2020-09-01 21:57:33 +00:00

8491 lines
225 KiB
C

/*
* Copyright (c) 2017-2018 Cavium, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* File: qlnx_os.c
* Author : David C Somayajulu, Cavium, Inc., San Jose, CA 95131.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "qlnx_os.h"
#include "bcm_osal.h"
#include "reg_addr.h"
#include "ecore_gtt_reg_addr.h"
#include "ecore.h"
#include "ecore_chain.h"
#include "ecore_status.h"
#include "ecore_hw.h"
#include "ecore_rt_defs.h"
#include "ecore_init_ops.h"
#include "ecore_int.h"
#include "ecore_cxt.h"
#include "ecore_spq.h"
#include "ecore_init_fw_funcs.h"
#include "ecore_sp_commands.h"
#include "ecore_dev_api.h"
#include "ecore_l2_api.h"
#include "ecore_mcp.h"
#include "ecore_hw_defs.h"
#include "mcp_public.h"
#include "ecore_iro.h"
#include "nvm_cfg.h"
#include "ecore_dev_api.h"
#include "ecore_dbg_fw_funcs.h"
#include "ecore_iov_api.h"
#include "ecore_vf_api.h"
#include "qlnx_ioctl.h"
#include "qlnx_def.h"
#include "qlnx_ver.h"
#ifdef QLNX_ENABLE_IWARP
#include "qlnx_rdma.h"
#endif /* #ifdef QLNX_ENABLE_IWARP */
#include <sys/smp.h>
/*
* static functions
*/
/*
* ioctl related functions
*/
static void qlnx_add_sysctls(qlnx_host_t *ha);
/*
* main driver
*/
static void qlnx_release(qlnx_host_t *ha);
static void qlnx_fp_isr(void *arg);
static void qlnx_init_ifnet(device_t dev, qlnx_host_t *ha);
static void qlnx_init(void *arg);
static void qlnx_init_locked(qlnx_host_t *ha);
static int qlnx_set_multi(qlnx_host_t *ha, uint32_t add_multi);
static int qlnx_set_promisc(qlnx_host_t *ha);
static int qlnx_set_allmulti(qlnx_host_t *ha);
static int qlnx_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data);
static int qlnx_media_change(struct ifnet *ifp);
static void qlnx_media_status(struct ifnet *ifp, struct ifmediareq *ifmr);
static void qlnx_stop(qlnx_host_t *ha);
static int qlnx_send(qlnx_host_t *ha, struct qlnx_fastpath *fp,
struct mbuf **m_headp);
static int qlnx_get_ifq_snd_maxlen(qlnx_host_t *ha);
static uint32_t qlnx_get_optics(qlnx_host_t *ha,
struct qlnx_link_output *if_link);
static int qlnx_transmit(struct ifnet *ifp, struct mbuf *mp);
static int qlnx_transmit_locked(struct ifnet *ifp, struct qlnx_fastpath *fp,
struct mbuf *mp);
static void qlnx_qflush(struct ifnet *ifp);
static int qlnx_alloc_parent_dma_tag(qlnx_host_t *ha);
static void qlnx_free_parent_dma_tag(qlnx_host_t *ha);
static int qlnx_alloc_tx_dma_tag(qlnx_host_t *ha);
static void qlnx_free_tx_dma_tag(qlnx_host_t *ha);
static int qlnx_alloc_rx_dma_tag(qlnx_host_t *ha);
static void qlnx_free_rx_dma_tag(qlnx_host_t *ha);
static int qlnx_get_mfw_version(qlnx_host_t *ha, uint32_t *mfw_ver);
static int qlnx_get_flash_size(qlnx_host_t *ha, uint32_t *flash_size);
static int qlnx_nic_setup(struct ecore_dev *cdev,
struct ecore_pf_params *func_params);
static int qlnx_nic_start(struct ecore_dev *cdev);
static int qlnx_slowpath_start(qlnx_host_t *ha);
static int qlnx_slowpath_stop(qlnx_host_t *ha);
static int qlnx_init_hw(qlnx_host_t *ha);
static void qlnx_set_id(struct ecore_dev *cdev, char name[NAME_SIZE],
char ver_str[VER_SIZE]);
static void qlnx_unload(qlnx_host_t *ha);
static int qlnx_load(qlnx_host_t *ha);
static void qlnx_hw_set_multi(qlnx_host_t *ha, uint8_t *mta, uint32_t mcnt,
uint32_t add_mac);
static void qlnx_dump_buf8(qlnx_host_t *ha, const char *msg, void *dbuf,
uint32_t len);
static int qlnx_alloc_rx_buffer(qlnx_host_t *ha, struct qlnx_rx_queue *rxq);
static void qlnx_reuse_rx_data(struct qlnx_rx_queue *rxq);
static void qlnx_update_rx_prod(struct ecore_hwfn *p_hwfn,
struct qlnx_rx_queue *rxq);
static int qlnx_set_rx_accept_filter(qlnx_host_t *ha, uint8_t filter);
static int qlnx_grc_dumpsize(qlnx_host_t *ha, uint32_t *num_dwords,
int hwfn_index);
static int qlnx_idle_chk_size(qlnx_host_t *ha, uint32_t *num_dwords,
int hwfn_index);
static void qlnx_timer(void *arg);
static int qlnx_alloc_tx_br(qlnx_host_t *ha, struct qlnx_fastpath *fp);
static void qlnx_free_tx_br(qlnx_host_t *ha, struct qlnx_fastpath *fp);
static void qlnx_trigger_dump(qlnx_host_t *ha);
static uint16_t qlnx_num_tx_compl(qlnx_host_t *ha, struct qlnx_fastpath *fp,
struct qlnx_tx_queue *txq);
static void qlnx_tx_int(qlnx_host_t *ha, struct qlnx_fastpath *fp,
struct qlnx_tx_queue *txq);
static int qlnx_rx_int(qlnx_host_t *ha, struct qlnx_fastpath *fp, int budget,
int lro_enable);
static void qlnx_fp_taskqueue(void *context, int pending);
static void qlnx_sample_storm_stats(qlnx_host_t *ha);
static int qlnx_alloc_tpa_mbuf(qlnx_host_t *ha, uint16_t rx_buf_size,
struct qlnx_agg_info *tpa);
static void qlnx_free_tpa_mbuf(qlnx_host_t *ha, struct qlnx_agg_info *tpa);
#if __FreeBSD_version >= 1100000
static uint64_t qlnx_get_counter(if_t ifp, ift_counter cnt);
#endif
/*
* Hooks to the Operating Systems
*/
static int qlnx_pci_probe (device_t);
static int qlnx_pci_attach (device_t);
static int qlnx_pci_detach (device_t);
#ifndef QLNX_VF
#ifdef CONFIG_ECORE_SRIOV
static int qlnx_iov_init(device_t dev, uint16_t num_vfs, const nvlist_t *params);
static void qlnx_iov_uninit(device_t dev);
static int qlnx_iov_add_vf(device_t dev, uint16_t vfnum, const nvlist_t *params);
static void qlnx_initialize_sriov(qlnx_host_t *ha);
static void qlnx_pf_taskqueue(void *context, int pending);
static int qlnx_create_pf_taskqueues(qlnx_host_t *ha);
static void qlnx_destroy_pf_taskqueues(qlnx_host_t *ha);
static void qlnx_inform_vf_link_state(struct ecore_hwfn *p_hwfn, qlnx_host_t *ha);
#endif /* #ifdef CONFIG_ECORE_SRIOV */
static device_method_t qlnx_pci_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, qlnx_pci_probe),
DEVMETHOD(device_attach, qlnx_pci_attach),
DEVMETHOD(device_detach, qlnx_pci_detach),
#ifdef CONFIG_ECORE_SRIOV
DEVMETHOD(pci_iov_init, qlnx_iov_init),
DEVMETHOD(pci_iov_uninit, qlnx_iov_uninit),
DEVMETHOD(pci_iov_add_vf, qlnx_iov_add_vf),
#endif /* #ifdef CONFIG_ECORE_SRIOV */
{ 0, 0 }
};
static driver_t qlnx_pci_driver = {
"ql", qlnx_pci_methods, sizeof (qlnx_host_t),
};
static devclass_t qlnx_devclass;
MODULE_VERSION(if_qlnxe,1);
DRIVER_MODULE(if_qlnxe, pci, qlnx_pci_driver, qlnx_devclass, 0, 0);
MODULE_DEPEND(if_qlnxe, pci, 1, 1, 1);
MODULE_DEPEND(if_qlnxe, ether, 1, 1, 1);
#else
static device_method_t qlnxv_pci_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, qlnx_pci_probe),
DEVMETHOD(device_attach, qlnx_pci_attach),
DEVMETHOD(device_detach, qlnx_pci_detach),
{ 0, 0 }
};
static driver_t qlnxv_pci_driver = {
"ql", qlnxv_pci_methods, sizeof (qlnx_host_t),
};
static devclass_t qlnxv_devclass;
MODULE_VERSION(if_qlnxev,1);
DRIVER_MODULE(if_qlnxev, pci, qlnxv_pci_driver, qlnxv_devclass, 0, 0);
MODULE_DEPEND(if_qlnxev, pci, 1, 1, 1);
MODULE_DEPEND(if_qlnxev, ether, 1, 1, 1);
#endif /* #ifdef QLNX_VF */
MALLOC_DEFINE(M_QLNXBUF, "qlnxbuf", "Buffers for qlnx driver");
char qlnx_dev_str[128];
char qlnx_ver_str[VER_SIZE];
char qlnx_name_str[NAME_SIZE];
/*
* Some PCI Configuration Space Related Defines
*/
#ifndef PCI_VENDOR_QLOGIC
#define PCI_VENDOR_QLOGIC 0x1077
#endif
/* 40G Adapter QLE45xxx*/
#ifndef QLOGIC_PCI_DEVICE_ID_1634
#define QLOGIC_PCI_DEVICE_ID_1634 0x1634
#endif
/* 100G Adapter QLE45xxx*/
#ifndef QLOGIC_PCI_DEVICE_ID_1644
#define QLOGIC_PCI_DEVICE_ID_1644 0x1644
#endif
/* 25G Adapter QLE45xxx*/
#ifndef QLOGIC_PCI_DEVICE_ID_1656
#define QLOGIC_PCI_DEVICE_ID_1656 0x1656
#endif
/* 50G Adapter QLE45xxx*/
#ifndef QLOGIC_PCI_DEVICE_ID_1654
#define QLOGIC_PCI_DEVICE_ID_1654 0x1654
#endif
/* 10G/25G/40G Adapter QLE41xxx*/
#ifndef QLOGIC_PCI_DEVICE_ID_8070
#define QLOGIC_PCI_DEVICE_ID_8070 0x8070
#endif
/* SRIOV Device (All Speeds) Adapter QLE41xxx*/
#ifndef QLOGIC_PCI_DEVICE_ID_8090
#define QLOGIC_PCI_DEVICE_ID_8090 0x8090
#endif
SYSCTL_NODE(_hw, OID_AUTO, qlnxe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
"qlnxe driver parameters");
/* Number of Queues: 0 (Auto) or 1 to 32 (fixed queue number) */
static int qlnxe_queue_count = QLNX_DEFAULT_RSS;
#if __FreeBSD_version < 1100000
TUNABLE_INT("hw.qlnxe.queue_count", &qlnxe_queue_count);
#endif
SYSCTL_INT(_hw_qlnxe, OID_AUTO, queue_count, CTLFLAG_RDTUN,
&qlnxe_queue_count, 0, "Multi-Queue queue count");
/*
* Note on RDMA personality setting
*
* Read the personality configured in NVRAM
* If the personality is ETH_ONLY, ETH_IWARP or ETH_ROCE and
* the configured personality in sysctl is QLNX_PERSONALITY_DEFAULT
* use the personality in NVRAM.
* Otherwise use t the personality configured in sysctl.
*
*/
#define QLNX_PERSONALITY_DEFAULT 0x0 /* use personality in NVRAM */
#define QLNX_PERSONALITY_ETH_ONLY 0x1 /* Override with ETH_ONLY */
#define QLNX_PERSONALITY_ETH_IWARP 0x2 /* Override with ETH_IWARP */
#define QLNX_PERSONALITY_ETH_ROCE 0x3 /* Override with ETH_ROCE */
#define QLNX_PERSONALITY_BITS_PER_FUNC 4
#define QLNX_PERSONALIY_MASK 0xF
/* RDMA configuration; 64bit field allows setting for 16 physical functions*/
static uint64_t qlnxe_rdma_configuration = 0x22222222;
#if __FreeBSD_version < 1100000
TUNABLE_QUAD("hw.qlnxe.rdma_configuration", &qlnxe_rdma_configuration);
SYSCTL_UQUAD(_hw_qlnxe, OID_AUTO, rdma_configuration, CTLFLAG_RDTUN,
&qlnxe_rdma_configuration, 0, "RDMA Configuration");
#else
SYSCTL_U64(_hw_qlnxe, OID_AUTO, rdma_configuration, CTLFLAG_RDTUN,
&qlnxe_rdma_configuration, 0, "RDMA Configuration");
#endif /* #if __FreeBSD_version < 1100000 */
int
qlnx_vf_device(qlnx_host_t *ha)
{
uint16_t device_id;
device_id = ha->device_id;
if (device_id == QLOGIC_PCI_DEVICE_ID_8090)
return 0;
return -1;
}
static int
qlnx_valid_device(qlnx_host_t *ha)
{
uint16_t device_id;
device_id = ha->device_id;
#ifndef QLNX_VF
if ((device_id == QLOGIC_PCI_DEVICE_ID_1634) ||
(device_id == QLOGIC_PCI_DEVICE_ID_1644) ||
(device_id == QLOGIC_PCI_DEVICE_ID_1656) ||
(device_id == QLOGIC_PCI_DEVICE_ID_1654) ||
(device_id == QLOGIC_PCI_DEVICE_ID_8070))
return 0;
#else
if (device_id == QLOGIC_PCI_DEVICE_ID_8090)
return 0;
#endif /* #ifndef QLNX_VF */
return -1;
}
#ifdef QLNX_ENABLE_IWARP
static int
qlnx_rdma_supported(struct qlnx_host *ha)
{
uint16_t device_id;
device_id = pci_get_device(ha->pci_dev);
if ((device_id == QLOGIC_PCI_DEVICE_ID_1634) ||
(device_id == QLOGIC_PCI_DEVICE_ID_1656) ||
(device_id == QLOGIC_PCI_DEVICE_ID_1654) ||
(device_id == QLOGIC_PCI_DEVICE_ID_8070))
return (0);
return (-1);
}
#endif /* #ifdef QLNX_ENABLE_IWARP */
/*
* Name: qlnx_pci_probe
* Function: Validate the PCI device to be a QLA80XX device
*/
static int
qlnx_pci_probe(device_t dev)
{
snprintf(qlnx_ver_str, sizeof(qlnx_ver_str), "v%d.%d.%d",
QLNX_VERSION_MAJOR, QLNX_VERSION_MINOR, QLNX_VERSION_BUILD);
snprintf(qlnx_name_str, sizeof(qlnx_name_str), "qlnx");
if (pci_get_vendor(dev) != PCI_VENDOR_QLOGIC) {
return (ENXIO);
}
switch (pci_get_device(dev)) {
#ifndef QLNX_VF
case QLOGIC_PCI_DEVICE_ID_1644:
snprintf(qlnx_dev_str, sizeof(qlnx_dev_str), "%s v%d.%d.%d",
"Qlogic 100GbE PCI CNA Adapter-Ethernet Function",
QLNX_VERSION_MAJOR, QLNX_VERSION_MINOR,
QLNX_VERSION_BUILD);
device_set_desc_copy(dev, qlnx_dev_str);
break;
case QLOGIC_PCI_DEVICE_ID_1634:
snprintf(qlnx_dev_str, sizeof(qlnx_dev_str), "%s v%d.%d.%d",
"Qlogic 40GbE PCI CNA Adapter-Ethernet Function",
QLNX_VERSION_MAJOR, QLNX_VERSION_MINOR,
QLNX_VERSION_BUILD);
device_set_desc_copy(dev, qlnx_dev_str);
break;
case QLOGIC_PCI_DEVICE_ID_1656:
snprintf(qlnx_dev_str, sizeof(qlnx_dev_str), "%s v%d.%d.%d",
"Qlogic 25GbE PCI CNA Adapter-Ethernet Function",
QLNX_VERSION_MAJOR, QLNX_VERSION_MINOR,
QLNX_VERSION_BUILD);
device_set_desc_copy(dev, qlnx_dev_str);
break;
case QLOGIC_PCI_DEVICE_ID_1654:
snprintf(qlnx_dev_str, sizeof(qlnx_dev_str), "%s v%d.%d.%d",
"Qlogic 50GbE PCI CNA Adapter-Ethernet Function",
QLNX_VERSION_MAJOR, QLNX_VERSION_MINOR,
QLNX_VERSION_BUILD);
device_set_desc_copy(dev, qlnx_dev_str);
break;
case QLOGIC_PCI_DEVICE_ID_8070:
snprintf(qlnx_dev_str, sizeof(qlnx_dev_str), "%s v%d.%d.%d",
"Qlogic 10GbE/25GbE/40GbE PCI CNA (AH)"
" Adapter-Ethernet Function",
QLNX_VERSION_MAJOR, QLNX_VERSION_MINOR,
QLNX_VERSION_BUILD);
device_set_desc_copy(dev, qlnx_dev_str);
break;
#else
case QLOGIC_PCI_DEVICE_ID_8090:
snprintf(qlnx_dev_str, sizeof(qlnx_dev_str), "%s v%d.%d.%d",
"Qlogic SRIOV PCI CNA (AH) "
"Adapter-Ethernet Function",
QLNX_VERSION_MAJOR, QLNX_VERSION_MINOR,
QLNX_VERSION_BUILD);
device_set_desc_copy(dev, qlnx_dev_str);
break;
#endif /* #ifndef QLNX_VF */
default:
return (ENXIO);
}
#ifdef QLNX_ENABLE_IWARP
qlnx_rdma_init();
#endif /* #ifdef QLNX_ENABLE_IWARP */
return (BUS_PROBE_DEFAULT);
}
static uint16_t
qlnx_num_tx_compl(qlnx_host_t *ha, struct qlnx_fastpath *fp,
struct qlnx_tx_queue *txq)
{
u16 hw_bd_cons;
u16 ecore_cons_idx;
uint16_t diff;
hw_bd_cons = le16toh(*txq->hw_cons_ptr);
ecore_cons_idx = ecore_chain_get_cons_idx(&txq->tx_pbl);
if (hw_bd_cons < ecore_cons_idx) {
diff = (1 << 16) - (ecore_cons_idx - hw_bd_cons);
} else {
diff = hw_bd_cons - ecore_cons_idx;
}
return diff;
}
static void
qlnx_sp_intr(void *arg)
{
struct ecore_hwfn *p_hwfn;
qlnx_host_t *ha;
int i;
p_hwfn = arg;
if (p_hwfn == NULL) {
printf("%s: spurious slowpath intr\n", __func__);
return;
}
ha = (qlnx_host_t *)p_hwfn->p_dev;
QL_DPRINT2(ha, "enter\n");
for (i = 0; i < ha->cdev.num_hwfns; i++) {
if (&ha->cdev.hwfns[i] == p_hwfn) {
taskqueue_enqueue(ha->sp_taskqueue[i], &ha->sp_task[i]);
break;
}
}
QL_DPRINT2(ha, "exit\n");
return;
}
static void
qlnx_sp_taskqueue(void *context, int pending)
{
struct ecore_hwfn *p_hwfn;
p_hwfn = context;
if (p_hwfn != NULL) {
qlnx_sp_isr(p_hwfn);
}
return;
}
static int
qlnx_create_sp_taskqueues(qlnx_host_t *ha)
{
int i;
uint8_t tq_name[32];
for (i = 0; i < ha->cdev.num_hwfns; i++) {
struct ecore_hwfn *p_hwfn = &ha->cdev.hwfns[i];
bzero(tq_name, sizeof (tq_name));
snprintf(tq_name, sizeof (tq_name), "ql_sp_tq_%d", i);
TASK_INIT(&ha->sp_task[i], 0, qlnx_sp_taskqueue, p_hwfn);
ha->sp_taskqueue[i] = taskqueue_create(tq_name, M_NOWAIT,
taskqueue_thread_enqueue, &ha->sp_taskqueue[i]);
if (ha->sp_taskqueue[i] == NULL)
return (-1);
taskqueue_start_threads(&ha->sp_taskqueue[i], 1, PI_NET, "%s",
tq_name);
QL_DPRINT1(ha, "%p\n", ha->sp_taskqueue[i]);
}
return (0);
}
static void
qlnx_destroy_sp_taskqueues(qlnx_host_t *ha)
{
int i;
for (i = 0; i < ha->cdev.num_hwfns; i++) {
if (ha->sp_taskqueue[i] != NULL) {
taskqueue_drain(ha->sp_taskqueue[i], &ha->sp_task[i]);
taskqueue_free(ha->sp_taskqueue[i]);
}
}
return;
}
static void
qlnx_fp_taskqueue(void *context, int pending)
{
struct qlnx_fastpath *fp;
qlnx_host_t *ha;
struct ifnet *ifp;
fp = context;
if (fp == NULL)
return;
ha = (qlnx_host_t *)fp->edev;
ifp = ha->ifp;
if(ifp->if_drv_flags & IFF_DRV_RUNNING) {
if (!drbr_empty(ifp, fp->tx_br)) {
if(mtx_trylock(&fp->tx_mtx)) {
#ifdef QLNX_TRACE_PERF_DATA
tx_pkts = fp->tx_pkts_transmitted;
tx_compl = fp->tx_pkts_completed;
#endif
qlnx_transmit_locked(ifp, fp, NULL);
#ifdef QLNX_TRACE_PERF_DATA
fp->tx_pkts_trans_fp +=
(fp->tx_pkts_transmitted - tx_pkts);
fp->tx_pkts_compl_fp +=
(fp->tx_pkts_completed - tx_compl);
#endif
mtx_unlock(&fp->tx_mtx);
}
}
}
QL_DPRINT2(ha, "exit \n");
return;
}
static int
qlnx_create_fp_taskqueues(qlnx_host_t *ha)
{
int i;
uint8_t tq_name[32];
struct qlnx_fastpath *fp;
for (i = 0; i < ha->num_rss; i++) {
fp = &ha->fp_array[i];
bzero(tq_name, sizeof (tq_name));
snprintf(tq_name, sizeof (tq_name), "ql_fp_tq_%d", i);
TASK_INIT(&fp->fp_task, 0, qlnx_fp_taskqueue, fp);
fp->fp_taskqueue = taskqueue_create(tq_name, M_NOWAIT,
taskqueue_thread_enqueue,
&fp->fp_taskqueue);
if (fp->fp_taskqueue == NULL)
return (-1);
taskqueue_start_threads(&fp->fp_taskqueue, 1, PI_NET, "%s",
tq_name);
QL_DPRINT1(ha, "%p\n",fp->fp_taskqueue);
}
return (0);
}
static void
qlnx_destroy_fp_taskqueues(qlnx_host_t *ha)
{
int i;
struct qlnx_fastpath *fp;
for (i = 0; i < ha->num_rss; i++) {
fp = &ha->fp_array[i];
if (fp->fp_taskqueue != NULL) {
taskqueue_drain(fp->fp_taskqueue, &fp->fp_task);
taskqueue_free(fp->fp_taskqueue);
fp->fp_taskqueue = NULL;
}
}
return;
}
static void
qlnx_drain_fp_taskqueues(qlnx_host_t *ha)
{
int i;
struct qlnx_fastpath *fp;
for (i = 0; i < ha->num_rss; i++) {
fp = &ha->fp_array[i];
if (fp->fp_taskqueue != NULL) {
QLNX_UNLOCK(ha);
taskqueue_drain(fp->fp_taskqueue, &fp->fp_task);
QLNX_LOCK(ha);
}
}
return;
}
static void
qlnx_get_params(qlnx_host_t *ha)
{
if ((qlnxe_queue_count < 0) || (qlnxe_queue_count > QLNX_MAX_RSS)) {
device_printf(ha->pci_dev, "invalid queue_count value (%d)\n",
qlnxe_queue_count);
qlnxe_queue_count = 0;
}
return;
}
static void
qlnx_error_recovery_taskqueue(void *context, int pending)
{
qlnx_host_t *ha;
ha = context;
QL_DPRINT2(ha, "enter\n");
QLNX_LOCK(ha);
qlnx_stop(ha);
QLNX_UNLOCK(ha);
#ifdef QLNX_ENABLE_IWARP
qlnx_rdma_dev_remove(ha);
#endif /* #ifdef QLNX_ENABLE_IWARP */
qlnx_slowpath_stop(ha);
qlnx_slowpath_start(ha);
#ifdef QLNX_ENABLE_IWARP
qlnx_rdma_dev_add(ha);
#endif /* #ifdef QLNX_ENABLE_IWARP */
qlnx_init(ha);
callout_reset(&ha->qlnx_callout, hz, qlnx_timer, ha);
QL_DPRINT2(ha, "exit\n");
return;
}
static int
qlnx_create_error_recovery_taskqueue(qlnx_host_t *ha)
{
uint8_t tq_name[32];
bzero(tq_name, sizeof (tq_name));
snprintf(tq_name, sizeof (tq_name), "ql_err_tq");
TASK_INIT(&ha->err_task, 0, qlnx_error_recovery_taskqueue, ha);
ha->err_taskqueue = taskqueue_create(tq_name, M_NOWAIT,
taskqueue_thread_enqueue, &ha->err_taskqueue);
if (ha->err_taskqueue == NULL)
return (-1);
taskqueue_start_threads(&ha->err_taskqueue, 1, PI_NET, "%s", tq_name);
QL_DPRINT1(ha, "%p\n",ha->err_taskqueue);
return (0);
}
static void
qlnx_destroy_error_recovery_taskqueue(qlnx_host_t *ha)
{
if (ha->err_taskqueue != NULL) {
taskqueue_drain(ha->err_taskqueue, &ha->err_task);
taskqueue_free(ha->err_taskqueue);
}
ha->err_taskqueue = NULL;
return;
}
/*
* Name: qlnx_pci_attach
* Function: attaches the device to the operating system
*/
static int
qlnx_pci_attach(device_t dev)
{
qlnx_host_t *ha = NULL;
uint32_t rsrc_len_reg = 0;
uint32_t rsrc_len_dbells = 0;
uint32_t rsrc_len_msix = 0;
int i;
uint32_t mfw_ver;
uint32_t num_sp_msix = 0;
uint32_t num_rdma_irqs = 0;
if ((ha = device_get_softc(dev)) == NULL) {
device_printf(dev, "cannot get softc\n");
return (ENOMEM);
}
memset(ha, 0, sizeof (qlnx_host_t));
ha->device_id = pci_get_device(dev);
if (qlnx_valid_device(ha) != 0) {
device_printf(dev, "device is not valid device\n");
