freebsd-nq/sys/dev/nve/if_nve.c
Marius Strobl 3fcb7a5365 - Remove attempts to implement setting of BMCR_LOOP/MIIF_NOLOOP
(reporting IFM_LOOP based on BMCR_LOOP is left in place though as
  it might provide useful for debugging). For most mii(4) drivers it
  was unclear whether the PHYs driven by them actually support
  loopback or not. Moreover, typically loopback mode also needs to
  be activated on the MAC, which none of the Ethernet drivers using
  mii(4) implements. Given that loopback media has no real use (and
  obviously hardly had a chance to actually work) besides for driver
  development (which just loopback mode should be sufficient for
  though, i.e one doesn't necessary need support for loopback media)
  support for it is just dropped as both NetBSD and OpenBSD already
  did quite some time ago.
- Let mii_phy_add_media() also announce the support of IFM_NONE.
- Restructure the PHY entry points to use a structure of entry points
  instead of discrete function pointers, and extend this to include
  a "reset" entry point. Make sure any PHY-specific reset routine is
  always used, and provide one for lxtphy(4) which disables MII
  interrupts (as is done for a few other PHYs we have drivers for).
  This includes changing NIC drivers which previously just called the
  generic mii_phy_reset() to now actually call the PHY-specific reset
  routine, which might be crucial in some cases. While at it, the
  redundant checks in these NIC drivers for mii->mii_instance not being
  zero before calling the reset routines were removed because as soon
  as one PHY driver attaches mii->mii_instance is incremented and we
  hardly can end up in their media change callbacks etc if no PHY driver
  has attached as mii_attach() would have failed in that case and not
  attach a miibus(4) instance.
  Consequently, NIC drivers now no longer should call mii_phy_reset()
  directly, so it was removed from EXPORT_SYMS.
- Add a mii_phy_dev_attach() as a companion helper to mii_phy_dev_probe().
  The purpose of that function is to perform the common steps to attach
  a PHY driver instance and to hook it up to the miibus(4) instance and to
  optionally also handle the probing, addition and initialization of the
  supported media. So all a PHY driver without any special requirements
  has to do in its bus attach method is to call mii_phy_dev_attach()
  along with PHY-specific MIIF_* flags, a pointer to its PHY functions
  and the add_media set to one. All PHY drivers were updated to take
  advantage of mii_phy_dev_attach() as appropriate. Along with these
  changes the capability mask was added to the mii_softc structure so
  PHY drivers taking advantage of mii_phy_dev_attach() but still
  handling media on their own do not need to fiddle with the MII attach
  arguments anyway.
- Keep track of the PHY offset in the mii_softc structure. This is done
  for compatibility with NetBSD/OpenBSD.
- Keep track of the PHY's OUI, model and revision in the mii_softc
  structure. Several PHY drivers require this information also after
  attaching and previously had to wrap their own softc around mii_softc.
  NetBSD/OpenBSD also keep track of the model and revision on their
  mii_softc structure. All PHY drivers were updated to take advantage
  as appropriate.
- Convert the mebers of the MII data structure to unsigned where
  appropriate. This is partly inspired by NetBSD/OpenBSD.
- According to IEEE 802.3-2002 the bits actually have to be reversed
  when mapping an OUI to the MII ID registers. All PHY drivers and
  miidevs where changed as necessary. Actually this now again allows to
  largely share miidevs with NetBSD, which fixed this problem already
  9 years ago. Consequently miidevs was synced as far as possible.
- Add MIIF_NOMANPAUSE and mii_phy_flowstatus() calls to drivers that
  weren't explicitly converted to support flow control before. It's
  unclear whether flow control actually works with these but typically
  it should and their net behavior should be more correct with these
  changes in place than without if the MAC driver sets MIIF_DOPAUSE.

Obtained from:	NetBSD (partially)
Reviewed by:	yongari (earlier version), silence on arch@ and net@
2011-05-03 19:51:29 +00:00

1793 lines
47 KiB
C

/*-
* Copyright (c) 2005 by David E. O'Brien <obrien@FreeBSD.org>.
* Copyright (c) 2003,2004 by Quinton Dolan <q@onthenet.com.au>.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $Id: if_nv.c,v 1.19 2004/08/12 14:00:05 q Exp $
*/
/*
* NVIDIA nForce MCP Networking Adapter driver
*
* This is a port of the NVIDIA MCP Linux ethernet driver distributed by NVIDIA
* through their web site.
*
* All mainstream nForce and nForce2 motherboards are supported. This module
* is as stable, sometimes more stable, than the linux version. (Recent
* Linux stability issues seem to be related to some issues with newer
* distributions using GCC 3.x, however this don't appear to effect FreeBSD
* 5.x).
*
* In accordance with the NVIDIA distribution license it is necessary to
* link this module against the nvlibnet.o binary object included in the
* Linux driver source distribution. The binary component is not modified in
* any way and is simply linked against a FreeBSD equivalent of the nvnet.c
* linux kernel module "wrapper".
*
* The Linux driver uses a common code API that is shared between Win32 and
* i386 Linux. This abstracts the low level driver functions and uses
* callbacks and hooks to access the underlying hardware device. By using
* this same API in a FreeBSD kernel module it is possible to support the
* hardware without breaching the Linux source distributions licensing
* requirements, or obtaining the hardware programming specifications.
*
* Although not conventional, it works, and given the relatively small
* amount of hardware centric code, it's hopefully no more buggy than its
* linux counterpart.
*
* NVIDIA now support the nForce3 AMD64 platform, however I have been
* unable to access such a system to verify support. However, the code is
* reported to work with little modification when compiled with the AMD64
* version of the NVIDIA Linux library. All that should be necessary to make
* the driver work is to link it directly into the kernel, instead of as a
* module, and apply the docs/amd64.diff patch in this source distribution to
* the NVIDIA Linux driver source.
*
* This driver should work on all versions of FreeBSD since 4.9/5.1 as well
* as recent versions of DragonFly.
*
* Written by Quinton Dolan <q@onthenet.com.au>
* Portions based on existing FreeBSD network drivers.
