)
{
int32_t k1 = ((const weight_t *)n1)->pri;
int32_t k2 = ((const weight_t *)n2)->pri;
return (k1 < k2 ? -1 : k1 > k2 ? 1 : 0);
}
RB_GENERATE_STATIC(weights, weight, entry, weight_compare);
static int
collsym_compare(const void *n1, const void *n2)
{
const collsym_t *c1 = n1;
const collsym_t *c2 = n2;
int rv;
rv = strcmp(c1->name, c2->name);
return ((rv < 0) ? -1 : (rv > 0) ? 1 : 0);
}
RB_GENERATE_STATIC(collsyms, collsym, entry, collsym_compare);
static int
collundef_compare(const void *n1, const void *n2)
{
const collundef_t *c1 = n1;
const collundef_t *c2 = n2;
int rv;
rv = strcmp(c1->name, c2->name);
return ((rv < 0) ? -1 : (rv > 0) ? 1 : 0);
}
RB_GENERATE_STATIC(collundefs, collundef, entry, collundef_compare);
static int
element_compare_symbol(const void *n1, const void *n2)
{
const collelem_t *c1 = n1;
const collelem_t *c2 = n2;
int rv;
rv = strcmp(c1->symbol, c2->symbol);
return ((rv < 0) ? -1 : (rv > 0) ? 1 : 0);
}
RB_GENERATE_STATIC(elem_by_symbol, collelem, rb_bysymbol, element_compare_symbol);
static int
element_compare_expand(const void *n1, const void *n2)
{
const collelem_t *c1 = n1;
const collelem_t *c2 = n2;
int rv;
rv = wcscmp(c1->expand, c2->expand);
return ((rv < 0) ? -1 : (rv > 0) ? 1 : 0);
}
RB_GENERATE_STATIC(elem_by_expand, collelem, rb_byexpand, element_compare_expand);
static int
collchar_compare(const void *n1, const void *n2)
{
wchar_t k1 = ((const collchar_t *)n1)->wc;
wchar_t k2 = ((const collchar_t *)n2)->wc;
return (k1 < k2 ? -1 : k1 > k2 ? 1 : 0);
}
RB_GENERATE_STATIC(collchars, collchar, entry, collchar_compare);
static int
subst_compare(const void *n1, const void *n2)
{
int32_t k1 = ((const subst_t *)n1)->key;
int32_t k2 = ((const subst_t *)n2)->key;
return (k1 < k2 ? -1 : k1 > k2 ? 1 : 0);
}
RB_GENERATE_STATIC(substs, subst, entry, subst_compare);
static int
subst_compare_ref(const void *n1, const void *n2)
{
const wchar_t *c1 = ((const subst_t *)n1)->ref;
const wchar_t *c2 = ((const subst_t *)n2)->ref;
int rv;
rv = wcscmp(c1, c2);
return ((rv < 0) ? -1 : (rv > 0) ? 1 : 0);
}
RB_GENERATE_STATIC(substs_ref, subst, entry_ref, subst_compare_ref);
void
init_collate(void)
{
int i;
RB_INIT(&collsyms);
RB_INIT(&collundefs);
RB_INIT(&elem_by_symbol);
RB_INIT(&elem_by_expand);
RB_INIT(&collchars);
for (i = 0; i < COLL_WEIGHTS_MAX; i++) {
RB_INIT(&substs[i]);
RB_INIT(&substs_ref[i]);
RB_INIT(&weights[i]);
nweight[i] = 1;
}
(void) memset(&collinfo, 0, sizeof (collinfo));
/* allocate some initial priorities */
pri_ignore = new_pri();
set_pri(pri_ignore, 0, RESOLVED);
for (i = 0; i < COLL_WEIGHTS_MAX; i++) {
pri_undefined[i] = new_pri();
/* we will override this later */
set_pri(pri_undefined[i], COLLATE_MAX_PRIORITY, UNKNOWN);
}
}
void
define_collsym(char *name)
{
collsym_t *sym;
if ((sym = calloc(1, sizeof(*sym))) == NULL) {
fprintf(stderr,"out of memory");
return;
}
sym->name = name;
sym->ref = new_pri();
if (RB_FIND(collsyms, &collsyms, sym) != NULL) {
/*
* This should never happen because we are only called
* for undefined symbols.