return (ENXIO);
}
ha->pci_func = pci_get_function(dev);
ha->pci_dev = dev;
mtx_init(&ha->hw_lock, "qlnx_hw_lock", MTX_NETWORK_LOCK, MTX_DEF);
ha->flags.lock_init = 1;
pci_enable_busmaster(dev);
/*
* map the PCI BARs
*/
ha->reg_rid = PCIR_BAR(0);
ha->pci_reg = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &ha->reg_rid,
RF_ACTIVE);
if (ha->pci_reg == NULL) {
device_printf(dev, "unable to map BAR0\n");
goto qlnx_pci_attach_err;
}
rsrc_len_reg = (uint32_t) bus_get_resource_count(dev, SYS_RES_MEMORY,
ha->reg_rid);
ha->dbells_rid = PCIR_BAR(2);
rsrc_len_dbells = (uint32_t) bus_get_resource_count(dev,
SYS_RES_MEMORY,
ha->dbells_rid);
if (rsrc_len_dbells) {
ha->pci_dbells = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
&ha->dbells_rid, RF_ACTIVE);
if (ha->pci_dbells == NULL) {
device_printf(dev, "unable to map BAR1\n");
goto qlnx_pci_attach_err;
}
ha->dbells_phys_addr = (uint64_t)
bus_get_resource_start(dev, SYS_RES_MEMORY, ha->dbells_rid);
ha->dbells_size = rsrc_len_dbells;
} else {
if (qlnx_vf_device(ha) != 0) {
device_printf(dev, " BAR1 size is zero\n");
goto qlnx_pci_attach_err;
}
}
ha->msix_rid = PCIR_BAR(4);
ha->msix_bar = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
&ha->msix_rid, RF_ACTIVE);
if (ha->msix_bar == NULL) {
device_printf(dev, "unable to map BAR2\n");
goto qlnx_pci_attach_err;
}
rsrc_len_msix = (uint32_t) bus_get_resource_count(dev, SYS_RES_MEMORY,
ha->msix_rid);
ha->dbg_level = 0x0000;
QL_DPRINT1(ha, "\n\t\t\t"
"pci_dev = %p pci_reg = %p, reg_len = 0x%08x reg_rid = 0x%08x"
"\n\t\t\tdbells = %p, dbells_len = 0x%08x dbells_rid = 0x%08x"
"\n\t\t\tmsix = %p, msix_len = 0x%08x msix_rid = 0x%08x"
" msix_avail = 0x%x "
"\n\t\t\t[ncpus = %d]\n",
ha->pci_dev, ha->pci_reg, rsrc_len_reg,
ha->reg_rid, ha->pci_dbells, rsrc_len_dbells, ha->dbells_rid,
ha->msix_bar, rsrc_len_msix, ha->msix_rid, pci_msix_count(dev),
mp_ncpus);
/*
* allocate dma tags
*/
if (qlnx_alloc_parent_dma_tag(ha))
goto qlnx_pci_attach_err;
if (qlnx_alloc_tx_dma_tag(ha))
goto qlnx_pci_attach_err;
if (qlnx_alloc_rx_dma_tag(ha))
goto qlnx_pci_attach_err;
if (qlnx_init_hw(ha) != 0)
goto qlnx_pci_attach_err;
ha->flags.hw_init = 1;
qlnx_get_params(ha);
if((pci_get_device(dev) == QLOGIC_PCI_DEVICE_ID_1644) &&
(qlnxe_queue_count == QLNX_DEFAULT_RSS)) {
qlnxe_queue_count = QLNX_MAX_RSS;
}
/*
* Allocate MSI-x vectors
*/
if (qlnx_vf_device(ha) != 0) {
if (qlnxe_queue_count == 0)
ha->num_rss = QLNX_DEFAULT_RSS;
else
ha->num_rss = qlnxe_queue_count;
num_sp_msix = ha->cdev.num_hwfns;
} else {
uint8_t max_rxq;
uint8_t max_txq;
ecore_vf_get_num_rxqs(&ha->cdev.hwfns[0], &max_rxq);
ecore_vf_get_num_rxqs(&ha->cdev.hwfns[0], &max_txq);
if (max_rxq < max_txq)
ha->num_rss = max_rxq;
else
ha->num_rss = max_txq;
if (ha->num_rss > QLNX_MAX_VF_RSS)
ha->num_rss = QLNX_MAX_VF_RSS;
num_sp_msix = 0;
}
if (ha->num_rss > mp_ncpus)
ha->num_rss = mp_ncpus;
ha->num_tc = QLNX_MAX_TC;
ha->msix_count = pci_msix_count(dev);
#ifdef QLNX_ENABLE_IWARP
num_rdma_irqs = qlnx_rdma_get_num_irqs(ha);
#endif /* #ifdef QLNX_ENABLE_IWARP */
if (!ha->msix_count ||
(ha->msix_count < (num_sp_msix + 1 + num_rdma_irqs))) {
device_printf(dev, "%s: msix_count[%d] not enough\n", __func__,
ha->msix_count);
goto qlnx_pci_attach_err;
}
if (ha->msix_count > (ha->num_rss + num_sp_msix + num_rdma_irqs))
ha->msix_count = ha->num_rss + num_sp_msix + num_rdma_irqs;
else
ha->num_rss = ha->msix_count - (num_sp_msix + num_rdma_irqs);
QL_DPRINT1(ha, "\n\t\t\t"
"pci_reg = %p, reg_len = 0x%08x reg_rid = 0x%08x"
"\n\t\t\tdbells = %p, dbells_len = 0x%08x dbells_rid = 0x%08x"
"\n\t\t\tmsix = %p, msix_len = 0x%08x msix_rid = 0x%08x"
" msix_avail = 0x%x msix_alloc = 0x%x"
"\n\t\t\t[ncpus = %d][num_rss = 0x%x] [num_tc = 0x%x]\n",
ha->pci_reg, rsrc_len_reg,
ha->reg_rid, ha->pci_dbells, rsrc_len_dbells, ha->dbells_rid,
ha->msix_bar, rsrc_len_msix, ha->msix_rid, pci_msix_count(dev),
ha->msix_count, mp_ncpus, ha->num_rss, ha->num_tc);
if (pci_alloc_msix(dev, &ha->msix_count)) {
device_printf(dev, "%s: pci_alloc_msix[%d] failed\n", __func__,
ha->msix_count);
ha->msix_count = 0;
goto qlnx_pci_attach_err;
}
/*
* Initialize slow path interrupt and task queue
*/
if (num_sp_msix) {
if (qlnx_create_sp_taskqueues(ha) != 0)
goto qlnx_pci_attach_err;
for (i = 0; i < ha->cdev.num_hwfns; i++) {
struct ecore_hwfn *p_hwfn = &ha->cdev.hwfns[i];
ha->sp_irq_rid[i] = i + 1;
ha->sp_irq[i] = bus_alloc_resource_any(dev, SYS_RES_IRQ,
&ha->sp_irq_rid[i],
(RF_ACTIVE | RF_SHAREABLE));
if (ha->sp_irq[i] == NULL) {
device_printf(dev,
"could not allocate mbx interrupt\n");
goto qlnx_pci_attach_err;
}
if (bus_setup_intr(dev, ha->sp_irq[i],
(INTR_TYPE_NET | INTR_MPSAFE), NULL,
qlnx_sp_intr, p_hwfn, &ha->sp_handle[i])) {
device_printf(dev,
"could not setup slow path interrupt\n");
goto qlnx_pci_attach_err;
}
QL_DPRINT1(ha, "p_hwfn [%p] sp_irq_rid %d"
" sp_irq %p sp_handle %p\n", p_hwfn,
ha->sp_irq_rid[i], ha->sp_irq[i], ha->sp_handle[i]);
}
}
/*
* initialize fast path interrupt
*/
if (qlnx_create_fp_taskqueues(ha) != 0)
goto qlnx_pci_attach_err;
for (i = 0; i < ha->num_rss; i++) {
ha->irq_vec[i].rss_idx = i;
ha->irq_vec[i].ha = ha;
ha->irq_vec[i].irq_rid = (1 + num_sp_msix) + i;
ha->irq_vec[i].irq = bus_alloc_resource_any(dev, SYS_RES_IRQ,
&ha->irq_vec[i].irq_rid,
(RF_ACTIVE | RF_SHAREABLE));
if (ha->irq_vec[i].irq == NULL) {
device_printf(dev,
"could not allocate interrupt[%d] irq_rid = %d\n",
i, ha->irq_vec[i].irq_rid);
goto qlnx_pci_attach_err;
}
if (qlnx_alloc_tx_br(ha, &ha->fp_array[i])) {
device_printf(dev, "could not allocate tx_br[%d]\n", i);
goto qlnx_pci_attach_err;
}
}
if (qlnx_vf_device(ha) != 0) {
callout_init(&ha->qlnx_callout, 1);
ha->flags.callout_init = 1;
for (i = 0; i < ha->cdev.num_hwfns; i++) {
if (qlnx_grc_dumpsize(ha, &ha->grcdump_size[i], i) != 0)
goto qlnx_pci_attach_err;
if (ha->grcdump_size[i] == 0)
goto qlnx_pci_attach_err;
ha->grcdump_size[i] = ha->grcdump_size[i] << 2;
QL_DPRINT1(ha, "grcdump_size[%d] = 0x%08x\n",
i, ha->grcdump_size[i]);
ha->grcdump[i] = qlnx_zalloc(ha->grcdump_size[i]);
if (ha->grcdump[i] == NULL) {
device_printf(dev, "grcdump alloc[%d] failed\n", i);
goto qlnx_pci_attach_err;
}
if (qlnx_idle_chk_size(ha, &ha->idle_chk_size[i], i) != 0)
goto qlnx_pci_attach_err;
if (ha->idle_chk_size[i] == 0)
goto qlnx_pci_attach_err;
ha->idle_chk_size[i] = ha->idle_chk_size[i] << 2;
QL_DPRINT1(ha, "idle_chk_size[%d] = 0x%08x\n",
i, ha->idle_chk_size[i]);
ha->idle_chk[i] = qlnx_zalloc(ha->idle_chk_size[i]);
if (ha->idle_chk[i] == NULL) {
device_printf(dev, "idle_chk alloc failed\n");
goto qlnx_pci_attach_err;
}
}
if (qlnx_create_error_recovery_taskqueue(ha) != 0)
goto qlnx_pci_attach_err;
}
if (qlnx_slowpath_start(ha) != 0)
goto qlnx_pci_attach_err;
else
ha->flags.slowpath_start = 1;
if (qlnx_vf_device(ha) != 0) {
if (qlnx_get_flash_size(ha, &ha->flash_size) != 0) {
qlnx_mdelay(__func__, 1000);
qlnx_trigger_dump(ha);
goto qlnx_pci_attach_err0;
}
if (qlnx_get_mfw_version(ha, &mfw_ver) != 0) {
qlnx_mdelay(__func__, 1000);
qlnx_trigger_dump(ha);
goto qlnx_pci_attach_err0;
}
} else {
struct ecore_hwfn *p_hwfn = &ha->cdev.hwfns[0];
ecore_mcp_get_mfw_ver(p_hwfn, NULL, &mfw_ver, NULL);
}
snprintf(ha->mfw_ver, sizeof(ha->mfw_ver), "%d.%d.%d.%d",
((mfw_ver >> 24) & 0xFF), ((mfw_ver >> 16) & 0xFF),
((mfw_ver >> 8) & 0xFF), (mfw_ver & 0xFF));
snprintf(ha->stormfw_ver, sizeof(ha->stormfw_ver), "%d.%d.%d.%d",
FW_MAJOR_VERSION, FW_MINOR_VERSION, FW_REVISION_VERSION,
FW_ENGINEERING_VERSION);
QL_DPRINT1(ha, "STORM_FW version %s MFW version %s\n",
ha->stormfw_ver, ha->mfw_ver);
qlnx_init_ifnet(dev, ha);
/*
* add sysctls
*/
qlnx_add_sysctls(ha);
qlnx_pci_attach_err0:
/*
* create ioctl device interface
*/
if (qlnx_vf_device(ha) != 0) {
if (qlnx_make_cdev(ha)) {
device_printf(dev, "%s: ql_make_cdev failed\n", __func__);
goto qlnx_pci_attach_err;
}
#ifdef QLNX_ENABLE_IWARP
qlnx_rdma_dev_add(ha);
#endif /* #ifdef QLNX_ENABLE_IWARP */
}
#ifndef QLNX_VF
#ifdef CONFIG_ECORE_SRIOV
if (qlnx_vf_device(ha) != 0)
qlnx_initialize_sriov(ha);
#endif /* #ifdef CONFIG_ECORE_SRIOV */
#endif /* #ifdef QLNX_VF */
QL_DPRINT2(ha, "success\n");
return (0);
qlnx_pci_attach_err:
qlnx_release(ha);
return (ENXIO);
}
/*
* Name: qlnx_pci_detach
* Function: Unhooks the device from the operating system
*/
static int
qlnx_pci_detach(device_t dev)
{
qlnx_host_t *ha = NULL;
if ((ha = device_get_softc(dev)) == NULL) {
device_printf(dev, "%s: cannot get softc\n", __func__);
return (ENOMEM);
}
if (qlnx_vf_device(ha) != 0) {
#ifdef CONFIG_ECORE_SRIOV
int ret;
ret = pci_iov_detach(dev);
if (ret) {
device_printf(dev, "%s: SRIOV in use\n", __func__);
return (ret);
}
#endif /* #ifdef CONFIG_ECORE_SRIOV */
#ifdef QLNX_ENABLE_IWARP
if (qlnx_rdma_dev_remove(ha) != 0)
return (EBUSY);
#endif /* #ifdef QLNX_ENABLE_IWARP */
}
QLNX_LOCK(ha);
qlnx_stop(ha);
QLNX_UNLOCK(ha);
qlnx_release(ha);
return (0);
}
#ifdef QLNX_ENABLE_IWARP
static uint8_t
qlnx_get_personality(uint8_t pci_func)
{
uint8_t personality;
personality = (qlnxe_rdma_configuration >>
(pci_func * QLNX_PERSONALITY_BITS_PER_FUNC)) &
QLNX_PERSONALIY_MASK;
return (personality);
}
static void
qlnx_set_personality(qlnx_host_t *ha)
{
struct ecore_hwfn *p_hwfn;
uint8_t personality;
p_hwfn = &ha->cdev.hwfns[0];
personality = qlnx_get_personality(ha->pci_func);
switch (personality) {
case QLNX_PERSONALITY_DEFAULT:
device_printf(ha->pci_dev, "%s: DEFAULT\n",
__func__);
ha->personality = ECORE_PCI_DEFAULT;
break;
case QLNX_PERSONALITY_ETH_ONLY:
device_printf(ha->pci_dev, "%s: ETH_ONLY\n",
__func__);
ha->personality = ECORE_PCI_ETH;
break;
case QLNX_PERSONALITY_ETH_IWARP:
device_printf(ha->pci_dev, "%s: ETH_IWARP\n",
__func__);
ha->personality = ECORE_PCI_ETH_IWARP;
break;
case QLNX_PERSONALITY_ETH_ROCE:
device_printf(ha->pci_dev, "%s: ETH_ROCE\n",
__func__);
ha->personality = ECORE_PCI_ETH_ROCE;
break;
}
return;
}
#endif /* #ifdef QLNX_ENABLE_IWARP */
static int
qlnx_init_hw(qlnx_host_t *ha)
{
int rval = 0;
struct ecore_hw_prepare_params params;
ecore_init_struct(&ha->cdev);
/* ha->dp_module = ECORE_MSG_PROBE |
ECORE_MSG_INTR |
ECORE_MSG_SP |
ECORE_MSG_LINK |
ECORE_MSG_SPQ |
ECORE_MSG_RDMA;
ha->dp_level = ECORE_LEVEL_VERBOSE;*/
//ha->dp_module = ECORE_MSG_RDMA | ECORE_MSG_INTR | ECORE_MSG_LL2;
ha->dp_level = ECORE_LEVEL_NOTICE;
//ha->dp_level = ECORE_LEVEL_VERBOSE;
ecore_init_dp(&ha->cdev, ha->dp_module, ha->dp_level, ha->pci_dev);
ha->cdev.regview = ha->pci_reg;
ha->personality = ECORE_PCI_DEFAULT;
if (qlnx_vf_device(ha) == 0) {
ha->cdev.b_is_vf = true;
if (ha->pci_dbells != NULL) {
ha->cdev.doorbells = ha->pci_dbells;
ha->cdev.db_phys_addr = ha->dbells_phys_addr;
ha->cdev.db_size = ha->dbells_size;
} else {
ha->pci_dbells = ha->pci_reg;
}
} else {
ha->cdev.doorbells = ha->pci_dbells;
ha->cdev.db_phys_addr = ha->dbells_phys_addr;
ha->cdev.db_size = ha->dbells_size;
#ifdef QLNX_ENABLE_IWARP
if (qlnx_rdma_supported(ha) == 0)
qlnx_set_personality(ha);
#endif /* #ifdef QLNX_ENABLE_IWARP */
}
QL_DPRINT2(ha, "%s: %s\n", __func__,
(ha->personality == ECORE_PCI_ETH_IWARP ? "iwarp": "ethernet"));
bzero(&params, sizeof (struct ecore_hw_prepare_params));
params.personality = ha->personality;
params.drv_resc_alloc = false;
params.chk_reg_fifo = false;
params.initiate_pf_flr = true;
params.epoch = 0;
ecore_hw_prepare(&ha->cdev, &params);
qlnx_set_id(&ha->cdev, qlnx_name_str, qlnx_ver_str);
QL_DPRINT1(ha, "ha = %p cdev = %p p_hwfn = %p\n",
ha, &ha->cdev, &ha->cdev.hwfns[0]);
return (rval);
}
static void
qlnx_release(qlnx_host_t *ha)
{
device_t dev;
int i;
dev = ha->pci_dev;
QL_DPRINT2(ha, "enter\n");
for (i = 0; i < QLNX_MAX_HW_FUNCS; i++) {
if (ha->idle_chk[i] != NULL) {
free(ha->idle_chk[i], M_QLNXBUF);
ha->idle_chk[i] = NULL;
}
if (ha->grcdump[i] != NULL) {
free(ha->grcdump[i], M_QLNXBUF);
ha->grcdump[i] = NULL;
}
}
if (ha->flags.callout_init)
callout_drain(&ha->qlnx_callout);
if (ha->flags.slowpath_start) {
qlnx_slowpath_stop(ha);
}
if (ha->flags.hw_init)
ecore_hw_remove(&ha->cdev);
qlnx_del_cdev(ha);
if (ha->ifp != NULL)
ether_ifdetach(ha->ifp);
qlnx_free_tx_dma_tag(ha);
qlnx_free_rx_dma_tag(ha);
qlnx_free_parent_dma_tag(ha);
if (qlnx_vf_device(ha) != 0) {
qlnx_destroy_error_recovery_taskqueue(ha);
}
for (i = 0; i < ha->num_rss; i++) {
struct qlnx_fastpath *fp = &ha->fp_array[i];
if (ha->irq_vec[i].handle) {
(void)bus_teardown_intr(dev, ha->irq_vec[i].irq,
ha->irq_vec[i].handle);
}
if (ha->irq_vec[i].irq) {
(void)bus_release_resource(dev, SYS_RES_IRQ,
ha->irq_vec[i].irq_rid,
ha->irq_vec[i].irq);
}
qlnx_free_tx_br(ha, fp);
}
qlnx_destroy_fp_taskqueues(ha);
for (i = 0; i < ha->cdev.num_hwfns; i++) {
if (ha->sp_handle[i])
(void)bus_teardown_intr(dev, ha->sp_irq[i],
ha->sp_handle[i]);
if (ha->sp_irq[i])
(void) bus_release_resource(dev, SYS_RES_IRQ,
ha->sp_irq_rid[i], ha->sp_irq[i]);
}
qlnx_destroy_sp_taskqueues(ha);
if (ha->msix_count)
pci_release_msi(dev);
if (ha->flags.lock_init) {
mtx_destroy(&ha->hw_lock);
}
if (ha->pci_reg)
(void) bus_release_resource(dev, SYS_RES_MEMORY, ha->reg_rid,
ha->pci_reg);
if (ha->dbells_size && ha->pci_dbells)
(void) bus_release_resource(dev, SYS_RES_MEMORY, ha->dbells_rid,
ha->pci_dbells);
if (ha->msix_bar)
(void) bus_release_resource(dev, SYS_RES_MEMORY, ha->msix_rid,
ha->msix_bar);
QL_DPRINT2(ha, "exit\n");
return;
}
static void
qlnx_trigger_dump(qlnx_host_t *ha)
{
int i;
if (ha->ifp != NULL)
ha->ifp->if_drv_flags &= ~(IFF_DRV_OACTIVE | IFF_DRV_RUNNING);
QL_DPRINT2(ha, "enter\n");
if (qlnx_vf_device(ha) == 0)
return;
ha->error_recovery = 1;
for (i = 0; i < ha->cdev.num_hwfns; i++) {
qlnx_grc_dump(ha, &ha->grcdump_dwords[i], i);
qlnx_idle_chk(ha, &ha->idle_chk_dwords[i], i);
}
QL_DPRINT2(ha, "exit\n");
return;
}
static int
qlnx_trigger_dump_sysctl(SYSCTL_HANDLER_ARGS)
{
int err, ret = 0;
qlnx_host_t *ha;
err = sysctl_handle_int(oidp, &ret, 0, req);
if (err || !req->newptr)
return (err);
if (ret == 1) {
ha = (qlnx_host_t *)arg1;
qlnx_trigger_dump(ha);
}
return (err);
}
static int
qlnx_set_tx_coalesce(SYSCTL_HANDLER_ARGS)
{
int err, i, ret = 0, usecs = 0;
qlnx_host_t *ha;
struct ecore_hwfn *p_hwfn;
struct qlnx_fastpath *fp;
err = sysctl_handle_int(oidp, &usecs, 0, req);
if (err || !req->newptr || !usecs || (usecs > 255))
return (err);
ha = (qlnx_host_t *)arg1;
if (qlnx_vf_device(ha) == 0)
return (-1);
for (i = 0; i < ha->num_rss; i++) {
p_hwfn = &ha->cdev.hwfns[(i % ha->cdev.num_hwfns)];
fp = &ha->fp_array[i];
if (fp->txq[0]->handle != NULL) {
ret = ecore_set_queue_coalesce(p_hwfn, 0,
(uint16_t)usecs, fp->txq[0]->handle);
}
}
if (!ret)
ha->tx_coalesce_usecs = (uint8_t)usecs;
return (err);
}
static int
qlnx_set_rx_coalesce(SYSCTL_HANDLER_ARGS)
{
int err, i, ret = 0, usecs = 0;
qlnx_host_t *ha;
struct ecore_hwfn *p_hwfn;
struct qlnx_fastpath *fp;
err = sysctl_handle_int(oidp, &usecs, 0, req);
if (err || !req->newptr || !usecs || (usecs > 255))
return (err);
ha = (qlnx_host_t *)arg1;
if (qlnx_vf_device(ha) == 0)
return (-1);
for (i = 0; i < ha->num_rss; i++) {
p_hwfn = &ha->cdev.hwfns[(i % ha->cdev.num_hwfns)];
fp = &ha->fp_array[i];
if (fp->rxq->handle != NULL) {
ret = ecore_set_queue_coalesce(p_hwfn, (uint16_t)usecs,
0, fp->rxq->handle);
}
}
if (!ret)
ha->rx_coalesce_usecs = (uint8_t)usecs;
return (err);
}
static void
qlnx_add_sp_stats_sysctls(qlnx_host_t *ha)
{
struct sysctl_ctx_list *ctx;
struct sysctl_oid_list *children;
struct sysctl_oid *ctx_oid;
ctx = device_get_sysctl_ctx(ha->pci_dev);
children = SYSCTL_CHILDREN(device_get_sysctl_tree(ha->pci_dev));
ctx_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "spstat",
CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "spstat");
children = SYSCTL_CHILDREN(ctx_oid);
SYSCTL_ADD_QUAD(ctx, children,
OID_AUTO, "sp_interrupts",
CTLFLAG_RD, &ha->sp_interrupts,
"No. of slowpath interrupts");
return;
}
static void
qlnx_add_fp_stats_sysctls(qlnx_host_t *ha)
{
struct sysctl_ctx_list *ctx;
struct sysctl_oid_list *children;
struct sysctl_oid_list *node_children;
struct sysctl_oid *ctx_oid;
int i, j;
uint8_t name_str[16];
ctx = device_get_sysctl_ctx(ha->pci_dev);
children = SYSCTL_CHILDREN(device_get_sysctl_tree(ha->pci_dev));
ctx_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "fpstat",
CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "fpstat");
children = SYSCTL_CHILDREN(ctx_oid);
for (i = 0; i < ha->num_rss; i++) {
bzero(name_str, (sizeof(uint8_t) * sizeof(name_str)));
snprintf(name_str, sizeof(name_str), "%d", i);
ctx_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, name_str,
CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, name_str);
node_children = SYSCTL_CHILDREN(ctx_oid);
/* Tx Related */
SYSCTL_ADD_QUAD(ctx, node_children,
OID_AUTO, "tx_pkts_processed",
CTLFLAG_RD, &ha->fp_array[i].tx_pkts_processed,
"No. of packets processed for transmission");
SYSCTL_ADD_QUAD(ctx, node_children,
OID_AUTO, "tx_pkts_freed",
CTLFLAG_RD, &ha->fp_array[i].tx_pkts_freed,
"No. of freed packets");
SYSCTL_ADD_QUAD(ctx, node_children,
OID_AUTO, "tx_pkts_transmitted",
CTLFLAG_RD, &ha->fp_array[i].tx_pkts_transmitted,
"No. of transmitted packets");
SYSCTL_ADD_QUAD(ctx, node_children,
OID_AUTO, "tx_pkts_completed",
CTLFLAG_RD, &ha->fp_array[i].tx_pkts_completed,
"No. of transmit completions");
SYSCTL_ADD_QUAD(ctx, node_children,
OID_AUTO, "tx_non_tso_pkts",
CTLFLAG_RD, &ha->fp_array[i].tx_non_tso_pkts,
"No. of non LSO transmited packets");
#ifdef QLNX_TRACE_PERF_DATA
SYSCTL_ADD_QUAD(ctx, node_children,
OID_AUTO, "tx_pkts_trans_ctx",
CTLFLAG_RD, &ha->fp_array[i].tx_pkts_trans_ctx,
"No. of transmitted packets in transmit context");
SYSCTL_ADD_QUAD(ctx, node_children,
OID_AUTO, "tx_pkts_compl_ctx",
CTLFLAG_RD, &ha->fp_array[i].tx_pkts_compl_ctx,
"No. of transmit completions in transmit context");
SYSCTL_ADD_QUAD(ctx, node_children,
OID_AUTO, "tx_pkts_trans_fp",
CTLFLAG_RD, &ha->fp_array[i].tx_pkts_trans_fp,
"No. of transmitted packets in taskqueue");
SYSCTL_ADD_QUAD(ctx, node_children,
OID_AUTO, "tx_pkts_compl_fp",
CTLFLAG_RD, &ha->fp_array[i].tx_pkts_compl_fp,
"No. of transmit completions in taskqueue");
SYSCTL_ADD_QUAD(ctx, node_children,
OID_AUTO, "tx_pkts_compl_intr",
CTLFLAG_RD, &ha->fp_array[i].tx_pkts_compl_intr,
"No. of transmit completions in interrupt ctx");
#endif
SYSCTL_ADD_QUAD(ctx, node_children,
