8d7b300516
MFC after: 2 weeks
737 lines
17 KiB
C
737 lines
17 KiB
C
/*-
|
|
* Copyright (C) 1995, 1996 Wolfgang Solfrank.
|
|
* Copyright (C) 1995, 1996 TooLs GmbH.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by TooLs GmbH.
|
|
* 4. The name of TooLs GmbH may not be used to endorse or promote products
|
|
* derived from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
|
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
|
|
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
|
|
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
|
|
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
* $NetBSD: trap.c,v 1.58 2002/03/04 04:07:35 dbj Exp $
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/kdb.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/ktr.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/pioctl.h>
|
|
#include <sys/ptrace.h>
|
|
#include <sys/reboot.h>
|
|
#include <sys/syscall.h>
|
|
#include <sys/sysent.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/uio.h>
|
|
#include <sys/signalvar.h>
|
|
#include <sys/vmmeter.h>
|
|
|
|
#include <security/audit/audit.h>
|
|
|
|
#include <vm/vm.h>
|
|
#include <vm/pmap.h>
|
|
#include <vm/vm_extern.h>
|
|
#include <vm/vm_param.h>
|
|
#include <vm/vm_kern.h>
|
|
#include <vm/vm_map.h>
|
|
#include <vm/vm_page.h>
|
|
|
|
#include <machine/_inttypes.h>
|
|
#include <machine/altivec.h>
|
|
#include <machine/cpu.h>
|
|
#include <machine/db_machdep.h>
|
|
#include <machine/fpu.h>
|
|
#include <machine/frame.h>
|
|
#include <machine/pcb.h>
|
|
#include <machine/pmap.h>
|
|
#include <machine/psl.h>
|
|
#include <machine/trap.h>
|
|
#include <machine/spr.h>
|
|
#include <machine/sr.h>
|
|
|
|
static void trap_fatal(struct trapframe *frame);
|
|
static void printtrap(u_int vector, struct trapframe *frame, int isfatal,
|
|
int user);
|
|
static int trap_pfault(struct trapframe *frame, int user);
|
|
static int fix_unaligned(struct thread *td, struct trapframe *frame);
|
|
static int handle_onfault(struct trapframe *frame);
|
|
static void syscall(struct trapframe *frame);
|
|
|
|
#ifdef __powerpc64__
|
|
void handle_kernel_slb_spill(int, register_t, register_t);
|
|
static int handle_user_slb_spill(pmap_t pm, vm_offset_t addr);
|
|
extern int n_slbs;
|
|
#endif
|
|
|
|
struct powerpc_exception {
|
|
u_int vector;
|
|
char *name;
|
|
};
|
|
|
|
#ifdef KDTRACE_HOOKS
|
|
#include <sys/dtrace_bsd.h>
|
|
|
|
/*
|
|
* This is a hook which is initialised by the dtrace module
|
|
* to handle traps which might occur during DTrace probe
|
|
* execution.
|
|
*/
|
|
dtrace_trap_func_t dtrace_trap_func;
|
|
|
|
dtrace_doubletrap_func_t dtrace_doubletrap_func;
|
|
|
|
/*
|
|
* This is a hook which is initialised by the systrace module
|
|
* when it is loaded. This keeps the DTrace syscall provider
|
|
* implementation opaque.
|
|
*/
|
|
systrace_probe_func_t systrace_probe_func;
|
|
|
|
/*
|
|
* These hooks are necessary for the pid and usdt providers.