* NVIDIA API usage derived from distributed NVIDIA NVNET driver source files.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/sysctl.h>
#include <sys/queue.h>
#include <sys/module.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/ethernet.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <net/bpf.h>
#include <net/if_vlan_var.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <vm/vm.h> /* for vtophys */
#include <vm/pmap.h> /* for vtophys */
#include <sys/bus.h>
#include <sys/rman.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include "miibus_if.h"
/* Include NVIDIA Linux driver header files */
#include <contrib/dev/nve/nvenet_version.h>
#define linux
#include <contrib/dev/nve/basetype.h>
#include <contrib/dev/nve/phy.h>
#include "os+%DIKED-nve.h"
#include <contrib/dev/nve/drvinfo.h>
#include <contrib/dev/nve/adapter.h>
#undef linux
#include <dev/nve/if_nvereg.h>
MODULE_DEPEND(nve, pci, 1, 1, 1);
MODULE_DEPEND(nve, ether, 1, 1, 1);
MODULE_DEPEND(nve, miibus, 1, 1, 1);
static int nve_probe(device_t);
static int nve_attach(device_t);
static int nve_detach(device_t);
static void nve_init(void *);
static void nve_init_locked(struct nve_softc *);
static void nve_stop(struct nve_softc *);
static int nve_shutdown(device_t);
static int nve_init_rings(struct nve_softc *);
static void nve_free_rings(struct nve_softc *);
static void nve_ifstart(struct ifnet *);
static void nve_ifstart_locked(struct ifnet *);
static int nve_ioctl(struct ifnet *, u_long, caddr_t);
static void nve_intr(void *);
static void nve_tick(void *);
static void nve_setmulti(struct nve_softc *);
static void nve_watchdog(struct nve_softc *);
static void nve_update_stats(struct nve_softc *);
static int nve_ifmedia_upd(struct ifnet *);
static void nve_ifmedia_upd_locked(struct ifnet *);
static void nve_ifmedia_sts(struct ifnet *, struct ifmediareq *);
static int nve_miibus_readreg(device_t, int, int);
static int nve_miibus_writereg(device_t, int, int, int);
static void nve_dmamap_cb(void *, bus_dma_segment_t *, int, int);
static void nve_dmamap_tx_cb(void *, bus_dma_segment_t *, int, bus_size_t, int);
static NV_SINT32 nve_osalloc(PNV_VOID, PMEMORY_BLOCK);
static NV_SINT32 nve_osfree(PNV_VOID, PMEMORY_BLOCK);
static NV_SINT32 nve_osallocex(PNV_VOID, PMEMORY_BLOCKEX);
static NV_SINT32 nve_osfreeex(PNV_VOID, PMEMORY_BLOCKEX);
static NV_SINT32 nve_osclear(PNV_VOID, PNV_VOID, NV_SINT32);
static NV_SINT32 nve_osdelay(PNV_VOID, NV_UINT32);
static NV_SINT32 nve_osallocrxbuf(PNV_VOID, PMEMORY_BLOCK, PNV_VOID *);
static NV_SINT32 nve_osfreerxbuf(PNV_VOID, PMEMORY_BLOCK, PNV_VOID);
static NV_SINT32 nve_ospackettx(PNV_VOID, PNV_VOID, NV_UINT32);
static NV_SINT32 nve_ospacketrx(PNV_VOID, PNV_VOID, NV_UINT32, NV_UINT8 *, NV_UINT8);
static NV_SINT32 nve_oslinkchg(PNV_VOID, NV_SINT32);
static NV_SINT32 nve_osalloctimer(PNV_VOID, PNV_VOID *);
static NV_SINT32 nve_osfreetimer(PNV_VOID, PNV_VOID);
static NV_SINT32 nve_osinittimer(PNV_VOID, PNV_VOID, PTIMER_FUNC, PNV_VOID);
static NV_SINT32 nve_ossettimer(PNV_VOID, PNV_VOID, NV_UINT32);
static NV_SINT32 nve_oscanceltimer(PNV_VOID, PNV_VOID);
static NV_SINT32 nve_ospreprocpkt(PNV_VOID, PNV_VOID, PNV_VOID *, NV_UINT8 *, NV_UINT8);
static PNV_VOID nve_ospreprocpktnopq(PNV_VOID, PNV_VOID);
static NV_SINT32 nve_osindicatepkt(PNV_VOID, PNV_VOID *, NV_UINT32);
static NV_SINT32 nve_oslockalloc(PNV_VOID, NV_SINT32, PNV_VOID *);
static NV_SINT32 nve_oslockacquire(PNV_VOID, NV_SINT32, PNV_VOID);
static NV_SINT32 nve_oslockrelease(PNV_VOID, NV_SINT32, PNV_VOID);
static PNV_VOID nve_osreturnbufvirt(PNV_VOID, PNV_VOID);
static device_method_t nve_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, nve_probe),
DEVMETHOD(device_attach, nve_attach),
DEVMETHOD(device_detach, nve_detach),
DEVMETHOD(device_shutdown, nve_shutdown),
/* Bus interface */
DEVMETHOD(bus_print_child, bus_generic_print_child),
DEVMETHOD(bus_driver_added, bus_generic_driver_added),
/* MII interface */
DEVMETHOD(miibus_readreg, nve_miibus_readreg),
DEVMETHOD(miibus_writereg, nve_miibus_writereg),
{0, 0}
};
static driver_t nve_driver = {
"nve",
nve_methods,
sizeof(struct nve_softc)
};
static devclass_t nve_devclass;
static int nve_pollinterval = 0;
SYSCTL_INT(_hw, OID_AUTO, nve_pollinterval, CTLFLAG_RW,
&nve_pollinterval, 0, "delay between interface polls");
DRIVER_MODULE(nve, pci, nve_driver, nve_devclass, 0, 0);
DRIVER_MODULE(miibus, nve, miibus_driver, miibus_devclass, 0, 0);
static struct nve_type nve_devs[] = {
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE_LAN,
"NVIDIA nForce MCP Networking Adapter"},
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE2_LAN,
"NVIDIA nForce2 MCP2 Networking Adapter"},
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE2_400_LAN1,
"NVIDIA nForce2 400 MCP4 Networking Adapter"},
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE2_400_LAN2,
"NVIDIA nForce2 400 MCP5 Networking Adapter"},
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN1,
"NVIDIA nForce3 MCP3 Networking Adapter"},
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_250_LAN,
"NVIDIA nForce3 250 MCP6 Networking Adapter"},
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN4,
"NVIDIA nForce3 MCP7 Networking Adapter"},
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE4_LAN1,
"NVIDIA nForce4 CK804 MCP8 Networking Adapter"},
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE4_LAN2,
"NVIDIA nForce4 CK804 MCP9 Networking Adapter"},
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN1,
"NVIDIA nForce MCP04 Networking Adapter"}, // MCP10
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN2,
"NVIDIA nForce MCP04 Networking Adapter"}, // MCP11
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE430_LAN1,
"NVIDIA nForce 430 MCP12 Networking Adapter"},
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE430_LAN2,
"NVIDIA nForce 430 MCP13 Networking Adapter"},
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN1,
"NVIDIA nForce MCP55 Networking Adapter"},
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN2,
"NVIDIA nForce MCP55 Networking Adapter"},
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN1,
"NVIDIA nForce MCP61 Networking Adapter"},
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN2,
"NVIDIA nForce MCP61 Networking Adapter"},
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN3,
