freebsd-nq/sbin/newfs/mkfs.c
Kirk McKusick 8f829a5cf0 Continuing efforts to provide hardening of FFS. This change adds a
check hash to the filesystem inodes. Access attempts to files
associated with an inode with an invalid check hash will fail with
EINVAL (Invalid argument). Access is reestablished after an fsck
is run to find and validate the inodes with invalid check-hashes.
This check avoids a class of filesystem panics related to corrupted
inodes. The hash is done using crc32c.

Note this check-hash is for the inode itself and not any of its
indirect blocks. Check-hash validation may be extended to also
cover indirect block pointers, but that will be a separate (and
more costly) feature.

Check hashes are added only to UFS2 and not to UFS1 as UFS1 is
primarily used in embedded systems with small memories and low-powered
processors which need as light-weight a filesystem as possible.

Reviewed by:  kib
Tested by:    Peter Holm
Sponsored by: Netflix
2018-12-11 22:14:37 +00:00

1193 lines
35 KiB
C

/*-
* SPDX-License-Identifier: BSD-3-Clause
*
* Copyright (c) 2002 Networks Associates Technology, Inc.
* All rights reserved.
*
* This software was developed for the FreeBSD Project by Marshall
* Kirk McKusick and Network Associates Laboratories, the Security
* Research Division of Network Associates, Inc. under DARPA/SPAWAR
* contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
* research program.
*
* Copyright (c) 1980, 1989, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#if 0
#ifndef lint
static char sccsid[] = "@(#)mkfs.c 8.11 (Berkeley) 5/3/95";
#endif /* not lint */
#endif
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#define IN_RTLD /* So we pickup the P_OSREL defines */
#include <sys/param.h>
#include <sys/disklabel.h>
#include <sys/file.h>
#include <sys/ioctl.h>
#include <sys/mman.h>
#include <sys/resource.h>
#include <sys/stat.h>
#include <sys/wait.h>
#include <err.h>
#include <grp.h>
#include <limits.h>
#include <signal.h>
#include <stdlib.h>
#include <string.h>
#include <stdint.h>
#include <stdio.h>
#include <time.h>
#include <unistd.h>
#include <ufs/ufs/dinode.h>
#include <ufs/ufs/dir.h>
#include <ufs/ffs/fs.h>
#include "newfs.h"
/*
* make file system for cylinder-group style file systems
*/
#define UMASK 0755
#define POWEROF2(num) (((num) & ((num) - 1)) == 0)
static struct csum *fscs;
#define sblock disk.d_fs
#define acg disk.d_cg
union dinode {
struct ufs1_dinode dp1;
struct ufs2_dinode dp2;
};
#define DIP(dp, field) \
((sblock.fs_magic == FS_UFS1_MAGIC) ? \
(dp)->dp1.field : (dp)->dp2.field)
static caddr_t iobuf;
static long iobufsize;
static ufs2_daddr_t alloc(int size, int mode);
static int charsperline(void);
static void clrblock(struct fs *, unsigned char *, int);
static void fsinit(time_t);
static int ilog2(int);
static void initcg(int, time_t);
static int isblock(struct fs *, unsigned char *, int);
static void iput(union dinode *, ino_t);
static int makedir(struct direct *, int);
static void setblock(struct fs *, unsigned char *, int);
static void wtfs(ufs2_daddr_t, int, char *);
static u_int32_t newfs_random(void);
void
mkfs(struct partition *pp, char *fsys)
{
int fragsperinode, optimalfpg, origdensity, minfpg, lastminfpg;
long i, j, csfrags;
uint cg;
time_t utime;
quad_t sizepb;
int width;
ino_t maxinum;
int minfragsperinode; /* minimum ratio of frags to inodes */
char tmpbuf[100]; /* XXX this will break in about 2,500 years */
struct fsrecovery *fsr;
char *fsrbuf;
union {
struct fs fdummy;
char cdummy[SBLOCKSIZE];
} dummy;
#define fsdummy dummy.fdummy
#define chdummy dummy.cdummy
/*
* Our blocks == sector size, and the version of UFS we are using is
* specified by Oflag.
*/
disk.d_bsize = sectorsize;
disk.d_ufs = Oflag;
if (Rflag)
utime = 1000000000;
else
time(&utime);
sblock.fs_old_flags = FS_FLAGS_UPDATED;
sblock.fs_flags = 0;
if (Uflag)
sblock.fs_flags |= FS_DOSOFTDEP;
if (Lflag)
strlcpy(sblock.fs_volname, volumelabel, MAXVOLLEN);
if (Jflag)
sblock.fs_flags |= FS_GJOURNAL;
if (lflag)
sblock.fs_flags |= FS_MULTILABEL;
if (tflag)
sblock.fs_flags |= FS_TRIM;
/*
* Validate the given file system size.
* Verify that its last block can actually be accessed.
* Convert to file system fragment sized units.