*/
free(sym);
INTERR;
return;
}
RB_INSERT(collsyms, &collsyms, sym);
}
collsym_t *
lookup_collsym(char *name)
{
collsym_t srch;
srch.name = name;
return (RB_FIND(collsyms, &collsyms, &srch));
}
collelem_t *
lookup_collelem(char *symbol)
{
collelem_t srch;
srch.symbol = symbol;
return (RB_FIND(elem_by_symbol, &elem_by_symbol, &srch));
}
static collundef_t *
get_collundef(char *name)
{
collundef_t srch;
collundef_t *ud;
int i;
srch.name = name;
if ((ud = RB_FIND(collundefs, &collundefs, &srch)) == NULL) {
if (((ud = calloc(1, sizeof(*ud))) == NULL) ||
((ud->name = strdup(name)) == NULL)) {
fprintf(stderr,"out of memory");
free(ud);
return (NULL);
}
for (i = 0; i < NUM_WT; i++) {
ud->ref[i] = new_pri();
}
RB_INSERT(collundefs, &collundefs, ud);
}
add_charmap_undefined(name);
return (ud);
}
static collchar_t *
get_collchar(wchar_t wc, int create)
{
collchar_t srch;
collchar_t *cc;
int i;
srch.wc = wc;
cc = RB_FIND(collchars, &collchars, &srch);
if ((cc == NULL) && create) {
if ((cc = calloc(1, sizeof(*cc))) == NULL) {
fprintf(stderr, "out of memory");
return (NULL);
}
for (i = 0; i < NUM_WT; i++) {
cc->ref[i] = new_pri();
}
cc->wc = wc;
RB_INSERT(collchars, &collchars, cc);
}
return (cc);
}
void
end_order_collsym(collsym_t *sym)
{
start_order(T_COLLSYM);
/* update the weight */
set_pri(sym->ref, nextpri, RESOLVED);
nextpri++;
}
void
end_order(void)
{
int i;
int32_t pri;
int32_t ref;
collpri_t *p;
/* advance the priority/weight */
pri = nextpri;
switch (currorder) {
case T_CHAR:
for (i = 0; i < NUM_WT; i++) {
if (((ref = order_weights[i]) < 0) ||
((p = get_pri(ref)) == NULL) ||
(p->pri == -1)) {
/* unspecified weight is a self reference */
set_pri(currchar->ref[i], pri, RESOLVED);
} else {
set_pri(currchar->ref[i], ref, REFER);
}
order_weights[i] = -1;
}
/* leave a cookie trail in case next symbol is ellipsis */
ellipsis_start = currchar->wc + 1;
currchar = NULL;
break;
case T_ELLIPSIS:
/* save off the weights were we can find them */
for (i = 0; i < NUM_WT; i++) {
ellipsis_weights[i] = order_weights[i];
order_weights[i] = -1;
}
break;
case T_COLLELEM:
if (currelem == NULL) {
INTERR;
} else {
for (i = 0; i < NUM_WT; i++) {
if (((ref = order_weights[i]) < 0) ||
((p = get_pri(ref)) == NULL) ||
(p->pri == -1)) {
set_pri(currelem->ref[i], pri,
RESOLVED);
} else {
set_pri(currelem->ref[i], ref, REFER);
}
order_weights[i] = -1;
}
}
break;
case T_UNDEFINED:
for (i = 0; i < NUM_WT; i++) {
if (((ref = order_weights[i]) < 0) ||
((p = get_pri(ref)) == NULL) ||
(p->pri == -1)) {
set_pri(pri_undefined[i], -1, RESOLVED);
} else {
set_pri(pri_undefined[i], ref, REFER);
}
order_weights[i] = -1;
}
break;
case T_SYMBOL:
for (i = 0; i < NUM_WT; i++) {
if (((ref = order_weights[i]) < 0) ||
((p = get_pri(ref)) == NULL) ||
(p->pri == -1)) {
set_pri(currundef->ref[i], pri, RESOLVED);
} else {
set_pri(currundef->ref[i], ref, REFER);
}
order_weights[i] = -1;
}
break;
default:
INTERR;
}
nextpri++;
}
static void
start_order(int type)
{
int i;
lastorder = currorder;
currorder = type;
/* this is used to protect ELLIPSIS processing */
if ((lastorder == T_ELLIPSIS) && (type != T_CHAR)) {
fprintf(stderr, "character value expected");
}
for (i = 0; i < COLL_WEIGHTS_MAX; i++) {
order_weights[i] = -1;
}
curr_weight = 0;
}
void
start_order_undefined(void)
{
start_order(T_UNDEFINED);
}
void
start_order_symbol(char *name)
{
currundef = get_collundef(name);
start_order(T_SYMBOL);
}
void
start_order_char(wchar_t wc)
{
collchar_t *cc;
int32_t ref;
start_order(T_CHAR);
/*
* If we last saw an ellipsis, then we need to close the range.