OID_AUTO, "tx_tso_pkts",
CTLFLAG_RD, &ha->fp_array[i].tx_tso_pkts,
"No. of LSO transmited packets");
SYSCTL_ADD_QUAD(ctx, node_children,
OID_AUTO, "tx_lso_wnd_min_len",
CTLFLAG_RD, &ha->fp_array[i].tx_lso_wnd_min_len,
"tx_lso_wnd_min_len");
SYSCTL_ADD_QUAD(ctx, node_children,
OID_AUTO, "tx_defrag",
CTLFLAG_RD, &ha->fp_array[i].tx_defrag,
"tx_defrag");
SYSCTL_ADD_QUAD(ctx, node_children,
OID_AUTO, "tx_nsegs_gt_elem_left",
CTLFLAG_RD, &ha->fp_array[i].tx_nsegs_gt_elem_left,
"tx_nsegs_gt_elem_left");
SYSCTL_ADD_UINT(ctx, node_children,
OID_AUTO, "tx_tso_max_nsegs",
CTLFLAG_RD, &ha->fp_array[i].tx_tso_max_nsegs,
ha->fp_array[i].tx_tso_max_nsegs, "tx_tso_max_nsegs");
SYSCTL_ADD_UINT(ctx, node_children,
OID_AUTO, "tx_tso_min_nsegs",
CTLFLAG_RD, &ha->fp_array[i].tx_tso_min_nsegs,
ha->fp_array[i].tx_tso_min_nsegs, "tx_tso_min_nsegs");
SYSCTL_ADD_UINT(ctx, node_children,
OID_AUTO, "tx_tso_max_pkt_len",
CTLFLAG_RD, &ha->fp_array[i].tx_tso_max_pkt_len,
ha->fp_array[i].tx_tso_max_pkt_len,
"tx_tso_max_pkt_len");
SYSCTL_ADD_UINT(ctx, node_children,
OID_AUTO, "tx_tso_min_pkt_len",
CTLFLAG_RD, &ha->fp_array[i].tx_tso_min_pkt_len,
ha->fp_array[i].tx_tso_min_pkt_len,
"tx_tso_min_pkt_len");
for (j = 0; j < QLNX_FP_MAX_SEGS; j++) {
bzero(name_str, (sizeof(uint8_t) * sizeof(name_str)));
snprintf(name_str, sizeof(name_str),
"tx_pkts_nseg_%02d", (j+1));
SYSCTL_ADD_QUAD(ctx, node_children,
OID_AUTO, name_str, CTLFLAG_RD,
&ha->fp_array[i].tx_pkts[j], name_str);
}
#ifdef QLNX_TRACE_PERF_DATA
for (j = 0; j < 18; j++) {
bzero(name_str, (sizeof(uint8_t) * sizeof(name_str)));
snprintf(name_str, sizeof(name_str),
"tx_pkts_hist_%02d", (j+1));
SYSCTL_ADD_QUAD(ctx, node_children,
OID_AUTO, name_str, CTLFLAG_RD,
&ha->fp_array[i].tx_pkts_hist[j], name_str);
}
for (j = 0; j < 5; j++) {
bzero(name_str, (sizeof(uint8_t) * sizeof(name_str)));
snprintf(name_str, sizeof(name_str),
"tx_comInt_%02d", (j+1));
SYSCTL_ADD_QUAD(ctx, node_children,
OID_AUTO, name_str, CTLFLAG_RD,
&ha->fp_array[i].tx_comInt[j], name_str);
}
for (j = 0; j < 18; j++) {
bzero(name_str, (sizeof(uint8_t) * sizeof(name_str)));
snprintf(name_str, sizeof(name_str),
"tx_pkts_q_%02d", (j+1));
SYSCTL_ADD_QUAD(ctx, node_children,
OID_AUTO, name_str, CTLFLAG_RD,
&ha->fp_array[i].tx_pkts_q[j], name_str);
}
#endif
SYSCTL_ADD_QUAD(ctx, node_children,
OID_AUTO, "err_tx_nsegs_gt_elem_left",
CTLFLAG_RD, &ha->fp_array[i].err_tx_nsegs_gt_elem_left,
"err_tx_nsegs_gt_elem_left");
SYSCTL_ADD_QUAD(ctx, node_children,
OID_AUTO, "err_tx_dmamap_create",
CTLFLAG_RD, &ha->fp_array[i].err_tx_dmamap_create,
"err_tx_dmamap_create");
SYSCTL_ADD_QUAD(ctx, node_children,
OID_AUTO, "err_tx_defrag_dmamap_load",
CTLFLAG_RD, &ha->fp_array[i].err_tx_defrag_dmamap_load,
"err_tx_defrag_dmamap_load");
SYSCTL_ADD_QUAD(ctx, node_children,
OID_AUTO, "err_tx_non_tso_max_seg",
CTLFLAG_RD, &ha->fp_array[i].err_tx_non_tso_max_seg,
"err_tx_non_tso_max_seg");
SYSCTL_ADD_QUAD(ctx, node_children,
OID_AUTO, "err_tx_dmamap_load",
CTLFLAG_RD, &ha->fp_array[i].err_tx_dmamap_load,
"err_tx_dmamap_load");
SYSCTL_ADD_QUAD(ctx, node_children,
OID_AUTO, "err_tx_defrag",
CTLFLAG_RD, &ha->fp_array[i].err_tx_defrag,
"err_tx_defrag");
SYSCTL_ADD_QUAD(ctx, node_children,
OID_AUTO, "err_tx_free_pkt_null",
CTLFLAG_RD, &ha->fp_array[i].err_tx_free_pkt_null,
"err_tx_free_pkt_null");
SYSCTL_ADD_QUAD(ctx, node_children,
OID_AUTO, "err_tx_cons_idx_conflict",
CTLFLAG_RD, &ha->fp_array[i].err_tx_cons_idx_conflict,
"err_tx_cons_idx_conflict");
SYSCTL_ADD_QUAD(ctx, node_children,
OID_AUTO, "lro_cnt_64",
CTLFLAG_RD, &ha->fp_array[i].lro_cnt_64,
"lro_cnt_64");
SYSCTL_ADD_QUAD(ctx, node_children,
OID_AUTO, "lro_cnt_128",
CTLFLAG_RD, &ha->fp_array[i].lro_cnt_128,
"lro_cnt_128");
SYSCTL_ADD_QUAD(ctx, node_children,
OID_AUTO, "lro_cnt_256",
CTLFLAG_RD, &ha->fp_array[i].lro_cnt_256,
"lro_cnt_256");
SYSCTL_ADD_QUAD(ctx, node_children,
OID_AUTO, "lro_cnt_512",
CTLFLAG_RD, &ha->fp_array[i].lro_cnt_512,
"lro_cnt_512");
SYSCTL_ADD_QUAD(ctx, node_children,
OID_AUTO, "lro_cnt_1024",
CTLFLAG_RD, &ha->fp_array[i].lro_cnt_1024,
"lro_cnt_1024");
/* Rx Related */
SYSCTL_ADD_QUAD(ctx, node_children,
OID_AUTO, "rx_pkts",
CTLFLAG_RD, &ha->fp_array[i].rx_pkts,
"No. of received packets");
SYSCTL_ADD_QUAD(ctx, node_children,
OID_AUTO, "tpa_start",
CTLFLAG_RD, &ha->fp_array[i].tpa_start,
"No. of tpa_start packets");
SYSCTL_ADD_QUAD(ctx, node_children,
OID_AUTO, "tpa_cont",
CTLFLAG_RD, &ha->fp_array[i].tpa_cont,
"No. of tpa_cont packets");
SYSCTL_ADD_QUAD(ctx, node_children,
OID_AUTO, "tpa_end",
CTLFLAG_RD, &ha->fp_array[i].tpa_end,
"No. of tpa_end packets");
SYSCTL_ADD_QUAD(ctx, node_children,
OID_AUTO, "err_m_getcl",
CTLFLAG_RD, &ha->fp_array[i].err_m_getcl,
"err_m_getcl");
SYSCTL_ADD_QUAD(ctx, node_children,
OID_AUTO, "err_m_getjcl",
CTLFLAG_RD, &ha->fp_array[i].err_m_getjcl,
"err_m_getjcl");
SYSCTL_ADD_QUAD(ctx, node_children,
OID_AUTO, "err_rx_hw_errors",
CTLFLAG_RD, &ha->fp_array[i].err_rx_hw_errors,
"err_rx_hw_errors");
SYSCTL_ADD_QUAD(ctx, node_children,
OID_AUTO, "err_rx_alloc_errors",
CTLFLAG_RD, &ha->fp_array[i].err_rx_alloc_errors,
"err_rx_alloc_errors");
}
return;
}
static void
qlnx_add_hw_stats_sysctls(qlnx_host_t *ha)
{
struct sysctl_ctx_list *ctx;
struct sysctl_oid_list *children;
struct sysctl_oid *ctx_oid;
ctx = device_get_sysctl_ctx(ha->pci_dev);
children = SYSCTL_CHILDREN(device_get_sysctl_tree(ha->pci_dev));
ctx_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "hwstat",
CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "hwstat");
children = SYSCTL_CHILDREN(ctx_oid);
SYSCTL_ADD_QUAD(ctx, children,
OID_AUTO, "no_buff_discards",
CTLFLAG_RD, &ha->hw_stats.common.no_buff_discards,
"No. of packets discarded due to lack of buffer");
SYSCTL_ADD_QUAD(ctx, children,
OID_AUTO, "packet_too_big_discard",
CTLFLAG_RD, &ha->hw_stats.common.packet_too_big_discard,
"No. of packets discarded because packet was too big");
SYSCTL_ADD_QUAD(ctx, children,
OID_AUTO, "ttl0_discard",
CTLFLAG_RD, &ha->hw_stats.common.ttl0_discard,
"ttl0_discard");
SYSCTL_ADD_QUAD(ctx, children,
OID_AUTO, "rx_ucast_bytes",
CTLFLAG_RD, &ha->hw_stats.common.rx_ucast_bytes,
"rx_ucast_bytes");
SYSCTL_ADD_QUAD(ctx, children,
OID_AUTO, "rx_mcast_bytes",
CTLFLAG_RD, &ha->hw_stats.common.rx_mcast_bytes,
"rx_mcast_bytes");
SYSCTL_ADD_QUAD(ctx, children,
OID_AUTO, "rx_bcast_bytes",
CTLFLAG_RD, &ha->hw_stats.common.rx_bcast_bytes,
"rx_bcast_bytes");
SYSCTL_ADD_QUAD(ctx, children,
OID_AUTO, "rx_ucast_pkts",
CTLFLAG_RD, &ha->hw_stats.common.rx_ucast_pkts,
"rx_ucast_pkts");
SYSCTL_ADD_QUAD(ctx, children,
OID_AUTO, "rx_mcast_pkts",
CTLFLAG_RD, &ha->hw_stats.common.rx_mcast_pkts,
"rx_mcast_pkts");
SYSCTL_ADD_QUAD(ctx, children,
OID_AUTO, "rx_bcast_pkts",
CTLFLAG_RD, &ha->hw_stats.common.rx_bcast_pkts,
"rx_bcast_pkts");
SYSCTL_ADD_QUAD(ctx, children,
OID_AUTO, "mftag_filter_discards",
CTLFLAG_RD, &ha->hw_stats.common.mftag_filter_discards,
"mftag_filter_discards");
SYSCTL_ADD_QUAD(ctx, children,
OID_AUTO, "mac_filter_discards",
CTLFLAG_RD, &ha->hw_stats.common.mac_filter_discards,
"mac_filter_discards");
SYSCTL_ADD_QUAD(ctx, children,
OID_AUTO, "tx_ucast_bytes",
CTLFLAG_RD, &ha->hw_stats.common.tx_ucast_bytes,
"tx_ucast_bytes");
SYSCTL_ADD_QUAD(ctx, children,
OID_AUTO, "tx_mcast_bytes",
CTLFLAG_RD, &ha->hw_stats.common.tx_mcast_bytes,
"tx_mcast_bytes");
SYSCTL_ADD_QUAD(ctx, children,
OID_AUTO, "tx_bcast_bytes",
CTLFLAG_RD, &ha->hw_stats.common.tx_bcast_bytes,
"tx_bcast_bytes");
SYSCTL_ADD_QUAD(ctx, children,
OID_AUTO, "tx_ucast_pkts",
CTLFLAG_RD, &ha->hw_stats.common.tx_ucast_pkts,
"tx_ucast_pkts");
SYSCTL_ADD_QUAD(ctx, children,
OID_AUTO, "tx_mcast_pkts",
CTLFLAG_RD, &ha->hw_stats.common.tx_mcast_pkts,
"tx_mcast_pkts");
SYSCTL_ADD_QUAD(ctx, children,
OID_AUTO, "tx_bcast_pkts",
CTLFLAG_RD, &ha->hw_stats.common.tx_bcast_pkts,
"tx_bcast_pkts");
SYSCTL_ADD_QUAD(ctx, children,
OID_AUTO, "tx_err_drop_pkts",
CTLFLAG_RD, &ha->hw_stats.common.tx_err_drop_pkts,
"tx_err_drop_pkts");
SYSCTL_ADD_QUAD(ctx, children,
OID_AUTO, "tpa_coalesced_pkts",
CTLFLAG_RD, &ha->hw_stats.common.tpa_coalesced_pkts,
"tpa_coalesced_pkts");
SYSCTL_ADD_QUAD(ctx, children,
OID_AUTO, "tpa_coalesced_events",
CTLFLAG_RD, &ha->hw_stats.common.tpa_coalesced_events,
"tpa_coalesced_events");
SYSCTL_ADD_QUAD(ctx, children,
OID_AUTO, "tpa_aborts_num",
CTLFLAG_RD, &ha->hw_stats.common.tpa_aborts_num,
"tpa_aborts_num");
SYSCTL_ADD_QUAD(ctx, children,
OID_AUTO, "tpa_not_coalesced_pkts",
CTLFLAG_RD, &ha->hw_stats.common.tpa_not_coalesced_pkts,
"tpa_not_coalesced_pkts");
SYSCTL_ADD_QUAD(ctx, children,
OID_AUTO, "tpa_coalesced_bytes",
CTLFLAG_RD, &ha->hw_stats.common.tpa_coalesced_bytes,
"tpa_coalesced_bytes");
SYSCTL_ADD_QUAD(ctx, children,
OID_AUTO, "rx_64_byte_packets",
CTLFLAG_RD, &ha->hw_stats.common.rx_64_byte_packets,
"rx_64_byte_packets");
SYSCTL_ADD_QUAD(ctx, children,
OID_AUTO, "rx_65_to_127_byte_packets",
CTLFLAG_RD, &ha->hw_stats.common.rx_65_to_127_byte_packets,
"rx_65_to_127_byte_packets");
SYSCTL_ADD_QUAD(ctx, children,
OID_AUTO, "rx_128_to_255_byte_packets",
CTLFLAG_RD, &ha->hw_stats.common.rx_128_to_255_byte_packets,
"rx_128_to_255_byte_packets");
SYSCTL_ADD_QUAD(ctx, children,
OID_AUTO, "rx_256_to_511_byte_packets",
CTLFLAG_RD, &ha->hw_stats.common.rx_256_to_511_byte_packets,
"rx_256_to_511_byte_packets");
SYSCTL_ADD_QUAD(ctx, children,
OID_AUTO, "rx_512_to_1023_byte_packets",
CTLFLAG_RD, &ha->hw_stats.common.rx_512_to_1023_byte_packets,
"rx_512_to_1023_byte_packets");
SYSCTL_ADD_QUAD(ctx, children,
OID_AUTO, "rx_1024_to_1518_byte_packets",
CTLFLAG_RD, &ha->hw_stats.common.rx_1024_to_1518_byte_packets,
"rx_1024_to_1518_byte_packets");
SYSCTL_ADD_QUAD(ctx, children,
OID_AUTO, "rx_1519_to_1522_byte_packets",
CTLFLAG_RD, &ha->hw_stats.bb.rx_1519_to_1522_byte_packets,
"rx_1519_to_1522_byte_packets");
SYSCTL_ADD_QUAD(ctx, children,
OID_AUTO, "rx_1523_to_2047_byte_packets",
CTLFLAG_RD, &ha->hw_stats.bb.rx_1519_to_2047_byte_packets,
"rx_1523_to_2047_byte_packets");
SYSCTL_ADD_QUAD(ctx, children,
OID_AUTO, "rx_2048_to_4095_byte_packets",
CTLFLAG_RD, &ha->hw_stats.bb.rx_2048_to_4095_byte_packets,
"rx_2048_to_4095_byte_packets");
SYSCTL_ADD_QUAD(ctx, children,
OID_AUTO, "rx_4096_to_9216_byte_packets",
CTLFLAG_RD, &ha->hw_stats.bb.rx_4096_to_9216_byte_packets,
"rx_4096_to_9216_byte_packets");
SYSCTL_ADD_QUAD(ctx, children,
OID_AUTO, "rx_9217_to_16383_byte_packets",
CTLFLAG_RD, &ha->hw_stats.bb.rx_9217_to_16383_byte_packets,
"rx_9217_to_16383_byte_packets");
SYSCTL_ADD_QUAD(ctx, children,
OID_AUTO, "rx_crc_errors",
CTLFLAG_RD, &ha->hw_stats.common.rx_crc_errors,
"rx_crc_errors");
SYSCTL_ADD_QUAD(ctx, children,
OID_AUTO, "rx_mac_crtl_frames",
CTLFLAG_RD, &ha->hw_stats.common.rx_mac_crtl_frames,
"rx_mac_crtl_frames");
SYSCTL_ADD_QUAD(ctx, children,
OID_AUTO, "rx_pause_frames",
CTLFLAG_RD, &ha->hw_stats.common.rx_pause_frames,
"rx_pause_frames");
SYSCTL_ADD_QUAD(ctx, children,
OID_AUTO, "rx_pfc_frames",
CTLFLAG_RD, &ha->hw_stats.common.rx_pfc_frames,
"rx_pfc_frames");
SYSCTL_ADD_QUAD(ctx, children,
OID_AUTO, "rx_align_errors",
CTLFLAG_RD, &ha->hw_stats.common.rx_align_errors,
"rx_align_errors");
SYSCTL_ADD_QUAD(ctx, children,
OID_AUTO, "rx_carrier_errors",
CTLFLAG_RD, &ha->hw_stats.common.rx_carrier_errors,
"rx_carrier_errors");
SYSCTL_ADD_QUAD(ctx, children,
OID_AUTO, "rx_oversize_packets",
CTLFLAG_RD, &ha->hw_stats.common.rx_oversize_packets,
"rx_oversize_packets");
SYSCTL_ADD_QUAD(ctx, children,
OID_AUTO, "rx_jabbers",
CTLFLAG_RD, &ha->hw_stats.common.rx_jabbers,
"rx_jabbers");
SYSCTL_ADD_QUAD(ctx, children,
OID_AUTO, "rx_undersize_packets",
CTLFLAG_RD, &ha->hw_stats.common.rx_undersize_packets,
"rx_undersize_packets");
SYSCTL_ADD_QUAD(ctx, children,
OID_AUTO, "rx_fragments",
CTLFLAG_RD, &ha->hw_stats.common.rx_fragments,
"rx_fragments");
SYSCTL_ADD_QUAD(ctx, children,
OID_AUTO, "tx_64_byte_packets",
CTLFLAG_RD, &ha->hw_stats.common.tx_64_byte_packets,
"tx_64_byte_packets");
SYSCTL_ADD_QUAD(ctx, children,
OID_AUTO, "tx_65_to_127_byte_packets",
CTLFLAG_RD, &ha->hw_stats.common.tx_65_to_127_byte_packets,
"tx_65_to_127_byte_packets");
SYSCTL_ADD_QUAD(ctx, children,
OID_AUTO, "tx_128_to_255_byte_packets",
CTLFLAG_RD, &ha->hw_stats.common.tx_128_to_255_byte_packets,
"tx_128_to_255_byte_packets");
SYSCTL_ADD_QUAD(ctx, children,
OID_AUTO, "tx_256_to_511_byte_packets",
CTLFLAG_RD, &ha->hw_stats.common.tx_256_to_511_byte_packets,
"tx_256_to_511_byte_packets");
SYSCTL_ADD_QUAD(ctx, children,
OID_AUTO, "tx_512_to_1023_byte_packets",
CTLFLAG_RD, &ha->hw_stats.common.tx_512_to_1023_byte_packets,
"tx_512_to_1023_byte_packets");
SYSCTL_ADD_QUAD(ctx, children,
OID_AUTO, "tx_1024_to_1518_byte_packets",
CTLFLAG_RD, &ha->hw_stats.common.tx_1024_to_1518_byte_packets,
"tx_1024_to_1518_byte_packets");
SYSCTL_ADD_QUAD(ctx, children,
OID_AUTO, "tx_1519_to_2047_byte_packets",
CTLFLAG_RD, &ha->hw_stats.bb.tx_1519_to_2047_byte_packets,
"tx_1519_to_2047_byte_packets");
SYSCTL_ADD_QUAD(ctx, children,
OID_AUTO, "tx_2048_to_4095_byte_packets",
CTLFLAG_RD, &ha->hw_stats.bb.tx_2048_to_4095_byte_packets,
"tx_2048_to_4095_byte_packets");
SYSCTL_ADD_QUAD(ctx, children,
OID_AUTO, "tx_4096_to_9216_byte_packets",
CTLFLAG_RD, &ha->hw_stats.bb.tx_4096_to_9216_byte_packets,
"tx_4096_to_9216_byte_packets");
SYSCTL_ADD_QUAD(ctx, children,
OID_AUTO, "tx_9217_to_16383_byte_packets",
CTLFLAG_RD, &ha->hw_stats.bb.tx_9217_to_16383_byte_packets,
"tx_9217_to_16383_byte_packets");
SYSCTL_ADD_QUAD(ctx, children,
OID_AUTO, "tx_pause_frames",
CTLFLAG_RD, &ha->hw_stats.common.tx_pause_frames,
"tx_pause_frames");
SYSCTL_ADD_QUAD(ctx, children,
OID_AUTO, "tx_pfc_frames",
CTLFLAG_RD, &ha->hw_stats.common.tx_pfc_frames,
"tx_pfc_frames");
SYSCTL_ADD_QUAD(ctx, children,
OID_AUTO, "tx_lpi_entry_count",
CTLFLAG_RD, &ha->hw_stats.bb.tx_lpi_entry_count,
"tx_lpi_entry_count");
SYSCTL_ADD_QUAD(ctx, children,
OID_AUTO, "tx_total_collisions",
CTLFLAG_RD, &ha->hw_stats.bb.tx_total_collisions,
"tx_total_collisions");
SYSCTL_ADD_QUAD(ctx, children,
OID_AUTO, "brb_truncates",
CTLFLAG_RD, &ha->hw_stats.common.brb_truncates,
"brb_truncates");
SYSCTL_ADD_QUAD(ctx, children,
OID_AUTO, "brb_discards",
CTLFLAG_RD, &ha->hw_stats.common.brb_discards,
"brb_discards");
SYSCTL_ADD_QUAD(ctx, children,
OID_AUTO, "rx_mac_bytes",
CTLFLAG_RD, &ha->hw_stats.common.rx_mac_bytes,
"rx_mac_bytes");
SYSCTL_ADD_QUAD(ctx, children,
OID_AUTO, "rx_mac_uc_packets",
CTLFLAG_RD, &ha->hw_stats.common.rx_mac_uc_packets,
"rx_mac_uc_packets");
SYSCTL_ADD_QUAD(ctx, children,
OID_AUTO, "rx_mac_mc_packets",
CTLFLAG_RD, &ha->hw_stats.common.rx_mac_mc_packets,
"rx_mac_mc_packets");
SYSCTL_ADD_QUAD(ctx, children,
OID_AUTO, "rx_mac_bc_packets",
CTLFLAG_RD, &ha->hw_stats.common.rx_mac_bc_packets,
"rx_mac_bc_packets");
SYSCTL_ADD_QUAD(ctx, children,
OID_AUTO, "rx_mac_frames_ok",
CTLFLAG_RD, &ha->hw_stats.common.rx_mac_frames_ok,
"rx_mac_frames_ok");
SYSCTL_ADD_QUAD(ctx, children,
OID_AUTO, "tx_mac_bytes",
CTLFLAG_RD, &ha->hw_stats.common.tx_mac_bytes,
"tx_mac_bytes");
SYSCTL_ADD_QUAD(ctx, children,
OID_AUTO, "tx_mac_uc_packets",
CTLFLAG_RD, &ha->hw_stats.common.tx_mac_uc_packets,
"tx_mac_uc_packets");
SYSCTL_ADD_QUAD(ctx, children,
OID_AUTO, "tx_mac_mc_packets",
CTLFLAG_RD, &ha->hw_stats.common.tx_mac_mc_packets,
"tx_mac_mc_packets");
SYSCTL_ADD_QUAD(ctx, children,
OID_AUTO, "tx_mac_bc_packets",
CTLFLAG_RD, &ha->hw_stats.common.tx_mac_bc_packets,
"tx_mac_bc_packets");
SYSCTL_ADD_QUAD(ctx, children,
OID_AUTO, "tx_mac_ctrl_frames",
CTLFLAG_RD, &ha->hw_stats.common.tx_mac_ctrl_frames,
"tx_mac_ctrl_frames");
return;
}
static void
qlnx_add_sysctls(qlnx_host_t *ha)
{
device_t dev = ha->pci_dev;
struct sysctl_ctx_list *ctx;
struct sysctl_oid_list *children;
ctx = device_get_sysctl_ctx(dev);
children = SYSCTL_CHILDREN(device_get_sysctl_tree(dev));
qlnx_add_fp_stats_sysctls(ha);
qlnx_add_sp_stats_sysctls(ha);
if (qlnx_vf_device(ha) != 0)
qlnx_add_hw_stats_sysctls(ha);
SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "Driver_Version",
CTLFLAG_RD, qlnx_ver_str, 0,
"Driver Version");
SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "STORMFW_Version",
CTLFLAG_RD, ha->stormfw_ver, 0,
"STORM Firmware Version");
SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "MFW_Version",
CTLFLAG_RD, ha->mfw_ver, 0,
"Management Firmware Version");
SYSCTL_ADD_UINT(ctx, children,
OID_AUTO, "personality", CTLFLAG_RD,
&ha->personality, ha->personality,
"\tpersonality = 0 => Ethernet Only\n"
"\tpersonality = 3 => Ethernet and RoCE\n"
"\tpersonality = 4 => Ethernet and iWARP\n"
"\tpersonality = 6 => Default in Shared Memory\n");
ha->dbg_level = 0;
SYSCTL_ADD_UINT(ctx, children,
OID_AUTO, "debug", CTLFLAG_RW,
&ha->dbg_level, ha->dbg_level, "Debug Level");
ha->dp_level = 0x01;
SYSCTL_ADD_UINT(ctx, children,
OID_AUTO, "dp_level", CTLFLAG_RW,
&ha->dp_level, ha->dp_level, "DP Level");
ha->dbg_trace_lro_cnt = 0;
SYSCTL_ADD_UINT(ctx, children,
OID_AUTO, "dbg_trace_lro_cnt", CTLFLAG_RW,
&ha->dbg_trace_lro_cnt, ha->dbg_trace_lro_cnt,
"Trace LRO Counts");
ha->dbg_trace_tso_pkt_len = 0;
SYSCTL_ADD_UINT(ctx, children,
OID_AUTO, "dbg_trace_tso_pkt_len", CTLFLAG_RW,
&ha->dbg_trace_tso_pkt_len, ha->dbg_trace_tso_pkt_len,
"Trace TSO packet lengths");
ha->dp_module = 0;
SYSCTL_ADD_UINT(ctx, children,
OID_AUTO, "dp_module", CTLFLAG_RW,
&ha->dp_module, ha->dp_module, "DP Module");
ha->err_inject = 0;
SYSCTL_ADD_UINT(ctx, children,
OID_AUTO, "err_inject", CTLFLAG_RW,
&ha->err_inject, ha->err_inject, "Error Inject");
ha->storm_stats_enable = 0;
SYSCTL_ADD_UINT(ctx, children,
OID_AUTO, "storm_stats_enable", CTLFLAG_RW,
&ha->storm_stats_enable, ha->storm_stats_enable,
"Enable Storm Statistics Gathering");
ha->storm_stats_index = 0;
SYSCTL_ADD_UINT(ctx, children,
OID_AUTO, "storm_stats_index", CTLFLAG_RD,
&ha->storm_stats_index, ha->storm_stats_index,
"Enable Storm Statistics Gathering Current Index");
ha->grcdump_taken = 0;
SYSCTL_ADD_UINT(ctx, children,
OID_AUTO, "grcdump_taken", CTLFLAG_RD,
&ha->grcdump_taken, ha->grcdump_taken,
"grcdump_taken");
ha->idle_chk_taken = 0;
SYSCTL_ADD_UINT(ctx, children,
OID_AUTO, "idle_chk_taken", CTLFLAG_RD,
&ha->idle_chk_taken, ha->idle_chk_taken,
"idle_chk_taken");
SYSCTL_ADD_UINT(ctx, children,
OID_AUTO, "rx_coalesce_usecs", CTLFLAG_RD,