*/
if (fssize <= 0) {
printf("preposterous size %jd\n", (intmax_t)fssize);
exit(13);
}
wtfs(fssize - (realsectorsize / DEV_BSIZE), realsectorsize,
(char *)&sblock);
/*
* collect and verify the file system density info
*/
sblock.fs_avgfilesize = avgfilesize;
sblock.fs_avgfpdir = avgfilesperdir;
if (sblock.fs_avgfilesize <= 0)
printf("illegal expected average file size %d\n",
sblock.fs_avgfilesize), exit(14);
if (sblock.fs_avgfpdir <= 0)
printf("illegal expected number of files per directory %d\n",
sblock.fs_avgfpdir), exit(15);
restart:
/*
* collect and verify the block and fragment sizes
*/
sblock.fs_bsize = bsize;
sblock.fs_fsize = fsize;
if (!POWEROF2(sblock.fs_bsize)) {
printf("block size must be a power of 2, not %d\n",
sblock.fs_bsize);
exit(16);
}
if (!POWEROF2(sblock.fs_fsize)) {
printf("fragment size must be a power of 2, not %d\n",
sblock.fs_fsize);
exit(17);
}
if (sblock.fs_fsize < sectorsize) {
printf("increasing fragment size from %d to sector size (%d)\n",
sblock.fs_fsize, sectorsize);
sblock.fs_fsize = sectorsize;
}
if (sblock.fs_bsize > MAXBSIZE) {
printf("decreasing block size from %d to maximum (%d)\n",
sblock.fs_bsize, MAXBSIZE);
sblock.fs_bsize = MAXBSIZE;
}
if (sblock.fs_bsize < MINBSIZE) {
printf("increasing block size from %d to minimum (%d)\n",
sblock.fs_bsize, MINBSIZE);
sblock.fs_bsize = MINBSIZE;
}
if (sblock.fs_fsize > MAXBSIZE) {
printf("decreasing fragment size from %d to maximum (%d)\n",
sblock.fs_fsize, MAXBSIZE);
sblock.fs_fsize = MAXBSIZE;
}
if (sblock.fs_bsize < sblock.fs_fsize) {
printf("increasing block size from %d to fragment size (%d)\n",
sblock.fs_bsize, sblock.fs_fsize);
sblock.fs_bsize = sblock.fs_fsize;
}
if (sblock.fs_fsize * MAXFRAG < sblock.fs_bsize) {
printf(
"increasing fragment size from %d to block size / %d (%d)\n",
sblock.fs_fsize, MAXFRAG, sblock.fs_bsize / MAXFRAG);
sblock.fs_fsize = sblock.fs_bsize / MAXFRAG;
}
if (maxbsize == 0)
maxbsize = bsize;
if (maxbsize < bsize || !POWEROF2(maxbsize)) {
sblock.fs_maxbsize = sblock.fs_bsize;
printf("Extent size set to %d\n", sblock.fs_maxbsize);
} else if (sblock.fs_maxbsize > FS_MAXCONTIG * sblock.fs_bsize) {
sblock.fs_maxbsize = FS_MAXCONTIG * sblock.fs_bsize;
printf("Extent size reduced to %d\n", sblock.fs_maxbsize);
} else {
sblock.fs_maxbsize = maxbsize;
}
/*
* Maxcontig sets the default for the maximum number of blocks
* that may be allocated sequentially. With file system clustering
* it is possible to allocate contiguous blocks up to the maximum
* transfer size permitted by the controller or buffering.
*/
if (maxcontig == 0)
maxcontig = MAX(1, MAXPHYS / bsize);
sblock.fs_maxcontig = maxcontig;
if (sblock.fs_maxcontig < sblock.fs_maxbsize / sblock.fs_bsize) {
sblock.fs_maxcontig = sblock.fs_maxbsize / sblock.fs_bsize;
printf("Maxcontig raised to %d\n", sblock.fs_maxbsize);
}
if (sblock.fs_maxcontig > 1)
sblock.fs_contigsumsize = MIN(sblock.fs_maxcontig,FS_MAXCONTIG);
sblock.fs_bmask = ~(sblock.fs_bsize - 1);
sblock.fs_fmask = ~(sblock.fs_fsize - 1);
sblock.fs_qbmask = ~sblock.fs_bmask;
sblock.fs_qfmask = ~sblock.fs_fmask;
sblock.fs_bshift = ilog2(sblock.fs_bsize);
sblock.fs_fshift = ilog2(sblock.fs_fsize);
sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize);
sblock.fs_fragshift = ilog2(sblock.fs_frag);
if (sblock.fs_frag > MAXFRAG) {
printf("fragment size %d is still too small (can't happen)\n",
sblock.fs_bsize / MAXFRAG);
exit(21);
}
sblock.fs_fsbtodb = ilog2(sblock.fs_fsize / sectorsize);
sblock.fs_size = fssize = dbtofsb(&sblock, fssize);
sblock.fs_providersize = dbtofsb(&sblock, mediasize / sectorsize);
/*
* Before the filesystem is finally initialized, mark it
* as incompletely initialized.
