5b7f4ced65
Shared code changes, core driver fixes, vlan event/filter support Also Kip Macy's fix to allow any number of queues, thanks Kip!
1836 lines
51 KiB
C
1836 lines
51 KiB
C
/******************************************************************************
|
|
|
|
Copyright (c) 2001-2008, Intel Corporation
|
|
All rights reserved.
|
|
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions are met:
|
|
|
|
1. Redistributions of source code must retain the above copyright notice,
|
|
this list of conditions and the following disclaimer.
|
|
|
|
2. Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in the
|
|
documentation and/or other materials provided with the distribution.
|
|
|
|
3. Neither the name of the Intel Corporation nor the names of its
|
|
contributors may be used to endorse or promote products derived from
|
|
this software without specific prior written permission.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
|
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
******************************************************************************/
|
|
/*$FreeBSD$*/
|
|
|
|
#include "ixgbe_common.h"
|
|
#include "ixgbe_api.h"
|
|
|
|
static s32 ixgbe_poll_eeprom_eerd_done(struct ixgbe_hw *hw);
|
|
static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
|
|
static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
|
|
static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
|
|
static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
|
|
static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
|
|
static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
|
|
u16 count);
|
|
static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
|
|
static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
|
|
static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
|
|
static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
|
|
static u16 ixgbe_calc_eeprom_checksum(struct ixgbe_hw *hw);
|
|
|
|
static void ixgbe_enable_rar(struct ixgbe_hw *hw, u32 index);
|
|
static void ixgbe_disable_rar(struct ixgbe_hw *hw, u32 index);
|
|
static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
|
|
void ixgbe_add_mc_addr(struct ixgbe_hw *hw, u8 *mc_addr);
|
|
void ixgbe_add_uc_addr(struct ixgbe_hw *hw, u8 *addr, u32 vmdq);
|
|
|
|
/**
|
|
* ixgbe_init_ops_generic - Inits function ptrs
|
|
* @hw: pointer to the hardware structure
|
|
*
|
|
* Initialize the function pointers.
|
|
**/
|
|
s32 ixgbe_init_ops_generic(struct ixgbe_hw *hw)
|
|
{
|
|
struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
|
|
struct ixgbe_mac_info *mac = &hw->mac;
|
|
u32 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
|
|
|
|
/* EEPROM */
|
|
eeprom->ops.init_params = &ixgbe_init_eeprom_params_generic;
|
|
/* If EEPROM is valid (bit 8 = 1), use EERD otherwise use bit bang */
|
|
if (eec & (1 << 8))
|
|
eeprom->ops.read = &ixgbe_read_eeprom_generic;
|
|
else
|
|
eeprom->ops.read = &ixgbe_read_eeprom_bit_bang_generic;
|
|
eeprom->ops.write = &ixgbe_write_eeprom_generic;
|
|
eeprom->ops.validate_checksum =
|
|
&ixgbe_validate_eeprom_checksum_generic;
|
|
eeprom->ops.update_checksum = &ixgbe_update_eeprom_checksum_generic;
|
|
|
|
/* MAC */
|
|
mac->ops.init_hw = &ixgbe_init_hw_generic;
|
|
mac->ops.reset_hw = NULL;
|
|
mac->ops.start_hw = &ixgbe_start_hw_generic;
|
|
mac->ops.clear_hw_cntrs = &ixgbe_clear_hw_cntrs_generic;
|
|
mac->ops.get_media_type = NULL;
|
|
mac->ops.get_mac_addr = &ixgbe_get_mac_addr_generic;
|
|
mac->ops.stop_adapter = &ixgbe_stop_adapter_generic;
|
|
mac->ops.get_bus_info = &ixgbe_get_bus_info_generic;
|
|
mac->ops.read_analog_reg8 = &ixgbe_read_analog_reg8_generic;
|
|
mac->ops.write_analog_reg8 = &ixgbe_write_analog_reg8_generic;
|
|
|
|
/* LEDs */
|
|
mac->ops.led_on = &ixgbe_led_on_generic;
|
|
mac->ops.led_off = &ixgbe_led_off_generic;
|
|
mac->ops.blink_led_start = NULL;
|
|
mac->ops.blink_led_stop = NULL;
|
|
|
|
/* RAR, Multicast, VLAN */
|
|
mac->ops.set_rar = &ixgbe_set_rar_generic;
|
|
mac->ops.clear_rar = &ixgbe_clear_rar_generic;
|
|
mac->ops.set_vmdq = NULL;
|
|
mac->ops.clear_vmdq = NULL;
|
|
mac->ops.init_rx_addrs = &ixgbe_init_rx_addrs_generic;
|
|
mac->ops.update_uc_addr_list = &ixgbe_update_uc_addr_list_generic;
|
|
mac->ops.update_mc_addr_list = &ixgbe_update_mc_addr_list_generic;
|
|
mac->ops.enable_mc = &ixgbe_enable_mc_generic;
|
|
mac->ops.disable_mc = &ixgbe_disable_mc_generic;
|
|
mac->ops.clear_vfta = NULL;
|
|
mac->ops.set_vfta = NULL;
|
|
mac->ops.init_uta_tables = NULL;
|
|
|
|
/* Flow Control */
|
|
mac->ops.setup_fc = NULL;
|
|
|
|
/* Link */
|
|
mac->ops.get_link_capabilities = NULL;
|
|
mac->ops.setup_link = NULL;
|
|
mac->ops.setup_link_speed = NULL;
|
|
mac->ops.check_link = NULL;
|
|
|
|
return IXGBE_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
|
|
* @hw: pointer to hardware structure
|
|
*
|
|
* Starts the hardware by filling the bus info structure and media type, clears
|
|
* all on chip counters, initializes receive address registers, multicast
|
|
* table, VLAN filter table, calls routine to set up link and flow control
|
|
* settings, and leaves transmit and receive units disabled and uninitialized
|
|
**/
|
|
s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
|
|
{
|
|
u32 ctrl_ext;
|
|
|
|
/* Set the media type */
|
|
hw->phy.media_type = hw->mac.ops.get_media_type(hw);
|
|
|
|
/* Set bus info */
|
|
hw->mac.ops.get_bus_info(hw);
|
|
|
|
/* Identify the PHY */
|
|
hw->phy.ops.identify(hw);
|
|
|
|
/*
|
|
* Store MAC address from RAR0, clear receive address registers, and
|
|
* clear the multicast table
|
|
*/
|
|
hw->mac.ops.init_rx_addrs(hw);
|
|
|
|
/* Clear the VLAN filter table */
|
|
hw->mac.ops.clear_vfta(hw);
|
|
|
|
/* Set up link */
|
|
hw->mac.ops.setup_link(hw);
|
|
|
|
/* Clear statistics registers */
|
|
hw->mac.ops.clear_hw_cntrs(hw);
|
|
|
|
/* Set No Snoop Disable */
|
|
ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
|
|
ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
|
|
IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
|
|
IXGBE_WRITE_FLUSH(hw);
|
|
|
|
/* Clear adapter stopped flag */
|
|
hw->adapter_stopped = FALSE;
|
|
|
|
return IXGBE_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* ixgbe_init_hw_generic - Generic hardware initialization
|
|
* @hw: pointer to hardware structure
|
|
*
|
|
* Initialize the hardware by resetting the hardware, filling the bus info
|
|
* structure and media type, clears all on chip counters, initializes receive
|
|
* address registers, multicast table, VLAN filter table, calls routine to set
|
|
* up link and flow control settings, and leaves transmit and receive units
|
|
* disabled and uninitialized
|
|
**/
|
|
s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
|
|
{
|
|
/* Reset the hardware */
|
|
hw->mac.ops.reset_hw(hw);
|
|
|
|
/* Start the HW */
|
|
hw->mac.ops.start_hw(hw);
|
|
|
|
return IXGBE_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
|
|
* @hw: pointer to hardware structure
|
|
*
|
|
* Clears all hardware statistics counters by reading them from the hardware
|
|
* Statistics counters are clear on read.