&ha->rx_coalesce_usecs, ha->rx_coalesce_usecs,
"rx_coalesce_usecs");
SYSCTL_ADD_UINT(ctx, children,
OID_AUTO, "tx_coalesce_usecs", CTLFLAG_RD,
&ha->tx_coalesce_usecs, ha->tx_coalesce_usecs,
"tx_coalesce_usecs");
SYSCTL_ADD_PROC(ctx, children,
OID_AUTO, "trigger_dump",
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
(void *)ha, 0, qlnx_trigger_dump_sysctl, "I", "trigger_dump");
SYSCTL_ADD_PROC(ctx, children,
OID_AUTO, "set_rx_coalesce_usecs",
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
(void *)ha, 0, qlnx_set_rx_coalesce, "I",
"rx interrupt coalesce period microseconds");
SYSCTL_ADD_PROC(ctx, children,
OID_AUTO, "set_tx_coalesce_usecs",
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
(void *)ha, 0, qlnx_set_tx_coalesce, "I",
"tx interrupt coalesce period microseconds");
ha->rx_pkt_threshold = 128;
SYSCTL_ADD_UINT(ctx, children,
OID_AUTO, "rx_pkt_threshold", CTLFLAG_RW,
&ha->rx_pkt_threshold, ha->rx_pkt_threshold,
"No. of Rx Pkts to process at a time");
ha->rx_jumbo_buf_eq_mtu = 0;
SYSCTL_ADD_UINT(ctx, children,
OID_AUTO, "rx_jumbo_buf_eq_mtu", CTLFLAG_RW,
&ha->rx_jumbo_buf_eq_mtu, ha->rx_jumbo_buf_eq_mtu,
"== 0 => Rx Jumbo buffers are capped to 4Kbytes\n"
"otherwise Rx Jumbo buffers are set to >= MTU size\n");
SYSCTL_ADD_QUAD(ctx, children,
OID_AUTO, "err_illegal_intr", CTLFLAG_RD,
&ha->err_illegal_intr, "err_illegal_intr");
SYSCTL_ADD_QUAD(ctx, children,
OID_AUTO, "err_fp_null", CTLFLAG_RD,
&ha->err_fp_null, "err_fp_null");
SYSCTL_ADD_QUAD(ctx, children,
OID_AUTO, "err_get_proto_invalid_type", CTLFLAG_RD,
&ha->err_get_proto_invalid_type, "err_get_proto_invalid_type");
return;
}
/*****************************************************************************
* Operating System Network Interface Functions
*****************************************************************************/
static void
qlnx_init_ifnet(device_t dev, qlnx_host_t *ha)
{
uint16_t device_id;
struct ifnet *ifp;
ifp = ha->ifp = if_alloc(IFT_ETHER);
if (ifp == NULL)
panic("%s: cannot if_alloc()\n", device_get_nameunit(dev));
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
device_id = pci_get_device(ha->pci_dev);
#if __FreeBSD_version >= 1000000
if (device_id == QLOGIC_PCI_DEVICE_ID_1634)
ifp->if_baudrate = IF_Gbps(40);
else if ((device_id == QLOGIC_PCI_DEVICE_ID_1656) ||
(device_id == QLOGIC_PCI_DEVICE_ID_8070))
ifp->if_baudrate = IF_Gbps(25);
else if (device_id == QLOGIC_PCI_DEVICE_ID_1654)
ifp->if_baudrate = IF_Gbps(50);
else if (device_id == QLOGIC_PCI_DEVICE_ID_1644)
ifp->if_baudrate = IF_Gbps(100);
ifp->if_capabilities = IFCAP_LINKSTATE;
#else
ifp->if_mtu = ETHERMTU;
ifp->if_baudrate = (1 * 1000 * 1000 *1000);
#endif /* #if __FreeBSD_version >= 1000000 */
ifp->if_init = qlnx_init;
ifp->if_softc = ha;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = qlnx_ioctl;
ifp->if_transmit = qlnx_transmit;
ifp->if_qflush = qlnx_qflush;
IFQ_SET_MAXLEN(&ifp->if_snd, qlnx_get_ifq_snd_maxlen(ha));
ifp->if_snd.ifq_drv_maxlen = qlnx_get_ifq_snd_maxlen(ha);
IFQ_SET_READY(&ifp->if_snd);
#if __FreeBSD_version >= 1100036
if_setgetcounterfn(ifp, qlnx_get_counter);
#endif
ha->max_frame_size = ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
memcpy(ha->primary_mac, qlnx_get_mac_addr(ha), ETH_ALEN);
if (!ha->primary_mac[0] && !ha->primary_mac[1] &&
!ha->primary_mac[2] && !ha->primary_mac[3] &&
!ha->primary_mac[4] && !ha->primary_mac[5]) {
uint32_t rnd;
rnd = arc4random();
ha->primary_mac[0] = 0x00;
ha->primary_mac[1] = 0x0e;
ha->primary_mac[2] = 0x1e;
ha->primary_mac[3] = rnd & 0xFF;
ha->primary_mac[4] = (rnd >> 8) & 0xFF;
ha->primary_mac[5] = (rnd >> 16) & 0xFF;
}
ether_ifattach(ifp, ha->primary_mac);
bcopy(IF_LLADDR(ha->ifp), ha->primary_mac, ETHER_ADDR_LEN);
ifp->if_capabilities = IFCAP_HWCSUM;
ifp->if_capabilities |= IFCAP_JUMBO_MTU;
ifp->if_capabilities |= IFCAP_VLAN_MTU;
ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING;
ifp->if_capabilities |= IFCAP_VLAN_HWFILTER;
ifp->if_capabilities |= IFCAP_VLAN_HWCSUM;
ifp->if_capabilities |= IFCAP_VLAN_HWTSO;
ifp->if_capabilities |= IFCAP_TSO4;
ifp->if_capabilities |= IFCAP_TSO6;
ifp->if_capabilities |= IFCAP_LRO;
ifp->if_hw_tsomax = QLNX_MAX_TSO_FRAME_SIZE -
(ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN);
ifp->if_hw_tsomaxsegcount = QLNX_MAX_SEGMENTS - 1 /* hdr */;
ifp->if_hw_tsomaxsegsize = QLNX_MAX_TX_MBUF_SIZE;
ifp->if_capenable = ifp->if_capabilities;
ifp->if_hwassist = CSUM_IP;
ifp->if_hwassist |= CSUM_TCP | CSUM_UDP;
ifp->if_hwassist |= CSUM_TCP_IPV6 | CSUM_UDP_IPV6;
ifp->if_hwassist |= CSUM_TSO;
ifp->if_hdrlen = sizeof(struct ether_vlan_header);
ifmedia_init(&ha->media, IFM_IMASK, qlnx_media_change,\
qlnx_media_status);
if (device_id == QLOGIC_PCI_DEVICE_ID_1634) {
ifmedia_add(&ha->media, (IFM_ETHER | IFM_40G_LR4), 0, NULL);
ifmedia_add(&ha->media, (IFM_ETHER | IFM_40G_SR4), 0, NULL);
ifmedia_add(&ha->media, (IFM_ETHER | IFM_40G_CR4), 0, NULL);
} else if ((device_id == QLOGIC_PCI_DEVICE_ID_1656) ||
(device_id == QLOGIC_PCI_DEVICE_ID_8070)) {
ifmedia_add(&ha->media, (IFM_ETHER | QLNX_IFM_25G_SR), 0, NULL);
ifmedia_add(&ha->media, (IFM_ETHER | QLNX_IFM_25G_CR), 0, NULL);
} else if (device_id == QLOGIC_PCI_DEVICE_ID_1654) {
ifmedia_add(&ha->media, (IFM_ETHER | IFM_50G_KR2), 0, NULL);
ifmedia_add(&ha->media, (IFM_ETHER | IFM_50G_CR2), 0, NULL);
} else if (device_id == QLOGIC_PCI_DEVICE_ID_1644) {
ifmedia_add(&ha->media,
(IFM_ETHER | QLNX_IFM_100G_LR4), 0, NULL);
ifmedia_add(&ha->media,
(IFM_ETHER | QLNX_IFM_100G_SR4), 0, NULL);
ifmedia_add(&ha->media,
(IFM_ETHER | QLNX_IFM_100G_CR4), 0, NULL);
}
ifmedia_add(&ha->media, (IFM_ETHER | IFM_FDX), 0, NULL);
ifmedia_add(&ha->media, (IFM_ETHER | IFM_AUTO), 0, NULL);
ifmedia_set(&ha->media, (IFM_ETHER | IFM_AUTO));
QL_DPRINT2(ha, "exit\n");
return;
}
static void
qlnx_init_locked(qlnx_host_t *ha)
{
struct ifnet *ifp = ha->ifp;
QL_DPRINT1(ha, "Driver Initialization start \n");
qlnx_stop(ha);
if (qlnx_load(ha) == 0) {
ifp->if_drv_flags |= IFF_DRV_RUNNING;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
#ifdef QLNX_ENABLE_IWARP
if (qlnx_vf_device(ha) != 0) {
qlnx_rdma_dev_open(ha);
}
#endif /* #ifdef QLNX_ENABLE_IWARP */
}
return;
}
static void
qlnx_init(void *arg)
{
qlnx_host_t *ha;
ha = (qlnx_host_t *)arg;
QL_DPRINT2(ha, "enter\n");
QLNX_LOCK(ha);
qlnx_init_locked(ha);
QLNX_UNLOCK(ha);
QL_DPRINT2(ha, "exit\n");
return;
}
static int
qlnx_config_mcast_mac_addr(qlnx_host_t *ha, uint8_t *mac_addr, uint32_t add_mac)
{
struct ecore_filter_mcast *mcast;
struct ecore_dev *cdev;
int rc;
cdev = &ha->cdev;
mcast = &ha->ecore_mcast;
bzero(mcast, sizeof(struct ecore_filter_mcast));
if (add_mac)
mcast->opcode = ECORE_FILTER_ADD;
else
mcast->opcode = ECORE_FILTER_REMOVE;
mcast->num_mc_addrs = 1;
memcpy(mcast->mac, mac_addr, ETH_ALEN);
rc = ecore_filter_mcast_cmd(cdev, mcast, ECORE_SPQ_MODE_CB, NULL);
return (rc);
}
static int
qlnx_hw_add_mcast(qlnx_host_t *ha, uint8_t *mta)
{
int i;
for (i = 0; i < QLNX_MAX_NUM_MULTICAST_ADDRS; i++) {
if (QL_MAC_CMP(ha->mcast[i].addr, mta) == 0)
return 0; /* its been already added */
}
for (i = 0; i < QLNX_MAX_NUM_MULTICAST_ADDRS; i++) {
if ((ha->mcast[i].addr[0] == 0) &&
(ha->mcast[i].addr[1] == 0) &&
(ha->mcast[i].addr[2] == 0) &&
(ha->mcast[i].addr[3] == 0) &&
(ha->mcast[i].addr[4] == 0) &&
(ha->mcast[i].addr[5] == 0)) {
if (qlnx_config_mcast_mac_addr(ha, mta, 1))
return (-1);
bcopy(mta, ha->mcast[i].addr, ETH_ALEN);
ha->nmcast++;
return 0;
}
}
return 0;
}
static int
qlnx_hw_del_mcast(qlnx_host_t *ha, uint8_t *mta)
{
int i;
for (i = 0; i < QLNX_MAX_NUM_MULTICAST_ADDRS; i++) {
if (QL_MAC_CMP(ha->mcast[i].addr, mta) == 0) {
if (qlnx_config_mcast_mac_addr(ha, mta, 0))
return (-1);
ha->mcast[i].addr[0] = 0;
ha->mcast[i].addr[1] = 0;
ha->mcast[i].addr[2] = 0;
ha->mcast[i].addr[3] = 0;
ha->mcast[i].addr[4] = 0;
ha->mcast[i].addr[5] = 0;
ha->nmcast--;
return 0;
}
}
return 0;
}
/*
* Name: qls_hw_set_multi
* Function: Sets the Multicast Addresses provided the host O.S into the
* hardware (for the given interface)
*/
static void
qlnx_hw_set_multi(qlnx_host_t *ha, uint8_t *mta, uint32_t mcnt,
uint32_t add_mac)
{
int i;
for (i = 0; i < mcnt; i++) {
if (add_mac) {
if (qlnx_hw_add_mcast(ha, mta))
break;
} else {
if (qlnx_hw_del_mcast(ha, mta))
break;
}
mta += ETHER_HDR_LEN;
}
return;
}
static u_int
qlnx_copy_maddr(void *arg, struct sockaddr_dl *sdl, u_int mcnt)
{
uint8_t *mta = arg;
if (mcnt == QLNX_MAX_NUM_MULTICAST_ADDRS)
return (0);
bcopy(LLADDR(sdl), &mta[mcnt * ETHER_HDR_LEN], ETHER_HDR_LEN);
return (1);
}
static int
qlnx_set_multi(qlnx_host_t *ha, uint32_t add_multi)
{
uint8_t mta[QLNX_MAX_NUM_MULTICAST_ADDRS * ETHER_HDR_LEN];
struct ifnet *ifp = ha->ifp;
u_int mcnt;
if (qlnx_vf_device(ha) == 0)
return (0);
mcnt = if_foreach_llmaddr(ifp, qlnx_copy_maddr, mta);
QLNX_LOCK(ha);
qlnx_hw_set_multi(ha, mta, mcnt, add_multi);
QLNX_UNLOCK(ha);
return (0);
}
static int
qlnx_set_promisc(qlnx_host_t *ha)
{
int rc = 0;
uint8_t filter;
if (qlnx_vf_device(ha) == 0)
return (0);
filter = ha->filter;
filter |= ECORE_ACCEPT_MCAST_UNMATCHED;
filter |= ECORE_ACCEPT_UCAST_UNMATCHED;
rc = qlnx_set_rx_accept_filter(ha, filter);
return (rc);
}
static int
qlnx_set_allmulti(qlnx_host_t *ha)
{
int rc = 0;
uint8_t filter;
if (qlnx_vf_device(ha) == 0)
return (0);
filter = ha->filter;
filter |= ECORE_ACCEPT_MCAST_UNMATCHED;
rc = qlnx_set_rx_accept_filter(ha, filter);
return (rc);
}
static int
qlnx_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
{
int ret = 0, mask;
struct ifreq *ifr = (struct ifreq *)data;
struct ifaddr *ifa = (struct ifaddr *)data;
qlnx_host_t *ha;
ha = (qlnx_host_t *)ifp->if_softc;
switch (cmd) {
case SIOCSIFADDR:
QL_DPRINT4(ha, "SIOCSIFADDR (0x%lx)\n", cmd);
if (ifa->ifa_addr->sa_family == AF_INET) {
ifp->if_flags |= IFF_UP;
if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
QLNX_LOCK(ha);
qlnx_init_locked(ha);
QLNX_UNLOCK(ha);
}
QL_DPRINT4(ha, "SIOCSIFADDR (0x%lx) ipv4 [0x%08x]\n",
cmd, ntohl(IA_SIN(ifa)->sin_addr.s_addr));
arp_ifinit(ifp, ifa);
} else {
ether_ioctl(ifp, cmd, data);
}
break;
case SIOCSIFMTU:
QL_DPRINT4(ha, "SIOCSIFMTU (0x%lx)\n", cmd);
if (ifr->ifr_mtu > QLNX_MAX_MTU) {
ret = EINVAL;
} else {
QLNX_LOCK(ha);
ifp->if_mtu = ifr->ifr_mtu;
ha->max_frame_size =
ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
qlnx_init_locked(ha);
}
QLNX_UNLOCK(ha);
}
break;
case SIOCSIFFLAGS:
QL_DPRINT4(ha, "SIOCSIFFLAGS (0x%lx)\n", cmd);
QLNX_LOCK(ha);
if (ifp->if_flags & IFF_UP) {
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
if ((ifp->if_flags ^ ha->if_flags) &
IFF_PROMISC) {
ret = qlnx_set_promisc(ha);
} else if ((ifp->if_flags ^ ha->if_flags) &
IFF_ALLMULTI) {
ret = qlnx_set_allmulti(ha);
}
} else {
ha->max_frame_size = ifp->if_mtu +
ETHER_HDR_LEN + ETHER_CRC_LEN;
qlnx_init_locked(ha);
}
} else {
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
qlnx_stop(ha);
ha->if_flags = ifp->if_flags;
}
QLNX_UNLOCK(ha);
break;
case SIOCADDMULTI:
QL_DPRINT4(ha, "%s (0x%lx)\n", "SIOCADDMULTI", cmd);
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
if (qlnx_set_multi(ha, 1))
ret = EINVAL;
}
break;
case SIOCDELMULTI:
QL_DPRINT4(ha, "%s (0x%lx)\n", "SIOCDELMULTI", cmd);
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
if (qlnx_set_multi(ha, 0))
ret = EINVAL;
}
break;
case SIOCSIFMEDIA:
case SIOCGIFMEDIA:
QL_DPRINT4(ha, "SIOCSIFMEDIA/SIOCGIFMEDIA (0x%lx)\n", cmd);
ret = ifmedia_ioctl(ifp, ifr, &ha->media, cmd);
break;
case SIOCSIFCAP:
mask = ifr->ifr_reqcap ^ ifp->if_capenable;
QL_DPRINT4(ha, "SIOCSIFCAP (0x%lx)\n", cmd);
if (mask & IFCAP_HWCSUM)
ifp->if_capenable ^= IFCAP_HWCSUM;
if (mask & IFCAP_TSO4)
ifp->if_capenable ^= IFCAP_TSO4;
if (mask & IFCAP_TSO6)
ifp->if_capenable ^= IFCAP_TSO6;
if (mask & IFCAP_VLAN_HWTAGGING)
ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
if (mask & IFCAP_VLAN_HWTSO)
ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
if (mask & IFCAP_LRO)
ifp->if_capenable ^= IFCAP_LRO;
QLNX_LOCK(ha);
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
qlnx_init_locked(ha);
QLNX_UNLOCK(ha);
VLAN_CAPABILITIES(ifp);
break;
#if (__FreeBSD_version >= 1100101)
case SIOCGI2C:
{
struct ifi2creq i2c;
struct ecore_hwfn *p_hwfn = &ha->cdev.hwfns[0];
struct ecore_ptt *p_ptt;
ret = copyin(ifr_data_get_ptr(ifr), &i2c, sizeof(i2c));
if (ret)
break;
if ((i2c.len > sizeof (i2c.data)) ||
(i2c.dev_addr != 0xA0 && i2c.dev_addr != 0xA2)) {
ret = EINVAL;
break;
}
p_ptt = ecore_ptt_acquire(p_hwfn);
if (!p_ptt) {
QL_DPRINT1(ha, "ecore_ptt_acquire failed\n");
ret = -1;
break;
}
ret = ecore_mcp_phy_sfp_read(p_hwfn, p_ptt,
(ha->pci_func & 0x1), i2c.dev_addr, i2c.offset,
i2c.len, &i2c.data[0]);
ecore_ptt_release(p_hwfn, p_ptt);
if (ret) {
ret = -1;
break;
}
ret = copyout(&i2c, ifr_data_get_ptr(ifr), sizeof(i2c));
QL_DPRINT8(ha, "SIOCGI2C copyout ret = %d \
len = %d addr = 0x%02x offset = 0x%04x \
data[0..7]=0x%02x 0x%02x 0x%02x 0x%02x 0x%02x \
0x%02x 0x%02x 0x%02x\n",
ret, i2c.len, i2c.dev_addr, i2c.offset,
i2c.data[0], i2c.data[1], i2c.data[2], i2c.data[3],
i2c.data[4], i2c.data[5], i2c.data[6], i2c.data[7]);
break;
}
#endif /* #if (__FreeBSD_version >= 1100101) */
default:
QL_DPRINT4(ha, "default (0x%lx)\n", cmd);
ret = ether_ioctl(ifp, cmd, data);
break;
}
return (ret);
}
static int
qlnx_media_change(struct ifnet *ifp)
{
qlnx_host_t *ha;
struct ifmedia *ifm;
int ret = 0;
ha = (qlnx_host_t *)ifp->if_softc;
QL_DPRINT2(ha, "enter\n");
ifm = &ha->media;
if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
ret = EINVAL;
QL_DPRINT2(ha, "exit\n");
return (ret);
}
static void
qlnx_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
{
qlnx_host_t *ha;
ha = (qlnx_host_t *)ifp->if_softc;
QL_DPRINT2(ha, "enter\n");
ifmr->ifm_status = IFM_AVALID;
ifmr->ifm_active = IFM_ETHER;
if (ha->link_up) {
ifmr->ifm_status |= IFM_ACTIVE;
ifmr->ifm_active |=
(IFM_FDX | qlnx_get_optics(ha, &ha->if_link));
if (ha->if_link.link_partner_caps &
(QLNX_LINK_CAP_Pause | QLNX_LINK_CAP_Asym_Pause))
ifmr->ifm_active |=
(IFM_ETH_RXPAUSE | IFM_ETH_TXPAUSE);
}
QL_DPRINT2(ha, "exit (%s)\n", (ha->link_up ? "link_up" : "link_down"));
return;
}
static void
qlnx_free_tx_pkt(qlnx_host_t *ha, struct qlnx_fastpath *fp,
struct qlnx_tx_queue *txq)
{
u16 idx;
struct mbuf *mp;
bus_dmamap_t map;
int i;
struct eth_tx_bd *tx_data_bd;
struct eth_tx_1st_bd *first_bd;
int nbds = 0;
idx = txq->sw_tx_cons;
mp = txq->sw_tx_ring[idx].mp;
map = txq->sw_tx_ring[idx].map;
if ((mp == NULL) || QL_ERR_INJECT(ha, QL_ERR_INJCT_TX_INT_MBUF_NULL)){
QL_RESET_ERR_INJECT(ha, QL_ERR_INJCT_TX_INT_MBUF_NULL);
QL_DPRINT1(ha, "(mp == NULL) "
" tx_idx = 0x%x"
" ecore_prod_idx = 0x%x"
" ecore_cons_idx = 0x%x"
" hw_bd_cons = 0x%x"
" txq_db_last = 0x%x"
" elem_left = 0x%x\n",
fp->rss_id,
ecore_chain_get_prod_idx(&txq->tx_pbl),
ecore_chain_get_cons_idx(&txq->tx_pbl),
le16toh(*txq->hw_cons_ptr),
txq->tx_db.raw,
ecore_chain_get_elem_left(&txq->tx_pbl));
fp->err_tx_free_pkt_null++;
//DEBUG
qlnx_trigger_dump(ha);
return;
} else {
QLNX_INC_OPACKETS((ha->ifp));
QLNX_INC_OBYTES((ha->ifp), (mp->m_pkthdr.len));
bus_dmamap_sync(ha->tx_tag, map, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(ha->tx_tag, map);
fp->tx_pkts_freed++;
fp->tx_pkts_completed++;
m_freem(mp);
}
first_bd = (struct eth_tx_1st_bd *)ecore_chain_consume(&txq->tx_pbl);
nbds = first_bd->data.nbds;
// BD_SET_UNMAP_ADDR_LEN(first_bd, 0, 0);
for (i = 1; i < nbds; i++) {
tx_data_bd = ecore_chain_consume(&txq->tx_pbl);
// BD_SET_UNMAP_ADDR_LEN(tx_data_bd, 0, 0);
}
txq->sw_tx_ring[idx].flags = 0;
txq->sw_tx_ring[idx].mp = NULL;
txq->sw_tx_ring[idx].map = (bus_dmamap_t)0;
return;
}
static void
qlnx_tx_int(qlnx_host_t *ha, struct qlnx_fastpath *fp,
struct qlnx_tx_queue *txq)
{
u16 hw_bd_cons;
u16 ecore_cons_idx;
uint16_t diff;
uint16_t idx, idx2;
hw_bd_cons = le16toh(*txq->hw_cons_ptr);
while (hw_bd_cons !=
(ecore_cons_idx = ecore_chain_get_cons_idx(&txq->tx_pbl))) {
if (hw_bd_cons < ecore_cons_idx) {
diff = (1 << 16) - (ecore_cons_idx - hw_bd_cons);
} else {
diff = hw_bd_cons - ecore_cons_idx;
}
if ((diff > TX_RING_SIZE) ||
QL_ERR_INJECT(ha, QL_ERR_INJCT_TX_INT_DIFF)){
QL_RESET_ERR_INJECT(ha, QL_ERR_INJCT_TX_INT_DIFF);
QL_DPRINT1(ha, "(diff = 0x%x) "
" tx_idx = 0x%x"
" ecore_prod_idx = 0x%x"
" ecore_cons_idx = 0x%x"
" hw_bd_cons = 0x%x"
" txq_db_last = 0x%x"
" elem_left = 0x%x\n",
diff,
fp->rss_id,
ecore_chain_get_prod_idx(&txq->tx_pbl),
ecore_chain_get_cons_idx(&txq->tx_pbl),
le16toh(*txq->hw_cons_ptr),
txq->tx_db.raw,
ecore_chain_get_elem_left(&txq->tx_pbl));
fp->err_tx_cons_idx_conflict++;
//DEBUG
qlnx_trigger_dump(ha);
}
idx = (txq->sw_tx_cons + 1) & (TX_RING_SIZE - 1);
idx2 = (txq->sw_tx_cons + 2) & (TX_RING_SIZE - 1);
prefetch(txq->sw_tx_ring[idx].mp);
prefetch(txq->sw_tx_ring[idx2].mp);
qlnx_free_tx_pkt(ha, fp, txq);
txq->sw_tx_cons = (txq->sw_tx_cons + 1) & (TX_RING_SIZE - 1);
}
return;
}
static int
qlnx_transmit_locked(struct ifnet *ifp,struct qlnx_fastpath *fp, struct mbuf *mp)
{
int ret = 0;
struct qlnx_tx_queue *txq;
qlnx_host_t * ha;
uint16_t elem_left;
txq = fp->txq[0];
ha = (qlnx_host_t *)fp->edev;
if ((!(ifp->if_drv_flags & IFF_DRV_RUNNING)) || (!ha->link_up)) {
if(mp != NULL)
ret = drbr_enqueue(ifp, fp->tx_br, mp);
return (ret);
}
if(mp != NULL)
ret = drbr_enqueue(ifp, fp->tx_br, mp);
mp = drbr_peek(ifp, fp->tx_br);
while (mp != NULL) {
if (qlnx_send(ha, fp, &mp)) {
if (mp != NULL) {
drbr_putback(ifp, fp->tx_br, mp);
} else {
fp->tx_pkts_processed++;
drbr_advance(ifp, fp->tx_br);
}
goto qlnx_transmit_locked_exit;
} else {
drbr_advance(ifp, fp->tx_br);
fp->tx_pkts_transmitted++;
fp->tx_pkts_processed++;
}
mp = drbr_peek(ifp, fp->tx_br);
}
qlnx_transmit_locked_exit:
if((qlnx_num_tx_compl(ha,fp, fp->txq[0]) > QLNX_TX_COMPL_THRESH) ||
((int)(elem_left = ecore_chain_get_elem_left(&txq->tx_pbl))
< QLNX_TX_ELEM_MAX_THRESH))
(void)qlnx_tx_int(ha, fp, fp->txq[0]);
QL_DPRINT2(ha, "%s: exit ret = %d\n", __func__, ret);
return ret;
}
static int
qlnx_transmit(struct ifnet *ifp, struct mbuf *mp)
{
qlnx_host_t *ha = (qlnx_host_t *)ifp->if_softc;
struct qlnx_fastpath *fp;
int rss_id = 0, ret = 0;
#ifdef QLNX_TRACEPERF_DATA
uint64_t tx_pkts = 0, tx_compl = 0;
#endif
QL_DPRINT2(ha, "enter\n");
#if __FreeBSD_version >= 1100000
if (M_HASHTYPE_GET(mp) != M_HASHTYPE_NONE)
#else