*/
sblock.fs_magic = FS_BAD_MAGIC;
if (Oflag == 1) {
sblock.fs_sblockloc = SBLOCK_UFS1;
sblock.fs_sblockactualloc = SBLOCK_UFS1;
sblock.fs_nindir = sblock.fs_bsize / sizeof(ufs1_daddr_t);
sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs1_dinode);
sblock.fs_maxsymlinklen = ((UFS_NDADDR + UFS_NIADDR) *
sizeof(ufs1_daddr_t));
sblock.fs_old_inodefmt = FS_44INODEFMT;
sblock.fs_old_cgoffset = 0;
sblock.fs_old_cgmask = 0xffffffff;
sblock.fs_old_size = sblock.fs_size;
sblock.fs_old_rotdelay = 0;
sblock.fs_old_rps = 60;
sblock.fs_old_nspf = sblock.fs_fsize / sectorsize;
sblock.fs_old_cpg = 1;
sblock.fs_old_interleave = 1;
sblock.fs_old_trackskew = 0;
sblock.fs_old_cpc = 0;
sblock.fs_old_postblformat = 1;
sblock.fs_old_nrpos = 1;
} else {
sblock.fs_sblockloc = SBLOCK_UFS2;
sblock.fs_sblockactualloc = SBLOCK_UFS2;
sblock.fs_nindir = sblock.fs_bsize / sizeof(ufs2_daddr_t);
sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs2_dinode);
sblock.fs_maxsymlinklen = ((UFS_NDADDR + UFS_NIADDR) *
sizeof(ufs2_daddr_t));
}
sblock.fs_sblkno =
roundup(howmany(sblock.fs_sblockloc + SBLOCKSIZE, sblock.fs_fsize),
sblock.fs_frag);
sblock.fs_cblkno = sblock.fs_sblkno +
roundup(howmany(SBLOCKSIZE, sblock.fs_fsize), sblock.fs_frag);
sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag;
sblock.fs_maxfilesize = sblock.fs_bsize * UFS_NDADDR - 1;
for (sizepb = sblock.fs_bsize, i = 0; i < UFS_NIADDR; i++) {
sizepb *= NINDIR(&sblock);
sblock.fs_maxfilesize += sizepb;
}
/*
* It's impossible to create a snapshot in case that fs_maxfilesize
* is smaller than the fssize.
*/
if (sblock.fs_maxfilesize < (u_quad_t)fssize) {
warnx("WARNING: You will be unable to create snapshots on this "
"file system. Correct by using a larger blocksize.");
}
/*
* Calculate the number of blocks to put into each cylinder group.
*
* This algorithm selects the number of blocks per cylinder
* group. The first goal is to have at least enough data blocks
* in each cylinder group to meet the density requirement. Once
* this goal is achieved we try to expand to have at least
* MINCYLGRPS cylinder groups. Once this goal is achieved, we
* pack as many blocks into each cylinder group map as will fit.
*
* We start by calculating the smallest number of blocks that we
* can put into each cylinder group. If this is too big, we reduce
* the density until it fits.
*/
maxinum = (((int64_t)(1)) << 32) - INOPB(&sblock);
minfragsperinode = 1 + fssize / maxinum;
if (density == 0) {
density = MAX(NFPI, minfragsperinode) * fsize;
} else if (density < minfragsperinode * fsize) {
origdensity = density;
density = minfragsperinode * fsize;
fprintf(stderr, "density increased from %d to %d\n",
origdensity, density);
}
origdensity = density;
for (;;) {
fragsperinode = MAX(numfrags(&sblock, density), 1);
if (fragsperinode < minfragsperinode) {
bsize <<= 1;
fsize <<= 1;
printf("Block size too small for a file system %s %d\n",
"of this size. Increasing blocksize to", bsize);
goto restart;
}
minfpg = fragsperinode * INOPB(&sblock);
if (minfpg > sblock.fs_size)
minfpg = sblock.fs_size;
sblock.fs_ipg = INOPB(&sblock);
sblock.fs_fpg = roundup(sblock.fs_iblkno +
sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag);
if (sblock.fs_fpg < minfpg)
sblock.fs_fpg = minfpg;
sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
INOPB(&sblock));
sblock.fs_fpg = roundup(sblock.fs_iblkno +
sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag);
if (sblock.fs_fpg < minfpg)
sblock.fs_fpg = minfpg;
sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
INOPB(&sblock));
if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize)
break;
density -= sblock.fs_fsize;
}
if (density != origdensity)
printf("density reduced from %d to %d\n", origdensity, density);
/*
* Start packing more blocks into the cylinder group until
* it cannot grow any larger, the number of cylinder groups
* drops below MINCYLGRPS, or we reach the size requested.
* For UFS1 inodes per cylinder group are stored in an int16_t
* so fs_ipg is limited to 2^15 - 1.
*/
for ( ; sblock.fs_fpg < maxblkspercg; sblock.fs_fpg += sblock.fs_frag) {
sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
INOPB(&sblock));
if (Oflag > 1 || (Oflag == 1 && sblock.fs_ipg <= 0x7fff)) {
if (sblock.fs_size / sblock.fs_fpg < MINCYLGRPS)
break;
if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize)
continue;
if (CGSIZE(&sblock) == (unsigned long)sblock.fs_bsize)
break;
}
sblock.fs_fpg -= sblock.fs_frag;
sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
INOPB(&sblock));
break;
}
/*
* Check to be sure that the last cylinder group has enough blocks
* to be viable. If it is too small, reduce the number of blocks
* per cylinder group which will have the effect of moving more
* blocks into the last cylinder group.