|
|
*/
|
|
dtrace_pid_probe_ptr_t dtrace_pid_probe_ptr;
|
|
dtrace_return_probe_ptr_t dtrace_return_probe_ptr;
|
|
int (*dtrace_invop_jump_addr)(struct trapframe *);
|
|
#endif
|
|
|
|
static struct powerpc_exception powerpc_exceptions[] = {
|
|
{ 0x0100, "system reset" },
|
|
{ 0x0200, "machine check" },
|
|
{ 0x0300, "data storage interrupt" },
|
|
{ 0x0380, "data segment exception" },
|
|
{ 0x0400, "instruction storage interrupt" },
|
|
{ 0x0480, "instruction segment exception" },
|
|
{ 0x0500, "external interrupt" },
|
|
{ 0x0600, "alignment" },
|
|
{ 0x0700, "program" },
|
|
{ 0x0800, "floating-point unavailable" },
|
|
{ 0x0900, "decrementer" },
|
|
{ 0x0c00, "system call" },
|
|
{ 0x0d00, "trace" },
|
|
{ 0x0e00, "floating-point assist" },
|
|
{ 0x0f00, "performance monitoring" },
|
|
{ 0x0f20, "altivec unavailable" },
|
|
{ 0x1000, "instruction tlb miss" },
|
|
{ 0x1100, "data load tlb miss" },
|
|
{ 0x1200, "data store tlb miss" },
|
|
{ 0x1300, "instruction breakpoint" },
|
|
{ 0x1400, "system management" },
|
|
{ 0x1600, "altivec assist" },
|
|
{ 0x1700, "thermal management" },
|
|
{ 0x2000, "run mode/trace" },
|
|
{ 0x3000, NULL }
|
|
};
|
|
|
|
static const char *
|
|
trapname(u_int vector)
|
|
{
|
|
struct powerpc_exception *pe;
|
|
|
|
for (pe = powerpc_exceptions; pe->vector != 0x3000; pe++) {
|
|
if (pe->vector == vector)
|
|
return (pe->name);
|
|
}
|
|
|
|
return ("unknown");
|
|
}
|
|
|
|
void
|
|
trap(struct trapframe *frame)
|
|
{
|
|
struct thread *td;
|
|
struct proc *p;
|
|
#ifdef KDTRACE_HOOKS
|
|
uint32_t inst;
|
|
#endif
|
|
int sig, type, user;
|
|
u_int ucode;
|
|
ksiginfo_t ksi;
|
|
|
|
PCPU_INC(cnt.v_trap);
|
|
|
|
td = curthread;
|
|
p = td->td_proc;
|
|
|
|
type = ucode = frame->exc;
|
|
sig = 0;
|
|
user = frame->srr1 & PSL_PR;
|
|
|
|
CTR3(KTR_TRAP, "trap: %s type=%s (%s)", td->td_name,
|
|
trapname(type), user ? "user" : "kernel");
|
|
|
|
#ifdef KDTRACE_HOOKS
|
|
/*
|
|
* A trap can occur while DTrace executes a probe. Before
|
|
* executing the probe, DTrace blocks re-scheduling and sets
|
|
* a flag in it's per-cpu flags to indicate that it doesn't
|
|
* want to fault. On returning from the probe, the no-fault
|
|
* flag is cleared and finally re-scheduling is enabled.
|
|
*
|
|
* If the DTrace kernel module has registered a trap handler,
|
|
* call it and if it returns non-zero, assume that it has
|
|
* handled the trap and modified the trap frame so that this
|
|
* function can return normally.
|
|
*/
|
|
if (dtrace_trap_func != NULL && (*dtrace_trap_func)(frame, type))
|
|
return;
|
|
#endif
|
|
|
|
if (user) {
|
|
td->td_pticks = 0;
|
|
td->td_frame = frame;
|
|
if (td->td_ucred != p->p_ucred)
|
|
cred_update_thread(td);
|
|
|
|
/* User Mode Traps */
|
|
switch (type) {
|
|
case EXC_RUNMODETRC:
|
|
case EXC_TRC:
|
|
frame->srr1 &= ~PSL_SE;
|
|
sig = SIGTRAP;
|
|
break;
|
|
|
|
#ifdef __powerpc64__
|
|
case EXC_ISE:
|
|
case EXC_DSE:
|
|
if (handle_user_slb_spill(&p->p_vmspace->vm_pmap,
|
|
(type == EXC_ISE) ? frame->srr0 :
|
|
frame->cpu.aim.dar) != 0)
|
|
sig = SIGSEGV;
|
|
break;
|
|
#endif
|
|
case EXC_DSI:
|
|
case EXC_ISI:
|
|
sig = trap_pfault(frame, 1);
|
|
break;
|
|
|
|
case EXC_SC:
|
|
syscall(frame);
|
|
break;
|
|
|
|
case EXC_FPU:
|
|
KASSERT((td->td_pcb->pcb_flags & PCB_FPU) != PCB_FPU,
|
|
("FPU already enabled for thread"));
|
|
enable_fpu(td);
|
|
break;
|
|
|
|
case EXC_VEC:
|
|
KASSERT((td->td_pcb->pcb_flags & PCB_VEC) != PCB_VEC,
|
|
("Altivec already enabled for thread"));
|
|
enable_vec(td);
|
|
break;
|
|
|
|
case EXC_VECAST_G4:
|
|
case EXC_VECAST_G5:
|
|
/*
|
|
* We get a VPU assist exception for IEEE mode
|
|
* vector operations on denormalized floats.