|
|
**/
|
|
s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
|
|
{
|
|
u16 i = 0;
|
|
|
|
IXGBE_READ_REG(hw, IXGBE_CRCERRS);
|
|
IXGBE_READ_REG(hw, IXGBE_ILLERRC);
|
|
IXGBE_READ_REG(hw, IXGBE_ERRBC);
|
|
IXGBE_READ_REG(hw, IXGBE_MSPDC);
|
|
for (i = 0; i < 8; i++)
|
|
IXGBE_READ_REG(hw, IXGBE_MPC(i));
|
|
|
|
IXGBE_READ_REG(hw, IXGBE_MLFC);
|
|
IXGBE_READ_REG(hw, IXGBE_MRFC);
|
|
IXGBE_READ_REG(hw, IXGBE_RLEC);
|
|
IXGBE_READ_REG(hw, IXGBE_LXONTXC);
|
|
IXGBE_READ_REG(hw, IXGBE_LXONRXC);
|
|
IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
|
|
IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
|
|
|
|
for (i = 0; i < 8; i++) {
|
|
IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
|
|
IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
|
|
IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
|
|
IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
|
|
}
|
|
|
|
IXGBE_READ_REG(hw, IXGBE_PRC64);
|
|
IXGBE_READ_REG(hw, IXGBE_PRC127);
|
|
IXGBE_READ_REG(hw, IXGBE_PRC255);
|
|
IXGBE_READ_REG(hw, IXGBE_PRC511);
|
|
IXGBE_READ_REG(hw, IXGBE_PRC1023);
|
|
IXGBE_READ_REG(hw, IXGBE_PRC1522);
|
|
IXGBE_READ_REG(hw, IXGBE_GPRC);
|
|
IXGBE_READ_REG(hw, IXGBE_BPRC);
|
|
IXGBE_READ_REG(hw, IXGBE_MPRC);
|
|
IXGBE_READ_REG(hw, IXGBE_GPTC);
|
|
IXGBE_READ_REG(hw, IXGBE_GORCL);
|
|
IXGBE_READ_REG(hw, IXGBE_GORCH);
|
|
IXGBE_READ_REG(hw, IXGBE_GOTCL);
|
|
IXGBE_READ_REG(hw, IXGBE_GOTCH);
|
|
for (i = 0; i < 8; i++)
|
|
IXGBE_READ_REG(hw, IXGBE_RNBC(i));
|
|
IXGBE_READ_REG(hw, IXGBE_RUC);
|
|
IXGBE_READ_REG(hw, IXGBE_RFC);
|
|
IXGBE_READ_REG(hw, IXGBE_ROC);
|
|
IXGBE_READ_REG(hw, IXGBE_RJC);
|
|
IXGBE_READ_REG(hw, IXGBE_MNGPRC);
|
|
IXGBE_READ_REG(hw, IXGBE_MNGPDC);
|
|
IXGBE_READ_REG(hw, IXGBE_MNGPTC);
|
|
IXGBE_READ_REG(hw, IXGBE_TORL);
|
|
IXGBE_READ_REG(hw, IXGBE_TORH);
|
|
IXGBE_READ_REG(hw, IXGBE_TPR);
|
|
IXGBE_READ_REG(hw, IXGBE_TPT);
|
|
IXGBE_READ_REG(hw, IXGBE_PTC64);
|
|
IXGBE_READ_REG(hw, IXGBE_PTC127);
|
|
IXGBE_READ_REG(hw, IXGBE_PTC255);
|
|
IXGBE_READ_REG(hw, IXGBE_PTC511);
|
|
IXGBE_READ_REG(hw, IXGBE_PTC1023);
|
|
IXGBE_READ_REG(hw, IXGBE_PTC1522);
|
|
IXGBE_READ_REG(hw, IXGBE_MPTC);
|
|
IXGBE_READ_REG(hw, IXGBE_BPTC);
|
|
for (i = 0; i < 16; i++) {
|
|
IXGBE_READ_REG(hw, IXGBE_QPRC(i));
|
|
IXGBE_READ_REG(hw, IXGBE_QBRC(i));
|
|
IXGBE_READ_REG(hw, IXGBE_QPTC(i));
|
|
IXGBE_READ_REG(hw, IXGBE_QBTC(i));
|
|
}
|
|
|
|
return IXGBE_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* ixgbe_read_pba_num - Reads part number from EEPROM
|
|
* @hw: pointer to hardware structure
|
|
* @pba_num: stores the part number from the EEPROM
|
|
*
|
|
* Reads the part number from the EEPROM.
|
|
**/
|
|
s32 ixgbe_read_pba_num_generic(struct ixgbe_hw *hw, u32 *pba_num)
|
|
{
|
|
s32 ret_val;
|
|
u16 data;
|
|
|
|
DEBUGFUNC("ixgbe_read_pba_num_generic");
|
|
|
|
ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
|
|
if (ret_val) {
|
|
DEBUGOUT("NVM Read Error\n");
|
|
return ret_val;
|
|
}
|
|
*pba_num = (u32)(data << 16);
|
|
|
|
ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &data);
|
|
if (ret_val) {
|
|
DEBUGOUT("NVM Read Error\n");
|
|
return ret_val;
|
|
}
|
|
*pba_num |= data;
|
|
|
|
return IXGBE_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* ixgbe_get_mac_addr_generic - Generic get MAC address
|
|
* @hw: pointer to hardware structure
|
|
* @mac_addr: Adapter MAC address
|
|
*
|
|
* Reads the adapter's MAC address from first Receive Address Register (RAR0)
|
|
* A reset of the adapter must be performed prior to calling this function
|
|
* in order for the MAC address to have been loaded from the EEPROM into RAR0
|
|
**/
|
|
s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
|
|
{
|
|
u32 rar_high;
|
|
u32 rar_low;
|
|
u16 i;
|
|
|
|
rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
|
|
rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
|
|
|
|
for (i = 0; i < 4; i++)
|
|
mac_addr[i] = (u8)(rar_low >> (i*8));
|
|
|
|
for (i = 0; i < 2; i++)
|
|
mac_addr[i+4] = (u8)(rar_high >> (i*8));
|
|
|
|
return IXGBE_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* ixgbe_get_bus_info_generic - Generic set PCI bus info
|
|
* @hw: pointer to hardware structure
|
|
*
|
|
* Sets the PCI bus info (speed, width, type) within the ixgbe_hw structure
|
|
**/
|
|
s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
|
|
{
|
|
u16 link_status;
|
|
|
|
hw->bus.type = ixgbe_bus_type_pci_express;
|
|
|
|
/* Get the negotiated link width and speed from PCI config space */
|
|
link_status = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_LINK_STATUS);
|
|
|
|
switch (link_status & IXGBE_PCI_LINK_WIDTH) {
|
|
case IXGBE_PCI_LINK_WIDTH_1:
|
|
hw->bus.width = ixgbe_bus_width_pcie_x1;
|
|
break;
|
|
case IXGBE_PCI_LINK_WIDTH_2:
|
|
hw->bus.width = ixgbe_bus_width_pcie_x2;
|
|
break;
|
|
case IXGBE_PCI_LINK_WIDTH_4:
|
|
hw->bus.width = ixgbe_bus_width_pcie_x4;
|
|
break;
|
|
case IXGBE_PCI_LINK_WIDTH_8:
|
|
hw->bus.width = ixgbe_bus_width_pcie_x8;
|
|
break;
|
|
default:
|
|
hw->bus.width = ixgbe_bus_width_unknown;
|
|
break;
|
|
}
|
|
|
|
switch (link_status & IXGBE_PCI_LINK_SPEED) {
|
|
case IXGBE_PCI_LINK_SPEED_2500:
|
|
hw->bus.speed = ixgbe_bus_speed_2500;
|
|
break;
|
|
case IXGBE_PCI_LINK_SPEED_5000:
|
|
hw->bus.speed = ixgbe_bus_speed_5000;
|
|
break;
|
|
default:
|
|
hw->bus.speed = ixgbe_bus_speed_unknown;
|
|
break;
|
|
}
|
|
|
|
return IXGBE_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
|
|
* @hw: pointer to hardware structure
|
|
*
|
|
* Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
|
|
* disables transmit and receive units. The adapter_stopped flag is used by
|
|
* the shared code and drivers to determine if the adapter is in a stopped
|
|
* state and should not touch the hardware.