* Handle that here. Note that we have to be careful because the
* items *inside* the range are treated exclusiveley to the items
* outside of the range. The ends of the range can have quite
* different weights than the range members.
*/
if (lastorder == T_ELLIPSIS) {
int i;
if (wc < ellipsis_start) {
fprintf(stderr, "malformed range!");
return;
}
while (ellipsis_start < wc) {
/*
* pick all of the saved weights for the
* ellipsis. note that -1 encodes for the
* ellipsis itself, which means to take the
* current relative priority.
*/
if ((cc = get_collchar(ellipsis_start, 1)) == NULL) {
INTERR;
return;
}
for (i = 0; i < NUM_WT; i++) {
collpri_t *p;
if (((ref = ellipsis_weights[i]) == -1) ||
((p = get_pri(ref)) == NULL) ||
(p->pri == -1)) {
set_pri(cc->ref[i], nextpri, RESOLVED);
} else {
set_pri(cc->ref[i], ref, REFER);
}
ellipsis_weights[i] = 0;
}
ellipsis_start++;
nextpri++;
}
}
currchar = get_collchar(wc, 1);
}
void
start_order_collelem(collelem_t *e)
{
start_order(T_COLLELEM);
currelem = e;
}
void
start_order_ellipsis(void)
{
int i;
start_order(T_ELLIPSIS);
if (lastorder != T_CHAR) {
fprintf(stderr, "illegal starting point for range");
return;
}
for (i = 0; i < NUM_WT; i++) {
ellipsis_weights[i] = order_weights[i];
}
}
void
define_collelem(char *name, wchar_t *wcs)
{
collelem_t *e;
int i;
if (wcslen(wcs) >= COLLATE_STR_LEN) {
fprintf(stderr,"expanded collation element too long");
return;
}
if ((e = calloc(1, sizeof(*e))) == NULL) {
fprintf(stderr, "out of memory");
return;
}
e->expand = wcs;
e->symbol = name;
/*
* This is executed before the order statement, so we don't
* know how many priorities we *really* need. We allocate one
* for each possible weight. Not a big deal, as collating-elements
* prove to be quite rare.