if (mp->m_flags & M_FLOWID)
#endif
rss_id = (mp->m_pkthdr.flowid % ECORE_RSS_IND_TABLE_SIZE) %
ha->num_rss;
fp = &ha->fp_array[rss_id];
if (fp->tx_br == NULL) {
ret = EINVAL;
goto qlnx_transmit_exit;
}
if (mtx_trylock(&fp->tx_mtx)) {
#ifdef QLNX_TRACEPERF_DATA
tx_pkts = fp->tx_pkts_transmitted;
tx_compl = fp->tx_pkts_completed;
#endif
ret = qlnx_transmit_locked(ifp, fp, mp);
#ifdef QLNX_TRACEPERF_DATA
fp->tx_pkts_trans_ctx += (fp->tx_pkts_transmitted - tx_pkts);
fp->tx_pkts_compl_ctx += (fp->tx_pkts_completed - tx_compl);
#endif
mtx_unlock(&fp->tx_mtx);
} else {
if (mp != NULL && (fp->fp_taskqueue != NULL)) {
ret = drbr_enqueue(ifp, fp->tx_br, mp);
taskqueue_enqueue(fp->fp_taskqueue, &fp->fp_task);
}
}
qlnx_transmit_exit:
QL_DPRINT2(ha, "exit ret = %d\n", ret);
return ret;
}
static void
qlnx_qflush(struct ifnet *ifp)
{
int rss_id;
struct qlnx_fastpath *fp;
struct mbuf *mp;
qlnx_host_t *ha;
ha = (qlnx_host_t *)ifp->if_softc;
QL_DPRINT2(ha, "enter\n");
for (rss_id = 0; rss_id < ha->num_rss; rss_id++) {
fp = &ha->fp_array[rss_id];
if (fp == NULL)
continue;
if (fp->tx_br) {
mtx_lock(&fp->tx_mtx);
while ((mp = drbr_dequeue(ifp, fp->tx_br)) != NULL) {
fp->tx_pkts_freed++;
m_freem(mp);
}
mtx_unlock(&fp->tx_mtx);
}
}
QL_DPRINT2(ha, "exit\n");
return;
}
static void
qlnx_txq_doorbell_wr32(qlnx_host_t *ha, void *reg_addr, uint32_t value)
{
struct ecore_dev *cdev;
uint32_t offset;
cdev = &ha->cdev;
offset = (uint32_t)((uint8_t *)reg_addr - (uint8_t *)ha->pci_dbells);
bus_write_4(ha->pci_dbells, offset, value);
bus_barrier(ha->pci_reg, 0, 0, BUS_SPACE_BARRIER_READ);
bus_barrier(ha->pci_dbells, 0, 0, BUS_SPACE_BARRIER_READ);
return;
}
static uint32_t
qlnx_tcp_offset(qlnx_host_t *ha, struct mbuf *mp)
{
struct ether_vlan_header *eh = NULL;
struct ip *ip = NULL;
struct ip6_hdr *ip6 = NULL;
struct tcphdr *th = NULL;
uint32_t ehdrlen = 0, ip_hlen = 0, offset = 0;
uint16_t etype = 0;
device_t dev;
uint8_t buf[sizeof(struct ip6_hdr)];
dev = ha->pci_dev;
eh = mtod(mp, struct ether_vlan_header *);
if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
ehdrlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
etype = ntohs(eh->evl_proto);
} else {
ehdrlen = ETHER_HDR_LEN;
etype = ntohs(eh->evl_encap_proto);
}
switch (etype) {
case ETHERTYPE_IP:
ip = (struct ip *)(mp->m_data + ehdrlen);
ip_hlen = sizeof (struct ip);
if (mp->m_len < (ehdrlen + ip_hlen)) {
m_copydata(mp, ehdrlen, sizeof(struct ip), buf);
ip = (struct ip *)buf;
}
th = (struct tcphdr *)(ip + 1);
offset = ip_hlen + ehdrlen + (th->th_off << 2);
break;
case ETHERTYPE_IPV6:
ip6 = (struct ip6_hdr *)(mp->m_data + ehdrlen);
ip_hlen = sizeof(struct ip6_hdr);
if (mp->m_len < (ehdrlen + ip_hlen)) {
m_copydata(mp, ehdrlen, sizeof (struct ip6_hdr),
buf);
ip6 = (struct ip6_hdr *)buf;
}
th = (struct tcphdr *)(ip6 + 1);
offset = ip_hlen + ehdrlen + (th->th_off << 2);
break;
default:
break;
}
return (offset);
}
static __inline int
qlnx_tso_check(struct qlnx_fastpath *fp, bus_dma_segment_t *segs, int nsegs,
uint32_t offset)
{
int i;
uint32_t sum, nbds_in_hdr = 1;
uint32_t window;
bus_dma_segment_t *s_seg;
/* If the header spans mulitple segments, skip those segments */
if (nsegs < ETH_TX_LSO_WINDOW_BDS_NUM)
return (0);
i = 0;
while ((i < nsegs) && (offset >= segs->ds_len)) {
offset = offset - segs->ds_len;
segs++;
i++;
nbds_in_hdr++;
}
window = ETH_TX_LSO_WINDOW_BDS_NUM - nbds_in_hdr;
nsegs = nsegs - i;
while (nsegs >= window) {
sum = 0;
s_seg = segs;
for (i = 0; i < window; i++){
sum += s_seg->ds_len;
s_seg++;
}
if (sum < ETH_TX_LSO_WINDOW_MIN_LEN) {
fp->tx_lso_wnd_min_len++;
return (-1);
}
nsegs = nsegs - 1;
segs++;
}
return (0);
}
static int
qlnx_send(qlnx_host_t *ha, struct qlnx_fastpath *fp, struct mbuf **m_headp)
{
bus_dma_segment_t *segs;
bus_dmamap_t map = 0;
uint32_t nsegs = 0;
int ret = -1;
struct mbuf *m_head = *m_headp;
uint16_t idx = 0;
uint16_t elem_left;
uint8_t nbd = 0;
struct qlnx_tx_queue *txq;
struct eth_tx_1st_bd *first_bd;
struct eth_tx_2nd_bd *second_bd;
struct eth_tx_3rd_bd *third_bd;
struct eth_tx_bd *tx_data_bd;
int seg_idx = 0;
uint32_t nbds_in_hdr = 0;
uint32_t offset = 0;
#ifdef QLNX_TRACE_PERF_DATA
uint16_t bd_used;
#endif
QL_DPRINT8(ha, "enter[%d]\n", fp->rss_id);
if (!ha->link_up)
return (-1);
first_bd = NULL;
second_bd = NULL;
third_bd = NULL;
tx_data_bd = NULL;
txq = fp->txq[0];
if ((int)(elem_left = ecore_chain_get_elem_left(&txq->tx_pbl)) <
QLNX_TX_ELEM_MIN_THRESH) {
fp->tx_nsegs_gt_elem_left++;
fp->err_tx_nsegs_gt_elem_left++;
return (ENOBUFS);
}
idx = txq->sw_tx_prod;
map = txq->sw_tx_ring[idx].map;
segs = txq->segs;
ret = bus_dmamap_load_mbuf_sg(ha->tx_tag, map, m_head, segs, &nsegs,
BUS_DMA_NOWAIT);
if (ha->dbg_trace_tso_pkt_len) {
if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
if (!fp->tx_tso_min_pkt_len) {
fp->tx_tso_min_pkt_len = m_head->m_pkthdr.len;
fp->tx_tso_min_pkt_len = m_head->m_pkthdr.len;
} else {
if (fp->tx_tso_min_pkt_len > m_head->m_pkthdr.len)
fp->tx_tso_min_pkt_len =
m_head->m_pkthdr.len;
if (fp->tx_tso_max_pkt_len < m_head->m_pkthdr.len)
fp->tx_tso_max_pkt_len =
m_head->m_pkthdr.len;
}
}
}
if (m_head->m_pkthdr.csum_flags & CSUM_TSO)
offset = qlnx_tcp_offset(ha, m_head);
if ((ret == EFBIG) ||
((nsegs > QLNX_MAX_SEGMENTS_NON_TSO) && (
(!(m_head->m_pkthdr.csum_flags & CSUM_TSO)) ||
((m_head->m_pkthdr.csum_flags & CSUM_TSO) &&
qlnx_tso_check(fp, segs, nsegs, offset))))) {
struct mbuf *m;
QL_DPRINT8(ha, "EFBIG [%d]\n", m_head->m_pkthdr.len);
fp->tx_defrag++;
m = m_defrag(m_head, M_NOWAIT);
if (m == NULL) {
fp->err_tx_defrag++;
fp->tx_pkts_freed++;
m_freem(m_head);
*m_headp = NULL;
QL_DPRINT1(ha, "m_defrag() = NULL [%d]\n", ret);
return (ENOBUFS);
}
m_head = m;
*m_headp = m_head;
if ((ret = bus_dmamap_load_mbuf_sg(ha->tx_tag, map, m_head,
segs, &nsegs, BUS_DMA_NOWAIT))) {
fp->err_tx_defrag_dmamap_load++;
QL_DPRINT1(ha,
"bus_dmamap_load_mbuf_sg failed0 [%d, %d]\n",
ret, m_head->m_pkthdr.len);
fp->tx_pkts_freed++;
m_freem(m_head);
*m_headp = NULL;
return (ret);
}
if ((nsegs > QLNX_MAX_SEGMENTS_NON_TSO) &&
!(m_head->m_pkthdr.csum_flags & CSUM_TSO)) {
fp->err_tx_non_tso_max_seg++;
QL_DPRINT1(ha,
"(%d) nsegs too many for non-TSO [%d, %d]\n",
ret, nsegs, m_head->m_pkthdr.len);
fp->tx_pkts_freed++;
m_freem(m_head);
*m_headp = NULL;
return (ret);
}
if (m_head->m_pkthdr.csum_flags & CSUM_TSO)
offset = qlnx_tcp_offset(ha, m_head);
} else if (ret) {
fp->err_tx_dmamap_load++;
QL_DPRINT1(ha, "bus_dmamap_load_mbuf_sg failed1 [%d, %d]\n",
ret, m_head->m_pkthdr.len);
fp->tx_pkts_freed++;
m_freem(m_head);
*m_headp = NULL;
return (ret);
}
QL_ASSERT(ha, (nsegs != 0), ("qlnx_send: empty packet"));
if (ha->dbg_trace_tso_pkt_len) {
if (nsegs < QLNX_FP_MAX_SEGS)
fp->tx_pkts[(nsegs - 1)]++;
else
fp->tx_pkts[(QLNX_FP_MAX_SEGS - 1)]++;
}
#ifdef QLNX_TRACE_PERF_DATA
if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
if(m_head->m_pkthdr.len <= 2048)
fp->tx_pkts_hist[0]++;
else if((m_head->m_pkthdr.len > 2048) &&
(m_head->m_pkthdr.len <= 4096))
fp->tx_pkts_hist[1]++;
else if((m_head->m_pkthdr.len > 4096) &&
(m_head->m_pkthdr.len <= 8192))
fp->tx_pkts_hist[2]++;
else if((m_head->m_pkthdr.len > 8192) &&
(m_head->m_pkthdr.len <= 12288 ))
fp->tx_pkts_hist[3]++;
else if((m_head->m_pkthdr.len > 11288) &&
(m_head->m_pkthdr.len <= 16394))
fp->tx_pkts_hist[4]++;
else if((m_head->m_pkthdr.len > 16384) &&
(m_head->m_pkthdr.len <= 20480))
fp->tx_pkts_hist[5]++;
else if((m_head->m_pkthdr.len > 20480) &&
(m_head->m_pkthdr.len <= 24576))
fp->tx_pkts_hist[6]++;
else if((m_head->m_pkthdr.len > 24576) &&
(m_head->m_pkthdr.len <= 28672))
fp->tx_pkts_hist[7]++;
else if((m_head->m_pkthdr.len > 28762) &&
(m_head->m_pkthdr.len <= 32768))
fp->tx_pkts_hist[8]++;
else if((m_head->m_pkthdr.len > 32768) &&
(m_head->m_pkthdr.len <= 36864))
fp->tx_pkts_hist[9]++;
else if((m_head->m_pkthdr.len > 36864) &&
(m_head->m_pkthdr.len <= 40960))
fp->tx_pkts_hist[10]++;
else if((m_head->m_pkthdr.len > 40960) &&
(m_head->m_pkthdr.len <= 45056))
fp->tx_pkts_hist[11]++;
else if((m_head->m_pkthdr.len > 45056) &&
(m_head->m_pkthdr.len <= 49152))
fp->tx_pkts_hist[12]++;
else if((m_head->m_pkthdr.len > 49512) &&
m_head->m_pkthdr.len <= 53248))
fp->tx_pkts_hist[13]++;
else if((m_head->m_pkthdr.len > 53248) &&
(m_head->m_pkthdr.len <= 57344))
fp->tx_pkts_hist[14]++;
else if((m_head->m_pkthdr.len > 53248) &&
(m_head->m_pkthdr.len <= 57344))
fp->tx_pkts_hist[15]++;
else if((m_head->m_pkthdr.len > 57344) &&
(m_head->m_pkthdr.len <= 61440))
fp->tx_pkts_hist[16]++;
else
fp->tx_pkts_hist[17]++;
}
if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
elem_left = ecore_chain_get_elem_left(&txq->tx_pbl);
bd_used = TX_RING_SIZE - elem_left;
if(bd_used <= 100)
fp->tx_pkts_q[0]++;
else if((bd_used > 100) && (bd_used <= 500))
fp->tx_pkts_q[1]++;
else if((bd_used > 500) && (bd_used <= 1000))
fp->tx_pkts_q[2]++;
else if((bd_used > 1000) && (bd_used <= 2000))
fp->tx_pkts_q[3]++;
else if((bd_used > 3000) && (bd_used <= 4000))
fp->tx_pkts_q[4]++;
else if((bd_used > 4000) && (bd_used <= 5000))
fp->tx_pkts_q[5]++;
else if((bd_used > 6000) && (bd_used <= 7000))
fp->tx_pkts_q[6]++;
else if((bd_used > 7000) && (bd_used <= 8000))
fp->tx_pkts_q[7]++;
else if((bd_used > 8000) && (bd_used <= 9000))
fp->tx_pkts_q[8]++;
else if((bd_used > 9000) && (bd_used <= 10000))
fp->tx_pkts_q[9]++;
else if((bd_used > 10000) && (bd_used <= 11000))
fp->tx_pkts_q[10]++;
else if((bd_used > 11000) && (bd_used <= 12000))
fp->tx_pkts_q[11]++;
else if((bd_used > 12000) && (bd_used <= 13000))
fp->tx_pkts_q[12]++;
else if((bd_used > 13000) && (bd_used <= 14000))
fp->tx_pkts_q[13]++;
else if((bd_used > 14000) && (bd_used <= 15000))
fp->tx_pkts_q[14]++;
else if((bd_used > 15000) && (bd_used <= 16000))
fp->tx_pkts_q[15]++;
else
fp->tx_pkts_q[16]++;
}
#endif /* end of QLNX_TRACE_PERF_DATA */
if ((nsegs + QLNX_TX_ELEM_RESERVE) >
(int)(elem_left = ecore_chain_get_elem_left(&txq->tx_pbl))) {
QL_DPRINT1(ha, "(%d, 0x%x) insuffient BDs"
" in chain[%d] trying to free packets\n",
nsegs, elem_left, fp->rss_id);
fp->tx_nsegs_gt_elem_left++;
(void)qlnx_tx_int(ha, fp, txq);
if ((nsegs + QLNX_TX_ELEM_RESERVE) > (int)(elem_left =
ecore_chain_get_elem_left(&txq->tx_pbl))) {
QL_DPRINT1(ha,
"(%d, 0x%x) insuffient BDs in chain[%d]\n",
nsegs, elem_left, fp->rss_id);
fp->err_tx_nsegs_gt_elem_left++;
fp->tx_ring_full = 1;
if (ha->storm_stats_enable)
ha->storm_stats_gather = 1;
return (ENOBUFS);
}
}
bus_dmamap_sync(ha->tx_tag, map, BUS_DMASYNC_PREWRITE);
txq->sw_tx_ring[idx].mp = m_head;
first_bd = (struct eth_tx_1st_bd *)ecore_chain_produce(&txq->tx_pbl);
memset(first_bd, 0, sizeof(*first_bd));
first_bd->data.bd_flags.bitfields =
1 << ETH_TX_1ST_BD_FLAGS_START_BD_SHIFT;
BD_SET_UNMAP_ADDR_LEN(first_bd, segs->ds_addr, segs->ds_len);
nbd++;
if (m_head->m_pkthdr.csum_flags & CSUM_IP) {
first_bd->data.bd_flags.bitfields |=
(1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT);
}
if (m_head->m_pkthdr.csum_flags &
(CSUM_UDP | CSUM_TCP | CSUM_TCP_IPV6 | CSUM_UDP_IPV6)) {
first_bd->data.bd_flags.bitfields |=
(1 << ETH_TX_1ST_BD_FLAGS_L4_CSUM_SHIFT);
}
if (m_head->m_flags & M_VLANTAG) {
first_bd->data.vlan = m_head->m_pkthdr.ether_vtag;
first_bd->data.bd_flags.bitfields |=
(1 << ETH_TX_1ST_BD_FLAGS_VLAN_INSERTION_SHIFT);
}
if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
first_bd->data.bd_flags.bitfields |=
(1 << ETH_TX_1ST_BD_FLAGS_LSO_SHIFT);
first_bd->data.bd_flags.bitfields |=
(1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT);
nbds_in_hdr = 1;
if (offset == segs->ds_len) {
BD_SET_UNMAP_ADDR_LEN(first_bd, segs->ds_addr, offset);
segs++;
seg_idx++;
second_bd = (struct eth_tx_2nd_bd *)
ecore_chain_produce(&txq->tx_pbl);
memset(second_bd, 0, sizeof(*second_bd));
nbd++;
if (seg_idx < nsegs) {
BD_SET_UNMAP_ADDR_LEN(second_bd, \
(segs->ds_addr), (segs->ds_len));
segs++;
seg_idx++;
}
third_bd = (struct eth_tx_3rd_bd *)
ecore_chain_produce(&txq->tx_pbl);
memset(third_bd, 0, sizeof(*third_bd));
third_bd->data.lso_mss = m_head->m_pkthdr.tso_segsz;
third_bd->data.bitfields |=
(nbds_in_hdr<<ETH_TX_DATA_3RD_BD_HDR_NBD_SHIFT);
nbd++;
if (seg_idx < nsegs) {
BD_SET_UNMAP_ADDR_LEN(third_bd, \
(segs->ds_addr), (segs->ds_len));
segs++;
seg_idx++;
}
for (; seg_idx < nsegs; seg_idx++) {
tx_data_bd = (struct eth_tx_bd *)
ecore_chain_produce(&txq->tx_pbl);
memset(tx_data_bd, 0, sizeof(*tx_data_bd));
BD_SET_UNMAP_ADDR_LEN(tx_data_bd, \
segs->ds_addr,\
segs->ds_len);
segs++;
nbd++;
}
} else if (offset < segs->ds_len) {
BD_SET_UNMAP_ADDR_LEN(first_bd, segs->ds_addr, offset);
second_bd = (struct eth_tx_2nd_bd *)
ecore_chain_produce(&txq->tx_pbl);
memset(second_bd, 0, sizeof(*second_bd));
BD_SET_UNMAP_ADDR_LEN(second_bd, \
(segs->ds_addr + offset),\
(segs->ds_len - offset));
nbd++;
segs++;
third_bd = (struct eth_tx_3rd_bd *)
ecore_chain_produce(&txq->tx_pbl);
memset(third_bd, 0, sizeof(*third_bd));
BD_SET_UNMAP_ADDR_LEN(third_bd, \
segs->ds_addr,\
segs->ds_len);
third_bd->data.lso_mss = m_head->m_pkthdr.tso_segsz;
third_bd->data.bitfields |=
(nbds_in_hdr<<ETH_TX_DATA_3RD_BD_HDR_NBD_SHIFT);
segs++;
nbd++;
for (seg_idx = 2; seg_idx < nsegs; seg_idx++) {
tx_data_bd = (struct eth_tx_bd *)
ecore_chain_produce(&txq->tx_pbl);
memset(tx_data_bd, 0, sizeof(*tx_data_bd));
BD_SET_UNMAP_ADDR_LEN(tx_data_bd, \
segs->ds_addr,\
segs->ds_len);
segs++;
nbd++;
}
} else {
offset = offset - segs->ds_len;
segs++;
for (seg_idx = 1; seg_idx < nsegs; seg_idx++) {
if (offset)
nbds_in_hdr++;
tx_data_bd = (struct eth_tx_bd *)
ecore_chain_produce(&txq->tx_pbl);
memset(tx_data_bd, 0, sizeof(*tx_data_bd));
if (second_bd == NULL) {
second_bd = (struct eth_tx_2nd_bd *)
tx_data_bd;
} else if (third_bd == NULL) {
third_bd = (struct eth_tx_3rd_bd *)
tx_data_bd;
}
if (offset && (offset < segs->ds_len)) {
BD_SET_UNMAP_ADDR_LEN(tx_data_bd,\
segs->ds_addr, offset);
tx_data_bd = (struct eth_tx_bd *)
ecore_chain_produce(&txq->tx_pbl);
memset(tx_data_bd, 0,
sizeof(*tx_data_bd));
if (second_bd == NULL) {
second_bd =
(struct eth_tx_2nd_bd *)tx_data_bd;
} else if (third_bd == NULL) {
third_bd =
(struct eth_tx_3rd_bd *)tx_data_bd;
}
BD_SET_UNMAP_ADDR_LEN(tx_data_bd,\
(segs->ds_addr + offset), \
(segs->ds_len - offset));
nbd++;
offset = 0;
} else {
if (offset)
offset = offset - segs->ds_len;
BD_SET_UNMAP_ADDR_LEN(tx_data_bd,\
segs->ds_addr, segs->ds_len);
}
segs++;
nbd++;
}
if (third_bd == NULL) {
third_bd = (struct eth_tx_3rd_bd *)
ecore_chain_produce(&txq->tx_pbl);
memset(third_bd, 0, sizeof(*third_bd));
}
third_bd->data.lso_mss = m_head->m_pkthdr.tso_segsz;
third_bd->data.bitfields |=
(nbds_in_hdr<<ETH_TX_DATA_3RD_BD_HDR_NBD_SHIFT);
}
fp->tx_tso_pkts++;
} else {
segs++;
for (seg_idx = 1; seg_idx < nsegs; seg_idx++) {
tx_data_bd = (struct eth_tx_bd *)
ecore_chain_produce(&txq->tx_pbl);
memset(tx_data_bd, 0, sizeof(*tx_data_bd));
BD_SET_UNMAP_ADDR_LEN(tx_data_bd, segs->ds_addr,\
segs->ds_len);
segs++;
nbd++;
}
first_bd->data.bitfields =
(m_head->m_pkthdr.len & ETH_TX_DATA_1ST_BD_PKT_LEN_MASK)
<< ETH_TX_DATA_1ST_BD_PKT_LEN_SHIFT;
first_bd->data.bitfields =
htole16(first_bd->data.bitfields);
fp->tx_non_tso_pkts++;
}
first_bd->data.nbds = nbd;
if (ha->dbg_trace_tso_pkt_len) {
if (fp->tx_tso_max_nsegs < nsegs)
fp->tx_tso_max_nsegs = nsegs;
if ((nsegs < fp->tx_tso_min_nsegs) || (!fp->tx_tso_min_nsegs))
fp->tx_tso_min_nsegs = nsegs;
}
txq->sw_tx_ring[idx].nsegs = nsegs;
txq->sw_tx_prod = (txq->sw_tx_prod + 1) & (TX_RING_SIZE - 1);
txq->tx_db.data.bd_prod =
htole16(ecore_chain_get_prod_idx(&txq->tx_pbl));
qlnx_txq_doorbell_wr32(ha, txq->doorbell_addr, txq->tx_db.raw);
QL_DPRINT8(ha, "exit[%d]\n", fp->rss_id);
return (0);
}
static void
qlnx_stop(qlnx_host_t *ha)
{
struct ifnet *ifp = ha->ifp;
device_t dev;
int i;
dev = ha->pci_dev;
ifp->if_drv_flags &= ~(IFF_DRV_OACTIVE | IFF_DRV_RUNNING);
/*
* We simply lock and unlock each fp->tx_mtx to
* propagate the if_drv_flags
* state to each tx thread
*/
QL_DPRINT1(ha, "QLNX STATE = %d\n",ha->state);
if (ha->state == QLNX_STATE_OPEN) {
for (i = 0; i < ha->num_rss; i++) {
struct qlnx_fastpath *fp = &ha->fp_array[i];
mtx_lock(&fp->tx_mtx);
mtx_unlock(&fp->tx_mtx);
if (fp->fp_taskqueue != NULL)
taskqueue_enqueue(fp->fp_taskqueue,
&fp->fp_task);
}
}
#ifdef QLNX_ENABLE_IWARP
if (qlnx_vf_device(ha) != 0) {
qlnx_rdma_dev_close(ha);
}
#endif /* #ifdef QLNX_ENABLE_IWARP */
qlnx_unload(ha);
return;
}
static int
qlnx_get_ifq_snd_maxlen(qlnx_host_t *ha)
{
return(TX_RING_SIZE - 1);
}
uint8_t *
qlnx_get_mac_addr(qlnx_host_t *ha)
{
struct ecore_hwfn *p_hwfn;
unsigned char mac[ETHER_ADDR_LEN];
uint8_t p_is_forced;
p_hwfn = &ha->cdev.hwfns[0];
if (qlnx_vf_device(ha) != 0)
return (p_hwfn->hw_info.hw_mac_addr);
ecore_vf_read_bulletin(p_hwfn, &p_is_forced);
if (ecore_vf_bulletin_get_forced_mac(p_hwfn, mac, &p_is_forced) ==
true) {
device_printf(ha->pci_dev, "%s: p_is_forced = %d"
" mac_addr = %02x:%02x:%02x:%02x:%02x:%02x\n", __func__,
p_is_forced, mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
memcpy(ha->primary_mac, mac, ETH_ALEN);
}
return (ha->primary_mac);
}
static uint32_t
qlnx_get_optics(qlnx_host_t *ha, struct qlnx_link_output *if_link)
{
uint32_t ifm_type = 0;
switch (if_link->media_type) {
case MEDIA_MODULE_FIBER:
case MEDIA_UNSPECIFIED:
if (if_link->speed == (100 * 1000))
ifm_type = QLNX_IFM_100G_SR4;
else if (if_link->speed == (40 * 1000))
ifm_type = IFM_40G_SR4;
else if (if_link->speed == (25 * 1000))
ifm_type = QLNX_IFM_25G_SR;
else if (if_link->speed == (10 * 1000))
ifm_type = (IFM_10G_LR | IFM_10G_SR);
else if (if_link->speed == (1 * 1000))
ifm_type = (IFM_1000_SX | IFM_1000_LX);
break;
case MEDIA_DA_TWINAX:
if (if_link->speed == (100 * 1000))
ifm_type = QLNX_IFM_100G_CR4;
else if (if_link->speed == (40 * 1000))
ifm_type = IFM_40G_CR4;
else if (if_link->speed == (25 * 1000))
ifm_type = QLNX_IFM_25G_CR;
else if (if_link->speed == (10 * 1000))
ifm_type = IFM_10G_TWINAX;
break;
default :
ifm_type = IFM_UNKNOWN;
break;
}
return (ifm_type);
}
/*****************************************************************************
* Interrupt Service Functions
*****************************************************************************/
static int
qlnx_rx_jumbo_chain(qlnx_host_t *ha, struct qlnx_fastpath *fp,
struct mbuf *mp_head, uint16_t len)
{
struct mbuf *mp, *mpf, *mpl;