"NVIDIA nForce MCP61 Networking Adapter"},
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN4,
"NVIDIA nForce MCP61 Networking Adapter"},
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN1,
"NVIDIA nForce MCP65 Networking Adapter"},
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN2,
"NVIDIA nForce MCP65 Networking Adapter"},
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN3,
"NVIDIA nForce MCP65 Networking Adapter"},
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN4,
"NVIDIA nForce MCP65 Networking Adapter"},
{0, 0, NULL}
};
/* DMA MEM map callback function to get data segment physical address */
static void
nve_dmamap_cb(void *arg, bus_dma_segment_t * segs, int nsegs, int error)
{
if (error)
return;
KASSERT(nsegs == 1,
("Too many DMA segments returned when mapping DMA memory"));
*(bus_addr_t *)arg = segs->ds_addr;
}
/* DMA RX map callback function to get data segment physical address */
static void
nve_dmamap_rx_cb(void *arg, bus_dma_segment_t * segs, int nsegs,
bus_size_t mapsize, int error)
{
if (error)
return;
*(bus_addr_t *)arg = segs->ds_addr;
}
/*
* DMA TX buffer callback function to allocate fragment data segment
* addresses
*/
static void
nve_dmamap_tx_cb(void *arg, bus_dma_segment_t * segs, int nsegs, bus_size_t mapsize, int error)
{
struct nve_tx_desc *info;
info = arg;
if (error)
return;
KASSERT(nsegs < NV_MAX_FRAGS,
("Too many DMA segments returned when mapping mbuf"));
info->numfrags = nsegs;
bcopy(segs, info->frags, nsegs * sizeof(bus_dma_segment_t));
}
/* Probe for supported hardware ID's */
static int
nve_probe(device_t dev)
{
struct nve_type *t;
t = nve_devs;
/* Check for matching PCI DEVICE ID's */
while (t->name != NULL) {
if ((pci_get_vendor(dev) == t->vid_id) &&
(pci_get_device(dev) == t->dev_id)) {
device_set_desc(dev, t->name);
return (BUS_PROBE_LOW_PRIORITY);
}
t++;
}
return (ENXIO);
}
/* Attach driver and initialise hardware for use */
static int
nve_attach(device_t dev)
{
u_char eaddr[ETHER_ADDR_LEN];
struct nve_softc *sc;
struct ifnet *ifp;
OS_API *osapi;
ADAPTER_OPEN_PARAMS OpenParams;
int error = 0, i, rid;
if (bootverbose)
device_printf(dev, "nvenetlib.o version %s\n", DRIVER_VERSION);
DEBUGOUT(NVE_DEBUG_INIT, "nve: nve_attach - entry\n");
sc = device_get_softc(dev);
/* Allocate mutex */
mtx_init(&sc->mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
MTX_DEF);
callout_init_mtx(&sc->stat_callout, &sc->mtx, 0);
sc->dev = dev;
/* Preinitialize data structures */
bzero(&OpenParams, sizeof(ADAPTER_OPEN_PARAMS));
/* Enable bus mastering */
pci_enable_busmaster(dev);
/* Allocate memory mapped address space */
rid = NV_RID;
sc->res = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid, 0, ~0, 1,
RF_ACTIVE);
if (sc->res == NULL) {
device_printf(dev, "couldn't map memory\n");
error = ENXIO;
goto fail;
}
sc->sc_st = rman_get_bustag(sc->res);
sc->sc_sh = rman_get_bushandle(sc->res);
/* Allocate interrupt */
rid = 0;
sc->irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
RF_SHAREABLE | RF_ACTIVE);
if (sc->irq == NULL) {
device_printf(dev, "couldn't map interrupt\n");
error = ENXIO;
goto fail;
}
/* Allocate DMA tags */
error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES * NV_MAX_FRAGS,
NV_MAX_FRAGS, MCLBYTES, 0,
busdma_lock_mutex, &Giant,
&sc->mtag);
if (error) {
device_printf(dev, "couldn't allocate dma tag\n");
goto fail;
}
error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
BUS_SPACE_MAXADDR, NULL, NULL,
sizeof(struct nve_rx_desc) * RX_RING_SIZE, 1,
sizeof(struct nve_rx_desc) * RX_RING_SIZE, 0,
busdma_lock_mutex, &Giant,
&sc->rtag);
if (error) {
device_printf(dev, "couldn't allocate dma tag\n");
goto fail;
}
error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
BUS_SPACE_MAXADDR, NULL, NULL,
sizeof(struct nve_tx_desc) * TX_RING_SIZE, 1,
sizeof(struct nve_tx_desc) * TX_RING_SIZE, 0,
busdma_lock_mutex, &Giant,
&sc->ttag);
if (error) {
device_printf(dev, "couldn't allocate dma tag\n");
goto fail;
}
/* Allocate DMA safe memory and get the DMA addresses. */
error = bus_dmamem_alloc(sc->ttag, (void **)&sc->tx_desc,
BUS_DMA_WAITOK, &sc->tmap);
if (error) {
device_printf(dev, "couldn't allocate dma memory\n");
goto fail;
}
bzero(sc->tx_desc, sizeof(struct nve_tx_desc) * TX_RING_SIZE);
error = bus_dmamap_load(sc->ttag, sc->tmap, sc->tx_desc,
sizeof(struct nve_tx_desc) * TX_RING_SIZE, nve_dmamap_cb,
&sc->tx_addr, 0);
if (error) {
device_printf(dev, "couldn't map dma memory\n");
goto fail;
}
error = bus_dmamem_alloc(sc->rtag, (void **)&sc->rx_desc,
BUS_DMA_WAITOK, &sc->rmap);
if (error) {
device_printf(dev, "couldn't allocate dma memory\n");
goto fail;
}
bzero(sc->rx_desc, sizeof(struct nve_rx_desc) * RX_RING_SIZE);
error = bus_dmamap_load(sc->rtag, sc->rmap, sc->rx_desc,
sizeof(struct nve_rx_desc) * RX_RING_SIZE, nve_dmamap_cb,
&sc->rx_addr, 0);
if (error) {
device_printf(dev, "couldn't map dma memory\n");
goto fail;
}
/* Initialize rings. */
if (nve_init_rings(sc)) {
device_printf(dev, "failed to init rings\n");
error = ENXIO;
goto fail;
}
/* Setup NVIDIA API callback routines */
osapi = &sc->osapi;
osapi->pOSCX = sc;
osapi->pfnAllocMemory = nve_osalloc;
osapi->pfnFreeMemory = nve_osfree;
osapi->pfnAllocMemoryEx = nve_osallocex;
osapi->pfnFreeMemoryEx = nve_osfreeex;
osapi->pfnClearMemory = nve_osclear;
osapi->pfnStallExecution = nve_osdelay;
osapi->pfnAllocReceiveBuffer = nve_osallocrxbuf;
osapi->pfnFreeReceiveBuffer = nve_osfreerxbuf;
osapi->pfnPacketWasSent = nve_ospackettx;
osapi->pfnPacketWasReceived = nve_ospacketrx;
osapi->pfnLinkStateHasChanged = nve_oslinkchg;
osapi->pfnAllocTimer = nve_osalloctimer;
osapi->pfnFreeTimer = nve_osfreetimer;
osapi->pfnInitializeTimer = nve_osinittimer;
osapi->pfnSetTimer = nve_ossettimer;
osapi->pfnCancelTimer = nve_oscanceltimer;
osapi->pfnPreprocessPacket = nve_ospreprocpkt;
osapi->pfnPreprocessPacketNopq = nve_ospreprocpktnopq;
osapi->pfnIndicatePackets = nve_osindicatepkt;
osapi->pfnLockAlloc = nve_oslockalloc;
osapi->pfnLockAcquire = nve_oslockacquire;
osapi->pfnLockRelease = nve_oslockrelease;
osapi->pfnReturnBufferVirtual = nve_osreturnbufvirt;
sc->linkup = FALSE;
sc->max_frame_size = ETHERMTU + ETHER_HDR_LEN + FCS_LEN;
/* TODO - We don't support hardware offload yet */
sc->hwmode = 1;
sc->media = 0;
/* Set NVIDIA API startup parameters */
OpenParams.MaxDpcLoop = 2;