*/
optimalfpg = sblock.fs_fpg;
for (;;) {
sblock.fs_ncg = howmany(sblock.fs_size, sblock.fs_fpg);
lastminfpg = roundup(sblock.fs_iblkno +
sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag);
if (sblock.fs_size < lastminfpg) {
printf("Filesystem size %jd < minimum size of %d\n",
(intmax_t)sblock.fs_size, lastminfpg);
exit(28);
}
if (sblock.fs_size % sblock.fs_fpg >= lastminfpg ||
sblock.fs_size % sblock.fs_fpg == 0)
break;
sblock.fs_fpg -= sblock.fs_frag;
sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
INOPB(&sblock));
}
if (optimalfpg != sblock.fs_fpg)
printf("Reduced frags per cylinder group from %d to %d %s\n",
optimalfpg, sblock.fs_fpg, "to enlarge last cyl group");
sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock));
sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock);
if (Oflag == 1) {
sblock.fs_old_spc = sblock.fs_fpg * sblock.fs_old_nspf;
sblock.fs_old_nsect = sblock.fs_old_spc;
sblock.fs_old_npsect = sblock.fs_old_spc;
sblock.fs_old_ncyl = sblock.fs_ncg;
}
/*
* fill in remaining fields of the super block
*/
sblock.fs_csaddr = cgdmin(&sblock, 0);
sblock.fs_cssize =
fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum));
fscs = (struct csum *)calloc(1, sblock.fs_cssize);
if (fscs == NULL)
errx(31, "calloc failed");
sblock.fs_sbsize = fragroundup(&sblock, sizeof(struct fs));
if (sblock.fs_sbsize > SBLOCKSIZE)
sblock.fs_sbsize = SBLOCKSIZE;
if (sblock.fs_sbsize < realsectorsize)
sblock.fs_sbsize = realsectorsize;
sblock.fs_minfree = minfree;
if (metaspace > 0 && metaspace < sblock.fs_fpg / 2)
sblock.fs_metaspace = blknum(&sblock, metaspace);
else if (metaspace != -1)
/* reserve half of minfree for metadata blocks */
sblock.fs_metaspace = blknum(&sblock,
(sblock.fs_fpg * minfree) / 200);
if (maxbpg == 0)
sblock.fs_maxbpg = MAXBLKPG(sblock.fs_bsize);
else
sblock.fs_maxbpg = maxbpg;
sblock.fs_optim = opt;
sblock.fs_cgrotor = 0;
sblock.fs_pendingblocks = 0;
sblock.fs_pendinginodes = 0;
sblock.fs_fmod = 0;
sblock.fs_ronly = 0;
sblock.fs_state = 0;
sblock.fs_clean = 1;
sblock.fs_id[0] = (long)utime;
sblock.fs_id[1] = newfs_random();
sblock.fs_fsmnt[0] = '\0';
csfrags = howmany(sblock.fs_cssize, sblock.fs_fsize);
sblock.fs_dsize = sblock.fs_size - sblock.fs_sblkno -
sblock.fs_ncg * (sblock.fs_dblkno - sblock.fs_sblkno);
sblock.fs_cstotal.cs_nbfree =
fragstoblks(&sblock, sblock.fs_dsize) -
howmany(csfrags, sblock.fs_frag);
sblock.fs_cstotal.cs_nffree =
fragnum(&sblock, sblock.fs_size) +
(fragnum(&sblock, csfrags) > 0 ?
sblock.fs_frag - fragnum(&sblock, csfrags) : 0);
sblock.fs_cstotal.cs_nifree =
sblock.fs_ncg * sblock.fs_ipg - UFS_ROOTINO;
sblock.fs_cstotal.cs_ndir = 0;
sblock.fs_dsize -= csfrags;
sblock.fs_time = utime;
if (Oflag == 1) {
sblock.fs_old_time = utime;
sblock.fs_old_dsize = sblock.fs_dsize;
sblock.fs_old_csaddr = sblock.fs_csaddr;
sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir;
sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree;
sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree;
sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree;
}
/*
* Set flags for metadata that is being check-hashed.
*
* Metadata check hashes are not supported in the UFS version 1
* filesystem to keep it as small and simple as possible.
*/
if (Oflag > 1) {
sblock.fs_flags |= FS_METACKHASH;
if (getosreldate() >= P_OSREL_CK_CYLGRP)
sblock.fs_metackhash |= CK_CYLGRP;
if (getosreldate() >= P_OSREL_CK_SUPERBLOCK)
sblock.fs_metackhash |= CK_SUPERBLOCK;
if (getosreldate() >= P_OSREL_CK_INODE)
sblock.fs_metackhash |= CK_INODE;
}
/*
* Dump out summary information about file system.
*/
# define B2MBFACTOR (1 / (1024.0 * 1024.0))
printf("%s: %.1fMB (%jd sectors) block size %d, fragment size %d\n",
fsys, (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR,
(intmax_t)fsbtodb(&sblock, sblock.fs_size), sblock.fs_bsize,
sblock.fs_fsize);
printf("\tusing %d cylinder groups of %.2fMB, %d blks, %d inodes.\n",
sblock.fs_ncg, (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR,
sblock.fs_fpg / sblock.fs_frag, sblock.fs_ipg);
if (sblock.fs_flags & FS_DOSOFTDEP)
printf("\twith soft updates\n");
# undef B2MBFACTOR
if (Eflag && !Nflag) {
printf("Erasing sectors [%jd...%jd]\n",
sblock.fs_sblockloc / disk.d_bsize,
fsbtodb(&sblock, sblock.fs_size) - 1);
berase(&disk, sblock.fs_sblockloc / disk.d_bsize,
sblock.fs_size * sblock.fs_fsize - sblock.fs_sblockloc);
}
/*
* Wipe out old UFS1 superblock(s) if necessary.