*/
for (i = 0; i < COLL_WEIGHTS_MAX; i++) {
e->ref[i] = new_pri();
}
/* A character sequence can only reduce to one element. */
if ((RB_FIND(elem_by_symbol, &elem_by_symbol, e) != NULL) ||
(RB_FIND(elem_by_expand, &elem_by_expand, e) != NULL)) {
fprintf(stderr, "duplicate collating element definition");
free(e);
return;
}
RB_INSERT(elem_by_symbol, &elem_by_symbol, e);
RB_INSERT(elem_by_expand, &elem_by_expand, e);
}
void
add_order_bit(int kw)
{
uint8_t bit = DIRECTIVE_UNDEF;
switch (kw) {
case T_FORWARD:
bit = DIRECTIVE_FORWARD;
break;
case T_BACKWARD:
bit = DIRECTIVE_BACKWARD;
break;
case T_POSITION:
bit = DIRECTIVE_POSITION;
break;
default:
INTERR;
break;
}
collinfo.directive[collinfo.directive_count] |= bit;
}
void
add_order_directive(void)
{
if (collinfo.directive_count >= COLL_WEIGHTS_MAX) {
fprintf(stderr,"too many directives (max %d)", COLL_WEIGHTS_MAX);
}
collinfo.directive_count++;
}
static void
add_order_pri(int32_t ref)
{
if (curr_weight >= NUM_WT) {
fprintf(stderr,"too many weights (max %d)", NUM_WT);
return;
}
order_weights[curr_weight] = ref;
curr_weight++;
}
void
add_order_collsym(collsym_t *s)
{
add_order_pri(s->ref);
}
void
add_order_char(wchar_t wc)
{
collchar_t *cc;
if ((cc = get_collchar(wc, 1)) == NULL) {
INTERR;
return;
}
add_order_pri(cc->ref[curr_weight]);
}
void
add_order_collelem(collelem_t *e)
{
add_order_pri(e->ref[curr_weight]);
}
void
add_order_ignore(void)
{
add_order_pri(pri_ignore);
}
void
add_order_symbol(char *sym)
{
collundef_t *c;
if ((c = get_collundef(sym)) == NULL) {
INTERR;
return;
}
add_order_pri(c->ref[curr_weight]);
}
void
add_order_ellipsis(void)
{
/* special NULL value indicates self reference */
add_order_pri(0);
}
void
add_order_subst(void)
{
subst_t srch;
subst_t *s;
int i;
(void) memset(&srch, 0, sizeof (srch));
for (i = 0; i < curr_subst; i++) {
srch.ref[i] = subst_weights[i];
subst_weights[i] = 0;
}
s = RB_FIND(substs_ref, &substs_ref[curr_weight], &srch);
if (s == NULL) {
if ((s = calloc(1, sizeof(*s))) == NULL) {
fprintf(stderr,"out of memory");
return;
}
s->key = new_pri();
/*
* We use a self reference for our key, but we set a
* high bit to indicate that this is a substitution
* reference. This will expedite table lookups later,
* and prevent table lookups for situations that don't
* require it. (In short, its a big win, because we
* can skip a lot of binary searching.)
*/
set_pri(s->key,
(nextsubst[curr_weight] | COLLATE_SUBST_PRIORITY),
RESOLVED);
nextsubst[curr_weight] += 1;
for (i = 0; i < curr_subst; i++) {
s->ref[i] = srch.ref[i];
}
RB_INSERT(substs_ref, &substs_ref[curr_weight], s);
if (RB_FIND(substs, &substs[curr_weight], s) != NULL) {
INTERR;
return;
}
RB_INSERT(substs, &substs[curr_weight], s);
}
curr_subst = 0;
/*
* We are using the current (unique) priority as a search key
* in the substitution table.