|
|
**/
|
|
s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
|
|
{
|
|
u32 number_of_queues;
|
|
u32 reg_val;
|
|
u16 i;
|
|
|
|
/*
|
|
* Set the adapter_stopped flag so other driver functions stop touching
|
|
* the hardware
|
|
*/
|
|
hw->adapter_stopped = TRUE;
|
|
|
|
/* Disable the receive unit */
|
|
reg_val = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
|
|
reg_val &= ~(IXGBE_RXCTRL_RXEN);
|
|
IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, reg_val);
|
|
IXGBE_WRITE_FLUSH(hw);
|
|
msec_delay(2);
|
|
|
|
/* Clear interrupt mask to stop from interrupts being generated */
|
|
IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
|
|
|
|
/* Clear any pending interrupts */
|
|
IXGBE_READ_REG(hw, IXGBE_EICR);
|
|
|
|
/* Disable the transmit unit. Each queue must be disabled. */
|
|
number_of_queues = hw->mac.max_tx_queues;
|
|
for (i = 0; i < number_of_queues; i++) {
|
|
reg_val = IXGBE_READ_REG(hw, IXGBE_TXDCTL(i));
|
|
if (reg_val & IXGBE_TXDCTL_ENABLE) {
|
|
reg_val &= ~IXGBE_TXDCTL_ENABLE;
|
|
IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), reg_val);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Prevent the PCI-E bus from from hanging by disabling PCI-E master
|
|
* access and verify no pending requests
|
|
*/
|
|
if (ixgbe_disable_pcie_master(hw) != IXGBE_SUCCESS) {
|
|
DEBUGOUT("PCI-E Master disable polling has failed.\n");
|
|
}
|
|
|
|
return IXGBE_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* ixgbe_led_on_generic - Turns on the software controllable LEDs.
|
|
* @hw: pointer to hardware structure
|
|
* @index: led number to turn on
|
|
**/
|
|
s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
|
|
{
|
|
u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
|
|
|
|
/* To turn on the LED, set mode to ON. */
|
|
led_reg &= ~IXGBE_LED_MODE_MASK(index);
|
|
led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
|
|
IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
|
|
IXGBE_WRITE_FLUSH(hw);
|
|
|
|
return IXGBE_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* ixgbe_led_off_generic - Turns off the software controllable LEDs.
|
|
* @hw: pointer to hardware structure
|
|
* @index: led number to turn off
|
|
**/
|
|
s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
|
|
{
|
|
u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
|
|
|
|
/* To turn off the LED, set mode to OFF. */
|
|
led_reg &= ~IXGBE_LED_MODE_MASK(index);
|
|
led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
|
|
IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
|
|
IXGBE_WRITE_FLUSH(hw);
|
|
|
|
return IXGBE_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* ixgbe_init_eeprom_params_generic - Initialize EEPROM params
|
|
* @hw: pointer to hardware structure
|
|
*
|
|
* Initializes the EEPROM parameters ixgbe_eeprom_info within the
|
|
* ixgbe_hw struct in order to set up EEPROM access.
|
|
**/
|
|
s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
|
|
{
|
|
struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
|
|
u32 eec;
|
|
u16 eeprom_size;
|
|
|
|
if (eeprom->type == ixgbe_eeprom_uninitialized) {
|
|
eeprom->type = ixgbe_eeprom_none;
|
|
/* Set default semaphore delay to 10ms which is a well
|
|
* tested value */
|
|
eeprom->semaphore_delay = 10;
|
|
|
|
/*
|
|
* Check for EEPROM present first.
|
|
* If not present leave as none
|
|
*/
|
|
eec = IXGBE_READ_REG(hw, IXGBE_EEC);
|
|
if (eec & IXGBE_EEC_PRES) {
|
|
eeprom->type = ixgbe_eeprom_spi;
|
|
|
|
/*
|
|
* SPI EEPROM is assumed here. This code would need to
|
|
* change if a future EEPROM is not SPI.
|
|
*/
|
|
eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
|
|
IXGBE_EEC_SIZE_SHIFT);
|
|
eeprom->word_size = 1 << (eeprom_size +
|
|
IXGBE_EEPROM_WORD_SIZE_SHIFT);
|
|
}
|
|
|
|
if (eec & IXGBE_EEC_ADDR_SIZE)
|
|
eeprom->address_bits = 16;
|
|
else
|
|
eeprom->address_bits = 8;
|
|
DEBUGOUT3("Eeprom params: type = %d, size = %d, address bits: "
|
|
"%d\n", eeprom->type, eeprom->word_size,
|
|
eeprom->address_bits);
|
|
}
|
|
|
|
return IXGBE_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
|
|
* @hw: pointer to hardware structure
|
|
* @offset: offset within the EEPROM to be written to
|
|
* @data: 16 bit word to be written to the EEPROM
|
|
*
|
|
* If ixgbe_eeprom_update_checksum is not called after this function, the
|
|
* EEPROM will most likely contain an invalid checksum.
|
|
**/
|
|
s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
|
|
{
|
|
s32 status;
|
|
u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
|
|
|
|
hw->eeprom.ops.init_params(hw);
|
|
|
|
if (offset >= hw->eeprom.word_size) {
|
|
status = IXGBE_ERR_EEPROM;
|
|
goto out;
|
|
}
|
|
|
|
/* Prepare the EEPROM for writing */
|
|
status = ixgbe_acquire_eeprom(hw);
|
|
|
|
if (status == IXGBE_SUCCESS) {
|
|
if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) {
|
|
ixgbe_release_eeprom(hw);
|
|
status = IXGBE_ERR_EEPROM;
|
|
}
|
|
}
|
|
|
|
if (status == IXGBE_SUCCESS) {
|
|
ixgbe_standby_eeprom(hw);
|
|
|
|
/* Send the WRITE ENABLE command (8 bit opcode ) */
|
|
ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_WREN_OPCODE_SPI,
|
|
IXGBE_EEPROM_OPCODE_BITS);
|
|
|
|
ixgbe_standby_eeprom(hw);
|
|
|
|
/*
|
|
* Some SPI eeproms use the 8th address bit embedded in the
|
|
* opcode
|
|
*/
|
|
if ((hw->eeprom.address_bits == 8) && (offset >= 128))
|
|
write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
|
|
|
|
/* Send the Write command (8-bit opcode + addr) */
|
|
ixgbe_shift_out_eeprom_bits(hw, write_opcode,
|
|
IXGBE_EEPROM_OPCODE_BITS);
|
|
ixgbe_shift_out_eeprom_bits(hw, (u16)(offset*2),
|
|
hw->eeprom.address_bits);
|
|
|
|
/* Send the data */
|
|
data = (data >> 8) | (data << 8);
|
|
ixgbe_shift_out_eeprom_bits(hw, data, 16);
|
|
ixgbe_standby_eeprom(hw);
|
|
|
|
msec_delay(hw->eeprom.semaphore_delay);
|
|
/* Done with writing - release the EEPROM */
|
|
ixgbe_release_eeprom(hw);
|
|
}
|
|
|
|
out:
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
|
|
* @hw: pointer to hardware structure
|
|
* @offset: offset within the EEPROM to be read
|
|
* @data: read 16 bit value from EEPROM
|
|
*
|
|
* Reads 16 bit value from EEPROM through bit-bang method
|
|
**/
|
|
s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
|
|
u16 *data)
|
|
{
|
|
s32 status;
|
|
u16 word_in;
|
|
u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
|
|
|
|
hw->eeprom.ops.init_params(hw);
|
|
|
|
if (offset >= hw->eeprom.word_size) {
|
|
status = IXGBE_ERR_EEPROM;
|
|
goto out;
|
|
}
|
|
|
|
/* Prepare the EEPROM for reading */
|
|
status = ixgbe_acquire_eeprom(hw);
|
|
|
|
if (status == IXGBE_SUCCESS) {
|
|
if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) {
|
|
ixgbe_release_eeprom(hw);
|
|
status = IXGBE_ERR_EEPROM;
|
|
}
|
|
}
|
|
|
|
if (status == IXGBE_SUCCESS) {
|
|
ixgbe_standby_eeprom(hw);
|
|
|
|
/*
|
|
* Some SPI eeproms use the 8th address bit embedded in the
|
|
* opcode
|
|
*/
|
|
if ((hw->eeprom.address_bits == 8) && (offset >= 128))
|
|
read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
|
|
|
|
/* Send the READ command (opcode + addr) */
|
|
ixgbe_shift_out_eeprom_bits(hw, read_opcode,
|
|
IXGBE_EEPROM_OPCODE_BITS);
|
|
ixgbe_shift_out_eeprom_bits(hw, (u16)(offset*2),
|
|
hw->eeprom.address_bits);
|
|
|
|
/* Read the data. */
|
|
word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
|
|
*data = (word_in >> 8) | (word_in << 8);
|
|
|
|
/* End this read operation */
|
|
ixgbe_release_eeprom(hw);
|
|
}
|
|
|
|
out:
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ixgbe_read_eeprom_generic - Read EEPROM word using EERD
|
|
* @hw: pointer to hardware structure
|
|
* @offset: offset of word in the EEPROM to read
|
|
* @data: word read from the EEPROM
|
|
*
|
|
* Reads a 16 bit word from the EEPROM using the EERD register.