*/
if (!Nflag && Oflag != 1 && realsectorsize <= SBLOCK_UFS1) {
i = bread(&disk, part_ofs + SBLOCK_UFS1 / disk.d_bsize, chdummy,
SBLOCKSIZE);
if (i == -1)
err(1, "can't read old UFS1 superblock: %s",
disk.d_error);
if (fsdummy.fs_magic == FS_UFS1_MAGIC) {
fsdummy.fs_magic = 0;
bwrite(&disk, part_ofs + SBLOCK_UFS1 / disk.d_bsize,
chdummy, SBLOCKSIZE);
for (cg = 0; cg < fsdummy.fs_ncg; cg++) {
if (fsbtodb(&fsdummy, cgsblock(&fsdummy, cg)) >
fssize)
break;
bwrite(&disk, part_ofs + fsbtodb(&fsdummy,
cgsblock(&fsdummy, cg)), chdummy, SBLOCKSIZE);
}
}
}
if (!Nflag && sbput(disk.d_fd, &disk.d_fs, 0) != 0)
err(1, "sbput: %s", disk.d_error);
if (Xflag == 1) {
printf("** Exiting on Xflag 1\n");
exit(0);
}
if (Xflag == 2)
printf("** Leaving BAD MAGIC on Xflag 2\n");
else
sblock.fs_magic = (Oflag != 1) ? FS_UFS2_MAGIC : FS_UFS1_MAGIC;
/*
* Now build the cylinders group blocks and
* then print out indices of cylinder groups.
*/
printf("super-block backups (for fsck_ffs -b #) at:\n");
i = 0;
width = charsperline();
/*
* Allocate space for two sets of inode blocks.
*/
iobufsize = 2 * sblock.fs_bsize;
if ((iobuf = calloc(1, iobufsize)) == 0) {
printf("Cannot allocate I/O buffer\n");
exit(38);
}
/*
* Write out all the cylinder groups and backup superblocks.
*/
for (cg = 0; cg < sblock.fs_ncg; cg++) {
if (!Nflag)
initcg(cg, utime);
j = snprintf(tmpbuf, sizeof(tmpbuf), " %jd%s",
(intmax_t)fsbtodb(&sblock, cgsblock(&sblock, cg)),
cg < (sblock.fs_ncg-1) ? "," : "");
if (j < 0)
tmpbuf[j = 0] = '\0';
if (i + j >= width) {
printf("\n");
i = 0;
}
i += j;
printf("%s", tmpbuf);
fflush(stdout);
}
printf("\n");
if (Nflag)
exit(0);
/*
* Now construct the initial file system,
* then write out the super-block.
*/
fsinit(utime);
if (Oflag == 1) {
sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir;
sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree;
sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree;
sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree;
}
if (Xflag == 3) {
printf("** Exiting on Xflag 3\n");
exit(0);
}
/*
* Reference the summary information so it will also be written.
*/
sblock.fs_csp = fscs;
if (sbput(disk.d_fd, &disk.d_fs, 0) != 0)
err(1, "sbput: %s", disk.d_error);
/*
* For UFS1 filesystems with a blocksize of 64K, the first
* alternate superblock resides at the location used for
* the default UFS2 superblock. As there is a valid
* superblock at this location, the boot code will use
* it as its first choice. Thus we have to ensure that
* all of its statistcs on usage are correct.
*/
if (Oflag == 1 && sblock.fs_bsize == 65536)
wtfs(fsbtodb(&sblock, cgsblock(&sblock, 0)),
sblock.fs_bsize, (char *)&sblock);
/*
* Read the last sector of the boot block, replace the last
* 20 bytes with the recovery information, then write it back.
* The recovery information only works for UFS2 filesystems.
*/
if (sblock.fs_magic == FS_UFS2_MAGIC) {
if ((fsrbuf = malloc(realsectorsize)) == NULL || bread(&disk,
part_ofs + (SBLOCK_UFS2 - realsectorsize) / disk.d_bsize,
fsrbuf, realsectorsize) == -1)
err(1, "can't read recovery area: %s", disk.d_error);
fsr =
(struct fsrecovery *)&fsrbuf[realsectorsize - sizeof *fsr];
fsr->fsr_magic = sblock.fs_magic;
fsr->fsr_fpg = sblock.fs_fpg;
fsr->fsr_fsbtodb = sblock.fs_fsbtodb;
fsr->fsr_sblkno = sblock.fs_sblkno;
fsr->fsr_ncg = sblock.fs_ncg;
wtfs((SBLOCK_UFS2 - realsectorsize) / disk.d_bsize,
realsectorsize, fsrbuf);
free(fsrbuf);
}
/*
* Update information about this partition in pack
* label, to that it may be updated on disk.
*/
if (pp != NULL) {
pp->p_fstype = FS_BSDFFS;
pp->p_fsize = sblock.fs_fsize;
pp->p_frag = sblock.fs_frag;
pp->p_cpg = sblock.fs_fpg;
}
}
/*
* Initialize a cylinder group.
*/
void
initcg(int cylno, time_t utime)
{
long blkno, start;
off_t savedactualloc;
uint i, j, d, dlower, dupper;
ufs2_daddr_t cbase, dmax;
struct ufs1_dinode *dp1;
struct ufs2_dinode *dp2;
struct csum *cs;
/*
* Determine block bounds for cylinder group.
* Allow space for super block summary information in first
* cylinder group.