|
|
* Emulating this is a giant pain, so for now,
|
|
* just switch off IEEE mode and treat them as
|
|
* zero.
|
|
*/
|
|
|
|
save_vec(td);
|
|
td->td_pcb->pcb_vec.vscr |= ALTIVEC_VSCR_NJ;
|
|
enable_vec(td);
|
|
break;
|
|
|
|
case EXC_ALI:
|
|
if (fix_unaligned(td, frame) != 0)
|
|
sig = SIGBUS;
|
|
else
|
|
frame->srr0 += 4;
|
|
break;
|
|
|
|
case EXC_PGM:
|
|
/* Identify the trap reason */
|
|
if (frame->srr1 & EXC_PGM_TRAP) {
|
|
#ifdef KDTRACE_HOOKS
|
|
inst = fuword32((const void *)frame->srr0);
|
|
if (inst == 0x0FFFDDDD && dtrace_pid_probe_ptr != NULL) {
|
|
struct reg regs;
|
|
fill_regs(td, ®s);
|
|
(*dtrace_pid_probe_ptr)(®s);
|
|
break;
|
|
}
|
|
#endif
|
|
sig = SIGTRAP;
|
|
} else {
|
|
sig = ppc_instr_emulate(frame, td->td_pcb);
|
|
}
|
|
break;
|
|
|
|
default:
|
|
trap_fatal(frame);
|
|
}
|
|
} else {
|
|
/* Kernel Mode Traps */
|
|
|
|
KASSERT(cold || td->td_ucred != NULL,
|
|
("kernel trap doesn't have ucred"));
|
|
switch (type) {
|
|
#ifdef KDTRACE_HOOKS
|
|
case EXC_PGM:
|
|
if (frame->srr1 & EXC_PGM_TRAP) {
|
|
if (*(uint32_t *)frame->srr0 == 0x7c810808) {
|
|
if (dtrace_invop_jump_addr != NULL) {
|
|
dtrace_invop_jump_addr(frame);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
#endif
|
|
#ifdef __powerpc64__
|
|
case EXC_DSE:
|
|
if ((frame->cpu.aim.dar & SEGMENT_MASK) == USER_ADDR) {
|
|
__asm __volatile ("slbmte %0, %1" ::
|
|
"r"(td->td_pcb->pcb_cpu.aim.usr_vsid),
|
|
"r"(USER_SLB_SLBE));
|
|
return;
|
|
}
|
|
break;
|
|
#endif
|
|
case EXC_DSI:
|
|
if (trap_pfault(frame, 0) == 0)
|
|
return;
|
|
break;
|
|
case EXC_MCHK:
|
|
if (handle_onfault(frame))
|
|
return;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
trap_fatal(frame);
|
|
}
|
|
|
|
if (sig != 0) {
|
|
if (p->p_sysent->sv_transtrap != NULL)
|
|
sig = (p->p_sysent->sv_transtrap)(sig, type);
|
|
ksiginfo_init_trap(&ksi);
|
|
ksi.ksi_signo = sig;
|
|
ksi.ksi_code = (int) ucode; /* XXX, not POSIX */
|
|
/* ksi.ksi_addr = ? */
|
|
ksi.ksi_trapno = type;
|
|
trapsignal(td, &ksi);
|
|
}
|
|
|
|
userret(td, frame);
|
|
}
|
|
|
|
static void
|
|
trap_fatal(struct trapframe *frame)
|
|
{
|
|
|
|
printtrap(frame->exc, frame, 1, (frame->srr1 & PSL_PR));
|
|
#ifdef KDB
|
|
if ((debugger_on_panic || kdb_active) &&
|
|
kdb_trap(frame->exc, 0, frame))
|
|
return;
|
|
#endif
|
|
panic("%s trap", trapname(frame->exc));
|
|
}
|
|
|
|
static void
|
|
printtrap(u_int vector, struct trapframe *frame, int isfatal, int user)
|
|
{
|
|
|
|
printf("\n");
|
|
printf("%s %s trap:\n", isfatal ? "fatal" : "handled",
|
|
user ? "user" : "kernel");
|
|
printf("\n");
|
|
printf(" exception = 0x%x (%s)\n", vector, trapname(vector));
|
|
switch (vector) {
|
|
case EXC_DSE:
|
|
case EXC_DSI:
|
|
printf(" virtual address = 0x%" PRIxPTR "\n",
|
|
frame->cpu.aim.dar);
|
|
printf(" dsisr = 0x%" PRIxPTR "\n",
|
|
frame->cpu.aim.dsisr);
|
|
break;
|
|
case EXC_ISE:
|
|
case EXC_ISI:
|
|
printf(" virtual address = 0x%" PRIxPTR "\n", frame->srr0);
|
|
break;
|
|
}
|
|
printf(" srr0 = 0x%" PRIxPTR "\n", frame->srr0);
|
|
printf(" srr1 = 0x%" PRIxPTR "\n", frame->srr1);
|
|
printf(" lr = 0x%" PRIxPTR "\n", frame->lr);
|
|
printf(" curthread = %p\n", curthread);
|
|
if (curthread != NULL)
|
|
printf(" pid = %d, comm = %s\n",
|
|
curthread->td_proc->p_pid, curthread->td_name);
|
|
printf("\n");
|
|
}
|
|
|
|
/*
|
|
* Handles a fatal fault when we have onfault state to recover. Returns
|
|
* non-zero if there was onfault recovery state available.