struct sw_rx_data *sw_rx_data;
struct qlnx_rx_queue *rxq;
uint16_t len_in_buffer;
rxq = fp->rxq;
mpf = mpl = mp = NULL;
while (len) {
rxq->sw_rx_cons = (rxq->sw_rx_cons + 1) & (RX_RING_SIZE - 1);
sw_rx_data = &rxq->sw_rx_ring[rxq->sw_rx_cons];
mp = sw_rx_data->data;
if (mp == NULL) {
QL_DPRINT1(ha, "mp = NULL\n");
fp->err_rx_mp_null++;
rxq->sw_rx_cons =
(rxq->sw_rx_cons + 1) & (RX_RING_SIZE - 1);
if (mpf != NULL)
m_freem(mpf);
return (-1);
}
bus_dmamap_sync(ha->rx_tag, sw_rx_data->map,
BUS_DMASYNC_POSTREAD);
if (qlnx_alloc_rx_buffer(ha, rxq) != 0) {
QL_DPRINT1(ha, "New buffer allocation failed, dropping"
" incoming packet and reusing its buffer\n");
qlnx_reuse_rx_data(rxq);
fp->err_rx_alloc_errors++;
if (mpf != NULL)
m_freem(mpf);
return (-1);
}
ecore_chain_consume(&rxq->rx_bd_ring);
if (len > rxq->rx_buf_size)
len_in_buffer = rxq->rx_buf_size;
else
len_in_buffer = len;
len = len - len_in_buffer;
mp->m_flags &= ~M_PKTHDR;
mp->m_next = NULL;
mp->m_len = len_in_buffer;
if (mpf == NULL)
mpf = mpl = mp;
else {
mpl->m_next = mp;
mpl = mp;
}
}
if (mpf != NULL)
mp_head->m_next = mpf;
return (0);
}
static void
qlnx_tpa_start(qlnx_host_t *ha,
struct qlnx_fastpath *fp,
struct qlnx_rx_queue *rxq,
struct eth_fast_path_rx_tpa_start_cqe *cqe)
{
uint32_t agg_index;
struct ifnet *ifp = ha->ifp;
struct mbuf *mp;
struct mbuf *mpf = NULL, *mpl = NULL, *mpc = NULL;
struct sw_rx_data *sw_rx_data;
dma_addr_t addr;
bus_dmamap_t map;
struct eth_rx_bd *rx_bd;
int i;
device_t dev;
#if __FreeBSD_version >= 1100000
uint8_t hash_type;
#endif /* #if __FreeBSD_version >= 1100000 */
dev = ha->pci_dev;
agg_index = cqe->tpa_agg_index;
QL_DPRINT7(ha, "[rss_id = %d]: enter\n \
\t type = 0x%x\n \
\t bitfields = 0x%x\n \
\t seg_len = 0x%x\n \
\t pars_flags = 0x%x\n \
\t vlan_tag = 0x%x\n \
\t rss_hash = 0x%x\n \
\t len_on_first_bd = 0x%x\n \
\t placement_offset = 0x%x\n \
\t tpa_agg_index = 0x%x\n \
\t header_len = 0x%x\n \
\t ext_bd_len_list[0] = 0x%x\n \
\t ext_bd_len_list[1] = 0x%x\n \
\t ext_bd_len_list[2] = 0x%x\n \
\t ext_bd_len_list[3] = 0x%x\n \
\t ext_bd_len_list[4] = 0x%x\n",
fp->rss_id, cqe->type, cqe->bitfields, cqe->seg_len,
cqe->pars_flags.flags, cqe->vlan_tag,
cqe->rss_hash, cqe->len_on_first_bd, cqe->placement_offset,
cqe->tpa_agg_index, cqe->header_len,
cqe->ext_bd_len_list[0], cqe->ext_bd_len_list[1],
cqe->ext_bd_len_list[2], cqe->ext_bd_len_list[3],
cqe->ext_bd_len_list[4]);
if (agg_index >= ETH_TPA_MAX_AGGS_NUM) {
fp->err_rx_tpa_invalid_agg_num++;
return;
}
sw_rx_data = &rxq->sw_rx_ring[rxq->sw_rx_cons];
bus_dmamap_sync(ha->rx_tag, sw_rx_data->map, BUS_DMASYNC_POSTREAD);
mp = sw_rx_data->data;
QL_DPRINT7(ha, "[rss_id = %d]: mp = %p \n ", fp->rss_id, mp);
if (mp == NULL) {
QL_DPRINT7(ha, "[%d]: mp = NULL\n", fp->rss_id);
fp->err_rx_mp_null++;
rxq->sw_rx_cons = (rxq->sw_rx_cons + 1) & (RX_RING_SIZE - 1);
return;
}
if ((le16toh(cqe->pars_flags.flags)) & CQE_FLAGS_ERR) {
QL_DPRINT7(ha, "[%d]: CQE in CONS = %u has error,"
" flags = %x, dropping incoming packet\n", fp->rss_id,
rxq->sw_rx_cons, le16toh(cqe->pars_flags.flags));
fp->err_rx_hw_errors++;
qlnx_reuse_rx_data(rxq);
QLNX_INC_IERRORS(ifp);
return;
}
if (qlnx_alloc_rx_buffer(ha, rxq) != 0) {
QL_DPRINT7(ha, "[%d]: New buffer allocation failed,"
" dropping incoming packet and reusing its buffer\n",
fp->rss_id);
fp->err_rx_alloc_errors++;
QLNX_INC_IQDROPS(ifp);
/*
* Load the tpa mbuf into the rx ring and save the
* posted mbuf
*/
map = sw_rx_data->map;
addr = sw_rx_data->dma_addr;
sw_rx_data = &rxq->sw_rx_ring[rxq->sw_rx_prod];
sw_rx_data->data = rxq->tpa_info[agg_index].rx_buf.data;
sw_rx_data->dma_addr = rxq->tpa_info[agg_index].rx_buf.dma_addr;
sw_rx_data->map = rxq->tpa_info[agg_index].rx_buf.map;
rxq->tpa_info[agg_index].rx_buf.data = mp;
rxq->tpa_info[agg_index].rx_buf.dma_addr = addr;
rxq->tpa_info[agg_index].rx_buf.map = map;
rx_bd = (struct eth_rx_bd *)
ecore_chain_produce(&rxq->rx_bd_ring);
rx_bd->addr.hi = htole32(U64_HI(sw_rx_data->dma_addr));
rx_bd->addr.lo = htole32(U64_LO(sw_rx_data->dma_addr));
bus_dmamap_sync(ha->rx_tag, sw_rx_data->map,
BUS_DMASYNC_PREREAD);
rxq->sw_rx_prod = (rxq->sw_rx_prod + 1) & (RX_RING_SIZE - 1);
rxq->sw_rx_cons = (rxq->sw_rx_cons + 1) & (RX_RING_SIZE - 1);
ecore_chain_consume(&rxq->rx_bd_ring);
/* Now reuse any buffers posted in ext_bd_len_list */
for (i = 0; i < ETH_TPA_CQE_START_LEN_LIST_SIZE; i++) {
if (cqe->ext_bd_len_list[i] == 0)
break;
qlnx_reuse_rx_data(rxq);
}
rxq->tpa_info[agg_index].agg_state = QLNX_AGG_STATE_ERROR;
return;
}
if (rxq->tpa_info[agg_index].agg_state != QLNX_AGG_STATE_NONE) {
QL_DPRINT7(ha, "[%d]: invalid aggregation state,"
" dropping incoming packet and reusing its buffer\n",
fp->rss_id);
QLNX_INC_IQDROPS(ifp);
/* if we already have mbuf head in aggregation free it */
if (rxq->tpa_info[agg_index].mpf) {
m_freem(rxq->tpa_info[agg_index].mpf);
rxq->tpa_info[agg_index].mpl = NULL;
}
rxq->tpa_info[agg_index].mpf = mp;
rxq->tpa_info[agg_index].mpl = NULL;
rxq->sw_rx_cons = (rxq->sw_rx_cons + 1) & (RX_RING_SIZE - 1);
ecore_chain_consume(&rxq->rx_bd_ring);
/* Now reuse any buffers posted in ext_bd_len_list */
for (i = 0; i < ETH_TPA_CQE_START_LEN_LIST_SIZE; i++) {
if (cqe->ext_bd_len_list[i] == 0)
break;
qlnx_reuse_rx_data(rxq);
}
rxq->tpa_info[agg_index].agg_state = QLNX_AGG_STATE_ERROR;
return;
}
/*
* first process the ext_bd_len_list
* if this fails then we simply drop the packet
*/
ecore_chain_consume(&rxq->rx_bd_ring);
rxq->sw_rx_cons = (rxq->sw_rx_cons + 1) & (RX_RING_SIZE - 1);
for (i = 0; i < ETH_TPA_CQE_START_LEN_LIST_SIZE; i++) {
QL_DPRINT7(ha, "[%d]: 4\n ", fp->rss_id);
if (cqe->ext_bd_len_list[i] == 0)
break;
sw_rx_data = &rxq->sw_rx_ring[rxq->sw_rx_cons];
bus_dmamap_sync(ha->rx_tag, sw_rx_data->map,
BUS_DMASYNC_POSTREAD);
mpc = sw_rx_data->data;
if (mpc == NULL) {
QL_DPRINT7(ha, "[%d]: mpc = NULL\n", fp->rss_id);
fp->err_rx_mp_null++;
if (mpf != NULL)
m_freem(mpf);
mpf = mpl = NULL;
rxq->tpa_info[agg_index].agg_state =
QLNX_AGG_STATE_ERROR;
ecore_chain_consume(&rxq->rx_bd_ring);
rxq->sw_rx_cons =
(rxq->sw_rx_cons + 1) & (RX_RING_SIZE - 1);
continue;
}
if (qlnx_alloc_rx_buffer(ha, rxq) != 0) {
QL_DPRINT7(ha, "[%d]: New buffer allocation failed,"
" dropping incoming packet and reusing its"
" buffer\n", fp->rss_id);
qlnx_reuse_rx_data(rxq);
if (mpf != NULL)
m_freem(mpf);
mpf = mpl = NULL;
rxq->tpa_info[agg_index].agg_state =
QLNX_AGG_STATE_ERROR;
ecore_chain_consume(&rxq->rx_bd_ring);
rxq->sw_rx_cons =
(rxq->sw_rx_cons + 1) & (RX_RING_SIZE - 1);
continue;
}
mpc->m_flags &= ~M_PKTHDR;
mpc->m_next = NULL;
mpc->m_len = cqe->ext_bd_len_list[i];
if (mpf == NULL) {
mpf = mpl = mpc;
} else {
mpl->m_len = ha->rx_buf_size;
mpl->m_next = mpc;
mpl = mpc;
}
ecore_chain_consume(&rxq->rx_bd_ring);
rxq->sw_rx_cons =
(rxq->sw_rx_cons + 1) & (RX_RING_SIZE - 1);
}
if (rxq->tpa_info[agg_index].agg_state != QLNX_AGG_STATE_NONE) {
QL_DPRINT7(ha, "[%d]: invalid aggregation state, dropping"
" incoming packet and reusing its buffer\n",
fp->rss_id);
QLNX_INC_IQDROPS(ifp);
rxq->tpa_info[agg_index].mpf = mp;
rxq->tpa_info[agg_index].mpl = NULL;
return;
}
rxq->tpa_info[agg_index].placement_offset = cqe->placement_offset;
if (mpf != NULL) {
mp->m_len = ha->rx_buf_size;
mp->m_next = mpf;
rxq->tpa_info[agg_index].mpf = mp;
rxq->tpa_info[agg_index].mpl = mpl;
} else {
mp->m_len = cqe->len_on_first_bd + cqe->placement_offset;
rxq->tpa_info[agg_index].mpf = mp;
rxq->tpa_info[agg_index].mpl = mp;
mp->m_next = NULL;
}
mp->m_flags |= M_PKTHDR;
/* assign packet to this interface interface */
mp->m_pkthdr.rcvif = ifp;
/* assume no hardware checksum has complated */
mp->m_pkthdr.csum_flags = 0;
//mp->m_pkthdr.flowid = fp->rss_id;
mp->m_pkthdr.flowid = cqe->rss_hash;
#if __FreeBSD_version >= 1100000
hash_type = cqe->bitfields &
(ETH_FAST_PATH_RX_REG_CQE_RSS_HASH_TYPE_MASK <<
ETH_FAST_PATH_RX_REG_CQE_RSS_HASH_TYPE_SHIFT);
switch (hash_type) {
case RSS_HASH_TYPE_IPV4:
M_HASHTYPE_SET(mp, M_HASHTYPE_RSS_IPV4);
break;
case RSS_HASH_TYPE_TCP_IPV4:
M_HASHTYPE_SET(mp, M_HASHTYPE_RSS_TCP_IPV4);
break;
case RSS_HASH_TYPE_IPV6:
M_HASHTYPE_SET(mp, M_HASHTYPE_RSS_IPV6);
break;
case RSS_HASH_TYPE_TCP_IPV6:
M_HASHTYPE_SET(mp, M_HASHTYPE_RSS_TCP_IPV6);
break;
default:
M_HASHTYPE_SET(mp, M_HASHTYPE_OPAQUE);
break;
}
#else
mp->m_flags |= M_FLOWID;
#endif
mp->m_pkthdr.csum_flags |= (CSUM_IP_CHECKED | CSUM_IP_VALID |
CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
mp->m_pkthdr.csum_data = 0xFFFF;
if (CQE_HAS_VLAN(cqe->pars_flags.flags)) {
mp->m_pkthdr.ether_vtag = le16toh(cqe->vlan_tag);
mp->m_flags |= M_VLANTAG;
}
rxq->tpa_info[agg_index].agg_state = QLNX_AGG_STATE_START;
QL_DPRINT7(ha, "[%d]: 5\n\tagg_state = %d\n\t mpf = %p mpl = %p\n",
fp->rss_id, rxq->tpa_info[agg_index].agg_state,
rxq->tpa_info[agg_index].mpf, rxq->tpa_info[agg_index].mpl);
return;
}
static void
qlnx_tpa_cont(qlnx_host_t *ha, struct qlnx_fastpath *fp,
struct qlnx_rx_queue *rxq,
struct eth_fast_path_rx_tpa_cont_cqe *cqe)
{
struct sw_rx_data *sw_rx_data;
int i;
struct mbuf *mpf = NULL, *mpl = NULL, *mpc = NULL;
struct mbuf *mp;
uint32_t agg_index;
device_t dev;
dev = ha->pci_dev;
QL_DPRINT7(ha, "[%d]: enter\n \
\t type = 0x%x\n \
\t tpa_agg_index = 0x%x\n \
\t len_list[0] = 0x%x\n \
\t len_list[1] = 0x%x\n \
\t len_list[2] = 0x%x\n \
\t len_list[3] = 0x%x\n \
\t len_list[4] = 0x%x\n \
\t len_list[5] = 0x%x\n",
fp->rss_id, cqe->type, cqe->tpa_agg_index,
cqe->len_list[0], cqe->len_list[1], cqe->len_list[2],
cqe->len_list[3], cqe->len_list[4], cqe->len_list[5]);
agg_index = cqe->tpa_agg_index;
if (agg_index >= ETH_TPA_MAX_AGGS_NUM) {
QL_DPRINT7(ha, "[%d]: 0\n ", fp->rss_id);
fp->err_rx_tpa_invalid_agg_num++;
return;
}
for (i = 0; i < ETH_TPA_CQE_CONT_LEN_LIST_SIZE; i++) {
QL_DPRINT7(ha, "[%d]: 1\n ", fp->rss_id);
if (cqe->len_list[i] == 0)
break;
if (rxq->tpa_info[agg_index].agg_state !=
QLNX_AGG_STATE_START) {
qlnx_reuse_rx_data(rxq);
continue;
}
sw_rx_data = &rxq->sw_rx_ring[rxq->sw_rx_cons];
bus_dmamap_sync(ha->rx_tag, sw_rx_data->map,
BUS_DMASYNC_POSTREAD);
mpc = sw_rx_data->data;
if (mpc == NULL) {
QL_DPRINT7(ha, "[%d]: mpc = NULL\n", fp->rss_id);
fp->err_rx_mp_null++;
if (mpf != NULL)
m_freem(mpf);
mpf = mpl = NULL;
rxq->tpa_info[agg_index].agg_state =
QLNX_AGG_STATE_ERROR;
ecore_chain_consume(&rxq->rx_bd_ring);
rxq->sw_rx_cons =
(rxq->sw_rx_cons + 1) & (RX_RING_SIZE - 1);
continue;
}
if (qlnx_alloc_rx_buffer(ha, rxq) != 0) {
QL_DPRINT7(ha, "[%d]: New buffer allocation failed,"
" dropping incoming packet and reusing its"
" buffer\n", fp->rss_id);
qlnx_reuse_rx_data(rxq);
if (mpf != NULL)
m_freem(mpf);
mpf = mpl = NULL;
rxq->tpa_info[agg_index].agg_state =
QLNX_AGG_STATE_ERROR;
ecore_chain_consume(&rxq->rx_bd_ring);
rxq->sw_rx_cons =
(rxq->sw_rx_cons + 1) & (RX_RING_SIZE - 1);
continue;
}
mpc->m_flags &= ~M_PKTHDR;
mpc->m_next = NULL;
mpc->m_len = cqe->len_list[i];
if (mpf == NULL) {
mpf = mpl = mpc;
} else {
mpl->m_len = ha->rx_buf_size;
mpl->m_next = mpc;
mpl = mpc;
}
ecore_chain_consume(&rxq->rx_bd_ring);
rxq->sw_rx_cons =
(rxq->sw_rx_cons + 1) & (RX_RING_SIZE - 1);
}
QL_DPRINT7(ha, "[%d]: 2\n" "\tmpf = %p mpl = %p\n",
fp->rss_id, mpf, mpl);
if (mpf != NULL) {
mp = rxq->tpa_info[agg_index].mpl;
mp->m_len = ha->rx_buf_size;
mp->m_next = mpf;
rxq->tpa_info[agg_index].mpl = mpl;
}
return;
}
static int
qlnx_tpa_end(qlnx_host_t *ha, struct qlnx_fastpath *fp,
struct qlnx_rx_queue *rxq,
struct eth_fast_path_rx_tpa_end_cqe *cqe)
{
struct sw_rx_data *sw_rx_data;
int i;
struct mbuf *mpf = NULL, *mpl = NULL, *mpc = NULL;
struct mbuf *mp;
uint32_t agg_index;
uint32_t len = 0;
struct ifnet *ifp = ha->ifp;
device_t dev;
dev = ha->pci_dev;
QL_DPRINT7(ha, "[%d]: enter\n \
\t type = 0x%x\n \
\t tpa_agg_index = 0x%x\n \
\t total_packet_len = 0x%x\n \
\t num_of_bds = 0x%x\n \
\t end_reason = 0x%x\n \
\t num_of_coalesced_segs = 0x%x\n \
\t ts_delta = 0x%x\n \
\t len_list[0] = 0x%x\n \
\t len_list[1] = 0x%x\n \
\t len_list[2] = 0x%x\n \
\t len_list[3] = 0x%x\n",
fp->rss_id, cqe->type, cqe->tpa_agg_index,
cqe->total_packet_len, cqe->num_of_bds,
cqe->end_reason, cqe->num_of_coalesced_segs, cqe->ts_delta,
cqe->len_list[0], cqe->len_list[1], cqe->len_list[2],
cqe->len_list[3]);
agg_index = cqe->tpa_agg_index;
if (agg_index >= ETH_TPA_MAX_AGGS_NUM) {
QL_DPRINT7(ha, "[%d]: 0\n ", fp->rss_id);
fp->err_rx_tpa_invalid_agg_num++;
return (0);
}
for (i = 0; i < ETH_TPA_CQE_END_LEN_LIST_SIZE; i++) {
QL_DPRINT7(ha, "[%d]: 1\n ", fp->rss_id);
if (cqe->len_list[i] == 0)
break;
if (rxq->tpa_info[agg_index].agg_state !=
QLNX_AGG_STATE_START) {
QL_DPRINT7(ha, "[%d]: 2\n ", fp->rss_id);
qlnx_reuse_rx_data(rxq);
continue;
}
sw_rx_data = &rxq->sw_rx_ring[rxq->sw_rx_cons];
bus_dmamap_sync(ha->rx_tag, sw_rx_data->map,
BUS_DMASYNC_POSTREAD);
mpc = sw_rx_data->data;
if (mpc == NULL) {
QL_DPRINT7(ha, "[%d]: mpc = NULL\n", fp->rss_id);
fp->err_rx_mp_null++;
if (mpf != NULL)
m_freem(mpf);
mpf = mpl = NULL;
rxq->tpa_info[agg_index].agg_state =
QLNX_AGG_STATE_ERROR;
ecore_chain_consume(&rxq->rx_bd_ring);
rxq->sw_rx_cons =
(rxq->sw_rx_cons + 1) & (RX_RING_SIZE - 1);
continue;
}
if (qlnx_alloc_rx_buffer(ha, rxq) != 0) {
QL_DPRINT7(ha, "[%d]: New buffer allocation failed,"
" dropping incoming packet and reusing its"
" buffer\n", fp->rss_id);
qlnx_reuse_rx_data(rxq);
if (mpf != NULL)
m_freem(mpf);
mpf = mpl = NULL;
rxq->tpa_info[agg_index].agg_state =
QLNX_AGG_STATE_ERROR;
ecore_chain_consume(&rxq->rx_bd_ring);
rxq->sw_rx_cons =
(rxq->sw_rx_cons + 1) & (RX_RING_SIZE - 1);
continue;
}
mpc->m_flags &= ~M_PKTHDR;
mpc->m_next = NULL;
mpc->m_len = cqe->len_list[i];
if (mpf == NULL) {
mpf = mpl = mpc;
} else {
mpl->m_len = ha->rx_buf_size;
mpl->m_next = mpc;
mpl = mpc;
}
ecore_chain_consume(&rxq->rx_bd_ring);
rxq->sw_rx_cons =
(rxq->sw_rx_cons + 1) & (RX_RING_SIZE - 1);
}
QL_DPRINT7(ha, "[%d]: 5\n ", fp->rss_id);
if (mpf != NULL) {
QL_DPRINT7(ha, "[%d]: 6\n ", fp->rss_id);
mp = rxq->tpa_info[agg_index].mpl;
mp->m_len = ha->rx_buf_size;
mp->m_next = mpf;
}
if (rxq->tpa_info[agg_index].agg_state != QLNX_AGG_STATE_START) {
QL_DPRINT7(ha, "[%d]: 7\n ", fp->rss_id);
if (rxq->tpa_info[agg_index].mpf != NULL)
m_freem(rxq->tpa_info[agg_index].mpf);
rxq->tpa_info[agg_index].mpf = NULL;
rxq->tpa_info[agg_index].mpl = NULL;
rxq->tpa_info[agg_index].agg_state = QLNX_AGG_STATE_NONE;
return (0);
}
mp = rxq->tpa_info[agg_index].mpf;
m_adj(mp, rxq->tpa_info[agg_index].placement_offset);
mp->m_pkthdr.len = cqe->total_packet_len;
if (mp->m_next == NULL)
mp->m_len = mp->m_pkthdr.len;
else {
/* compute the total packet length */
mpf = mp;
while (mpf != NULL) {
len += mpf->m_len;
mpf = mpf->m_next;
}
if (cqe->total_packet_len > len) {
mpl = rxq->tpa_info[agg_index].mpl;
mpl->m_len += (cqe->total_packet_len - len);
}
}
QLNX_INC_IPACKETS(ifp);
QLNX_INC_IBYTES(ifp, (cqe->total_packet_len));
QL_DPRINT7(ha, "[%d]: 8 csum_data = 0x%x csum_flags = 0x%" PRIu64 "\n \
m_len = 0x%x m_pkthdr_len = 0x%x\n",
fp->rss_id, mp->m_pkthdr.csum_data,
(uint64_t)mp->m_pkthdr.csum_flags, mp->m_len, mp->m_pkthdr.len);
(*ifp->if_input)(ifp, mp);
rxq->tpa_info[agg_index].mpf = NULL;
rxq->tpa_info[agg_index].mpl = NULL;
rxq->tpa_info[agg_index].agg_state = QLNX_AGG_STATE_NONE;
return (cqe->num_of_coalesced_segs);
}
static int
qlnx_rx_int(qlnx_host_t *ha, struct qlnx_fastpath *fp, int budget,
int lro_enable)
{
uint16_t hw_comp_cons, sw_comp_cons;
int rx_pkt = 0;
struct qlnx_rx_queue *rxq = fp->rxq;
struct ifnet *ifp = ha->ifp;
struct ecore_dev *cdev = &ha->cdev;
struct ecore_hwfn *p_hwfn;
#ifdef QLNX_SOFT_LRO
struct lro_ctrl *lro;
lro = &rxq->lro;
#endif /* #ifdef QLNX_SOFT_LRO */
hw_comp_cons = le16toh(*rxq->hw_cons_ptr);
sw_comp_cons = ecore_chain_get_cons_idx(&rxq->rx_comp_ring);
p_hwfn = &ha->cdev.hwfns[(fp->rss_id % cdev->num_hwfns)];
/* Memory barrier to prevent the CPU from doing speculative reads of CQE
* / BD in the while-loop before reading hw_comp_cons. If the CQE is
* read before it is written by FW, then FW writes CQE and SB, and then
* the CPU reads the hw_comp_cons, it will use an old CQE.
*/
/* Loop to complete all indicated BDs */
while (sw_comp_cons != hw_comp_cons) {
union eth_rx_cqe *cqe;
struct eth_fast_path_rx_reg_cqe *fp_cqe;
struct sw_rx_data *sw_rx_data;
register struct mbuf *mp;
enum eth_rx_cqe_type cqe_type;
uint16_t len, pad, len_on_first_bd;
uint8_t *data;
#if __FreeBSD_version >= 1100000
uint8_t hash_type;
#endif /* #if __FreeBSD_version >= 1100000 */
/* Get the CQE from the completion ring */
cqe = (union eth_rx_cqe *)
ecore_chain_consume(&rxq->rx_comp_ring);
cqe_type = cqe->fast_path_regular.type;
if (cqe_type == ETH_RX_CQE_TYPE_SLOW_PATH) {
QL_DPRINT3(ha, "Got a slowath CQE\n");
ecore_eth_cqe_completion(p_hwfn,
(struct eth_slow_path_rx_cqe *)cqe);
goto next_cqe;
}
if (cqe_type != ETH_RX_CQE_TYPE_REGULAR) {
switch (cqe_type) {
case ETH_RX_CQE_TYPE_TPA_START:
qlnx_tpa_start(ha, fp, rxq,
&cqe->fast_path_tpa_start);
fp->tpa_start++;
break;
case ETH_RX_CQE_TYPE_TPA_CONT:
qlnx_tpa_cont(ha, fp, rxq,
&cqe->fast_path_tpa_cont);
fp->tpa_cont++;
break;
case ETH_RX_CQE_TYPE_TPA_END:
rx_pkt += qlnx_tpa_end(ha, fp, rxq,
&cqe->fast_path_tpa_end);
fp->tpa_end++;
break;
default:
break;
}
goto next_cqe;
}
/* Get the data from the SW ring */
sw_rx_data = &rxq->sw_rx_ring[rxq->sw_rx_cons];
mp = sw_rx_data->data;
if (mp == NULL) {
QL_DPRINT1(ha, "mp = NULL\n");
fp->err_rx_mp_null++;
rxq->sw_rx_cons =
(rxq->sw_rx_cons + 1) & (RX_RING_SIZE - 1);
goto next_cqe;
}
bus_dmamap_sync(ha->rx_tag, sw_rx_data->map,
BUS_DMASYNC_POSTREAD);
/* non GRO */
fp_cqe = &cqe->fast_path_regular;/* MK CR TPA check assembly */
len = le16toh(fp_cqe->pkt_len);
pad = fp_cqe->placement_offset;
#if 0
QL_DPRINT3(ha, "CQE type = %x, flags = %x, vlan = %x,"
" len %u, parsing flags = %d pad = %d\n",
cqe_type, fp_cqe->bitfields,
le16toh(fp_cqe->vlan_tag),
len, le16toh(fp_cqe->pars_flags.flags), pad);
#endif
data = mtod(mp, uint8_t *);
data = data + pad;
if (0)
qlnx_dump_buf8(ha, __func__, data, len);
/* For every Rx BD consumed, we allocate a new BD so the BD ring
* is always with a fixed size. If allocation fails, we take the
* consumed BD and return it to the ring in the PROD position.
* The packet that was received on that BD will be dropped (and
* not passed to the upper stack).