*/
add_order_pri(s->key);
}
static void
add_subst_pri(int32_t ref)
{
if (curr_subst >= COLLATE_STR_LEN) {
fprintf(stderr,"substitution string is too long");
return;
}
subst_weights[curr_subst] = ref;
curr_subst++;
}
void
add_subst_char(wchar_t wc)
{
collchar_t *cc;
if (((cc = get_collchar(wc, 1)) == NULL) ||
(cc->wc != wc)) {
INTERR;
return;
}
/* we take the weight for the character at that position */
add_subst_pri(cc->ref[curr_weight]);
}
void
add_subst_collelem(collelem_t *e)
{
add_subst_pri(e->ref[curr_weight]);
}
void
add_subst_collsym(collsym_t *s)
{
add_subst_pri(s->ref);
}
void
add_subst_symbol(char *ptr)
{
collundef_t *cu;
if ((cu = get_collundef(ptr)) != NULL) {
add_subst_pri(cu->ref[curr_weight]);
}
}
void
add_weight(int32_t ref, int pass)
{
weight_t srch;
weight_t *w;
srch.pri = resolve_pri(ref);
/* No translation of ignores */
if (srch.pri == 0)
return;
/* Substitution priorities are not weights */
if (srch.pri & COLLATE_SUBST_PRIORITY)
return;
if (RB_FIND(weights, &weights[pass], &srch) != NULL)
return;
if ((w = calloc(1, sizeof(*w))) == NULL) {
fprintf(stderr, "out of memory");
return;
}
w->pri = srch.pri;
RB_INSERT(weights, &weights[pass], w);
}
void
add_weights(int32_t *refs)
{
int i;
for (i = 0; i < NUM_WT; i++) {
add_weight(refs[i], i);
}
}
int32_t
get_weight(int32_t ref, int pass)
{
weight_t srch;
weight_t *w;
int32_t pri;
pri = resolve_pri(ref);
if (pri & COLLATE_SUBST_PRIORITY) {
return (pri);
}
if (pri <= 0) {
return (pri);
}
srch.pri = pri;
if ((w = RB_FIND(weights, &weights[pass], &srch)) == NULL) {
INTERR;
return (-1);
}
return (w->opt);
}
wchar_t *
wsncpy(wchar_t *s1, const wchar_t *s2, size_t n)
{
wchar_t *os1 = s1;
n++;
while (--n > 0 && (*s1++ = *s2++) != 0)
continue;
if (n > 0)
while (--n > 0)
*s1++ = 0;
return (os1);
}
#define RB_COUNT(x, name, head, cnt) do { \
(cnt) = 0; \
RB_FOREACH(x, name, (head)) { \
(cnt)++; \
} \
} while (0)
#define RB_NUMNODES(type, name, head, cnt) do { \
type *t; \
cnt = 0; \
RB_FOREACH(t, name, head) { \
cnt++; \
} \
} while (0)
void
dump_collate(void)
{
FILE *f;
int i, j, n;
size_t sz;
int32_t pri;
collelem_t *ce;
collchar_t *cc;
subst_t *sb;
char vers[COLLATE_STR_LEN];
collate_char_t chars[UCHAR_MAX + 1];
collate_large_t *large;
collate_subst_t *subst[COLL_WEIGHTS_MAX];
collate_chain_t *chain;
/*
* We have to run through a preliminary pass to identify all the
* weights that we use for each sorting level.
*/
for (i = 0; i < NUM_WT; i++) {
add_weight(pri_ignore, i);
}
for (i = 0; i < NUM_WT; i++) {
RB_FOREACH(sb, substs, &substs[i]) {
for (j = 0; sb->ref[j]; j++) {
add_weight(sb->ref[j], i);
}
}
}
RB_FOREACH(ce, elem_by_expand, &elem_by_expand) {
add_weights(ce->ref);
}
RB_FOREACH(cc, collchars, &collchars) {
add_weights(cc->ref);
}
/*
* Now we walk the entire set of weights, removing the gaps
* in the weights. This gives us optimum usage. The walk
* occurs in priority.
*/
for (i = 0; i < NUM_WT; i++) {
weight_t *w;
RB_FOREACH(w, weights, &weights[i]) {
w->opt = nweight[i];
nweight[i] += 1;
}
}
(void) memset(&chars, 0, sizeof (chars));
(void) memset(vers, 0, COLLATE_STR_LEN);
(void) strlcpy(vers, COLLATE_VERSION, sizeof (vers));
/*
* We need to make sure we arrange for the UNDEFINED field
* to show up. Also, set the total weight counts.