OpenParams.MaxRxPkt = RX_RING_SIZE;
OpenParams.MaxTxPkt = TX_RING_SIZE;
OpenParams.SentPacketStatusSuccess = 1;
OpenParams.SentPacketStatusFailure = 0;
OpenParams.MaxRxPktToAccumulate = 6;
OpenParams.ulPollInterval = nve_pollinterval;
OpenParams.SetForcedModeEveryNthRxPacket = 0;
OpenParams.SetForcedModeEveryNthTxPacket = 0;
OpenParams.RxForcedInterrupt = 0;
OpenParams.TxForcedInterrupt = 0;
OpenParams.pOSApi = osapi;
OpenParams.pvHardwareBaseAddress = rman_get_virtual(sc->res);
OpenParams.bASFEnabled = 0;
OpenParams.ulDescriptorVersion = sc->hwmode;
OpenParams.ulMaxPacketSize = sc->max_frame_size;
OpenParams.DeviceId = pci_get_device(dev);
/* Open NVIDIA Hardware API */
error = ADAPTER_Open(&OpenParams, (void **)&(sc->hwapi), &sc->phyaddr);
if (error) {
device_printf(dev,
"failed to open NVIDIA Hardware API: 0x%x\n", error);
goto fail;
}
/* TODO - Add support for MODE2 hardware offload */
bzero(&sc->adapterdata, sizeof(sc->adapterdata));
sc->adapterdata.ulMediaIF = sc->media;
sc->adapterdata.ulModeRegTxReadCompleteEnable = 1;
sc->hwapi->pfnSetCommonData(sc->hwapi->pADCX, &sc->adapterdata);
/* MAC is loaded backwards into h/w reg */
sc->hwapi->pfnGetNodeAddress(sc->hwapi->pADCX, sc->original_mac_addr);
for (i = 0; i < 6; i++) {
eaddr[i] = sc->original_mac_addr[5 - i];
}
sc->hwapi->pfnSetNodeAddress(sc->hwapi->pADCX, eaddr);
/* Display ethernet address ,... */
device_printf(dev, "Ethernet address %6D\n", eaddr, ":");
/* Allocate interface structures */
ifp = sc->ifp = if_alloc(IFT_ETHER);
if (ifp == NULL) {
device_printf(dev, "can not if_alloc()\n");
error = ENOSPC;
goto fail;
}
/* Setup interface parameters */
ifp->if_softc = sc;
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = nve_ioctl;
ifp->if_start = nve_ifstart;
ifp->if_init = nve_init;
ifp->if_mtu = ETHERMTU;
ifp->if_baudrate = IF_Mbps(100);
IFQ_SET_MAXLEN(&ifp->if_snd, TX_RING_SIZE - 1);
ifp->if_snd.ifq_drv_maxlen = TX_RING_SIZE - 1;
IFQ_SET_READY(&ifp->if_snd);
ifp->if_capabilities |= IFCAP_VLAN_MTU;
ifp->if_capenable |= IFCAP_VLAN_MTU;
/* Attach device for MII interface to PHY */
DEBUGOUT(NVE_DEBUG_INIT, "nve: do mii_attach\n");
error = mii_attach(dev, &sc->miibus, ifp, nve_ifmedia_upd,
nve_ifmedia_sts, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY, 0);
if (error != 0) {
device_printf(dev, "attaching PHYs failed\n");
goto fail;
}
/* Attach to OS's managers. */
ether_ifattach(ifp, eaddr);
/* Activate our interrupt handler. - attach last to avoid lock */
error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
NULL, nve_intr, sc, &sc->sc_ih);
if (error) {
device_printf(dev, "couldn't set up interrupt handler\n");
goto fail;
}
DEBUGOUT(NVE_DEBUG_INIT, "nve: nve_attach - exit\n");
fail:
if (error)
nve_detach(dev);
return (error);
}
/* Detach interface for module unload */
static int
nve_detach(device_t dev)
{
struct nve_softc *sc = device_get_softc(dev);
struct ifnet *ifp;
KASSERT(mtx_initialized(&sc->mtx), ("mutex not initialized"));
DEBUGOUT(NVE_DEBUG_DEINIT, "nve: nve_detach - entry\n");
ifp = sc->ifp;
if (device_is_attached(dev)) {
ether_ifdetach(ifp);
NVE_LOCK(sc);
nve_stop(sc);
NVE_UNLOCK(sc);
callout_drain(&sc->stat_callout);
}
if (sc->miibus)
device_delete_child(dev, sc->miibus);
bus_generic_detach(dev);
/* Reload unreversed address back into MAC in original state */
if (sc->original_mac_addr)
sc->hwapi->pfnSetNodeAddress(sc->hwapi->pADCX,
sc->original_mac_addr);
DEBUGOUT(NVE_DEBUG_DEINIT, "nve: do pfnClose\n");
/* Detach from NVIDIA hardware API */
if (sc->hwapi->pfnClose)
sc->hwapi->pfnClose(sc->hwapi->pADCX, FALSE);
/* Release resources */
if (sc->sc_ih)
bus_teardown_intr(sc->dev, sc->irq, sc->sc_ih);
if (sc->irq)
bus_release_resource(sc->dev, SYS_RES_IRQ, 0, sc->irq);
if (sc->res)
bus_release_resource(sc->dev, SYS_RES_MEMORY, NV_RID, sc->res);
nve_free_rings(sc);
if (sc->tx_desc) {
bus_dmamap_unload(sc->rtag, sc->rmap);
bus_dmamem_free(sc->rtag, sc->rx_desc, sc->rmap);
bus_dmamap_destroy(sc->rtag, sc->rmap);
}
if (sc->mtag)
bus_dma_tag_destroy(sc->mtag);
if (sc->ttag)
bus_dma_tag_destroy(sc->ttag);
if (sc->rtag)
bus_dma_tag_destroy(sc->rtag);
if (ifp)
if_free(ifp);
mtx_destroy(&sc->mtx);
DEBUGOUT(NVE_DEBUG_DEINIT, "nve: nve_detach - exit\n");
return (0);
}
/* Initialise interface and start it "RUNNING" */
static void
nve_init(void *xsc)
{
struct nve_softc *sc = xsc;
NVE_LOCK(sc);
nve_init_locked(sc);
NVE_UNLOCK(sc);
}
static void
nve_init_locked(struct nve_softc *sc)
{
struct ifnet *ifp;
int error;
NVE_LOCK_ASSERT(sc);
DEBUGOUT(NVE_DEBUG_INIT, "nve: nve_init - entry (%d)\n", sc->linkup);
ifp = sc->ifp;
/* Do nothing if already running */
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
return;
nve_stop(sc);
DEBUGOUT(NVE_DEBUG_INIT, "nve: do pfnInit\n");
nve_ifmedia_upd_locked(ifp);
/* Setup Hardware interface and allocate memory structures */
error = sc->hwapi->pfnInit(sc->hwapi->pADCX,
0, /* force speed */
0, /* force full duplex */
0, /* force mode */
0, /* force async mode */
&sc->linkup);
if (error) {
device_printf(sc->dev,
"failed to start NVIDIA Hardware interface\n");
return;
}
/* Set the MAC address */
sc->hwapi->pfnSetNodeAddress(sc->hwapi->pADCX, IF_LLADDR(sc->ifp));
sc->hwapi->pfnEnableInterrupts(sc->hwapi->pADCX);
sc->hwapi->pfnStart(sc->hwapi->pADCX);
/* Setup multicast filter */
nve_setmulti(sc);
/* Update interface parameters */
ifp->if_drv_flags |= IFF_DRV_RUNNING;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
callout_reset(&sc->stat_callout, hz, nve_tick, sc);
DEBUGOUT(NVE_DEBUG_INIT, "nve: nve_init - exit\n");
return;
}
/* Stop interface activity ie. not "RUNNING" */
static void
nve_stop(struct nve_softc *sc)
{
struct ifnet *ifp;
NVE_LOCK_ASSERT(sc);
DEBUGOUT(NVE_DEBUG_RUNNING, "nve: nve_stop - entry\n");
ifp = sc->ifp;
sc->tx_timer = 0;
/* Cancel tick timer */
callout_stop(&sc->stat_callout);
/* Stop hardware activity */
sc->hwapi->pfnDisableInterrupts(sc->hwapi->pADCX);
sc->hwapi->pfnStop(sc->hwapi->pADCX, 0);
DEBUGOUT(NVE_DEBUG_DEINIT, "nve: do pfnDeinit\n");
/* Shutdown interface and deallocate memory buffers */
if (sc->hwapi->pfnDeinit)
sc->hwapi->pfnDeinit(sc->hwapi->pADCX, 0);
sc->linkup = 0;
sc->cur_rx = 0;
sc->pending_rxs = 0;
sc->pending_txs = 0;
ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
DEBUGOUT(NVE_DEBUG_RUNNING, "nve: nve_stop - exit\n");
return;
}