|
|
**/
|
|
s32 ixgbe_read_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
|
|
{
|
|
u32 eerd;
|
|
s32 status;
|
|
|
|
hw->eeprom.ops.init_params(hw);
|
|
|
|
if (offset >= hw->eeprom.word_size) {
|
|
status = IXGBE_ERR_EEPROM;
|
|
goto out;
|
|
}
|
|
|
|
eerd = (offset << IXGBE_EEPROM_READ_ADDR_SHIFT) +
|
|
IXGBE_EEPROM_READ_REG_START;
|
|
|
|
IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
|
|
status = ixgbe_poll_eeprom_eerd_done(hw);
|
|
|
|
if (status == IXGBE_SUCCESS)
|
|
*data = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
|
|
IXGBE_EEPROM_READ_REG_DATA);
|
|
else
|
|
DEBUGOUT("Eeprom read timed out\n");
|
|
|
|
out:
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ixgbe_poll_eeprom_eerd_done - Poll EERD status
|
|
* @hw: pointer to hardware structure
|
|
*
|
|
* Polls the status bit (bit 1) of the EERD to determine when the read is done.
|
|
**/
|
|
static s32 ixgbe_poll_eeprom_eerd_done(struct ixgbe_hw *hw)
|
|
{
|
|
u32 i;
|
|
u32 reg;
|
|
s32 status = IXGBE_ERR_EEPROM;
|
|
|
|
for (i = 0; i < IXGBE_EERD_ATTEMPTS; i++) {
|
|
reg = IXGBE_READ_REG(hw, IXGBE_EERD);
|
|
if (reg & IXGBE_EEPROM_READ_REG_DONE) {
|
|
status = IXGBE_SUCCESS;
|
|
break;
|
|
}
|
|
usec_delay(5);
|
|
}
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
|
|
* @hw: pointer to hardware structure
|
|
*
|
|
* Prepares EEPROM for access using bit-bang method. This function should
|
|
* be called before issuing a command to the EEPROM.
|
|
**/
|
|
static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
|
|
{
|
|
s32 status = IXGBE_SUCCESS;
|
|
u32 eec;
|
|
u32 i;
|
|
|
|
if (ixgbe_acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM) != IXGBE_SUCCESS)
|
|
status = IXGBE_ERR_SWFW_SYNC;
|
|
|
|
if (status == IXGBE_SUCCESS) {
|
|
eec = IXGBE_READ_REG(hw, IXGBE_EEC);
|
|
|
|
/* Request EEPROM Access */
|
|
eec |= IXGBE_EEC_REQ;
|
|
IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
|
|
|
|
for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
|
|
eec = IXGBE_READ_REG(hw, IXGBE_EEC);
|
|
if (eec & IXGBE_EEC_GNT)
|
|
break;
|
|
usec_delay(5);
|
|
}
|
|
|
|
/* Release if grant not acquired */
|
|
if (!(eec & IXGBE_EEC_GNT)) {
|
|
eec &= ~IXGBE_EEC_REQ;
|
|
IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
|
|
DEBUGOUT("Could not acquire EEPROM grant\n");
|
|
|
|
ixgbe_release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
|
|
status = IXGBE_ERR_EEPROM;
|
|
}
|
|
}
|
|
|
|
/* Setup EEPROM for Read/Write */
|
|
if (status == IXGBE_SUCCESS) {
|
|
/* Clear CS and SK */
|
|
eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
|
|
IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
|
|
IXGBE_WRITE_FLUSH(hw);
|
|
usec_delay(1);
|
|
}
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ixgbe_get_eeprom_semaphore - Get hardware semaphore
|
|
* @hw: pointer to hardware structure
|
|
*
|
|
* Sets the hardware semaphores so EEPROM access can occur for bit-bang method
|
|
**/
|
|
static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
|
|
{
|
|
s32 status = IXGBE_ERR_EEPROM;
|
|
u32 timeout;
|
|
u32 i;
|
|
u32 swsm;
|
|
|
|
/* Set timeout value based on size of EEPROM */
|
|
timeout = hw->eeprom.word_size + 1;
|
|
|
|
/* Get SMBI software semaphore between device drivers first */
|
|
for (i = 0; i < timeout; i++) {
|
|
/*
|
|
* If the SMBI bit is 0 when we read it, then the bit will be
|
|
* set and we have the semaphore
|
|
*/
|
|
swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
|
|
if (!(swsm & IXGBE_SWSM_SMBI)) {
|
|
status = IXGBE_SUCCESS;
|
|
break;
|
|
}
|
|
msec_delay(1);
|
|
}
|
|
|
|
/* Now get the semaphore between SW/FW through the SWESMBI bit */
|
|
if (status == IXGBE_SUCCESS) {
|
|
for (i = 0; i < timeout; i++) {
|
|
swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
|
|
|
|
/* Set the SW EEPROM semaphore bit to request access */
|
|
swsm |= IXGBE_SWSM_SWESMBI;
|
|
IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
|
|
|
|
/*
|
|
* If we set the bit successfully then we got the
|
|
* semaphore.
|
|
*/
|
|
swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
|
|
if (swsm & IXGBE_SWSM_SWESMBI)
|
|
break;
|
|
|
|
usec_delay(50);
|
|
}
|
|
|
|
/*
|
|
* Release semaphores and return error if SW EEPROM semaphore
|
|
* was not granted because we don't have access to the EEPROM
|
|
*/
|
|
if (i >= timeout) {
|
|
DEBUGOUT("Driver can't access the Eeprom - Semaphore "
|
|
"not granted.\n");
|
|
ixgbe_release_eeprom_semaphore(hw);
|
|
status = IXGBE_ERR_EEPROM;
|
|
}
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ixgbe_release_eeprom_semaphore - Release hardware semaphore
|
|
* @hw: pointer to hardware structure
|
|
*
|
|
* This function clears hardware semaphore bits.
|
|
**/
|
|
static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
|
|
{
|
|
u32 swsm;
|
|
|
|
swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
|
|
|
|
/* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
|
|
swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
|
|
IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
|
|
IXGBE_WRITE_FLUSH(hw);
|
|
}
|
|
|
|
/**
|
|
* ixgbe_ready_eeprom - Polls for EEPROM ready
|
|
* @hw: pointer to hardware structure
|
|
**/
|
|
static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
|
|
{
|
|
s32 status = IXGBE_SUCCESS;
|
|
u16 i;
|
|
u8 spi_stat_reg;
|
|
|
|
/*
|
|
* Read "Status Register" repeatedly until the LSB is cleared. The
|
|
* EEPROM will signal that the command has been completed by clearing
|
|
* bit 0 of the internal status register. If it's not cleared within
|
|
* 5 milliseconds, then error out.
|
|
*/
|
|
for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
|
|
ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
|
|
IXGBE_EEPROM_OPCODE_BITS);
|
|
spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
|
|
if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
|
|
break;
|
|
|
|
usec_delay(5);
|
|
ixgbe_standby_eeprom(hw);
|
|
};
|
|
|
|
/*
|
|
* On some parts, SPI write time could vary from 0-20mSec on 3.3V
|
|
* devices (and only 0-5mSec on 5V devices)
|
|
*/
|
|
if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
|
|
DEBUGOUT("SPI EEPROM Status error\n");
|
|
status = IXGBE_ERR_EEPROM;
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
|
|
* @hw: pointer to hardware structure
|
|
**/
|
|
static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
|
|
{
|
|
u32 eec;
|
|
|
|
eec = IXGBE_READ_REG(hw, IXGBE_EEC);
|
|
|
|
/* Toggle CS to flush commands */
|
|
eec |= IXGBE_EEC_CS;
|
|
IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
|
|
IXGBE_WRITE_FLUSH(hw);
|
|
usec_delay(1);
|
|
eec &= ~IXGBE_EEC_CS;
|
|
IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
|
|
IXGBE_WRITE_FLUSH(hw);
|
|
usec_delay(1);
|
|
}
|
|
|
|
/**
|
|
* ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
|
|
* @hw: pointer to hardware structure
|
|
* @data: data to send to the EEPROM
|
|
* @count: number of bits to shift out
|
|
**/
|
|
static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
|
|
u16 count)
|
|
{
|
|
u32 eec;
|
|
u32 mask;
|
|
u32 i;
|
|
|
|
eec = IXGBE_READ_REG(hw, IXGBE_EEC);
|
|
|
|
/*
|
|
* Mask is used to shift "count" bits of "data" out to the EEPROM
|
|
* one bit at a time. Determine the starting bit based on count
|
|
*/
|
|
mask = 0x01 << (count - 1);
|
|
|
|
for (i = 0; i < count; i++) {
|
|
/*
|
|
* A "1" is shifted out to the EEPROM by setting bit "DI" to a
|
|
* "1", and then raising and then lowering the clock (the SK
|
|
* bit controls the clock input to the EEPROM). A "0" is
|
|
* shifted out to the EEPROM by setting "DI" to "0" and then
|
|
* raising and then lowering the clock.