*/
cbase = cgbase(&sblock, cylno);
dmax = cbase + sblock.fs_fpg;
if (dmax > sblock.fs_size)
dmax = sblock.fs_size;
dlower = cgsblock(&sblock, cylno) - cbase;
dupper = cgdmin(&sblock, cylno) - cbase;
if (cylno == 0)
dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
cs = &fscs[cylno];
memset(&acg, 0, sblock.fs_cgsize);
acg.cg_time = utime;
acg.cg_magic = CG_MAGIC;
acg.cg_cgx = cylno;
acg.cg_niblk = sblock.fs_ipg;
acg.cg_initediblk = MIN(sblock.fs_ipg, 2 * INOPB(&sblock));
acg.cg_ndblk = dmax - cbase;
if (sblock.fs_contigsumsize > 0)
acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag;
start = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield);
if (Oflag == 2) {
acg.cg_iusedoff = start;
} else {
acg.cg_old_ncyl = sblock.fs_old_cpg;
acg.cg_old_time = acg.cg_time;
acg.cg_time = 0;
acg.cg_old_niblk = acg.cg_niblk;
acg.cg_niblk = 0;
acg.cg_initediblk = 0;
acg.cg_old_btotoff = start;
acg.cg_old_boff = acg.cg_old_btotoff +
sblock.fs_old_cpg * sizeof(int32_t);
acg.cg_iusedoff = acg.cg_old_boff +
sblock.fs_old_cpg * sizeof(u_int16_t);
}
acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, CHAR_BIT);
acg.cg_nextfreeoff = acg.cg_freeoff + howmany(sblock.fs_fpg, CHAR_BIT);
if (sblock.fs_contigsumsize > 0) {
acg.cg_clustersumoff =
roundup(acg.cg_nextfreeoff, sizeof(u_int32_t));
acg.cg_clustersumoff -= sizeof(u_int32_t);
acg.cg_clusteroff = acg.cg_clustersumoff +
(sblock.fs_contigsumsize + 1) * sizeof(u_int32_t);
acg.cg_nextfreeoff = acg.cg_clusteroff +
howmany(fragstoblks(&sblock, sblock.fs_fpg), CHAR_BIT);
}
if (acg.cg_nextfreeoff > (unsigned)sblock.fs_cgsize) {
printf("Panic: cylinder group too big\n");
exit(37);
}
acg.cg_cs.cs_nifree += sblock.fs_ipg;
if (cylno == 0)
for (i = 0; i < (long)UFS_ROOTINO; i++) {
setbit(cg_inosused(&acg), i);
acg.cg_cs.cs_nifree--;
}
if (cylno > 0) {
/*
* In cylno 0, beginning space is reserved
* for boot and super blocks.
*/
for (d = 0; d < dlower; d += sblock.fs_frag) {
blkno = d / sblock.fs_frag;
setblock(&sblock, cg_blksfree(&acg), blkno);
if (sblock.fs_contigsumsize > 0)
setbit(cg_clustersfree(&acg), blkno);
acg.cg_cs.cs_nbfree++;
}
}
if ((i = dupper % sblock.fs_frag)) {
acg.cg_frsum[sblock.fs_frag - i]++;
for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) {
setbit(cg_blksfree(&acg), dupper);
acg.cg_cs.cs_nffree++;
}
}
for (d = dupper; d + sblock.fs_frag <= acg.cg_ndblk;
d += sblock.fs_frag) {
blkno = d / sblock.fs_frag;
setblock(&sblock, cg_blksfree(&acg), blkno);
if (sblock.fs_contigsumsize > 0)
setbit(cg_clustersfree(&acg), blkno);
acg.cg_cs.cs_nbfree++;
}
if (d < acg.cg_ndblk) {
acg.cg_frsum[acg.cg_ndblk - d]++;
for (; d < acg.cg_ndblk; d++) {
setbit(cg_blksfree(&acg), d);
acg.cg_cs.cs_nffree++;
}
}
if (sblock.fs_contigsumsize > 0) {
int32_t *sump = cg_clustersum(&acg);
u_char *mapp = cg_clustersfree(&acg);
int map = *mapp++;
int bit = 1;
int run = 0;
for (i = 0; i < acg.cg_nclusterblks; i++) {
if ((map & bit) != 0)
run++;
else if (run != 0) {
if (run > sblock.fs_contigsumsize)
run = sblock.fs_contigsumsize;
sump[run]++;
run = 0;
}
if ((i & (CHAR_BIT - 1)) != CHAR_BIT - 1)
bit <<= 1;
else {
map = *mapp++;
bit = 1;
}
}
if (run != 0) {
if (run > sblock.fs_contigsumsize)
run = sblock.fs_contigsumsize;
sump[run]++;
}
}
*cs = acg.cg_cs;
/*
* Write out the duplicate super block. Then write the cylinder
* group map and two blocks worth of inodes in a single write.
*/
savedactualloc = sblock.fs_sblockactualloc;
sblock.fs_sblockactualloc =
dbtob(fsbtodb(&sblock, cgsblock(&sblock, cylno)));
if (sbput(disk.d_fd, &disk.d_fs, 0) != 0)
err(1, "sbput: %s", disk.d_error);
sblock.fs_sblockactualloc = savedactualloc;
if (cgput(&disk, &acg) != 0)
err(1, "initcg: cgput: %s", disk.d_error);
start = 0;
dp1 = (struct ufs1_dinode *)(&iobuf[start]);
dp2 = (struct ufs2_dinode *)(&iobuf[start]);
for (i = 0; i < acg.cg_initediblk; i++) {
if (sblock.fs_magic == FS_UFS1_MAGIC) {
dp1->di_gen = newfs_random();
dp1++;
} else {
dp2->di_gen = newfs_random();
dp2++;
}
}
wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno)), iobufsize, iobuf);
/*
* For the old file system, we have to initialize all the inodes.