/* Shutdown interface for unload/reboot */
static int
nve_shutdown(device_t dev)
{
struct nve_softc *sc;
DEBUGOUT(NVE_DEBUG_DEINIT, "nve: nve_shutdown\n");
sc = device_get_softc(dev);
/* Stop hardware activity */
NVE_LOCK(sc);
nve_stop(sc);
NVE_UNLOCK(sc);
return (0);
}
/* Allocate TX ring buffers */
static int
nve_init_rings(struct nve_softc *sc)
{
int error, i;
DEBUGOUT(NVE_DEBUG_INIT, "nve: nve_init_rings - entry\n");
sc->cur_rx = sc->cur_tx = sc->pending_rxs = sc->pending_txs = 0;
/* Initialise RX ring */
for (i = 0; i < RX_RING_SIZE; i++) {
struct nve_rx_desc *desc = sc->rx_desc + i;
struct nve_map_buffer *buf = &desc->buf;
buf->mbuf = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
if (buf->mbuf == NULL) {
device_printf(sc->dev, "couldn't allocate mbuf\n");
nve_free_rings(sc);
return (ENOBUFS);
}
buf->mbuf->m_len = buf->mbuf->m_pkthdr.len = MCLBYTES;
m_adj(buf->mbuf, ETHER_ALIGN);
error = bus_dmamap_create(sc->mtag, 0, &buf->map);
if (error) {
device_printf(sc->dev, "couldn't create dma map\n");
nve_free_rings(sc);
return (error);
}
error = bus_dmamap_load_mbuf(sc->mtag, buf->map, buf->mbuf,
nve_dmamap_rx_cb, &desc->paddr, 0);
if (error) {
device_printf(sc->dev, "couldn't dma map mbuf\n");
nve_free_rings(sc);
return (error);
}
bus_dmamap_sync(sc->mtag, buf->map, BUS_DMASYNC_PREREAD);
desc->buflength = buf->mbuf->m_len;
desc->vaddr = mtod(buf->mbuf, caddr_t);
}
bus_dmamap_sync(sc->rtag, sc->rmap,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
/* Initialize TX ring */
for (i = 0; i < TX_RING_SIZE; i++) {
struct nve_tx_desc *desc = sc->tx_desc + i;
struct nve_map_buffer *buf = &desc->buf;
buf->mbuf = NULL;
error = bus_dmamap_create(sc->mtag, 0, &buf->map);
if (error) {
device_printf(sc->dev, "couldn't create dma map\n");
nve_free_rings(sc);
return (error);
}
}
bus_dmamap_sync(sc->ttag, sc->tmap,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
DEBUGOUT(NVE_DEBUG_INIT, "nve: nve_init_rings - exit\n");
return (error);
}
/* Free the TX ring buffers */
static void
nve_free_rings(struct nve_softc *sc)
{
int i;
DEBUGOUT(NVE_DEBUG_DEINIT, "nve: nve_free_rings - entry\n");
for (i = 0; i < RX_RING_SIZE; i++) {
struct nve_rx_desc *desc = sc->rx_desc + i;
struct nve_map_buffer *buf = &desc->buf;
if (buf->mbuf) {
bus_dmamap_unload(sc->mtag, buf->map);
bus_dmamap_destroy(sc->mtag, buf->map);
m_freem(buf->mbuf);
}
buf->mbuf = NULL;
}
for (i = 0; i < TX_RING_SIZE; i++) {
struct nve_tx_desc *desc = sc->tx_desc + i;
struct nve_map_buffer *buf = &desc->buf;
if (buf->mbuf) {
bus_dmamap_unload(sc->mtag, buf->map);
bus_dmamap_destroy(sc->mtag, buf->map);
m_freem(buf->mbuf);
}
buf->mbuf = NULL;
}
DEBUGOUT(NVE_DEBUG_DEINIT, "nve: nve_free_rings - exit\n");
}
/* Main loop for sending packets from OS to interface */
static void
nve_ifstart(struct ifnet *ifp)
{
struct nve_softc *sc = ifp->if_softc;
NVE_LOCK(sc);
nve_ifstart_locked(ifp);
NVE_UNLOCK(sc);
}
static void
nve_ifstart_locked(struct ifnet *ifp)
{
struct nve_softc *sc = ifp->if_softc;
struct nve_map_buffer *buf;
struct mbuf *m0, *m;
struct nve_tx_desc *desc;
ADAPTER_WRITE_DATA txdata;
int error, i;
DEBUGOUT(NVE_DEBUG_RUNNING, "nve: nve_ifstart - entry\n");
NVE_LOCK_ASSERT(sc);
/* If link is down/busy or queue is empty do nothing */
if (ifp->if_drv_flags & IFF_DRV_OACTIVE ||
IFQ_DRV_IS_EMPTY(&ifp->if_snd))
return;
/* Transmit queued packets until sent or TX ring is full */
while (sc->pending_txs < TX_RING_SIZE) {
desc = sc->tx_desc + sc->cur_tx;
buf = &desc->buf;
/* Get next packet to send. */
IFQ_DRV_DEQUEUE(&ifp->if_snd, m0);
/* If nothing to send, return. */
if (m0 == NULL)
return;
/*
* On nForce4, the chip doesn't interrupt on transmit,
* so try to flush transmitted packets from the queue
* if it's getting large (see note in nve_watchdog).
*/
if (sc->pending_txs > TX_RING_SIZE/2) {
sc->hwapi->pfnDisableInterrupts(sc->hwapi->pADCX);
sc->hwapi->pfnHandleInterrupt(sc->hwapi->pADCX);
sc->hwapi->pfnEnableInterrupts(sc->hwapi->pADCX);
}
/* Map MBUF for DMA access */
error = bus_dmamap_load_mbuf(sc->mtag, buf->map, m0,
nve_dmamap_tx_cb, desc, BUS_DMA_NOWAIT);
if (error && error != EFBIG) {
m_freem(m0);
sc->tx_errors++;
continue;
}
/*
* Packet has too many fragments - defrag into new mbuf
* cluster
*/
if (error) {
m = m_defrag(m0, M_DONTWAIT);
if (m == NULL) {
m_freem(m0);
sc->tx_errors++;
continue;
}
m0 = m;
error = bus_dmamap_load_mbuf(sc->mtag, buf->map, m,
nve_dmamap_tx_cb, desc, BUS_DMA_NOWAIT);
if (error) {
m_freem(m);
sc->tx_errors++;
continue;
}
}
/* Do sync on DMA bounce buffer */
bus_dmamap_sync(sc->mtag, buf->map, BUS_DMASYNC_PREWRITE);
buf->mbuf = m0;
txdata.ulNumberOfElements = desc->numfrags;
txdata.pvID = (PVOID)desc;
/* Put fragments into API element list */
txdata.ulTotalLength = buf->mbuf->m_len;
for (i = 0; i < desc->numfrags; i++) {
txdata.sElement[i].ulLength =
(ulong)desc->frags[i].ds_len;
txdata.sElement[i].pPhysical =
(PVOID)desc->frags[i].ds_addr;
}
/* Send packet to Nvidia API for transmission */
error = sc->hwapi->pfnWrite(sc->hwapi->pADCX, &txdata);
switch (error) {
case ADAPTERERR_NONE:
/* Packet was queued in API TX queue successfully */
sc->pending_txs++;
sc->cur_tx = (sc->cur_tx + 1) % TX_RING_SIZE;
break;
case ADAPTERERR_TRANSMIT_QUEUE_FULL:
/* The API TX queue is full - requeue the packet */
device_printf(sc->dev,
"nve_ifstart: transmit queue is full\n");
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
bus_dmamap_unload(sc->mtag, buf->map);
IFQ_DRV_PREPEND(&ifp->if_snd, buf->mbuf);
buf->mbuf = NULL;
return;
default:
/* The API failed to queue/send the packet so dump it */
device_printf(sc->dev, "nve_ifstart: transmit error\n");
bus_dmamap_unload(sc->mtag, buf->map);
m_freem(buf->mbuf);
buf->mbuf = NULL;
sc->tx_errors++;
return;
}
/* Set watchdog timer. */
sc->tx_timer = 8;
/* Copy packet to BPF tap */
BPF_MTAP(ifp, m0);
}
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
DEBUGOUT(NVE_DEBUG_RUNNING, "nve: nve_ifstart - exit\n");
}
/* Handle IOCTL events */
static int
nve_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
{
struct nve_softc *sc = ifp->if_softc;
struct ifreq *ifr = (struct ifreq *) data;
struct mii_data *mii;
int error = 0;
DEBUGOUT(NVE_DEBUG_IOCTL, "nve: nve_ioctl - entry\n");
switch (command) {
case SIOCSIFMTU:
/* Set MTU size */
NVE_LOCK(sc);
if (ifp->if_mtu == ifr->ifr_mtu) {
NVE_UNLOCK(sc);
break;
}