|
|
*/
|
|
if (data & mask)
|
|
eec |= IXGBE_EEC_DI;
|
|
else
|
|
eec &= ~IXGBE_EEC_DI;
|
|
|
|
IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
|
|
IXGBE_WRITE_FLUSH(hw);
|
|
|
|
usec_delay(1);
|
|
|
|
ixgbe_raise_eeprom_clk(hw, &eec);
|
|
ixgbe_lower_eeprom_clk(hw, &eec);
|
|
|
|
/*
|
|
* Shift mask to signify next bit of data to shift in to the
|
|
* EEPROM
|
|
*/
|
|
mask = mask >> 1;
|
|
};
|
|
|
|
/* We leave the "DI" bit set to "0" when we leave this routine. */
|
|
eec &= ~IXGBE_EEC_DI;
|
|
IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
|
|
IXGBE_WRITE_FLUSH(hw);
|
|
}
|
|
|
|
/**
|
|
* ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
|
|
* @hw: pointer to hardware structure
|
|
**/
|
|
static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
|
|
{
|
|
u32 eec;
|
|
u32 i;
|
|
u16 data = 0;
|
|
|
|
/*
|
|
* In order to read a register from the EEPROM, we need to shift
|
|
* 'count' bits in from the EEPROM. Bits are "shifted in" by raising
|
|
* the clock input to the EEPROM (setting the SK bit), and then reading
|
|
* the value of the "DO" bit. During this "shifting in" process the
|
|
* "DI" bit should always be clear.
|
|
*/
|
|
eec = IXGBE_READ_REG(hw, IXGBE_EEC);
|
|
|
|
eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
|
|
|
|
for (i = 0; i < count; i++) {
|
|
data = data << 1;
|
|
ixgbe_raise_eeprom_clk(hw, &eec);
|
|
|
|
eec = IXGBE_READ_REG(hw, IXGBE_EEC);
|
|
|
|
eec &= ~(IXGBE_EEC_DI);
|
|
if (eec & IXGBE_EEC_DO)
|
|
data |= 1;
|
|
|
|
ixgbe_lower_eeprom_clk(hw, &eec);
|
|
}
|
|
|
|
return data;
|
|
}
|
|
|
|
/**
|
|
* ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
|
|
* @hw: pointer to hardware structure
|
|
* @eec: EEC register's current value
|
|
**/
|
|
static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
|
|
{
|
|
/*
|
|
* Raise the clock input to the EEPROM
|
|
* (setting the SK bit), then delay
|
|
*/
|
|
*eec = *eec | IXGBE_EEC_SK;
|
|
IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
|
|
IXGBE_WRITE_FLUSH(hw);
|
|
usec_delay(1);
|
|
}
|
|
|
|
/**
|
|
* ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
|
|
* @hw: pointer to hardware structure
|
|
* @eecd: EECD's current value
|
|
**/
|
|
static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
|
|
{
|
|
/*
|
|
* Lower the clock input to the EEPROM (clearing the SK bit), then
|
|
* delay
|
|
*/
|
|
*eec = *eec & ~IXGBE_EEC_SK;
|
|
IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
|
|
IXGBE_WRITE_FLUSH(hw);
|
|
usec_delay(1);
|
|
}
|
|
|
|
/**
|
|
* ixgbe_release_eeprom - Release EEPROM, release semaphores
|
|
* @hw: pointer to hardware structure
|
|
**/
|
|
static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
|
|
{
|
|
u32 eec;
|
|
|
|
eec = IXGBE_READ_REG(hw, IXGBE_EEC);
|
|
|
|
eec |= IXGBE_EEC_CS; /* Pull CS high */
|
|
eec &= ~IXGBE_EEC_SK; /* Lower SCK */
|
|
|
|
IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
|
|
IXGBE_WRITE_FLUSH(hw);
|
|
|
|
usec_delay(1);
|
|
|
|
/* Stop requesting EEPROM access */
|
|
eec &= ~IXGBE_EEC_REQ;
|
|
IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
|
|
|
|
ixgbe_release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
|
|
}
|
|
|
|
/**
|
|
* ixgbe_calc_eeprom_checksum - Calculates and returns the checksum
|
|
* @hw: pointer to hardware structure
|
|
**/
|
|
static u16 ixgbe_calc_eeprom_checksum(struct ixgbe_hw *hw)
|
|
{
|
|
u16 i;
|
|
u16 j;
|
|
u16 checksum = 0;
|
|
u16 length = 0;
|
|
u16 pointer = 0;
|
|
u16 word = 0;
|
|
|
|
/* Include 0x0-0x3F in the checksum */
|
|
for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
|
|
if (hw->eeprom.ops.read(hw, i, &word) != IXGBE_SUCCESS) {
|
|
DEBUGOUT("EEPROM read failed\n");
|
|
break;
|
|
}
|
|
checksum += word;
|
|
}
|
|
|
|
/* Include all data from pointers except for the fw pointer */
|
|
for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
|
|
hw->eeprom.ops.read(hw, i, &pointer);
|
|
|
|
/* Make sure the pointer seems valid */
|
|
if (pointer != 0xFFFF && pointer != 0) {
|
|
hw->eeprom.ops.read(hw, pointer, &length);
|
|
|
|
if (length != 0xFFFF && length != 0) {
|
|
for (j = pointer+1; j <= pointer+length; j++) {
|
|
hw->eeprom.ops.read(hw, j, &word);
|
|
checksum += word;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
checksum = (u16)IXGBE_EEPROM_SUM - checksum;
|
|
|
|
return checksum;
|
|
}
|
|
|
|
/**
|
|
* ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
|
|
* @hw: pointer to hardware structure
|
|
* @checksum_val: calculated checksum
|
|
*
|
|
* Performs checksum calculation and validates the EEPROM checksum. If the
|
|
* caller does not need checksum_val, the value can be NULL.
|
|
**/
|
|
s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
|
|
u16 *checksum_val)
|
|
{
|
|
s32 status;
|
|
u16 checksum;
|
|
u16 read_checksum = 0;
|
|
|
|
/*
|
|
* Read the first word from the EEPROM. If this times out or fails, do
|
|
* not continue or we could be in for a very long wait while every
|
|
* EEPROM read fails
|
|
*/
|
|
status = hw->eeprom.ops.read(hw, 0, &checksum);
|
|
|
|
if (status == IXGBE_SUCCESS) {
|
|
checksum = ixgbe_calc_eeprom_checksum(hw);
|
|
|
|
hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
|
|
|
|
/*
|
|
* Verify read checksum from EEPROM is the same as
|
|
* calculated checksum
|
|
*/
|
|
if (read_checksum != checksum)
|
|
status = IXGBE_ERR_EEPROM_CHECKSUM;
|
|
|
|
/* If the user cares, return the calculated checksum */
|
|
if (checksum_val)
|
|
*checksum_val = checksum;
|
|
} else {
|
|
DEBUGOUT("EEPROM read failed\n");
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
|
|
* @hw: pointer to hardware structure
|
|
**/
|
|
s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
|
|
{
|
|
s32 status;
|
|
u16 checksum;
|
|
|
|
/*
|
|
* Read the first word from the EEPROM. If this times out or fails, do
|
|
* not continue or we could be in for a very long wait while every
|
|
* EEPROM read fails
|
|
*/
|
|
status = hw->eeprom.ops.read(hw, 0, &checksum);
|
|
|
|
if (status == IXGBE_SUCCESS) {
|
|
checksum = ixgbe_calc_eeprom_checksum(hw);
|
|
status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM,
|
|
checksum);
|
|
} else {
|
|
DEBUGOUT("EEPROM read failed\n");
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ixgbe_validate_mac_addr - Validate MAC address
|
|
* @mac_addr: pointer to MAC address.