|
|
*/
|
|
static int
|
|
handle_onfault(struct trapframe *frame)
|
|
{
|
|
struct thread *td;
|
|
faultbuf *fb;
|
|
|
|
td = curthread;
|
|
fb = td->td_pcb->pcb_onfault;
|
|
if (fb != NULL) {
|
|
frame->srr0 = (*fb)[0];
|
|
frame->fixreg[1] = (*fb)[1];
|
|
frame->fixreg[2] = (*fb)[2];
|
|
frame->fixreg[3] = 1;
|
|
frame->cr = (*fb)[3];
|
|
bcopy(&(*fb)[4], &frame->fixreg[13],
|
|
19 * sizeof(register_t));
|
|
return (1);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
cpu_fetch_syscall_args(struct thread *td, struct syscall_args *sa)
|
|
{
|
|
struct proc *p;
|
|
struct trapframe *frame;
|
|
caddr_t params;
|
|
size_t argsz;
|
|
int error, n, i;
|
|
|
|
p = td->td_proc;
|
|
frame = td->td_frame;
|
|
|
|
sa->code = frame->fixreg[0];
|
|
params = (caddr_t)(frame->fixreg + FIRSTARG);
|
|
n = NARGREG;
|
|
|
|
if (sa->code == SYS_syscall) {
|
|
/*
|
|
* code is first argument,
|
|
* followed by actual args.
|
|
*/
|
|
sa->code = *(register_t *) params;
|
|
params += sizeof(register_t);
|
|
n -= 1;
|
|
} else if (sa->code == SYS___syscall) {
|
|
/*
|
|
* Like syscall, but code is a quad,
|
|
* so as to maintain quad alignment
|
|
* for the rest of the args.
|
|
*/
|
|
if (SV_PROC_FLAG(p, SV_ILP32)) {
|
|
params += sizeof(register_t);
|
|
sa->code = *(register_t *) params;
|
|
params += sizeof(register_t);
|
|
n -= 2;
|
|
} else {
|
|
sa->code = *(register_t *) params;
|
|
params += sizeof(register_t);
|
|
n -= 1;
|
|
}
|
|
}
|
|
|
|
if (p->p_sysent->sv_mask)
|
|
sa->code &= p->p_sysent->sv_mask;
|
|
if (sa->code >= p->p_sysent->sv_size)
|
|
sa->callp = &p->p_sysent->sv_table[0];
|
|
else
|
|
sa->callp = &p->p_sysent->sv_table[sa->code];
|
|
|
|
sa->narg = sa->callp->sy_narg;
|
|
|
|
if (SV_PROC_FLAG(p, SV_ILP32)) {
|
|
argsz = sizeof(uint32_t);
|
|
|
|
for (i = 0; i < n; i++)
|
|
sa->args[i] = ((u_register_t *)(params))[i] &
|
|
0xffffffff;
|
|
} else {
|
|
argsz = sizeof(uint64_t);
|
|
|
|
for (i = 0; i < n; i++)
|
|
sa->args[i] = ((u_register_t *)(params))[i];
|
|
}
|
|
|
|
if (sa->narg > n)
|
|
error = copyin(MOREARGS(frame->fixreg[1]), sa->args + n,
|
|
(sa->narg - n) * argsz);
|
|
else
|
|
error = 0;
|
|
|
|
#ifdef __powerpc64__
|
|
if (SV_PROC_FLAG(p, SV_ILP32) && sa->narg > n) {
|
|
/* Expand the size of arguments copied from the stack */
|
|
|
|
for (i = sa->narg; i >= n; i--)
|
|
sa->args[i] = ((uint32_t *)(&sa->args[n]))[i-n];
|
|
}
|
|
#endif
|
|
|
|
if (error == 0) {
|
|
td->td_retval[0] = 0;
|
|
td->td_retval[1] = frame->fixreg[FIRSTARG + 1];
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
#include "../../kern/subr_syscall.c"
|
|
|
|
void
|
|
syscall(struct trapframe *frame)
|
|
{
|
|
struct thread *td;
|
|
struct syscall_args sa;
|
|
int error;
|
|
|
|
td = curthread;
|
|
td->td_frame = frame;
|
|
|
|
#ifdef __powerpc64__
|
|
/*
|
|
* Speculatively restore last user SLB segment, which we know is
|
|
* invalid already, since we are likely to do copyin()/copyout().