if (ifr->ifr_mtu + ifp->if_hdrlen <= MAX_PACKET_SIZE_1518) {
ifp->if_mtu = ifr->ifr_mtu;
nve_stop(sc);
nve_init_locked(sc);
} else
error = EINVAL;
NVE_UNLOCK(sc);
break;
case SIOCSIFFLAGS:
/* Setup interface flags */
NVE_LOCK(sc);
if (ifp->if_flags & IFF_UP) {
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
nve_init_locked(sc);
NVE_UNLOCK(sc);
break;
}
} else {
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
nve_stop(sc);
NVE_UNLOCK(sc);
break;
}
}
/* Handle IFF_PROMISC and IFF_ALLMULTI flags. */
nve_setmulti(sc);
NVE_UNLOCK(sc);
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
/* Setup multicast filter */
NVE_LOCK(sc);
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
nve_setmulti(sc);
}
NVE_UNLOCK(sc);
break;
case SIOCGIFMEDIA:
case SIOCSIFMEDIA:
/* Get/Set interface media parameters */
mii = device_get_softc(sc->miibus);
error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
break;
default:
/* Everything else we forward to generic ether ioctl */
error = ether_ioctl(ifp, command, data);
break;
}
DEBUGOUT(NVE_DEBUG_IOCTL, "nve: nve_ioctl - exit\n");
return (error);
}
/* Interrupt service routine */
static void
nve_intr(void *arg)
{
struct nve_softc *sc = arg;
struct ifnet *ifp = sc->ifp;
DEBUGOUT(NVE_DEBUG_INTERRUPT, "nve: nve_intr - entry\n");
NVE_LOCK(sc);
if (!ifp->if_flags & IFF_UP) {
nve_stop(sc);
NVE_UNLOCK(sc);
return;
}
/* Handle interrupt event */
if (sc->hwapi->pfnQueryInterrupt(sc->hwapi->pADCX)) {
sc->hwapi->pfnHandleInterrupt(sc->hwapi->pADCX);
sc->hwapi->pfnEnableInterrupts(sc->hwapi->pADCX);
}
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
nve_ifstart_locked(ifp);
/* If no pending packets we don't need a timeout */
if (sc->pending_txs == 0)
sc->tx_timer = 0;
NVE_UNLOCK(sc);
DEBUGOUT(NVE_DEBUG_INTERRUPT, "nve: nve_intr - exit\n");
return;
}
/* Setup multicast filters */
static void
nve_setmulti(struct nve_softc *sc)
{
struct ifnet *ifp;
struct ifmultiaddr *ifma;
PACKET_FILTER hwfilter;
int i;
u_int8_t andaddr[6], oraddr[6];
NVE_LOCK_ASSERT(sc);
DEBUGOUT(NVE_DEBUG_RUNNING, "nve: nve_setmulti - entry\n");
ifp = sc->ifp;
/* Initialize filter */
hwfilter.ulFilterFlags = 0;
for (i = 0; i < 6; i++) {
hwfilter.acMulticastAddress[i] = 0;
hwfilter.acMulticastMask[i] = 0;
}
if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) {
/* Accept all packets */
hwfilter.ulFilterFlags |= ACCEPT_ALL_PACKETS;
sc->hwapi->pfnSetPacketFilter(sc->hwapi->pADCX, &hwfilter);
return;
}
/* Setup multicast filter */
if_maddr_rlock(ifp);
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
u_char *addrp;
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
addrp = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
for (i = 0; i < 6; i++) {
u_int8_t mcaddr = addrp[i];
andaddr[i] &= mcaddr;
oraddr[i] |= mcaddr;
}
}
if_maddr_runlock(ifp);
for (i = 0; i < 6; i++) {
hwfilter.acMulticastAddress[i] = andaddr[i] & oraddr[i];
hwfilter.acMulticastMask[i] = andaddr[i] | (~oraddr[i]);
}
/* Send filter to NVIDIA API */
sc->hwapi->pfnSetPacketFilter(sc->hwapi->pADCX, &hwfilter);
DEBUGOUT(NVE_DEBUG_RUNNING, "nve: nve_setmulti - exit\n");
return;
}
/* Change the current media/mediaopts */
static int
nve_ifmedia_upd(struct ifnet *ifp)
{
struct nve_softc *sc = ifp->if_softc;
NVE_LOCK(sc);
nve_ifmedia_upd_locked(ifp);
NVE_UNLOCK(sc);
return (0);
}
static void
nve_ifmedia_upd_locked(struct ifnet *ifp)
{
struct nve_softc *sc = ifp->if_softc;
struct mii_data *mii;
struct mii_softc *miisc;
DEBUGOUT(NVE_DEBUG_MII, "nve: nve_ifmedia_upd\n");
NVE_LOCK_ASSERT(sc);
mii = device_get_softc(sc->miibus);
LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
PHY_RESET(miisc);
mii_mediachg(mii);
}
/* Update current miibus PHY status of media */
static void
nve_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
{
struct nve_softc *sc;
struct mii_data *mii;
DEBUGOUT(NVE_DEBUG_MII, "nve: nve_ifmedia_sts\n");
sc = ifp->if_softc;
NVE_LOCK(sc);
mii = device_get_softc(sc->miibus);
mii_pollstat(mii);
NVE_UNLOCK(sc);
ifmr->ifm_active = mii->mii_media_active;
ifmr->ifm_status = mii->mii_media_status;
return;
}
/* miibus tick timer - maintain link status */
static void
nve_tick(void *xsc)
{
struct nve_softc *sc = xsc;
struct mii_data *mii;
struct ifnet *ifp;
NVE_LOCK_ASSERT(sc);
ifp = sc->ifp;
nve_update_stats(sc);
mii = device_get_softc(sc->miibus);
mii_tick(mii);
if (mii->mii_media_status & IFM_ACTIVE &&
IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
nve_ifstart_locked(ifp);
}
if (sc->tx_timer > 0 && --sc->tx_timer == 0)
nve_watchdog(sc);
callout_reset(&sc->stat_callout, hz, nve_tick, sc);
return;
}
/* Update ifnet data structure with collected interface stats from API */
static void
nve_update_stats(struct nve_softc *sc)
{
struct ifnet *ifp = sc->ifp;
ADAPTER_STATS stats;
NVE_LOCK_ASSERT(sc);
if (sc->hwapi) {
sc->hwapi->pfnGetStatistics(sc->hwapi->pADCX, &stats);
ifp->if_ipackets = stats.ulSuccessfulReceptions;
ifp->if_ierrors = stats.ulMissedFrames +
stats.ulFailedReceptions +
stats.ulCRCErrors +
stats.ulFramingErrors +
stats.ulOverFlowErrors;
ifp->if_opackets = stats.ulSuccessfulTransmissions;
ifp->if_oerrors = sc->tx_errors +
stats.ulFailedTransmissions +
stats.ulRetryErrors +
stats.ulUnderflowErrors +
stats.ulLossOfCarrierErrors +
stats.ulLateCollisionErrors;
ifp->if_collisions = stats.ulLateCollisionErrors;
}
return;
}
/* miibus Read PHY register wrapper - calls Nvidia API entry point */
static int
nve_miibus_readreg(device_t dev, int phy, int reg)
{
struct nve_softc *sc = device_get_softc(dev);
ULONG data;
DEBUGOUT(NVE_DEBUG_MII, "nve: nve_miibus_readreg - entry\n");
ADAPTER_ReadPhy(sc->hwapi->pADCX, phy, reg, &data);
DEBUGOUT(NVE_DEBUG_MII, "nve: nve_miibus_readreg - exit\n");
return (data);
}
/* miibus Write PHY register wrapper - calls Nvidia API entry point */
static int
nve_miibus_writereg(device_t dev, int phy, int reg, int data)
{
struct nve_softc *sc = device_get_softc(dev);
DEBUGOUT(NVE_DEBUG_MII, "nve: nve_miibus_writereg - entry\n");
ADAPTER_WritePhy(sc->hwapi->pADCX, phy, reg, (ulong)data);
DEBUGOUT(NVE_DEBUG_MII, "nve: nve_miibus_writereg - exit\n");
return 0;
}
/* Watchdog timer to prevent PHY lockups */
static void
nve_watchdog(struct nve_softc *sc)
{
struct ifnet *ifp;
int pending_txs_start;
NVE_LOCK_ASSERT(sc);
ifp = sc->ifp;
/*
* The nvidia driver blob defers tx completion notifications.