|
|
*
|
|
* Tests a MAC address to ensure it is a valid Individual Address
|
|
**/
|
|
s32 ixgbe_validate_mac_addr(u8 *mac_addr)
|
|
{
|
|
s32 status = IXGBE_SUCCESS;
|
|
|
|
/* Make sure it is not a multicast address */
|
|
if (IXGBE_IS_MULTICAST(mac_addr)) {
|
|
DEBUGOUT("MAC address is multicast\n");
|
|
status = IXGBE_ERR_INVALID_MAC_ADDR;
|
|
/* Not a broadcast address */
|
|
} else if (IXGBE_IS_BROADCAST(mac_addr)) {
|
|
DEBUGOUT("MAC address is broadcast\n");
|
|
status = IXGBE_ERR_INVALID_MAC_ADDR;
|
|
/* Reject the zero address */
|
|
} else if (mac_addr[0] == 0 && mac_addr[1] == 0 && mac_addr[2] == 0 &&
|
|
mac_addr[3] == 0 && mac_addr[4] == 0 && mac_addr[5] == 0) {
|
|
DEBUGOUT("MAC address is all zeros\n");
|
|
status = IXGBE_ERR_INVALID_MAC_ADDR;
|
|
}
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ixgbe_set_rar_generic - Set Rx address register
|
|
* @hw: pointer to hardware structure
|
|
* @index: Receive address register to write
|
|
* @addr: Address to put into receive address register
|
|
* @vmdq: VMDq "set" or "pool" index
|
|
* @enable_addr: set flag that address is active
|
|
*
|
|
* Puts an ethernet address into a receive address register.
|
|
**/
|
|
s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
|
|
u32 enable_addr)
|
|
{
|
|
u32 rar_low, rar_high;
|
|
u32 rar_entries = hw->mac.num_rar_entries;
|
|
|
|
/* setup VMDq pool selection before this RAR gets enabled */
|
|
hw->mac.ops.set_vmdq(hw, index, vmdq);
|
|
|
|
/* Make sure we are using a valid rar index range */
|
|
if (index < rar_entries) {
|
|
/*
|
|
* HW expects these in little endian so we reverse the byte
|
|
* order from network order (big endian) to little endian
|
|
*/
|
|
rar_low = ((u32)addr[0] |
|
|
((u32)addr[1] << 8) |
|
|
((u32)addr[2] << 16) |
|
|
((u32)addr[3] << 24));
|
|
/*
|
|
* Some parts put the VMDq setting in the extra RAH bits,
|
|
* so save everything except the lower 16 bits that hold part
|
|
* of the address and the address valid bit.
|
|
*/
|
|
rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
|
|
rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
|
|
rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
|
|
|
|
if (enable_addr != 0)
|
|
rar_high |= IXGBE_RAH_AV;
|
|
|
|
IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
|
|
IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
|
|
} else {
|
|
DEBUGOUT1("RAR index %d is out of range.\n", index);
|
|
}
|
|
|
|
return IXGBE_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* ixgbe_clear_rar_generic - Remove Rx address register
|
|
* @hw: pointer to hardware structure
|
|
* @index: Receive address register to write
|
|
*
|
|
* Clears an ethernet address from a receive address register.
|
|
**/
|
|
s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
|
|
{
|
|
u32 rar_high;
|
|
u32 rar_entries = hw->mac.num_rar_entries;
|
|
|
|
/* Make sure we are using a valid rar index range */
|
|
if (index < rar_entries) {
|
|
/*
|
|
* Some parts put the VMDq setting in the extra RAH bits,
|
|
* so save everything except the lower 16 bits that hold part
|
|
* of the address and the address valid bit.
|
|
*/
|
|
rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
|
|
rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
|
|
|
|
IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
|
|
IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
|
|
} else {
|
|
DEBUGOUT1("RAR index %d is out of range.\n", index);
|
|
}
|
|
|
|
/* clear VMDq pool/queue selection for this RAR */
|
|
hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
|
|
|
|
return IXGBE_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* ixgbe_enable_rar - Enable Rx address register
|
|
* @hw: pointer to hardware structure
|
|
* @index: index into the RAR table
|
|
*
|
|
* Enables the select receive address register.
|
|
**/
|
|
static void ixgbe_enable_rar(struct ixgbe_hw *hw, u32 index)
|
|
{
|
|
u32 rar_high;
|
|
|
|
rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
|
|
rar_high |= IXGBE_RAH_AV;
|
|
IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
|
|
}
|
|
|
|
/**
|
|
* ixgbe_disable_rar - Disable Rx address register
|
|
* @hw: pointer to hardware structure
|
|
* @index: index into the RAR table
|
|
*
|
|
* Disables the select receive address register.
|
|
**/
|
|
static void ixgbe_disable_rar(struct ixgbe_hw *hw, u32 index)
|
|
{
|
|
u32 rar_high;
|
|
|
|
rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
|
|
rar_high &= (~IXGBE_RAH_AV);
|
|
IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
|
|
}
|
|
|
|
/**
|
|
* ixgbe_init_rx_addrs_generic - Initializes receive address filters.
|
|
* @hw: pointer to hardware structure
|
|
*
|
|
* Places the MAC address in receive address register 0 and clears the rest
|
|
* of the receive address registers. Clears the multicast table. Assumes
|
|
* the receiver is in reset when the routine is called.
|
|
**/
|
|
s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
|
|
{
|
|
u32 i;
|
|
u32 rar_entries = hw->mac.num_rar_entries;
|
|
|
|
/*
|
|
* If the current mac address is valid, assume it is a software override
|
|
* to the permanent address.
|
|
* Otherwise, use the permanent address from the eeprom.
|
|
*/
|
|
if (ixgbe_validate_mac_addr(hw->mac.addr) ==
|
|
IXGBE_ERR_INVALID_MAC_ADDR) {
|
|
/* Get the MAC address from the RAR0 for later reference */
|
|
hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
|
|
|
|
DEBUGOUT3(" Keeping Current RAR0 Addr =%.2X %.2X %.2X ",
|
|
hw->mac.addr[0], hw->mac.addr[1],
|
|
hw->mac.addr[2]);
|
|
DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3],
|
|
hw->mac.addr[4], hw->mac.addr[5]);
|
|
} else {
|
|
/* Setup the receive address. */
|
|
DEBUGOUT("Overriding MAC Address in RAR[0]\n");
|
|
DEBUGOUT3(" New MAC Addr =%.2X %.2X %.2X ",
|
|
hw->mac.addr[0], hw->mac.addr[1],
|
|
hw->mac.addr[2]);
|
|
DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3],
|
|
hw->mac.addr[4], hw->mac.addr[5]);
|
|
|
|
hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
|
|
}
|
|
hw->addr_ctrl.overflow_promisc = 0;
|
|
|
|
hw->addr_ctrl.rar_used_count = 1;
|
|
|
|
/* Zero out the other receive addresses. */
|
|
DEBUGOUT1("Clearing RAR[1-%d]\n", rar_entries - 1);
|
|
for (i = 1; i < rar_entries; i++) {
|
|
IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
|
|
IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
|
|
}
|
|
|
|
/* Clear the MTA */
|
|
hw->addr_ctrl.mc_addr_in_rar_count = 0;
|
|
hw->addr_ctrl.mta_in_use = 0;
|
|
IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
|
|
|
|
DEBUGOUT(" Clearing MTA\n");
|
|
for (i = 0; i < hw->mac.mcft_size; i++)
|
|
IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
|
|
|
|
ixgbe_init_uta_tables(hw);
|
|
|
|
return IXGBE_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* ixgbe_add_uc_addr - Adds a secondary unicast address.
|
|
* @hw: pointer to hardware structure
|
|
* @addr: new address
|
|
*
|
|
* Adds it to unused receive address register or goes into promiscuous mode.
|
|
**/
|
|
void ixgbe_add_uc_addr(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
|
|
{
|
|
u32 rar_entries = hw->mac.num_rar_entries;
|
|
u32 rar;
|
|
|
|
DEBUGOUT6(" UC Addr = %.2X %.2X %.2X %.2X %.2X %.2X\n",
|
|
addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]);
|
|
|
|
/*
|
|
* Place this address in the RAR if there is room,
|
|
* else put the controller into promiscuous mode
|
|
*/
|
|
if (hw->addr_ctrl.rar_used_count < rar_entries) {
|
|
rar = hw->addr_ctrl.rar_used_count -
|
|
hw->addr_ctrl.mc_addr_in_rar_count;
|
|
hw->mac.ops.set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
|
|
DEBUGOUT1("Added a secondary address to RAR[%d]\n", rar);
|
|
hw->addr_ctrl.rar_used_count++;
|
|
} else {
|
|
hw->addr_ctrl.overflow_promisc++;
|
|
}
|
|
|
|
DEBUGOUT("ixgbe_add_uc_addr Complete\n");
|
|
}
|
|
|
|
/**
|
|
* ixgbe_update_uc_addr_list_generic - Updates MAC list of secondary addresses
|
|
* @hw: pointer to hardware structure
|
|
* @addr_list: the list of new addresses
|
|
* @addr_count: number of addresses
|
|
* @next: iterator function to walk the address list
|
|
*
|
|
* The given list replaces any existing list. Clears the secondary addrs from
|
|
* receive address registers. Uses unused receive address registers for the
|
|
* first secondary addresses, and falls back to promiscuous mode as needed.