|
|
*/
|
|
__asm __volatile ("slbmte %0, %1; isync" ::
|
|
"r"(td->td_pcb->pcb_cpu.aim.usr_vsid), "r"(USER_SLB_SLBE));
|
|
#endif
|
|
|
|
error = syscallenter(td, &sa);
|
|
syscallret(td, error, &sa);
|
|
}
|
|
|
|
#ifdef __powerpc64__
|
|
/* Handle kernel SLB faults -- runs in real mode, all seat belts off */
|
|
void
|
|
handle_kernel_slb_spill(int type, register_t dar, register_t srr0)
|
|
{
|
|
struct slb *slbcache;
|
|
uint64_t slbe, slbv;
|
|
uint64_t esid, addr;
|
|
int i;
|
|
|
|
addr = (type == EXC_ISE) ? srr0 : dar;
|
|
slbcache = PCPU_GET(slb);
|
|
esid = (uintptr_t)addr >> ADDR_SR_SHFT;
|
|
slbe = (esid << SLBE_ESID_SHIFT) | SLBE_VALID;
|
|
|
|
/* See if the hardware flushed this somehow (can happen in LPARs) */
|
|
for (i = 0; i < n_slbs; i++)
|
|
if (slbcache[i].slbe == (slbe | (uint64_t)i))
|
|
return;
|
|
|
|
/* Not in the map, needs to actually be added */
|
|
slbv = kernel_va_to_slbv(addr);
|
|
if (slbcache[USER_SLB_SLOT].slbe == 0) {
|
|
for (i = 0; i < n_slbs; i++) {
|
|
if (i == USER_SLB_SLOT)
|
|
continue;
|
|
if (!(slbcache[i].slbe & SLBE_VALID))
|
|
goto fillkernslb;
|
|
}
|
|
|
|
if (i == n_slbs)
|
|
slbcache[USER_SLB_SLOT].slbe = 1;
|
|
}
|
|
|
|
/* Sacrifice a random SLB entry that is not the user entry */
|
|
i = mftb() % n_slbs;
|
|
if (i == USER_SLB_SLOT)
|
|
i = (i+1) % n_slbs;
|
|
|
|
fillkernslb:
|
|
/* Write new entry */
|
|
slbcache[i].slbv = slbv;
|
|
slbcache[i].slbe = slbe | (uint64_t)i;
|
|
|
|
/* Trap handler will restore from cache on exit */
|
|
}
|
|
|
|
static int
|
|
handle_user_slb_spill(pmap_t pm, vm_offset_t addr)
|
|
{
|
|
struct slb *user_entry;
|
|
uint64_t esid;
|
|
int i;
|
|
|
|
esid = (uintptr_t)addr >> ADDR_SR_SHFT;
|
|
|
|
PMAP_LOCK(pm);
|
|
user_entry = user_va_to_slb_entry(pm, addr);
|
|
|
|
if (user_entry == NULL) {
|
|
/* allocate_vsid auto-spills it */
|
|
(void)allocate_user_vsid(pm, esid, 0);
|
|
} else {
|
|
/*
|
|
* Check that another CPU has not already mapped this.
|
|
* XXX: Per-thread SLB caches would be better.