* Thus, sometimes the watchdog timer will go off when the
* tx engine is fine, but the tx completions are just deferred.
* Try kicking the driver blob to clear out any pending tx
* completions. If that clears up any of the pending tx
* operations, then just return without printing the warning
* message or resetting the adapter, as we can then conclude
* the chip hasn't actually crashed (it's still sending packets).
*/
pending_txs_start = sc->pending_txs;
sc->hwapi->pfnDisableInterrupts(sc->hwapi->pADCX);
sc->hwapi->pfnHandleInterrupt(sc->hwapi->pADCX);
sc->hwapi->pfnEnableInterrupts(sc->hwapi->pADCX);
if (sc->pending_txs < pending_txs_start)
return;
device_printf(sc->dev, "device timeout (%d)\n", sc->pending_txs);
sc->tx_errors++;
nve_stop(sc);
nve_init_locked(sc);
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
nve_ifstart_locked(ifp);
}
/* --- Start of NVOSAPI interface --- */
/* Allocate DMA enabled general use memory for API */
static NV_SINT32
nve_osalloc(PNV_VOID ctx, PMEMORY_BLOCK mem)
{
struct nve_softc *sc;
bus_addr_t mem_physical;
DEBUGOUT(NVE_DEBUG_API, "nve: nve_osalloc - %d\n", mem->uiLength);
sc = (struct nve_softc *)ctx;
mem->pLogical = (PVOID)contigmalloc(mem->uiLength, M_DEVBUF,
M_NOWAIT | M_ZERO, 0, 0xffffffff, PAGE_SIZE, 0);
if (!mem->pLogical) {
device_printf(sc->dev, "memory allocation failed\n");
return (0);
}
memset(mem->pLogical, 0, (ulong)mem->uiLength);
mem_physical = vtophys(mem->pLogical);
mem->pPhysical = (PVOID)mem_physical;
DEBUGOUT(NVE_DEBUG_API, "nve: nve_osalloc 0x%x/0x%x - %d\n",
(uint)mem->pLogical, (uint)mem->pPhysical, (uint)mem->uiLength);
return (1);
}
/* Free allocated memory */
static NV_SINT32
nve_osfree(PNV_VOID ctx, PMEMORY_BLOCK mem)
{
DEBUGOUT(NVE_DEBUG_API, "nve: nve_osfree - 0x%x - %d\n",
(uint)mem->pLogical, (uint) mem->uiLength);
contigfree(mem->pLogical, PAGE_SIZE, M_DEVBUF);
return (1);
}
/* Copied directly from nvnet.c */
static NV_SINT32
nve_osallocex(PNV_VOID ctx, PMEMORY_BLOCKEX mem_block_ex)
{
MEMORY_BLOCK mem_block;
DEBUGOUT(NVE_DEBUG_API, "nve: nve_osallocex\n");
mem_block_ex->pLogical = NULL;
mem_block_ex->uiLengthOrig = mem_block_ex->uiLength;
if ((mem_block_ex->AllocFlags & ALLOC_MEMORY_ALIGNED) &&
(mem_block_ex->AlignmentSize > 1)) {
DEBUGOUT(NVE_DEBUG_API, " aligning on %d\n",
mem_block_ex->AlignmentSize);
mem_block_ex->uiLengthOrig += mem_block_ex->AlignmentSize;
}
mem_block.uiLength = mem_block_ex->uiLengthOrig;
if (nve_osalloc(ctx, &mem_block) == 0) {
return (0);
}
mem_block_ex->pLogicalOrig = mem_block.pLogical;
mem_block_ex->pPhysicalOrigLow = (unsigned long)mem_block.pPhysical;
mem_block_ex->pPhysicalOrigHigh = 0;
mem_block_ex->pPhysical = mem_block.pPhysical;
mem_block_ex->pLogical = mem_block.pLogical;
if (mem_block_ex->uiLength != mem_block_ex->uiLengthOrig) {
unsigned int offset;
offset = mem_block_ex->pPhysicalOrigLow &
(mem_block_ex->AlignmentSize - 1);
if (offset) {
mem_block_ex->pPhysical =
(PVOID)((ulong)mem_block_ex->pPhysical +
mem_block_ex->AlignmentSize - offset);
mem_block_ex->pLogical =
(PVOID)((ulong)mem_block_ex->pLogical +
mem_block_ex->AlignmentSize - offset);
} /* if (offset) */
} /* if (mem_block_ex->uiLength != *mem_block_ex->uiLengthOrig) */
return (1);
}
/* Copied directly from nvnet.c */
static NV_SINT32
nve_osfreeex(PNV_VOID ctx, PMEMORY_BLOCKEX mem_block_ex)
{
MEMORY_BLOCK mem_block;
DEBUGOUT(NVE_DEBUG_API, "nve: nve_osfreeex\n");
mem_block.pLogical = mem_block_ex->pLogicalOrig;
mem_block.pPhysical = (PVOID)((ulong)mem_block_ex->pPhysicalOrigLow);
mem_block.uiLength = mem_block_ex->uiLengthOrig;
return (nve_osfree(ctx, &mem_block));
}
/* Clear memory region */
static NV_SINT32
nve_osclear(PNV_VOID ctx, PNV_VOID mem, NV_SINT32 length)
{
DEBUGOUT(NVE_DEBUG_API, "nve: nve_osclear\n");
memset(mem, 0, length);
return (1);
}
/* Sleep for a tick */
static NV_SINT32
nve_osdelay(PNV_VOID ctx, NV_UINT32 usec)
{
DELAY(usec);
return (1);
}
/* Allocate memory for rx buffer */
static NV_SINT32
nve_osallocrxbuf(PNV_VOID ctx, PMEMORY_BLOCK mem, PNV_VOID *id)
{
struct nve_softc *sc = ctx;
struct nve_rx_desc *desc;
struct nve_map_buffer *buf;
int error;
if (device_is_attached(sc->dev))
NVE_LOCK_ASSERT(sc);
DEBUGOUT(NVE_DEBUG_API, "nve: nve_osallocrxbuf\n");
if (sc->pending_rxs == RX_RING_SIZE) {
device_printf(sc->dev, "rx ring buffer is full\n");
goto fail;
}
desc = sc->rx_desc + sc->cur_rx;
buf = &desc->buf;
if (buf->mbuf == NULL) {
buf->mbuf = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
if (buf->mbuf == NULL) {
device_printf(sc->dev, "failed to allocate memory\n");
goto fail;
}
buf->mbuf->m_len = buf->mbuf->m_pkthdr.len = MCLBYTES;
m_adj(buf->mbuf, ETHER_ALIGN);
error = bus_dmamap_load_mbuf(sc->mtag, buf->map, buf->mbuf,
nve_dmamap_rx_cb, &desc->paddr, 0);
if (error) {
device_printf(sc->dev, "failed to dmamap mbuf\n");
m_freem(buf->mbuf);
buf->mbuf = NULL;
goto fail;
}
bus_dmamap_sync(sc->mtag, buf->map, BUS_DMASYNC_PREREAD);
desc->buflength = buf->mbuf->m_len;
desc->vaddr = mtod(buf->mbuf, caddr_t);
}
sc->pending_rxs++;
sc->cur_rx = (sc->cur_rx + 1) % RX_RING_SIZE;
mem->pLogical = (void *)desc->vaddr;
mem->pPhysical = (void *)desc->paddr;
mem->uiLength = desc->buflength;
*id = (void *)desc;
return (1);
fail:
return (0);
}
/* Free the rx buffer */
static NV_SINT32
nve_osfreerxbuf(PNV_VOID ctx, PMEMORY_BLOCK mem, PNV_VOID id)
{
struct nve_softc *sc = ctx;
struct nve_rx_desc *desc;
struct nve_map_buffer *buf;