*/
/* If this is an error packet then drop it */
if ((le16toh(cqe->fast_path_regular.pars_flags.flags)) &
CQE_FLAGS_ERR) {
QL_DPRINT1(ha, "CQE in CONS = %u has error, flags = %x,"
" dropping incoming packet\n", sw_comp_cons,
le16toh(cqe->fast_path_regular.pars_flags.flags));
fp->err_rx_hw_errors++;
qlnx_reuse_rx_data(rxq);
QLNX_INC_IERRORS(ifp);
goto next_cqe;
}
if (qlnx_alloc_rx_buffer(ha, rxq) != 0) {
QL_DPRINT1(ha, "New buffer allocation failed, dropping"
" incoming packet and reusing its buffer\n");
qlnx_reuse_rx_data(rxq);
fp->err_rx_alloc_errors++;
QLNX_INC_IQDROPS(ifp);
goto next_cqe;
}
ecore_chain_consume(&rxq->rx_bd_ring);
len_on_first_bd = fp_cqe->len_on_first_bd;
m_adj(mp, pad);
mp->m_pkthdr.len = len;
if ((len > 60 ) && (len > len_on_first_bd)) {
mp->m_len = len_on_first_bd;
if (qlnx_rx_jumbo_chain(ha, fp, mp,
(len - len_on_first_bd)) != 0) {
m_freem(mp);
QLNX_INC_IQDROPS(ifp);
goto next_cqe;
}
} else if (len_on_first_bd < len) {
fp->err_rx_jumbo_chain_pkts++;
} else {
mp->m_len = len;
}
mp->m_flags |= M_PKTHDR;
/* assign packet to this interface interface */
mp->m_pkthdr.rcvif = ifp;
/* assume no hardware checksum has complated */
mp->m_pkthdr.csum_flags = 0;
mp->m_pkthdr.flowid = fp_cqe->rss_hash;
#if __FreeBSD_version >= 1100000
hash_type = fp_cqe->bitfields &
(ETH_FAST_PATH_RX_REG_CQE_RSS_HASH_TYPE_MASK <<
ETH_FAST_PATH_RX_REG_CQE_RSS_HASH_TYPE_SHIFT);
switch (hash_type) {
case RSS_HASH_TYPE_IPV4:
M_HASHTYPE_SET(mp, M_HASHTYPE_RSS_IPV4);
break;
case RSS_HASH_TYPE_TCP_IPV4:
M_HASHTYPE_SET(mp, M_HASHTYPE_RSS_TCP_IPV4);
break;
case RSS_HASH_TYPE_IPV6:
M_HASHTYPE_SET(mp, M_HASHTYPE_RSS_IPV6);
break;
case RSS_HASH_TYPE_TCP_IPV6:
M_HASHTYPE_SET(mp, M_HASHTYPE_RSS_TCP_IPV6);
break;
default:
M_HASHTYPE_SET(mp, M_HASHTYPE_OPAQUE);
break;
}
#else
mp->m_flags |= M_FLOWID;
#endif
if (CQE_L3_PACKET(fp_cqe->pars_flags.flags)) {
mp->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
}
if (!(CQE_IP_HDR_ERR(fp_cqe->pars_flags.flags))) {
mp->m_pkthdr.csum_flags |= CSUM_IP_VALID;
}
if (CQE_L4_HAS_CSUM(fp_cqe->pars_flags.flags)) {
mp->m_pkthdr.csum_data = 0xFFFF;
mp->m_pkthdr.csum_flags |=
(CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
}
if (CQE_HAS_VLAN(fp_cqe->pars_flags.flags)) {
mp->m_pkthdr.ether_vtag = le16toh(fp_cqe->vlan_tag);
mp->m_flags |= M_VLANTAG;
}
QLNX_INC_IPACKETS(ifp);
QLNX_INC_IBYTES(ifp, len);
#ifdef QLNX_SOFT_LRO
if (lro_enable) {
#if (__FreeBSD_version >= 1100101) || (defined QLNX_QSORT_LRO)
tcp_lro_queue_mbuf(lro, mp);
#else
if (tcp_lro_rx(lro, mp, 0))
(*ifp->if_input)(ifp, mp);
#endif /* #if (__FreeBSD_version >= 1100101) || (defined QLNX_QSORT_LRO) */
} else {
(*ifp->if_input)(ifp, mp);
}
#else
(*ifp->if_input)(ifp, mp);
#endif /* #ifdef QLNX_SOFT_LRO */
rx_pkt++;
rxq->sw_rx_cons = (rxq->sw_rx_cons + 1) & (RX_RING_SIZE - 1);
next_cqe: /* don't consume bd rx buffer */
ecore_chain_recycle_consumed(&rxq->rx_comp_ring);
sw_comp_cons = ecore_chain_get_cons_idx(&rxq->rx_comp_ring);
/* CR TPA - revisit how to handle budget in TPA perhaps
increase on "end" */
if (rx_pkt == budget)
break;
} /* repeat while sw_comp_cons != hw_comp_cons... */
/* Update producers */
qlnx_update_rx_prod(p_hwfn, rxq);
return rx_pkt;
}
/*
* fast path interrupt
*/
static void
qlnx_fp_isr(void *arg)
{
qlnx_ivec_t *ivec = arg;
qlnx_host_t *ha;
struct qlnx_fastpath *fp = NULL;
int idx;
ha = ivec->ha;
if (ha->state != QLNX_STATE_OPEN) {
return;
}
idx = ivec->rss_idx;
if ((idx = ivec->rss_idx) >= ha->num_rss) {
QL_DPRINT1(ha, "illegal interrupt[%d]\n", idx);
ha->err_illegal_intr++;
return;
}
fp = &ha->fp_array[idx];
if (fp == NULL) {
ha->err_fp_null++;
} else {
int rx_int = 0, total_rx_count = 0;
int lro_enable, tc;
struct qlnx_tx_queue *txq;
uint16_t elem_left;
lro_enable = ha->ifp->if_capenable & IFCAP_LRO;
ecore_sb_ack(fp->sb_info, IGU_INT_DISABLE, 0);
do {
for (tc = 0; tc < ha->num_tc; tc++) {
txq = fp->txq[tc];
if((int)(elem_left =
ecore_chain_get_elem_left(&txq->tx_pbl)) <
QLNX_TX_ELEM_THRESH) {
if (mtx_trylock(&fp->tx_mtx)) {
#ifdef QLNX_TRACE_PERF_DATA
tx_compl = fp->tx_pkts_completed;
#endif
qlnx_tx_int(ha, fp, fp->txq[tc]);
#ifdef QLNX_TRACE_PERF_DATA
fp->tx_pkts_compl_intr +=
(fp->tx_pkts_completed - tx_compl);
if ((fp->tx_pkts_completed - tx_compl) <= 32)
fp->tx_comInt[0]++;
else if (((fp->tx_pkts_completed - tx_compl) > 32) &&
((fp->tx_pkts_completed - tx_compl) <= 64))
fp->tx_comInt[1]++;
else if(((fp->tx_pkts_completed - tx_compl) > 64) &&
((fp->tx_pkts_completed - tx_compl) <= 128))
fp->tx_comInt[2]++;
else if(((fp->tx_pkts_completed - tx_compl) > 128))
fp->tx_comInt[3]++;
#endif
mtx_unlock(&fp->tx_mtx);
}
}
}
rx_int = qlnx_rx_int(ha, fp, ha->rx_pkt_threshold,
lro_enable);
if (rx_int) {
fp->rx_pkts += rx_int;
total_rx_count += rx_int;
}
} while (rx_int);
#ifdef QLNX_SOFT_LRO
{
struct lro_ctrl *lro;
lro = &fp->rxq->lro;
if (lro_enable && total_rx_count) {
#if (__FreeBSD_version >= 1100101) || (defined QLNX_QSORT_LRO)
#ifdef QLNX_TRACE_LRO_CNT
if (lro->lro_mbuf_count & ~1023)
fp->lro_cnt_1024++;
else if (lro->lro_mbuf_count & ~511)
fp->lro_cnt_512++;
else if (lro->lro_mbuf_count & ~255)
fp->lro_cnt_256++;
else if (lro->lro_mbuf_count & ~127)
fp->lro_cnt_128++;
else if (lro->lro_mbuf_count & ~63)
fp->lro_cnt_64++;
#endif /* #ifdef QLNX_TRACE_LRO_CNT */
tcp_lro_flush_all(lro);
#else
struct lro_entry *queued;
while ((!SLIST_EMPTY(&lro->lro_active))) {
queued = SLIST_FIRST(&lro->lro_active);
SLIST_REMOVE_HEAD(&lro->lro_active, \
next);
tcp_lro_flush(lro, queued);
}
#endif /* #if (__FreeBSD_version >= 1100101) || (defined QLNX_QSORT_LRO) */
}
}
#endif /* #ifdef QLNX_SOFT_LRO */
ecore_sb_update_sb_idx(fp->sb_info);
rmb();
ecore_sb_ack(fp->sb_info, IGU_INT_ENABLE, 1);
}
return;
}
/*
* slow path interrupt processing function
* can be invoked in polled mode or in interrupt mode via taskqueue.
*/
void
qlnx_sp_isr(void *arg)
{
struct ecore_hwfn *p_hwfn;
qlnx_host_t *ha;
p_hwfn = arg;
ha = (qlnx_host_t *)p_hwfn->p_dev;
ha->sp_interrupts++;
QL_DPRINT2(ha, "enter\n");
ecore_int_sp_dpc(p_hwfn);
QL_DPRINT2(ha, "exit\n");
return;
}
/*****************************************************************************
* Support Functions for DMA'able Memory
*****************************************************************************/
static void
qlnx_dmamap_callback(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
{
*((bus_addr_t *)arg) = 0;
if (error) {
printf("%s: bus_dmamap_load failed (%d)\n", __func__, error);
return;
}
*((bus_addr_t *)arg) = segs[0].ds_addr;
return;
}
static int
qlnx_alloc_dmabuf(qlnx_host_t *ha, qlnx_dma_t *dma_buf)
{
int ret = 0;
device_t dev;
bus_addr_t b_addr;
dev = ha->pci_dev;
ret = bus_dma_tag_create(
ha->parent_tag,/* parent */
dma_buf->alignment,
((bus_size_t)(1ULL << 32)),/* boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
dma_buf->size, /* maxsize */
1, /* nsegments */
dma_buf->size, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&dma_buf->dma_tag);
if (ret) {
QL_DPRINT1(ha, "could not create dma tag\n");
goto qlnx_alloc_dmabuf_exit;
}
ret = bus_dmamem_alloc(dma_buf->dma_tag,
(void **)&dma_buf->dma_b,
(BUS_DMA_ZERO | BUS_DMA_COHERENT | BUS_DMA_NOWAIT),
&dma_buf->dma_map);
if (ret) {
bus_dma_tag_destroy(dma_buf->dma_tag);
QL_DPRINT1(ha, "bus_dmamem_alloc failed\n");
goto qlnx_alloc_dmabuf_exit;
}
ret = bus_dmamap_load(dma_buf->dma_tag,
dma_buf->dma_map,
dma_buf->dma_b,
dma_buf->size,
qlnx_dmamap_callback,
&b_addr, BUS_DMA_NOWAIT);
if (ret || !b_addr) {
bus_dma_tag_destroy(dma_buf->dma_tag);
bus_dmamem_free(dma_buf->dma_tag, dma_buf->dma_b,
dma_buf->dma_map);
ret = -1;
goto qlnx_alloc_dmabuf_exit;
}
dma_buf->dma_addr = b_addr;
qlnx_alloc_dmabuf_exit:
return ret;
}
static void
qlnx_free_dmabuf(qlnx_host_t *ha, qlnx_dma_t *dma_buf)
{
bus_dmamap_unload(dma_buf->dma_tag, dma_buf->dma_map);
bus_dmamem_free(dma_buf->dma_tag, dma_buf->dma_b, dma_buf->dma_map);
bus_dma_tag_destroy(dma_buf->dma_tag);
return;
}
void *
qlnx_dma_alloc_coherent(void *ecore_dev, bus_addr_t *phys, uint32_t size)
{
qlnx_dma_t dma_buf;
qlnx_dma_t *dma_p;
qlnx_host_t *ha;
device_t dev;
ha = (qlnx_host_t *)ecore_dev;
dev = ha->pci_dev;
size = (size + (PAGE_SIZE - 1)) & ~(PAGE_SIZE - 1);
memset(&dma_buf, 0, sizeof (qlnx_dma_t));
dma_buf.size = size + PAGE_SIZE;
dma_buf.alignment = 8;
if (qlnx_alloc_dmabuf((qlnx_host_t *)ecore_dev, &dma_buf) != 0)
return (NULL);
bzero((uint8_t *)dma_buf.dma_b, dma_buf.size);
*phys = dma_buf.dma_addr;
dma_p = (qlnx_dma_t *)((uint8_t *)dma_buf.dma_b + size);
memcpy(dma_p, &dma_buf, sizeof(qlnx_dma_t));
QL_DPRINT5(ha, "[%p %p %p %p 0x%08x ]\n",
(void *)dma_buf.dma_map, (void *)dma_buf.dma_tag,
dma_buf.dma_b, (void *)dma_buf.dma_addr, size);
return (dma_buf.dma_b);
}
void
qlnx_dma_free_coherent(void *ecore_dev, void *v_addr, bus_addr_t phys,
uint32_t size)
{
qlnx_dma_t dma_buf, *dma_p;
qlnx_host_t *ha;
device_t dev;
ha = (qlnx_host_t *)ecore_dev;
dev = ha->pci_dev;
if (v_addr == NULL)
return;
size = (size + (PAGE_SIZE - 1)) & ~(PAGE_SIZE - 1);
dma_p = (qlnx_dma_t *)((uint8_t *)v_addr + size);
QL_DPRINT5(ha, "[%p %p %p %p 0x%08x ]\n",
(void *)dma_p->dma_map, (void *)dma_p->dma_tag,
dma_p->dma_b, (void *)dma_p->dma_addr, size);
dma_buf = *dma_p;
if (!ha->qlnxr_debug)
qlnx_free_dmabuf((qlnx_host_t *)ecore_dev, &dma_buf);
return;
}
static int
qlnx_alloc_parent_dma_tag(qlnx_host_t *ha)
{
int ret;
device_t dev;
dev = ha->pci_dev;
/*
* Allocate parent DMA Tag
*/
ret = bus_dma_tag_create(
bus_get_dma_tag(dev), /* parent */
1,((bus_size_t)(1ULL << 32)),/* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
BUS_SPACE_MAXSIZE_32BIT,/* maxsize */
0, /* nsegments */
BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&ha->parent_tag);
if (ret) {
QL_DPRINT1(ha, "could not create parent dma tag\n");
return (-1);
}
ha->flags.parent_tag = 1;
return (0);
}
static void
qlnx_free_parent_dma_tag(qlnx_host_t *ha)
{
if (ha->parent_tag != NULL) {
bus_dma_tag_destroy(ha->parent_tag);
ha->parent_tag = NULL;
}
return;
}
static int
qlnx_alloc_tx_dma_tag(qlnx_host_t *ha)
{
if (bus_dma_tag_create(NULL, /* parent */
1, 0, /* alignment, bounds */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
QLNX_MAX_TSO_FRAME_SIZE, /* maxsize */
QLNX_MAX_SEGMENTS, /* nsegments */
QLNX_MAX_TX_MBUF_SIZE, /* maxsegsize */
0, /* flags */
NULL, /* lockfunc */
NULL, /* lockfuncarg */
&ha->tx_tag)) {
QL_DPRINT1(ha, "tx_tag alloc failed\n");
return (-1);
}
return (0);
}
static void
qlnx_free_tx_dma_tag(qlnx_host_t *ha)
{
if (ha->tx_tag != NULL) {
bus_dma_tag_destroy(ha->tx_tag);
ha->tx_tag = NULL;
}
return;
}
static int
qlnx_alloc_rx_dma_tag(qlnx_host_t *ha)
{
if (bus_dma_tag_create(NULL, /* parent */
1, 0, /* alignment, bounds */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
MJUM9BYTES, /* maxsize */
1, /* nsegments */
MJUM9BYTES, /* maxsegsize */
0, /* flags */
NULL, /* lockfunc */
NULL, /* lockfuncarg */
&ha->rx_tag)) {
QL_DPRINT1(ha, " rx_tag alloc failed\n");
return (-1);
}
return (0);
}
static void
qlnx_free_rx_dma_tag(qlnx_host_t *ha)
{
if (ha->rx_tag != NULL) {
bus_dma_tag_destroy(ha->rx_tag);
ha->rx_tag = NULL;
}
return;
}
/*********************************
* Exported functions
*********************************/
uint32_t
qlnx_pci_bus_get_bar_size(void *ecore_dev, uint8_t bar_id)
{
uint32_t bar_size;
bar_id = bar_id * 2;
bar_size = bus_get_resource_count(((qlnx_host_t *)ecore_dev)->pci_dev,
SYS_RES_MEMORY,
PCIR_BAR(bar_id));
return (bar_size);
}
uint32_t
qlnx_pci_read_config_byte(void *ecore_dev, uint32_t pci_reg, uint8_t *reg_value)
{
*reg_value = pci_read_config(((qlnx_host_t *)ecore_dev)->pci_dev,
pci_reg, 1);
return 0;
}
uint32_t
qlnx_pci_read_config_word(void *ecore_dev, uint32_t pci_reg,
uint16_t *reg_value)
{
*reg_value = pci_read_config(((qlnx_host_t *)ecore_dev)->pci_dev,
pci_reg, 2);
return 0;
}
uint32_t
qlnx_pci_read_config_dword(void *ecore_dev, uint32_t pci_reg,
uint32_t *reg_value)
{
*reg_value = pci_read_config(((qlnx_host_t *)ecore_dev)->pci_dev,
pci_reg, 4);
return 0;
}
void
qlnx_pci_write_config_byte(void *ecore_dev, uint32_t pci_reg, uint8_t reg_value)
{
pci_write_config(((qlnx_host_t *)ecore_dev)->pci_dev,
pci_reg, reg_value, 1);
return;
}
void
qlnx_pci_write_config_word(void *ecore_dev, uint32_t pci_reg,
uint16_t reg_value)
{
pci_write_config(((qlnx_host_t *)ecore_dev)->pci_dev,
pci_reg, reg_value, 2);
return;
}
void
qlnx_pci_write_config_dword(void *ecore_dev, uint32_t pci_reg,
uint32_t reg_value)
{
pci_write_config(((qlnx_host_t *)ecore_dev)->pci_dev,
pci_reg, reg_value, 4);
return;
}
int
qlnx_pci_find_capability(void *ecore_dev, int cap)
{
int reg;
qlnx_host_t *ha;
ha = ecore_dev;
if (pci_find_cap(ha->pci_dev, PCIY_EXPRESS, &reg) == 0)
return reg;
else {
QL_DPRINT1(ha, "failed\n");
return 0;
}
}
int
qlnx_pci_find_ext_capability(void *ecore_dev, int ext_cap)
{
int reg;
qlnx_host_t *ha;
ha = ecore_dev;
if (pci_find_extcap(ha->pci_dev, ext_cap, &reg) == 0)
return reg;
else {
QL_DPRINT1(ha, "failed\n");
return 0;
}
}
uint32_t
qlnx_reg_rd32(void *hwfn, uint32_t reg_addr)
{
uint32_t data32;
struct ecore_hwfn *p_hwfn;
p_hwfn = hwfn;
data32 = bus_read_4(((qlnx_host_t *)p_hwfn->p_dev)->pci_reg, \
(bus_size_t)(p_hwfn->reg_offset + reg_addr));
return (data32);
}
void
qlnx_reg_wr32(void *hwfn, uint32_t reg_addr, uint32_t value)
{
struct ecore_hwfn *p_hwfn = hwfn;
bus_write_4(((qlnx_host_t *)p_hwfn->p_dev)->pci_reg, \
(bus_size_t)(p_hwfn->reg_offset + reg_addr), value);
return;
}
void
qlnx_reg_wr16(void *hwfn, uint32_t reg_addr, uint16_t value)
{
struct ecore_hwfn *p_hwfn = hwfn;
bus_write_2(((qlnx_host_t *)p_hwfn->p_dev)->pci_reg, \
(bus_size_t)(p_hwfn->reg_offset + reg_addr), value);
return;
}
void
qlnx_dbell_wr32_db(void *hwfn, void *reg_addr, uint32_t value)
{
struct ecore_dev *cdev;
struct ecore_hwfn *p_hwfn;
uint32_t offset;
p_hwfn = hwfn;
cdev = p_hwfn->p_dev;
offset = (uint32_t)((uint8_t *)reg_addr - (uint8_t *)(p_hwfn->doorbells));
bus_write_4(((qlnx_host_t *)cdev)->pci_dbells, offset, value);
return;
}
void
qlnx_dbell_wr32(void *hwfn, uint32_t reg_addr, uint32_t value)
{
struct ecore_hwfn *p_hwfn = hwfn;
bus_write_4(((qlnx_host_t *)p_hwfn->p_dev)->pci_dbells, \
(bus_size_t)(p_hwfn->db_offset + reg_addr), value);
return;
}
uint32_t
qlnx_direct_reg_rd32(void *p_hwfn, uint32_t *reg_addr)
{
uint32_t data32;
bus_size_t offset;
struct ecore_dev *cdev;
cdev = ((struct ecore_hwfn *)p_hwfn)->p_dev;
offset = (bus_size_t)((uint8_t *)reg_addr - (uint8_t *)(cdev->regview));
data32 = bus_read_4(((qlnx_host_t *)cdev)->pci_reg, offset);
return (data32);
}
void
qlnx_direct_reg_wr32(void *p_hwfn, void *reg_addr, uint32_t value)
{
bus_size_t offset;
struct ecore_dev *cdev;
cdev = ((struct ecore_hwfn *)p_hwfn)->p_dev;
offset = (bus_size_t)((uint8_t *)reg_addr - (uint8_t *)(cdev->regview));
bus_write_4(((qlnx_host_t *)cdev)->pci_reg, offset, value);
return;
}
void
qlnx_direct_reg_wr64(void *p_hwfn, void *reg_addr, uint64_t value)
{
bus_size_t offset;
struct ecore_dev *cdev;
cdev = ((struct ecore_hwfn *)p_hwfn)->p_dev;
offset = (bus_size_t)((uint8_t *)reg_addr - (uint8_t *)(cdev->regview));
bus_write_8(((qlnx_host_t *)cdev)->pci_reg, offset, value);
return;
}
void *
qlnx_zalloc(uint32_t size)
{
caddr_t va;
va = malloc((unsigned long)size, M_QLNXBUF, M_NOWAIT);
bzero(va, size);
return ((void *)va);
}
void
qlnx_barrier(void *p_hwfn)
{
qlnx_host_t *ha;
ha = (qlnx_host_t *)((struct ecore_hwfn *)p_hwfn)->p_dev;
bus_barrier(ha->pci_reg, 0, 0, BUS_SPACE_BARRIER_WRITE);
}
void
qlnx_link_update(void *p_hwfn)
{
qlnx_host_t *ha;
int prev_link_state;
ha = (qlnx_host_t *)((struct ecore_hwfn *)p_hwfn)->p_dev;
qlnx_fill_link(ha, p_hwfn, &ha->if_link);
prev_link_state = ha->link_up;
ha->link_up = ha->if_link.link_up;
if (prev_link_state != ha->link_up) {
if (ha->link_up) {
if_link_state_change(ha->ifp, LINK_STATE_UP);
} else {
if_link_state_change(ha->ifp, LINK_STATE_DOWN);
}
}
#ifndef QLNX_VF
#ifdef CONFIG_ECORE_SRIOV
if (qlnx_vf_device(ha) != 0) {
if (ha->sriov_initialized)
qlnx_inform_vf_link_state(p_hwfn, ha);
}
#endif /* #ifdef CONFIG_ECORE_SRIOV */
#endif /* #ifdef QLNX_VF */
return;
}
static void
__qlnx_osal_vf_fill_acquire_resc_req(struct ecore_hwfn *p_hwfn,
struct ecore_vf_acquire_sw_info *p_sw_info)
{
p_sw_info->driver_version = (QLNX_VERSION_MAJOR << 24) |
(QLNX_VERSION_MINOR << 16) |
QLNX_VERSION_BUILD;
p_sw_info->os_type = VFPF_ACQUIRE_OS_FREEBSD;
return;
}
void
qlnx_osal_vf_fill_acquire_resc_req(void *p_hwfn, void *p_resc_req,
void *p_sw_info)
{
__qlnx_osal_vf_fill_acquire_resc_req(p_hwfn, p_sw_info);
return;
}
void
qlnx_fill_link(qlnx_host_t *ha, struct ecore_hwfn *hwfn,
struct qlnx_link_output *if_link)
{
struct ecore_mcp_link_params link_params;
struct ecore_mcp_link_state link_state;
uint8_t p_change;
struct ecore_ptt *p_ptt = NULL;
memset(if_link, 0, sizeof(*if_link));
memset(&link_params, 0, sizeof(struct ecore_mcp_link_params));
memset(&link_state, 0, sizeof(struct ecore_mcp_link_state));
ha = (qlnx_host_t *)hwfn->p_dev;
/* Prepare source inputs */
/* we only deal with physical functions */
if (qlnx_vf_device(ha) != 0) {
p_ptt = ecore_ptt_acquire(hwfn);
if (p_ptt == NULL) {
QL_DPRINT1(ha, "ecore_ptt_acquire failed\n");
return;
}
ecore_mcp_get_media_type(hwfn, p_ptt, &if_link->media_type);
ecore_ptt_release(hwfn, p_ptt);
memcpy(&link_params, ecore_mcp_get_link_params(hwfn),
sizeof(link_params));
memcpy(&link_state, ecore_mcp_get_link_state(hwfn),
sizeof(link_state));
} else {
ecore_mcp_get_media_type(hwfn, NULL, &if_link->media_type);
ecore_vf_read_bulletin(hwfn, &p_change);
ecore_vf_get_link_params(hwfn, &link_params);
ecore_vf_get_link_state(hwfn, &link_state);
}
/* Set the link parameters to pass to protocol driver */
if (link_state.link_up) {
if_link->link_up = true;
if_link->speed = link_state.speed;
}
if_link->supported_caps = QLNX_LINK_CAP_FIBRE;
if (link_params.speed.autoneg)
if_link->supported_caps |= QLNX_LINK_CAP_Autoneg;
if (link_params.pause.autoneg ||
(link_params.pause.forced_rx && link_params.pause.forced_tx))
if_link->supported_caps |= QLNX_LINK_CAP_Asym_Pause;
if (link_params.pause.autoneg || link_params.pause.forced_rx ||
link_params.pause.forced_tx)
if_link->supported_caps |= QLNX_LINK_CAP_Pause;
if (link_params.speed.advertised_speeds &
NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_1G)
if_link->supported_caps |= QLNX_LINK_CAP_1000baseT_Half |
QLNX_LINK_CAP_1000baseT_Full;
if (link_params.speed.advertised_speeds &
NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_10G)
if_link->supported_caps |= QLNX_LINK_CAP_10000baseKR_Full;
if (link_params.speed.advertised_speeds &
NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_25G)
if_link->supported_caps |= QLNX_LINK_CAP_25000baseKR_Full;
if (link_params.speed.advertised_speeds &
NVM_CFG1_PORT_DRV_LINK_SPEED_40G)
if_link->supported_caps |= QLNX_LINK_CAP_40000baseLR4_Full;
if (link_params.speed.advertised_speeds &
NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_50G)
if_link->supported_caps |= QLNX_LINK_CAP_50000baseKR2_Full;
if (link_params.speed.advertised_speeds &
NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_BB_100G)
if_link->supported_caps |= QLNX_LINK_CAP_100000baseKR4_Full;
if_link->advertised_caps = if_link->supported_caps;
if_link->autoneg = link_params.speed.autoneg;
if_link->duplex = QLNX_LINK_DUPLEX;
/* Link partner capabilities */
if (link_state.partner_adv_speed & ECORE_LINK_PARTNER_SPEED_1G_HD)
if_link->link_partner_caps |= QLNX_LINK_CAP_1000baseT_Half;
if (link_state.partner_adv_speed & ECORE_LINK_PARTNER_SPEED_1G_FD)
if_link->link_partner_caps |= QLNX_LINK_CAP_1000baseT_Full;
if (link_state.partner_adv_speed & ECORE_LINK_PARTNER_SPEED_10G)
if_link->link_partner_caps |= QLNX_LINK_CAP_10000baseKR_Full;
if (link_state.partner_adv_speed & ECORE_LINK_PARTNER_SPEED_25G)
if_link->link_partner_caps |= QLNX_LINK_CAP_25000baseKR_Full;
if (link_state.partner_adv_speed & ECORE_LINK_PARTNER_SPEED_40G)
if_link->link_partner_caps |= QLNX_LINK_CAP_40000baseLR4_Full;
if (link_state.partner_adv_speed & ECORE_LINK_PARTNER_SPEED_50G)
if_link->link_partner_caps |= QLNX_LINK_CAP_50000baseKR2_Full;
if (link_state.partner_adv_speed & ECORE_LINK_PARTNER_SPEED_100G)
if_link->link_partner_caps |= QLNX_LINK_CAP_100000baseKR4_Full;
if (link_state.an_complete)
if_link->link_partner_caps |= QLNX_LINK_CAP_Autoneg;
if (link_state.partner_adv_pause)
if_link->link_partner_caps |= QLNX_LINK_CAP_Pause;
if ((link_state.partner_adv_pause ==
ECORE_LINK_PARTNER_ASYMMETRIC_PAUSE) ||
(link_state.partner_adv_pause ==
ECORE_LINK_PARTNER_BOTH_PAUSE))
if_link->link_partner_caps |= QLNX_LINK_CAP_Asym_Pause;
return;
}
void
qlnx_schedule_recovery(void *p_hwfn)
{
qlnx_host_t *ha;
ha = (qlnx_host_t *)((struct ecore_hwfn *)p_hwfn)->p_dev;
if (qlnx_vf_device(ha) != 0) {
taskqueue_enqueue(ha->err_taskqueue, &ha->err_task);