|
|
*
|
|
* Drivers using secondary unicast addresses must set user_set_promisc when
|
|
* manually putting the device into promiscuous mode.
|
|
**/
|
|
s32 ixgbe_update_uc_addr_list_generic(struct ixgbe_hw *hw, u8 *addr_list,
|
|
u32 addr_count, ixgbe_mc_addr_itr next)
|
|
{
|
|
u8 *addr;
|
|
u32 i;
|
|
u32 old_promisc_setting = hw->addr_ctrl.overflow_promisc;
|
|
u32 uc_addr_in_use;
|
|
u32 fctrl;
|
|
u32 vmdq;
|
|
|
|
/*
|
|
* Clear accounting of old secondary address list,
|
|
* don't count RAR[0]
|
|
*/
|
|
uc_addr_in_use = hw->addr_ctrl.rar_used_count -
|
|
hw->addr_ctrl.mc_addr_in_rar_count - 1;
|
|
hw->addr_ctrl.rar_used_count -= uc_addr_in_use;
|
|
hw->addr_ctrl.overflow_promisc = 0;
|
|
|
|
/* Zero out the other receive addresses */
|
|
DEBUGOUT1("Clearing RAR[1-%d]\n", uc_addr_in_use);
|
|
for (i = 1; i <= uc_addr_in_use; i++) {
|
|
IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
|
|
IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
|
|
}
|
|
|
|
/* Add the new addresses */
|
|
for (i = 0; i < addr_count; i++) {
|
|
DEBUGOUT(" Adding the secondary addresses:\n");
|
|
addr = next(hw, &addr_list, &vmdq);
|
|
ixgbe_add_uc_addr(hw, addr, vmdq);
|
|
}
|
|
|
|
if (hw->addr_ctrl.overflow_promisc) {
|
|
/* enable promisc if not already in overflow or set by user */
|
|
if (!old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
|
|
DEBUGOUT( " Entering address overflow promisc mode\n");
|
|
fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
|
|
fctrl |= IXGBE_FCTRL_UPE;
|
|
IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
|
|
}
|
|
} else {
|
|
/* only disable if set by overflow, not by user */
|
|
if (old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
|
|
DEBUGOUT(" Leaving address overflow promisc mode\n");
|
|
fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
|
|
fctrl &= ~IXGBE_FCTRL_UPE;
|
|
IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
|
|
}
|
|
}
|
|
|
|
DEBUGOUT("ixgbe_update_uc_addr_list_generic Complete\n");
|
|
return IXGBE_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* ixgbe_mta_vector - Determines bit-vector in multicast table to set
|
|
* @hw: pointer to hardware structure
|
|
* @mc_addr: the multicast address
|
|
*
|
|
* Extracts the 12 bits, from a multicast address, to determine which
|
|
* bit-vector to set in the multicast table. The hardware uses 12 bits, from
|
|
* incoming rx multicast addresses, to determine the bit-vector to check in
|
|
* the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
|
|
* by the MO field of the MCSTCTRL. The MO field is set during initialization
|
|
* to mc_filter_type.
|
|
**/
|
|
static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
|
|
{
|
|
u32 vector = 0;
|
|
|
|
switch (hw->mac.mc_filter_type) {
|
|
case 0: /* use bits [47:36] of the address */
|
|
vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
|
|
break;
|
|
case 1: /* use bits [46:35] of the address */
|
|
vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
|
|
break;
|
|
case 2: /* use bits [45:34] of the address */
|
|
vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
|
|
break;
|
|
case 3: /* use bits [43:32] of the address */
|
|
vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
|
|
break;
|
|
default: /* Invalid mc_filter_type */
|
|
DEBUGOUT("MC filter type param set incorrectly\n");
|
|
ASSERT(0);
|
|
break;
|
|
}
|
|
|
|
/* vector can only be 12-bits or boundary will be exceeded */
|
|
vector &= 0xFFF;
|
|
return vector;
|
|
}
|
|
|
|
/**
|
|
* ixgbe_set_mta - Set bit-vector in multicast table
|
|
* @hw: pointer to hardware structure
|
|
* @hash_value: Multicast address hash value
|
|
*
|
|
* Sets the bit-vector in the multicast table.
|
|
**/
|
|
void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
|
|
{
|
|
u32 vector;
|
|
u32 vector_bit;
|
|
u32 vector_reg;
|
|
u32 mta_reg;
|
|
|
|
hw->addr_ctrl.mta_in_use++;
|
|
|
|
vector = ixgbe_mta_vector(hw, mc_addr);
|
|
DEBUGOUT1(" bit-vector = 0x%03X\n", vector);
|
|
|
|
/*
|
|
* The MTA is a register array of 128 32-bit registers. It is treated
|
|
* like an array of 4096 bits. We want to set bit
|
|
* BitArray[vector_value]. So we figure out what register the bit is
|
|
* in, read it, OR in the new bit, then write back the new value. The
|
|
* register is determined by the upper 7 bits of the vector value and
|
|
* the bit within that register are determined by the lower 5 bits of
|
|
* the value.
|
|
*/
|
|
vector_reg = (vector >> 5) & 0x7F;
|
|
vector_bit = vector & 0x1F;
|
|
mta_reg = IXGBE_READ_REG(hw, IXGBE_MTA(vector_reg));
|
|
mta_reg |= (1 << vector_bit);
|
|
IXGBE_WRITE_REG(hw, IXGBE_MTA(vector_reg), mta_reg);
|
|
}
|
|
|
|
/**
|
|
* ixgbe_add_mc_addr - Adds a multicast address.
|
|
* @hw: pointer to hardware structure
|
|
* @mc_addr: new multicast address
|
|
*
|
|
* Adds it to unused receive address register or to the multicast table.
|
|
**/
|
|
void ixgbe_add_mc_addr(struct ixgbe_hw *hw, u8 *mc_addr)
|
|
{
|
|
u32 rar_entries = hw->mac.num_rar_entries;
|
|
u32 rar;
|
|
|
|
DEBUGOUT6(" MC Addr =%.2X %.2X %.2X %.2X %.2X %.2X\n",
|
|
mc_addr[0], mc_addr[1], mc_addr[2],
|
|
mc_addr[3], mc_addr[4], mc_addr[5]);
|
|
|
|
/*
|
|
* Place this multicast address in the RAR if there is room,
|
|
* else put it in the MTA
|
|
*/
|
|
if (hw->addr_ctrl.rar_used_count < rar_entries) {
|
|
/* use RAR from the end up for multicast */
|
|
rar = rar_entries - hw->addr_ctrl.mc_addr_in_rar_count - 1;
|
|
hw->mac.ops.set_rar(hw, rar, mc_addr, 0, IXGBE_RAH_AV);
|
|
DEBUGOUT1("Added a multicast address to RAR[%d]\n", rar);
|
|
hw->addr_ctrl.rar_used_count++;
|
|
hw->addr_ctrl.mc_addr_in_rar_count++;
|
|
} else {
|
|
ixgbe_set_mta(hw, mc_addr);
|
|
}
|
|
|
|
DEBUGOUT("ixgbe_add_mc_addr Complete\n");
|
|
}
|
|
|
|
/**
|
|
* ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
|
|
* @hw: pointer to hardware structure
|
|
* @mc_addr_list: the list of new multicast addresses
|
|
* @mc_addr_count: number of addresses
|
|
* @next: iterator function to walk the multicast address list
|
|
*
|
|
* The given list replaces any existing list. Clears the MC addrs from receive
|
|
* address registers and the multicast table. Uses unused receive address
|
|
* registers for the first multicast addresses, and hashes the rest into the
|
|
* multicast table.
|
|
**/
|
|
s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw, u8 *mc_addr_list,
|
|
u32 mc_addr_count, ixgbe_mc_addr_itr next)
|
|
{
|
|
u32 i;
|
|
u32 rar_entries = hw->mac.num_rar_entries;
|
|
u32 vmdq;
|
|
|
|
/*
|
|
* Set the new number of MC addresses that we are being requested to
|
|
* use.