DEBUGOUT(NVE_DEBUG_API, "nve: nve_osfreerxbuf\n");
desc = (struct nve_rx_desc *) id;
buf = &desc->buf;
if (buf->mbuf) {
bus_dmamap_unload(sc->mtag, buf->map);
bus_dmamap_destroy(sc->mtag, buf->map);
m_freem(buf->mbuf);
}
sc->pending_rxs--;
buf->mbuf = NULL;
return (1);
}
/* This gets called by the Nvidia API after our TX packet has been sent */
static NV_SINT32
nve_ospackettx(PNV_VOID ctx, PNV_VOID id, NV_UINT32 success)
{
struct nve_softc *sc = ctx;
struct nve_map_buffer *buf;
struct nve_tx_desc *desc = (struct nve_tx_desc *) id;
struct ifnet *ifp;
NVE_LOCK_ASSERT(sc);
DEBUGOUT(NVE_DEBUG_API, "nve: nve_ospackettx\n");
ifp = sc->ifp;
buf = &desc->buf;
sc->pending_txs--;
/* Unload and free mbuf cluster */
if (buf->mbuf == NULL)
goto fail;
bus_dmamap_sync(sc->mtag, buf->map, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->mtag, buf->map);
m_freem(buf->mbuf);
buf->mbuf = NULL;
/* Send more packets if we have them */
if (sc->pending_txs < TX_RING_SIZE)
sc->ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd) && sc->pending_txs < TX_RING_SIZE)
nve_ifstart_locked(ifp);
fail:
return (1);
}
/* This gets called by the Nvidia API when a new packet has been received */
/* XXX What is newbuf used for? XXX */
static NV_SINT32
nve_ospacketrx(PNV_VOID ctx, PNV_VOID data, NV_UINT32 success, NV_UINT8 *newbuf,
NV_UINT8 priority)
{
struct nve_softc *sc = ctx;
struct ifnet *ifp;
struct nve_rx_desc *desc;
struct nve_map_buffer *buf;
ADAPTER_READ_DATA *readdata;
struct mbuf *m;
NVE_LOCK_ASSERT(sc);
DEBUGOUT(NVE_DEBUG_API, "nve: nve_ospacketrx\n");
ifp = sc->ifp;
readdata = (ADAPTER_READ_DATA *) data;
desc = readdata->pvID;
buf = &desc->buf;
bus_dmamap_sync(sc->mtag, buf->map, BUS_DMASYNC_POSTREAD);
if (success) {
/* Sync DMA bounce buffer. */
bus_dmamap_sync(sc->mtag, buf->map, BUS_DMASYNC_POSTREAD);
/* First mbuf in packet holds the ethernet and packet headers */
buf->mbuf->m_pkthdr.rcvif = ifp;
buf->mbuf->m_pkthdr.len = buf->mbuf->m_len =
readdata->ulTotalLength;
bus_dmamap_unload(sc->mtag, buf->map);
/* Blat the mbuf pointer, kernel will free the mbuf cluster */
m = buf->mbuf;
buf->mbuf = NULL;
/* Give mbuf to OS. */
NVE_UNLOCK(sc);
(*ifp->if_input)(ifp, m);
NVE_LOCK(sc);
if (readdata->ulFilterMatch & ADREADFL_MULTICAST_MATCH)
ifp->if_imcasts++;
} else {
bus_dmamap_sync(sc->mtag, buf->map, BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->mtag, buf->map);
m_freem(buf->mbuf);
buf->mbuf = NULL;
}
sc->cur_rx = desc - sc->rx_desc;
sc->pending_rxs--;
return (1);
}
/* This gets called by NVIDIA API when the PHY link state changes */
static NV_SINT32
nve_oslinkchg(PNV_VOID ctx, NV_SINT32 enabled)
{
DEBUGOUT(NVE_DEBUG_API, "nve: nve_oslinkchg\n");
return (1);
}
/* Setup a watchdog timer */
static NV_SINT32
nve_osalloctimer(PNV_VOID ctx, PNV_VOID *timer)
{
struct nve_softc *sc = (struct nve_softc *)ctx;
DEBUGOUT(NVE_DEBUG_BROKEN, "nve: nve_osalloctimer\n");
callout_init(&sc->ostimer, CALLOUT_MPSAFE);
*timer = &sc->ostimer;
return (1);
}
/* Free the timer */
static NV_SINT32
nve_osfreetimer(PNV_VOID ctx, PNV_VOID timer)
{
DEBUGOUT(NVE_DEBUG_BROKEN, "nve: nve_osfreetimer\n");
callout_drain((struct callout *)timer);
return (1);
}
/* Setup timer parameters */
static NV_SINT32
nve_osinittimer(PNV_VOID ctx, PNV_VOID timer, PTIMER_FUNC func, PNV_VOID parameters)
{
struct nve_softc *sc = (struct nve_softc *)ctx;
DEBUGOUT(NVE_DEBUG_BROKEN, "nve: nve_osinittimer\n");
sc->ostimer_func = func;
sc->ostimer_params = parameters;
return (1);
}
/* Set the timer to go off */
static NV_SINT32
nve_ossettimer(PNV_VOID ctx, PNV_VOID timer, NV_UINT32 delay)
{
struct nve_softc *sc = ctx;
DEBUGOUT(NVE_DEBUG_BROKEN, "nve: nve_ossettimer\n");
callout_reset((struct callout *)timer, delay, sc->ostimer_func,
sc->ostimer_params);
return (1);
}
/* Cancel the timer */
static NV_SINT32
nve_oscanceltimer(PNV_VOID ctx, PNV_VOID timer)
{
DEBUGOUT(NVE_DEBUG_BROKEN, "nve: nve_oscanceltimer\n");
callout_stop((struct callout *)timer);
return (1);
}
static NV_SINT32
nve_ospreprocpkt(PNV_VOID ctx, PNV_VOID readdata, PNV_VOID *id,
NV_UINT8 *newbuffer, NV_UINT8 priority)
{
/* Not implemented */
DEBUGOUT(NVE_DEBUG_BROKEN, "nve: nve_ospreprocpkt\n");
return (1);
}
static PNV_VOID
nve_ospreprocpktnopq(PNV_VOID ctx, PNV_VOID readdata)
{
/* Not implemented */
DEBUGOUT(NVE_DEBUG_BROKEN, "nve: nve_ospreprocpkt\n");
return (NULL);
}
static NV_SINT32
nve_osindicatepkt(PNV_VOID ctx, PNV_VOID *id, NV_UINT32 pktno)
{
/* Not implemented */
DEBUGOUT(NVE_DEBUG_BROKEN, "nve: nve_osindicatepkt\n");
return (1);
}
/* Allocate mutex context (already done in nve_attach) */
static NV_SINT32
nve_oslockalloc(PNV_VOID ctx, NV_SINT32 type, PNV_VOID *pLock)
{
struct nve_softc *sc = (struct nve_softc *)ctx;
DEBUGOUT(NVE_DEBUG_LOCK, "nve: nve_oslockalloc\n");
*pLock = (void **)sc;
return (1);
}
/* Obtain a spin lock */
static NV_SINT32
nve_oslockacquire(PNV_VOID ctx, NV_SINT32 type, PNV_VOID lock)
{
DEBUGOUT(NVE_DEBUG_LOCK, "nve: nve_oslockacquire\n");
return (1);
}
/* Release lock */
static NV_SINT32
nve_oslockrelease(PNV_VOID ctx, NV_SINT32 type, PNV_VOID lock)
{
DEBUGOUT(NVE_DEBUG_LOCK, "nve: nve_oslockrelease\n");
return (1);
}
/* I have no idea what this is for */
static PNV_VOID
nve_osreturnbufvirt(PNV_VOID ctx, PNV_VOID readdata)
{
/* Not implemented */
DEBUGOUT(NVE_DEBUG_LOCK, "nve: nve_osreturnbufvirt\n");
panic("nve: nve_osreturnbufvirtual not implemented\n");
return (NULL);
}
/* --- End on NVOSAPI interface --- */