*/
if (Oflag == 1) {
for (i = 2 * sblock.fs_frag;
i < sblock.fs_ipg / INOPF(&sblock);
i += sblock.fs_frag) {
dp1 = (struct ufs1_dinode *)(&iobuf[start]);
for (j = 0; j < INOPB(&sblock); j++) {
dp1->di_gen = newfs_random();
dp1++;
}
wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i),
sblock.fs_bsize, &iobuf[start]);
}
}
}
/*
* initialize the file system
*/
#define ROOTLINKCNT 3
static struct direct root_dir[] = {
{ UFS_ROOTINO, sizeof(struct direct), DT_DIR, 1, "." },
{ UFS_ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." },
{ UFS_ROOTINO + 1, sizeof(struct direct), DT_DIR, 5, ".snap" },
};
#define SNAPLINKCNT 2
static struct direct snap_dir[] = {
{ UFS_ROOTINO + 1, sizeof(struct direct), DT_DIR, 1, "." },
{ UFS_ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." },
};
void
fsinit(time_t utime)
{
union dinode node;
struct group *grp;
gid_t gid;
int entries;
memset(&node, 0, sizeof node);
if ((grp = getgrnam("operator")) != NULL) {
gid = grp->gr_gid;
} else {
warnx("Cannot retrieve operator gid, using gid 0.");
gid = 0;
}
entries = (nflag) ? ROOTLINKCNT - 1: ROOTLINKCNT;
if (sblock.fs_magic == FS_UFS1_MAGIC) {
/*
* initialize the node
*/
node.dp1.di_atime = utime;
node.dp1.di_mtime = utime;
node.dp1.di_ctime = utime;
/*
* create the root directory
*/
node.dp1.di_mode = IFDIR | UMASK;
node.dp1.di_nlink = entries;
node.dp1.di_size = makedir(root_dir, entries);
node.dp1.di_db[0] = alloc(sblock.fs_fsize, node.dp1.di_mode);
node.dp1.di_blocks =
btodb(fragroundup(&sblock, node.dp1.di_size));
wtfs(fsbtodb(&sblock, node.dp1.di_db[0]), sblock.fs_fsize,
iobuf);
iput(&node, UFS_ROOTINO);
if (!nflag) {
/*
* create the .snap directory
*/
node.dp1.di_mode |= 020;
node.dp1.di_gid = gid;
node.dp1.di_nlink = SNAPLINKCNT;
node.dp1.di_size = makedir(snap_dir, SNAPLINKCNT);
node.dp1.di_db[0] =
alloc(sblock.fs_fsize, node.dp1.di_mode);
node.dp1.di_blocks =
btodb(fragroundup(&sblock, node.dp1.di_size));
wtfs(fsbtodb(&sblock, node.dp1.di_db[0]),
sblock.fs_fsize, iobuf);
iput(&node, UFS_ROOTINO + 1);
}
} else {
/*
* initialize the node
*/
node.dp2.di_atime = utime;
node.dp2.di_mtime = utime;
node.dp2.di_ctime = utime;
node.dp2.di_birthtime = utime;
/*
* create the root directory
*/
node.dp2.di_mode = IFDIR | UMASK;
node.dp2.di_nlink = entries;
node.dp2.di_size = makedir(root_dir, entries);
node.dp2.di_db[0] = alloc(sblock.fs_fsize, node.dp2.di_mode);
node.dp2.di_blocks =
btodb(fragroundup(&sblock, node.dp2.di_size));
wtfs(fsbtodb(&sblock, node.dp2.di_db[0]), sblock.fs_fsize,
iobuf);
iput(&node, UFS_ROOTINO);
if (!nflag) {
/*
* create the .snap directory
*/
node.dp2.di_mode |= 020;
node.dp2.di_gid = gid;
node.dp2.di_nlink = SNAPLINKCNT;
node.dp2.di_size = makedir(snap_dir, SNAPLINKCNT);
node.dp2.di_db[0] =
alloc(sblock.fs_fsize, node.dp2.di_mode);
node.dp2.di_blocks =
btodb(fragroundup(&sblock, node.dp2.di_size));
wtfs(fsbtodb(&sblock, node.dp2.di_db[0]),
sblock.fs_fsize, iobuf);
iput(&node, UFS_ROOTINO + 1);
}
}
}
/*
* construct a set of directory entries in "iobuf".
* return size of directory.