|
|
*/
|
|
for (i = 0; i < pm->pm_slb_len; i++)
|
|
if (pm->pm_slb[i] == user_entry)
|
|
break;
|
|
|
|
if (i == pm->pm_slb_len)
|
|
slb_insert_user(pm, user_entry);
|
|
}
|
|
PMAP_UNLOCK(pm);
|
|
|
|
return (0);
|
|
}
|
|
#endif
|
|
|
|
static int
|
|
trap_pfault(struct trapframe *frame, int user)
|
|
{
|
|
vm_offset_t eva, va;
|
|
struct thread *td;
|
|
struct proc *p;
|
|
vm_map_t map;
|
|
vm_prot_t ftype;
|
|
int rv;
|
|
register_t user_sr;
|
|
|
|
td = curthread;
|
|
p = td->td_proc;
|
|
if (frame->exc == EXC_ISI) {
|
|
eva = frame->srr0;
|
|
ftype = VM_PROT_EXECUTE;
|
|
if (frame->srr1 & SRR1_ISI_PFAULT)
|
|
ftype |= VM_PROT_READ;
|
|
} else {
|
|
eva = frame->cpu.aim.dar;
|
|
if (frame->cpu.aim.dsisr & DSISR_STORE)
|
|
ftype = VM_PROT_WRITE;
|
|
else
|
|
ftype = VM_PROT_READ;
|
|
}
|
|
|
|
if (user) {
|
|
map = &p->p_vmspace->vm_map;
|
|
} else {
|
|
if ((eva >> ADDR_SR_SHFT) == (USER_ADDR >> ADDR_SR_SHFT)) {
|
|
if (p->p_vmspace == NULL)
|
|
return (SIGSEGV);
|
|
|
|
map = &p->p_vmspace->vm_map;
|
|
|
|
user_sr = td->td_pcb->pcb_cpu.aim.usr_segm;
|
|
eva &= ADDR_PIDX | ADDR_POFF;
|
|
eva |= user_sr << ADDR_SR_SHFT;
|
|
} else {
|
|
map = kernel_map;
|
|
}
|
|
}
|
|
va = trunc_page(eva);
|
|
|
|
if (map != kernel_map) {
|
|
/*
|
|
* Keep swapout from messing with us during this
|
|
* critical time.
|
|
*/
|
|
PROC_LOCK(p);
|
|
++p->p_lock;
|
|
PROC_UNLOCK(p);
|
|
|
|
/* Fault in the user page: */
|
|
rv = vm_fault(map, va, ftype, VM_FAULT_NORMAL);
|
|
|
|
PROC_LOCK(p);
|
|
--p->p_lock;
|
|
PROC_UNLOCK(p);
|
|
/*
|
|
* XXXDTRACE: add dtrace_doubletrap_func here?
|
|
*/
|
|
} else {
|
|
/*
|
|
* Don't have to worry about process locking or stacks in the
|
|
* kernel.
|
|
*/
|
|
rv = vm_fault(map, va, ftype, VM_FAULT_NORMAL);
|
|
}
|
|
|
|
if (rv == KERN_SUCCESS)
|
|
return (0);
|
|
|
|
if (!user && handle_onfault(frame))
|
|
return (0);
|
|
|
|
return (SIGSEGV);
|
|
}
|
|
|
|
/*
|
|
* For now, this only deals with the particular unaligned access case
|
|
* that gcc tends to generate. Eventually it should handle all of the
|
|
* possibilities that can happen on a 32-bit PowerPC in big-endian mode.
|
|
*/
|
|
|
|
static int
|
|
fix_unaligned(struct thread *td, struct trapframe *frame)
|
|
{
|
|
struct thread *fputhread;
|
|
int indicator, reg;
|
|
double *fpr;
|
|
|
|
indicator = EXC_ALI_OPCODE_INDICATOR(frame->cpu.aim.dsisr);
|
|
|
|
switch (indicator) {
|
|
case EXC_ALI_LFD:
|
|
case EXC_ALI_STFD:
|
|
reg = EXC_ALI_RST(frame->cpu.aim.dsisr);
|
|
fpr = &td->td_pcb->pcb_fpu.fpr[reg];
|
|
fputhread = PCPU_GET(fputhread);
|
|
|
|
/* Juggle the FPU to ensure that we've initialized
|
|
* the FPRs, and that their current state is in
|
|
* the PCB.
|
|
*/
|
|
if (fputhread != td) {
|
|
if (fputhread)
|
|
save_fpu(fputhread);
|
|
enable_fpu(td);
|
|
}
|
|
save_fpu(td);
|
|
|
|
if (indicator == EXC_ALI_LFD) {
|
|
if (copyin((void *)frame->cpu.aim.dar, fpr,
|
|
sizeof(double)) != 0)
|
|
return -1;
|
|
enable_fpu(td);
|
|
} else {
|
|
if (copyout(fpr, (void *)frame->cpu.aim.dar,
|
|
sizeof(double)) != 0)
|
|
return -1;
|
|
}
|
|
return 0;
|
|
break;
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|