*/
for (i = 0; i < NUM_WT; i++) {
if (resolve_pri(pri_undefined[i]) == -1) {
set_pri(pri_undefined[i], -1, RESOLVED);
/* they collate at the end of everything else */
collinfo.undef_pri[i] = COLLATE_MAX_PRIORITY;
}
collinfo.pri_count[i] = nweight[i];
}
collinfo.pri_count[NUM_WT] = max_wide();
collinfo.undef_pri[NUM_WT] = COLLATE_MAX_PRIORITY;
collinfo.directive[NUM_WT] = DIRECTIVE_UNDEFINED;
/*
* Ordinary character priorities
*/
for (i = 0; i <= UCHAR_MAX; i++) {
if ((cc = get_collchar(i, 0)) != NULL) {
for (j = 0; j < NUM_WT; j++) {
chars[i].pri[j] = get_weight(cc->ref[j], j);
}
} else {
for (j = 0; j < NUM_WT; j++) {
chars[i].pri[j] =
get_weight(pri_undefined[j], j);
}
/*
* Per POSIX, for undefined characters, we
* also have to add a last item, which is the
* character code.
*/
chars[i].pri[NUM_WT] = i;
}
}
/*
* Substitution tables
*/
for (i = 0; i < NUM_WT; i++) {
collate_subst_t *st = NULL;
subst_t *temp;
RB_COUNT(temp, substs, &substs[i], n);
collinfo.subst_count[i] = n;
if ((st = calloc(n, sizeof(collate_subst_t))) == NULL) {
fprintf(stderr, "out of memory");
return;
}
n = 0;
RB_FOREACH(sb, substs, &substs[i]) {
if ((st[n].key = resolve_pri(sb->key)) < 0) {
/* by definition these resolve! */
INTERR;
}
if (st[n].key != (n | COLLATE_SUBST_PRIORITY)) {
INTERR;
}
for (j = 0; sb->ref[j]; j++) {
st[n].pri[j] = get_weight(sb->ref[j], i);
}
n++;
}
if (n != collinfo.subst_count[i])
INTERR;
subst[i] = st;
}
/*
* Chains, i.e. collating elements
*/
RB_NUMNODES(collelem_t, elem_by_expand, &elem_by_expand,
collinfo.chain_count);
chain = calloc(collinfo.chain_count, sizeof(collate_chain_t));
if (chain == NULL) {
fprintf(stderr, "out of memory");
return;
}
n = 0;
RB_FOREACH(ce, elem_by_expand, &elem_by_expand) {
(void) wsncpy(chain[n].str, ce->expand, COLLATE_STR_LEN);
for (i = 0; i < NUM_WT; i++) {
chain[n].pri[i] = get_weight(ce->ref[i], i);
}
n++;
}
if (n != collinfo.chain_count)
INTERR;
/*
* Large (> UCHAR_MAX) character priorities
*/
RB_NUMNODES(collchar_t, collchars, &collchars, n);
large = calloc(n, sizeof(collate_large_t));
if (large == NULL) {
fprintf(stderr, "out of memory");
return;
}
i = 0;
RB_FOREACH(cc, collchars, &collchars) {
int undef = 0;
/* we already gathered those */
if (cc->wc <= UCHAR_MAX)
continue;
for (j = 0; j < NUM_WT; j++) {
if ((pri = get_weight(cc->ref[j], j)) < 0) {
undef = 1;
}
if (undef && (pri >= 0)) {
/* if undefined, then all priorities are */
INTERR;
} else {
large[i].pri.pri[j] = pri;
}
}
if (!undef) {
large[i].val = cc->wc;
collinfo.large_count = i++;
}
}
if ((f = open_category()) == NULL) {
return;
}
/* Time to write the entire data set out */
if ((wr_category(vers, COLLATE_STR_LEN, f) < 0) ||
(wr_category(&collinfo, sizeof (collinfo), f) < 0) ||
(wr_category(&chars, sizeof (chars), f) < 0)) {
return;
}
for (i = 0; i < NUM_WT; i++) {
sz = sizeof (collate_subst_t) * collinfo.subst_count[i];
if (wr_category(subst[i], sz, f) < 0) {
return;
}
}
sz = sizeof (collate_chain_t) * collinfo.chain_count;
if (wr_category(chain, sz, f) < 0) {
return;
}
sz = sizeof (collate_large_t) * collinfo.large_count;
if (wr_category(large, sz, f) < 0) {
return;
}
close_category(f);
}