*/
int
makedir(struct direct *protodir, int entries)
{
char *cp;
int i, spcleft;
spcleft = DIRBLKSIZ;
memset(iobuf, 0, DIRBLKSIZ);
for (cp = iobuf, i = 0; i < entries - 1; i++) {
protodir[i].d_reclen = DIRSIZ(0, &protodir[i]);
memmove(cp, &protodir[i], protodir[i].d_reclen);
cp += protodir[i].d_reclen;
spcleft -= protodir[i].d_reclen;
}
protodir[i].d_reclen = spcleft;
memmove(cp, &protodir[i], DIRSIZ(0, &protodir[i]));
return (DIRBLKSIZ);
}
/*
* allocate a block or frag
*/
ufs2_daddr_t
alloc(int size, int mode)
{
int i, blkno, frag;
uint d;
bread(&disk, part_ofs + fsbtodb(&sblock, cgtod(&sblock, 0)), (char *)&acg,
sblock.fs_cgsize);
if (acg.cg_magic != CG_MAGIC) {
printf("cg 0: bad magic number\n");
exit(38);
}
if (acg.cg_cs.cs_nbfree == 0) {
printf("first cylinder group ran out of space\n");
exit(39);
}
for (d = 0; d < acg.cg_ndblk; d += sblock.fs_frag)
if (isblock(&sblock, cg_blksfree(&acg), d / sblock.fs_frag))
goto goth;
printf("internal error: can't find block in cyl 0\n");
exit(40);
goth:
blkno = fragstoblks(&sblock, d);
clrblock(&sblock, cg_blksfree(&acg), blkno);
if (sblock.fs_contigsumsize > 0)
clrbit(cg_clustersfree(&acg), blkno);
acg.cg_cs.cs_nbfree--;
sblock.fs_cstotal.cs_nbfree--;
fscs[0].cs_nbfree--;
if (mode & IFDIR) {
acg.cg_cs.cs_ndir++;
sblock.fs_cstotal.cs_ndir++;
fscs[0].cs_ndir++;
}
if (size != sblock.fs_bsize) {
frag = howmany(size, sblock.fs_fsize);
fscs[0].cs_nffree += sblock.fs_frag - frag;
sblock.fs_cstotal.cs_nffree += sblock.fs_frag - frag;
acg.cg_cs.cs_nffree += sblock.fs_frag - frag;
acg.cg_frsum[sblock.fs_frag - frag]++;
for (i = frag; i < sblock.fs_frag; i++)
setbit(cg_blksfree(&acg), d + i);
}
if (cgput(&disk, &acg) != 0)
err(1, "alloc: cgput: %s", disk.d_error);
return ((ufs2_daddr_t)d);
}
/*
* Allocate an inode on the disk
*/
void
iput(union dinode *ip, ino_t ino)
{
union dinodep dp;
bread(&disk, part_ofs + fsbtodb(&sblock, cgtod(&sblock, 0)), (char *)&acg,
sblock.fs_cgsize);
if (acg.cg_magic != CG_MAGIC) {
printf("cg 0: bad magic number\n");
exit(31);
}
acg.cg_cs.cs_nifree--;
setbit(cg_inosused(&acg), ino);
if (cgput(&disk, &acg) != 0)
err(1, "iput: cgput: %s", disk.d_error);
sblock.fs_cstotal.cs_nifree--;
fscs[0].cs_nifree--;
if (getinode(&disk, &dp, ino) == -1) {
printf("iput: %s\n", disk.d_error);
exit(32);
}
if (sblock.fs_magic == FS_UFS1_MAGIC)
*dp.dp1 = ip->dp1;
else
*dp.dp2 = ip->dp2;
putinode(&disk);
}
/*
* possibly write to disk
*/
static void
wtfs(ufs2_daddr_t bno, int size, char *bf)
{
if (Nflag)
return;
if (bwrite(&disk, part_ofs + bno, bf, size) < 0)
err(36, "wtfs: %d bytes at sector %jd", size, (intmax_t)bno);
}
/*
* check if a block is available
*/
static int
isblock(struct fs *fs, unsigned char *cp, int h)
{
unsigned char mask;
switch (fs->fs_frag) {
case 8:
return (cp[h] == 0xff);
case 4:
mask = 0x0f << ((h & 0x1) << 2);
return ((cp[h >> 1] & mask) == mask);
case 2:
mask = 0x03 << ((h & 0x3) << 1);
return ((cp[h >> 2] & mask) == mask);
case 1:
mask = 0x01 << (h & 0x7);
return ((cp[h >> 3] & mask) == mask);
default:
fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag);
return (0);
}
}
/*
* take a block out of the map
*/
static void
clrblock(struct fs *fs, unsigned char *cp, int h)
{
switch ((fs)->fs_frag) {
case 8:
cp[h] = 0;
return;
case 4:
cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2));
return;
case 2:
cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1));
return;
case 1:
cp[h >> 3] &= ~(0x01 << (h & 0x7));
return;
default:
fprintf(stderr, "clrblock bad fs_frag %d\n", fs->fs_frag);
return;
}
}
/*
* put a block into the map
*/
static void
setblock(struct fs *fs, unsigned char *cp, int h)
{
switch (fs->fs_frag) {
case 8:
cp[h] = 0xff;
return;
case 4:
cp[h >> 1] |= (0x0f << ((h & 0x1) << 2));
return;
case 2:
cp[h >> 2] |= (0x03 << ((h & 0x3) << 1));
return;
case 1:
cp[h >> 3] |= (0x01 << (h & 0x7));
return;
default:
fprintf(stderr, "setblock bad fs_frag %d\n", fs->fs_frag);
return;
}
}
/*
* Determine the number of characters in a
* single line.
*/
static int
charsperline(void)
{
int columns;
char *cp;
struct winsize ws;
columns = 0;
if (ioctl(0, TIOCGWINSZ, &ws) != -1)
columns = ws.ws_col;
if (columns == 0 && (cp = getenv("COLUMNS")))
columns = atoi(cp);
if (columns == 0)
columns = 80; /* last resort */
return (columns);
}
static int
ilog2(int val)
{
u_int n;
for (n = 0; n < sizeof(n) * CHAR_BIT; n++)
if (1 << n == val)
return (n);
errx(1, "ilog2: %d is not a power of 2\n", val);
}
/*
* For the regression test, return predictable random values.
* Otherwise use a true random number generator.
*/
static u_int32_t
newfs_random(void)
{
static int nextnum = 1;
if (Rflag)
return (nextnum++);
return (arc4random());
}