|
|
*/
|
|
hw->addr_ctrl.num_mc_addrs = mc_addr_count;
|
|
hw->addr_ctrl.rar_used_count -= hw->addr_ctrl.mc_addr_in_rar_count;
|
|
hw->addr_ctrl.mc_addr_in_rar_count = 0;
|
|
hw->addr_ctrl.mta_in_use = 0;
|
|
|
|
/* Zero out the other receive addresses. */
|
|
DEBUGOUT2("Clearing RAR[%d-%d]\n", hw->addr_ctrl.rar_used_count,
|
|
rar_entries - 1);
|
|
for (i = hw->addr_ctrl.rar_used_count; i < rar_entries; i++) {
|
|
IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
|
|
IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
|
|
}
|
|
|
|
/* Clear the MTA */
|
|
DEBUGOUT(" Clearing MTA\n");
|
|
for (i = 0; i < hw->mac.mcft_size; i++)
|
|
IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
|
|
|
|
/* Add the new addresses */
|
|
for (i = 0; i < mc_addr_count; i++) {
|
|
DEBUGOUT(" Adding the multicast addresses:\n");
|
|
ixgbe_add_mc_addr(hw, next(hw, &mc_addr_list, &vmdq));
|
|
}
|
|
|
|
/* Enable mta */
|
|
if (hw->addr_ctrl.mta_in_use > 0)
|
|
IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
|
|
IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
|
|
|
|
DEBUGOUT("ixgbe_update_mc_addr_list_generic Complete\n");
|
|
return IXGBE_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* ixgbe_enable_mc_generic - Enable multicast address in RAR
|
|
* @hw: pointer to hardware structure
|
|
*
|
|
* Enables multicast address in RAR and the use of the multicast hash table.
|
|
**/
|
|
s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
|
|
{
|
|
u32 i;
|
|
u32 rar_entries = hw->mac.num_rar_entries;
|
|
struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
|
|
|
|
if (a->mc_addr_in_rar_count > 0)
|
|
for (i = (rar_entries - a->mc_addr_in_rar_count);
|
|
i < rar_entries; i++)
|
|
ixgbe_enable_rar(hw, i);
|
|
|
|
if (a->mta_in_use > 0)
|
|
IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
|
|
hw->mac.mc_filter_type);
|
|
|
|
return IXGBE_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* ixgbe_disable_mc_generic - Disable multicast address in RAR
|
|
* @hw: pointer to hardware structure
|
|
*
|
|
* Disables multicast address in RAR and the use of the multicast hash table.
|
|
**/
|
|
s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
|
|
{
|
|
u32 i;
|
|
u32 rar_entries = hw->mac.num_rar_entries;
|
|
struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
|
|
|
|
if (a->mc_addr_in_rar_count > 0)
|
|
for (i = (rar_entries - a->mc_addr_in_rar_count);
|
|
i < rar_entries; i++)
|
|
ixgbe_disable_rar(hw, i);
|
|
|
|
if (a->mta_in_use > 0)
|
|
IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
|
|
|
|
return IXGBE_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* ixgbe_disable_pcie_master - Disable PCI-express master access
|
|
* @hw: pointer to hardware structure
|
|
*
|
|
* Disables PCI-Express master access and verifies there are no pending
|
|
* requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
|
|
* bit hasn't caused the master requests to be disabled, else IXGBE_SUCCESS
|
|
* is returned signifying master requests disabled.
|
|
**/
|
|
s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
|
|
{
|
|
u32 i;
|
|
u32 reg_val;
|
|
u32 number_of_queues;
|
|
s32 status = IXGBE_ERR_MASTER_REQUESTS_PENDING;
|
|
|
|
/* Disable the receive unit by stopping each queue */
|
|
number_of_queues = hw->mac.max_rx_queues;
|
|
for (i = 0; i < number_of_queues; i++) {
|
|
reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
|
|
if (reg_val & IXGBE_RXDCTL_ENABLE) {
|
|
reg_val &= ~IXGBE_RXDCTL_ENABLE;
|
|
IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
|
|
}
|
|
}
|
|
|
|
reg_val = IXGBE_READ_REG(hw, IXGBE_CTRL);
|
|
reg_val |= IXGBE_CTRL_GIO_DIS;
|
|
IXGBE_WRITE_REG(hw, IXGBE_CTRL, reg_val);
|
|
|
|
for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
|
|
if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO)) {
|
|
status = IXGBE_SUCCESS;
|
|
break;
|
|
}
|
|
usec_delay(100);
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
|
|
/**
|
|
* ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
|
|
* @hw: pointer to hardware structure
|
|
* @mask: Mask to specify which semaphore to acquire
|
|
*
|
|
* Acquires the SWFW semaphore thought the GSSR register for the specified
|
|
* function (CSR, PHY0, PHY1, EEPROM, Flash)
|
|
**/
|
|
s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u16 mask)
|
|
{
|
|
u32 gssr;
|
|
u32 swmask = mask;
|
|
u32 fwmask = mask << 5;
|
|
s32 timeout = 200;
|
|
|
|
while (timeout) {
|
|
if (ixgbe_get_eeprom_semaphore(hw))
|
|
return -IXGBE_ERR_SWFW_SYNC;
|
|
|
|
gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
|
|
if (!(gssr & (fwmask | swmask)))
|
|
break;
|
|
|
|
/*
|
|
* Firmware currently using resource (fwmask) or other software
|
|
* thread currently using resource (swmask)
|
|
*/
|
|
ixgbe_release_eeprom_semaphore(hw);
|
|
msec_delay(5);
|
|
timeout--;
|
|
}
|
|
|
|
if (!timeout) {
|
|
DEBUGOUT("Driver can't access resource, GSSR timeout.\n");
|
|
return -IXGBE_ERR_SWFW_SYNC;
|
|
}
|
|
|
|
gssr |= swmask;
|
|
IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
|
|
|
|
ixgbe_release_eeprom_semaphore(hw);
|
|
return IXGBE_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* ixgbe_release_swfw_sync - Release SWFW semaphore
|
|
* @hw: pointer to hardware structure
|
|
* @mask: Mask to specify which semaphore to release
|
|
*
|
|
* Releases the SWFW semaphore thought the GSSR register for the specified
|
|
* function (CSR, PHY0, PHY1, EEPROM, Flash)
|
|
**/
|
|
void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u16 mask)
|
|
{
|
|
u32 gssr;
|
|
u32 swmask = mask;
|
|
|
|
ixgbe_get_eeprom_semaphore(hw);
|
|
|
|
gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
|
|
gssr &= ~swmask;
|
|
IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
|
|
|
|
ixgbe_release_eeprom_semaphore(hw);
|
|
}
|
|
|
|
/**
|
|
* ixgbe_read_analog_reg8_generic - Reads 8 bit Atlas analog register
|
|
* @hw: pointer to hardware structure
|
|
* @reg: analog register to read
|
|
* @val: read value
|
|
*
|
|
* Performs read operation to Atlas analog register specified.
|
|
**/
|
|
s32 ixgbe_read_analog_reg8_generic(struct ixgbe_hw *hw, u32 reg, u8 *val)
|
|
{
|
|
u32 atlas_ctl;
|
|
|
|
IXGBE_WRITE_REG(hw, IXGBE_ATLASCTL, IXGBE_ATLASCTL_WRITE_CMD | (reg << 8));
|
|
IXGBE_WRITE_FLUSH(hw);
|
|
usec_delay(10);
|
|
atlas_ctl = IXGBE_READ_REG(hw, IXGBE_ATLASCTL);
|
|
*val = (u8)atlas_ctl;
|
|
|
|
return IXGBE_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* ixgbe_write_analog_reg8_generic - Writes 8 bit Atlas analog register
|
|
* @hw: pointer to hardware structure
|
|
* @reg: atlas register to write
|
|
* @val: value to write
|
|
*
|
|
* Performs write operation to Atlas analog register specified.
|
|
**/
|
|
s32 ixgbe_write_analog_reg8_generic(struct ixgbe_hw *hw, u32 reg, u8 val)
|
|
{
|
|
u32 atlas_ctl;
|
|
|
|
atlas_ctl = (reg << 8) | val;
|
|
IXGBE_WRITE_REG(hw, IXGBE_ATLASCTL, atlas_ctl);
|
|
IXGBE_WRITE_FLUSH(hw);
|
|
usec_delay(10);
|
|
|
|
return IXGBE_SUCCESS;
|
|
}
|
|
|