}
return;
}
static int
qlnx_nic_setup(struct ecore_dev *cdev, struct ecore_pf_params *func_params)
{
int rc, i;
for (i = 0; i < cdev->num_hwfns; i++) {
struct ecore_hwfn *p_hwfn = &cdev->hwfns[i];
p_hwfn->pf_params = *func_params;
#ifdef QLNX_ENABLE_IWARP
if (qlnx_vf_device((qlnx_host_t *)cdev) != 0) {
p_hwfn->using_ll2 = true;
}
#endif /* #ifdef QLNX_ENABLE_IWARP */
}
rc = ecore_resc_alloc(cdev);
if (rc)
goto qlnx_nic_setup_exit;
ecore_resc_setup(cdev);
qlnx_nic_setup_exit:
return rc;
}
static int
qlnx_nic_start(struct ecore_dev *cdev)
{
int rc;
struct ecore_hw_init_params params;
bzero(&params, sizeof (struct ecore_hw_init_params));
params.p_tunn = NULL;
params.b_hw_start = true;
params.int_mode = cdev->int_mode;
params.allow_npar_tx_switch = true;
params.bin_fw_data = NULL;
rc = ecore_hw_init(cdev, &params);
if (rc) {
ecore_resc_free(cdev);
return rc;
}
return 0;
}
static int
qlnx_slowpath_start(qlnx_host_t *ha)
{
struct ecore_dev *cdev;
struct ecore_pf_params pf_params;
int rc;
memset(&pf_params, 0, sizeof(struct ecore_pf_params));
pf_params.eth_pf_params.num_cons =
(ha->num_rss) * (ha->num_tc + 1);
#ifdef QLNX_ENABLE_IWARP
if (qlnx_vf_device(ha) != 0) {
if(ha->personality == ECORE_PCI_ETH_IWARP) {
device_printf(ha->pci_dev, "setting parameters required by iWARP dev\n");
pf_params.rdma_pf_params.num_qps = 1024;
pf_params.rdma_pf_params.num_srqs = 1024;
pf_params.rdma_pf_params.gl_pi = ECORE_ROCE_PROTOCOL_INDEX;
pf_params.rdma_pf_params.rdma_protocol = ECORE_RDMA_PROTOCOL_IWARP;
} else if(ha->personality == ECORE_PCI_ETH_ROCE) {
device_printf(ha->pci_dev, "setting parameters required by RoCE dev\n");
pf_params.rdma_pf_params.num_qps = 8192;
pf_params.rdma_pf_params.num_srqs = 8192;
//pf_params.rdma_pf_params.min_dpis = 0;
pf_params.rdma_pf_params.min_dpis = 8;
pf_params.rdma_pf_params.roce_edpm_mode = 0;
pf_params.rdma_pf_params.gl_pi = ECORE_ROCE_PROTOCOL_INDEX;
pf_params.rdma_pf_params.rdma_protocol = ECORE_RDMA_PROTOCOL_ROCE;
}
}
#endif /* #ifdef QLNX_ENABLE_IWARP */
cdev = &ha->cdev;
rc = qlnx_nic_setup(cdev, &pf_params);
if (rc)
goto qlnx_slowpath_start_exit;
cdev->int_mode = ECORE_INT_MODE_MSIX;
cdev->int_coalescing_mode = ECORE_COAL_MODE_ENABLE;
#ifdef QLNX_MAX_COALESCE
cdev->rx_coalesce_usecs = 255;
cdev->tx_coalesce_usecs = 255;
#endif
rc = qlnx_nic_start(cdev);
ha->rx_coalesce_usecs = cdev->rx_coalesce_usecs;
ha->tx_coalesce_usecs = cdev->tx_coalesce_usecs;
#ifdef QLNX_USER_LLDP
(void)qlnx_set_lldp_tlvx(ha, NULL);
#endif /* #ifdef QLNX_USER_LLDP */
qlnx_slowpath_start_exit:
return (rc);
}
static int
qlnx_slowpath_stop(qlnx_host_t *ha)
{
struct ecore_dev *cdev;
device_t dev = ha->pci_dev;
int i;
cdev = &ha->cdev;
ecore_hw_stop(cdev);
for (i = 0; i < ha->cdev.num_hwfns; i++) {
if (ha->sp_handle[i])
(void)bus_teardown_intr(dev, ha->sp_irq[i],
ha->sp_handle[i]);
ha->sp_handle[i] = NULL;
if (ha->sp_irq[i])
(void) bus_release_resource(dev, SYS_RES_IRQ,
ha->sp_irq_rid[i], ha->sp_irq[i]);
ha->sp_irq[i] = NULL;
}
ecore_resc_free(cdev);
return 0;
}
static void
qlnx_set_id(struct ecore_dev *cdev, char name[NAME_SIZE],
char ver_str[VER_SIZE])
{
int i;
memcpy(cdev->name, name, NAME_SIZE);
for_each_hwfn(cdev, i) {
snprintf(cdev->hwfns[i].name, NAME_SIZE, "%s-%d", name, i);
}
cdev->drv_type = DRV_ID_DRV_TYPE_FREEBSD;
return ;
}
void
qlnx_get_protocol_stats(void *cdev, int proto_type, void *proto_stats)
{
enum ecore_mcp_protocol_type type;
union ecore_mcp_protocol_stats *stats;
struct ecore_eth_stats eth_stats;
qlnx_host_t *ha;
ha = cdev;
stats = proto_stats;
type = proto_type;
switch (type) {
case ECORE_MCP_LAN_STATS:
ecore_get_vport_stats((struct ecore_dev *)cdev, &eth_stats);
stats->lan_stats.ucast_rx_pkts = eth_stats.common.rx_ucast_pkts;
stats->lan_stats.ucast_tx_pkts = eth_stats.common.tx_ucast_pkts;
stats->lan_stats.fcs_err = -1;
break;
default:
ha->err_get_proto_invalid_type++;
QL_DPRINT1(ha, "invalid protocol type 0x%x\n", type);
break;
}
return;
}
static int
qlnx_get_mfw_version(qlnx_host_t *ha, uint32_t *mfw_ver)
{
struct ecore_hwfn *p_hwfn;
struct ecore_ptt *p_ptt;
p_hwfn = &ha->cdev.hwfns[0];
p_ptt = ecore_ptt_acquire(p_hwfn);
if (p_ptt == NULL) {
QL_DPRINT1(ha, "ecore_ptt_acquire failed\n");
return (-1);
}
ecore_mcp_get_mfw_ver(p_hwfn, p_ptt, mfw_ver, NULL);
ecore_ptt_release(p_hwfn, p_ptt);
return (0);
}
static int
qlnx_get_flash_size(qlnx_host_t *ha, uint32_t *flash_size)
{
struct ecore_hwfn *p_hwfn;
struct ecore_ptt *p_ptt;
p_hwfn = &ha->cdev.hwfns[0];
p_ptt = ecore_ptt_acquire(p_hwfn);
if (p_ptt == NULL) {
QL_DPRINT1(ha,"ecore_ptt_acquire failed\n");
return (-1);
}
ecore_mcp_get_flash_size(p_hwfn, p_ptt, flash_size);
ecore_ptt_release(p_hwfn, p_ptt);
return (0);
}
static int
qlnx_alloc_mem_arrays(qlnx_host_t *ha)
{
struct ecore_dev *cdev;
cdev = &ha->cdev;
bzero(&ha->txq_array[0], (sizeof(struct qlnx_tx_queue) * QLNX_MAX_RSS));
bzero(&ha->rxq_array[0], (sizeof(struct qlnx_rx_queue) * QLNX_MAX_RSS));
bzero(&ha->sb_array[0], (sizeof(struct ecore_sb_info) * QLNX_MAX_RSS));
return 0;
}
static void
qlnx_init_fp(qlnx_host_t *ha)
{
int rss_id, txq_array_index, tc;
for (rss_id = 0; rss_id < ha->num_rss; rss_id++) {
struct qlnx_fastpath *fp = &ha->fp_array[rss_id];
fp->rss_id = rss_id;
fp->edev = ha;
fp->sb_info = &ha->sb_array[rss_id];
fp->rxq = &ha->rxq_array[rss_id];
fp->rxq->rxq_id = rss_id;
for (tc = 0; tc < ha->num_tc; tc++) {
txq_array_index = tc * ha->num_rss + rss_id;
fp->txq[tc] = &ha->txq_array[txq_array_index];
fp->txq[tc]->index = txq_array_index;
}
snprintf(fp->name, sizeof(fp->name), "%s-fp-%d", qlnx_name_str,
rss_id);
fp->tx_ring_full = 0;
/* reset all the statistics counters */
fp->tx_pkts_processed = 0;
fp->tx_pkts_freed = 0;
fp->tx_pkts_transmitted = 0;
fp->tx_pkts_completed = 0;
#ifdef QLNX_TRACE_PERF_DATA
fp->tx_pkts_trans_ctx = 0;
fp->tx_pkts_compl_ctx = 0;
fp->tx_pkts_trans_fp = 0;
fp->tx_pkts_compl_fp = 0;
fp->tx_pkts_compl_intr = 0;
#endif
fp->tx_lso_wnd_min_len = 0;
fp->tx_defrag = 0;
fp->tx_nsegs_gt_elem_left = 0;
fp->tx_tso_max_nsegs = 0;
fp->tx_tso_min_nsegs = 0;
fp->err_tx_nsegs_gt_elem_left = 0;
fp->err_tx_dmamap_create = 0;
fp->err_tx_defrag_dmamap_load = 0;
fp->err_tx_non_tso_max_seg = 0;
fp->err_tx_dmamap_load = 0;
fp->err_tx_defrag = 0;
fp->err_tx_free_pkt_null = 0;
fp->err_tx_cons_idx_conflict = 0;
fp->rx_pkts = 0;
fp->err_m_getcl = 0;
fp->err_m_getjcl = 0;
}
return;
}
void
qlnx_free_mem_sb(qlnx_host_t *ha, struct ecore_sb_info *sb_info)
{
struct ecore_dev *cdev;
cdev = &ha->cdev;
if (sb_info->sb_virt) {
OSAL_DMA_FREE_COHERENT(cdev, ((void *)sb_info->sb_virt),
(sb_info->sb_phys), (sizeof(*sb_info->sb_virt)));
sb_info->sb_virt = NULL;
}
}
static int
qlnx_sb_init(struct ecore_dev *cdev, struct ecore_sb_info *sb_info,
void *sb_virt_addr, bus_addr_t sb_phy_addr, u16 sb_id)
{
struct ecore_hwfn *p_hwfn;
int hwfn_index, rc;
u16 rel_sb_id;
hwfn_index = sb_id % cdev->num_hwfns;
p_hwfn = &cdev->hwfns[hwfn_index];
rel_sb_id = sb_id / cdev->num_hwfns;
QL_DPRINT2(((qlnx_host_t *)cdev),
"hwfn_index = %d p_hwfn = %p sb_id = 0x%x rel_sb_id = 0x%x \
sb_info = %p sb_virt_addr = %p sb_phy_addr = %p\n",
hwfn_index, p_hwfn, sb_id, rel_sb_id, sb_info,
sb_virt_addr, (void *)sb_phy_addr);
rc = ecore_int_sb_init(p_hwfn, p_hwfn->p_main_ptt, sb_info,
sb_virt_addr, sb_phy_addr, rel_sb_id);
return rc;
}
/* This function allocates fast-path status block memory */
int
qlnx_alloc_mem_sb(qlnx_host_t *ha, struct ecore_sb_info *sb_info, u16 sb_id)
{
struct status_block_e4 *sb_virt;
bus_addr_t sb_phys;
int rc;
uint32_t size;
struct ecore_dev *cdev;
cdev = &ha->cdev;
size = sizeof(*sb_virt);
sb_virt = OSAL_DMA_ALLOC_COHERENT(cdev, (&sb_phys), size);
if (!sb_virt) {
QL_DPRINT1(ha, "Status block allocation failed\n");
return -ENOMEM;
}
rc = qlnx_sb_init(cdev, sb_info, sb_virt, sb_phys, sb_id);
if (rc) {
OSAL_DMA_FREE_COHERENT(cdev, sb_virt, sb_phys, size);
}
return rc;
}
static void
qlnx_free_rx_buffers(qlnx_host_t *ha, struct qlnx_rx_queue *rxq)
{
int i;
struct sw_rx_data *rx_buf;
for (i = 0; i < rxq->num_rx_buffers; i++) {
rx_buf = &rxq->sw_rx_ring[i];
if (rx_buf->data != NULL) {
if (rx_buf->map != NULL) {
bus_dmamap_unload(ha->rx_tag, rx_buf->map);
bus_dmamap_destroy(ha->rx_tag, rx_buf->map);
rx_buf->map = NULL;
}
m_freem(rx_buf->data);
rx_buf->data = NULL;
}
}
return;
}
static void
qlnx_free_mem_rxq(qlnx_host_t *ha, struct qlnx_rx_queue *rxq)
{
struct ecore_dev *cdev;
int i;
cdev = &ha->cdev;
qlnx_free_rx_buffers(ha, rxq);
for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) {
qlnx_free_tpa_mbuf(ha, &rxq->tpa_info[i]);
if (rxq->tpa_info[i].mpf != NULL)
m_freem(rxq->tpa_info[i].mpf);
}
bzero((void *)&rxq->sw_rx_ring[0],
(sizeof (struct sw_rx_data) * RX_RING_SIZE));
/* Free the real RQ ring used by FW */
if (rxq->rx_bd_ring.p_virt_addr) {
ecore_chain_free(cdev, &rxq->rx_bd_ring);
rxq->rx_bd_ring.p_virt_addr = NULL;
}
/* Free the real completion ring used by FW */
if (rxq->rx_comp_ring.p_virt_addr &&
rxq->rx_comp_ring.pbl_sp.p_virt_table) {
ecore_chain_free(cdev, &rxq->rx_comp_ring);
rxq->rx_comp_ring.p_virt_addr = NULL;
rxq->rx_comp_ring.pbl_sp.p_virt_table = NULL;
}
#ifdef QLNX_SOFT_LRO
{
struct lro_ctrl *lro;
lro = &rxq->lro;
tcp_lro_free(lro);
}
#endif /* #ifdef QLNX_SOFT_LRO */
return;
}
static int
qlnx_alloc_rx_buffer(qlnx_host_t *ha, struct qlnx_rx_queue *rxq)
{
register struct mbuf *mp;
uint16_t rx_buf_size;
struct sw_rx_data *sw_rx_data;
struct eth_rx_bd *rx_bd;
dma_addr_t dma_addr;
bus_dmamap_t map;
bus_dma_segment_t segs[1];
int nsegs;
int ret;
struct ecore_dev *cdev;
cdev = &ha->cdev;
rx_buf_size = rxq->rx_buf_size;
mp = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, rx_buf_size);
if (mp == NULL) {
QL_DPRINT1(ha, "Failed to allocate Rx data\n");
return -ENOMEM;
}
mp->m_len = mp->m_pkthdr.len = rx_buf_size;
map = (bus_dmamap_t)0;
ret = bus_dmamap_load_mbuf_sg(ha->rx_tag, map, mp, segs, &nsegs,
BUS_DMA_NOWAIT);
dma_addr = segs[0].ds_addr;
if (ret || !dma_addr || (nsegs != 1)) {
m_freem(mp);
QL_DPRINT1(ha, "bus_dmamap_load failed[%d, 0x%016llx, %d]\n",
ret, (long long unsigned int)dma_addr, nsegs);
return -ENOMEM;
}
sw_rx_data = &rxq->sw_rx_ring[rxq->sw_rx_prod];
sw_rx_data->data = mp;
sw_rx_data->dma_addr = dma_addr;
sw_rx_data->map = map;
/* Advance PROD and get BD pointer */
rx_bd = (struct eth_rx_bd *)ecore_chain_produce(&rxq->rx_bd_ring);
rx_bd->addr.hi = htole32(U64_HI(dma_addr));
rx_bd->addr.lo = htole32(U64_LO(dma_addr));
bus_dmamap_sync(ha->rx_tag, map, BUS_DMASYNC_PREREAD);
rxq->sw_rx_prod = (rxq->sw_rx_prod + 1) & (RX_RING_SIZE - 1);
return 0;
}
static int
qlnx_alloc_tpa_mbuf(qlnx_host_t *ha, uint16_t rx_buf_size,
struct qlnx_agg_info *tpa)
{
struct mbuf *mp;
dma_addr_t dma_addr;
bus_dmamap_t map;
bus_dma_segment_t segs[1];
int nsegs;
int ret;
struct sw_rx_data *rx_buf;
mp = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, rx_buf_size);
if (mp == NULL) {
QL_DPRINT1(ha, "Failed to allocate Rx data\n");
return -ENOMEM;
}
mp->m_len = mp->m_pkthdr.len = rx_buf_size;
map = (bus_dmamap_t)0;
ret = bus_dmamap_load_mbuf_sg(ha->rx_tag, map, mp, segs, &nsegs,
BUS_DMA_NOWAIT);
dma_addr = segs[0].ds_addr;
if (ret || !dma_addr || (nsegs != 1)) {
m_freem(mp);
QL_DPRINT1(ha, "bus_dmamap_load failed[%d, 0x%016llx, %d]\n",
ret, (long long unsigned int)dma_addr, nsegs);
return -ENOMEM;
}
rx_buf = &tpa->rx_buf;
memset(rx_buf, 0, sizeof (struct sw_rx_data));
rx_buf->data = mp;
rx_buf->dma_addr = dma_addr;
rx_buf->map = map;
bus_dmamap_sync(ha->rx_tag, map, BUS_DMASYNC_PREREAD);
return (0);
}
static void
qlnx_free_tpa_mbuf(qlnx_host_t *ha, struct qlnx_agg_info *tpa)
{
struct sw_rx_data *rx_buf;
rx_buf = &tpa->rx_buf;
if (rx_buf->data != NULL) {
if (rx_buf->map != NULL) {
bus_dmamap_unload(ha->rx_tag, rx_buf->map);
bus_dmamap_destroy(ha->rx_tag, rx_buf->map);
rx_buf->map = NULL;
}
m_freem(rx_buf->data);
rx_buf->data = NULL;
}
return;
}
/* This function allocates all memory needed per Rx queue */
static int
qlnx_alloc_mem_rxq(qlnx_host_t *ha, struct qlnx_rx_queue *rxq)
{
int i, rc, num_allocated;
struct ifnet *ifp;
struct ecore_dev *cdev;
cdev = &ha->cdev;
ifp = ha->ifp;
rxq->num_rx_buffers = RX_RING_SIZE;
rxq->rx_buf_size = ha->rx_buf_size;
/* Allocate the parallel driver ring for Rx buffers */
bzero((void *)&rxq->sw_rx_ring[0],
(sizeof (struct sw_rx_data) * RX_RING_SIZE));
/* Allocate FW Rx ring */
rc = ecore_chain_alloc(cdev,
ECORE_CHAIN_USE_TO_CONSUME_PRODUCE,
ECORE_CHAIN_MODE_NEXT_PTR,
ECORE_CHAIN_CNT_TYPE_U16,
RX_RING_SIZE,
sizeof(struct eth_rx_bd),
&rxq->rx_bd_ring, NULL);
if (rc)
goto err;
/* Allocate FW completion ring */
rc = ecore_chain_alloc(cdev,
ECORE_CHAIN_USE_TO_CONSUME,
ECORE_CHAIN_MODE_PBL,
ECORE_CHAIN_CNT_TYPE_U16,
RX_RING_SIZE,
sizeof(union eth_rx_cqe),
&rxq->rx_comp_ring, NULL);
if (rc)
goto err;
/* Allocate buffers for the Rx ring */
for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) {
rc = qlnx_alloc_tpa_mbuf(ha, rxq->rx_buf_size,
&rxq->tpa_info[i]);
if (rc)
break;
}
for (i = 0; i < rxq->num_rx_buffers; i++) {
rc = qlnx_alloc_rx_buffer(ha, rxq);
if (rc)
break;
}
num_allocated = i;
if (!num_allocated) {
QL_DPRINT1(ha, "Rx buffers allocation failed\n");
goto err;
} else if (num_allocated < rxq->num_rx_buffers) {
QL_DPRINT1(ha, "Allocated less buffers than"
" desired (%d allocated)\n", num_allocated);
}
#ifdef QLNX_SOFT_LRO
{
struct lro_ctrl *lro;
lro = &rxq->lro;
#if (__FreeBSD_version >= 1100101) || (defined QLNX_QSORT_LRO)
if (tcp_lro_init_args(lro, ifp, 0, rxq->num_rx_buffers)) {
QL_DPRINT1(ha, "tcp_lro_init[%d] failed\n",
rxq->rxq_id);
goto err;
}
#else
if (tcp_lro_init(lro)) {
QL_DPRINT1(ha, "tcp_lro_init[%d] failed\n",
rxq->rxq_id);
goto err;
}
#endif /* #if (__FreeBSD_version >= 1100101) || (defined QLNX_QSORT_LRO) */
lro->ifp = ha->ifp;
}
#endif /* #ifdef QLNX_SOFT_LRO */
return 0;
err:
qlnx_free_mem_rxq(ha, rxq);
return -ENOMEM;
}
static void
qlnx_free_mem_txq(qlnx_host_t *ha, struct qlnx_fastpath *fp,
struct qlnx_tx_queue *txq)
{
struct ecore_dev *cdev;
cdev = &ha->cdev;
bzero((void *)&txq->sw_tx_ring[0],
(sizeof (struct sw_tx_bd) * TX_RING_SIZE));
/* Free the real RQ ring used by FW */
if (txq->tx_pbl.p_virt_addr) {
ecore_chain_free(cdev, &txq->tx_pbl);
txq->tx_pbl.p_virt_addr = NULL;
}
return;
}
/* This function allocates all memory needed per Tx queue */
static int
qlnx_alloc_mem_txq(qlnx_host_t *ha, struct qlnx_fastpath *fp,
struct qlnx_tx_queue *txq)
{
int ret = ECORE_SUCCESS;
union eth_tx_bd_types *p_virt;
struct ecore_dev *cdev;
cdev = &ha->cdev;
bzero((void *)&txq->sw_tx_ring[0],
(sizeof (struct sw_tx_bd) * TX_RING_SIZE));
/* Allocate the real Tx ring to be used by FW */
ret = ecore_chain_alloc(cdev,
ECORE_CHAIN_USE_TO_CONSUME_PRODUCE,
ECORE_CHAIN_MODE_PBL,
ECORE_CHAIN_CNT_TYPE_U16,
TX_RING_SIZE,
sizeof(*p_virt),
&txq->tx_pbl, NULL);
if (ret != ECORE_SUCCESS) {
goto err;
}
txq->num_tx_buffers = TX_RING_SIZE;
return 0;
err:
qlnx_free_mem_txq(ha, fp, txq);
return -ENOMEM;
}
static void
qlnx_free_tx_br(qlnx_host_t *ha, struct qlnx_fastpath *fp)
{
struct mbuf *mp;
struct ifnet *ifp = ha->ifp;
if (mtx_initialized(&fp->tx_mtx)) {
if (fp->tx_br != NULL) {
mtx_lock(&fp->tx_mtx);
while ((mp = drbr_dequeue(ifp, fp->tx_br)) != NULL) {
fp->tx_pkts_freed++;
m_freem(mp);
}
mtx_unlock(&fp->tx_mtx);
buf_ring_free(fp->tx_br, M_DEVBUF);
fp->tx_br = NULL;
}
mtx_destroy(&fp->tx_mtx);
}
return;
}
static void
qlnx_free_mem_fp(qlnx_host_t *ha, struct qlnx_fastpath *fp)
{
int tc;
qlnx_free_mem_sb(ha, fp->sb_info);
qlnx_free_mem_rxq(ha, fp->rxq);
for (tc = 0; tc < ha->num_tc; tc++)
qlnx_free_mem_txq(ha, fp, fp->txq[tc]);
return;
}
static int
qlnx_alloc_tx_br(qlnx_host_t *ha, struct qlnx_fastpath *fp)
{
snprintf(fp->tx_mtx_name, sizeof(fp->tx_mtx_name),
"qlnx%d_fp%d_tx_mq_lock", ha->dev_unit, fp->rss_id);
mtx_init(&fp->tx_mtx, fp->tx_mtx_name, NULL, MTX_DEF);
fp->tx_br = buf_ring_alloc(TX_RING_SIZE, M_DEVBUF,
M_NOWAIT, &fp->tx_mtx);
if (fp->tx_br == NULL) {
QL_DPRINT1(ha, "buf_ring_alloc failed for fp[%d, %d]\n",
ha->dev_unit, fp->rss_id);
return -ENOMEM;
}
return 0;
}
static int
qlnx_alloc_mem_fp(qlnx_host_t *ha, struct qlnx_fastpath *fp)
{
int rc, tc;
rc = qlnx_alloc_mem_sb(ha, fp->sb_info, fp->rss_id);
if (rc)
goto err;
if (ha->rx_jumbo_buf_eq_mtu) {
if (ha->max_frame_size <= MCLBYTES)
ha->rx_buf_size = MCLBYTES;
else if (ha->max_frame_size <= MJUMPAGESIZE)
ha->rx_buf_size = MJUMPAGESIZE;
else if (ha->max_frame_size <= MJUM9BYTES)
ha->rx_buf_size = MJUM9BYTES;
else if (ha->max_frame_size <= MJUM16BYTES)
ha->rx_buf_size = MJUM16BYTES;
} else {
if (ha->max_frame_size <= MCLBYTES)
ha->rx_buf_size = MCLBYTES;
else
ha->rx_buf_size = MJUMPAGESIZE;
}
rc = qlnx_alloc_mem_rxq(ha, fp->rxq);
if (rc)
goto err;
for (tc = 0; tc < ha->num_tc; tc++) {
rc = qlnx_alloc_mem_txq(ha, fp, fp->txq[tc]);
if (rc)
goto err;
}
return 0;
err:
qlnx_free_mem_fp(ha, fp);
return -ENOMEM;
}
static void
qlnx_free_mem_load(qlnx_host_t *ha)
{
int i;
struct ecore_dev *cdev;
cdev = &ha->cdev;
for (i = 0; i < ha->num_rss; i++) {
struct qlnx_fastpath *fp = &ha->fp_array[i];
qlnx_free_mem_fp(ha, fp);
}
return;
}
static int
qlnx_alloc_mem_load(qlnx_host_t *ha)
{
int rc = 0, rss_id;
for (rss_id = 0; rss_id < ha->num_rss; rss_id++) {
struct qlnx_fastpath *fp = &ha->fp_array[rss_id];
rc = qlnx_alloc_mem_fp(ha, fp);
if (rc)
break;
}
return (rc);
}
static int
qlnx_start_vport(struct ecore_dev *cdev,
u8 vport_id,
u16 mtu,
u8 drop_ttl0_flg,
u8 inner_vlan_removal_en_flg,
u8 tx_switching,
u8 hw_lro_enable)
{
int rc, i;
struct ecore_sp_vport_start_params vport_start_params = { 0 };
qlnx_host_t *ha;
ha = (qlnx_host_t *)cdev;
vport_start_params.remove_inner_vlan = inner_vlan_removal_en_flg;
vport_start_params.tx_switching = 0;
vport_start_params.handle_ptp_pkts = 0;
vport_start_params.only_untagged = 0;
vport_start_params.drop_ttl0 = drop_ttl0_flg;
vport_start_params.tpa_mode =
(hw_lro_enable ? ECORE_TPA_MODE_RSC : ECORE_TPA_MODE_NONE);
vport_start_params.max_buffers_per_cqe = QLNX_TPA_MAX_AGG_BUFFERS;
vport_start_params.vport_id = vport_id;
vport_start_params.mtu = mtu;
QL_DPRINT2(ha, "Setting mtu to %d and VPORT ID = %d\n", mtu, vport_id);
for_each_hwfn(cdev, i) {
struct ecore_hwfn *p_hwfn = &cdev->hwfns[i];
vport_start_params.concrete_fid = p_hwfn->hw_info.concrete_fid;
vport_start_params.opaque_fid = p_hwfn->hw_info.opaque_fid;
rc = ecore_sp_vport_start(p_hwfn, &vport_start_params);
if (rc) {
QL_DPRINT1(ha, "Failed to start VPORT V-PORT %d"
" with MTU %d\n" , vport_id, mtu);
return -ENOMEM;
}
ecore_hw_start_fastpath(p_hwfn);
QL_DPRINT2(ha, "Started V-PORT %d with MTU %d\n",
vport_id, mtu);
}
return 0;
}
static int
qlnx_update_vport(struct ecore_dev *cdev,
struct qlnx_update_vport_params *params)
{
struct ecore_sp_vport_update_params sp_params;
int rc, i, j, fp_index;
struct ecore_hwfn *p_hwfn;
struct ecore_rss_params *rss;
qlnx_host_t *ha = (qlnx_host_t *)cdev;
struct qlnx_fastpath *fp;
memset(&sp_params, 0, sizeof(sp_params));
/* Translate protocol params into sp params */
sp_params.vport_id = params->vport_id;
sp_params.update_vport_active_rx_flg =
params->update_vport_active_rx_flg;
sp_params.vport_active_rx_flg = params->vport_active_rx_flg;
sp_params.update_vport_active_tx_flg =
params->update_vport_active_tx_flg;
sp_params.vport_active_tx_flg = params->vport_active_tx_flg;
sp_params.update_inner_vlan_removal_flg =
params->update_inner_vlan_removal_flg;
sp_params.inner_vlan_removal_flg = params->inner_vlan_removal_flg;
sp_params.sge_tpa_params = params->sge_tpa_params;
/* RSS - is a bit tricky, since upper-layer isn't familiar with hwfns.
* We need to re-fix the rss values per engine for CMT.
*/
if (params->rss_params->update_rss_config)
sp_params.rss_params = params->rss_params;
else
sp_params.rss_params = NULL;
for_each_hwfn(cdev, i) {
p_hwfn = &cdev->hwfns[i];
if ((cdev->num_hwfns > 1) &&
params->rss_params->update_rss_config &&
params->rss_params->rss_enable) {
rss = params->rss_params;
for (j = 0; j < ECORE_RSS_IND_TABLE_SIZE; j++) {
fp_index = ((cdev->num_hwfns * j) + i) %
ha->num_rss;
fp = &ha->fp_array[fp_index];
rss->rss_ind_table[j] = fp->rxq->handle;
}
for (j = 0; j < ECORE_RSS_IND_TABLE_SIZE;) {
QL_DPRINT3(ha, "%p %p %p %p %p %p %p %p \n",
rss->rss_ind_table[j],
rss->rss_ind_table[j+1],
rss->rss_ind_table[j+2],
rss->rss_ind_table[j+3],
rss->rss_ind_table[j+4],
rss->rss_ind_table[j+5],
rss->rss_ind_table[j+6],
rss->rss_ind_table[j+7]);
j += 8;
}
}
sp_params.opaque_fid = p_hwfn->hw_info.opaque_fid;
QL_DPRINT1(ha, "Update sp vport ID=%d\n", params->vport_id);
rc = ecore_sp_vport_update(p_hwfn, &sp_params,
ECORE_SPQ_MODE_EBLOCK, NULL);
if (rc) {
QL_DPRINT1(ha, "Failed to update VPORT\n");
return rc;
}
QL_DPRINT2(ha, "Updated V-PORT %d: tx_active_flag %d, \
rx_active_flag %d [tx_update %d], [rx_update %d]\n",
params->vport_id, params->vport_active_tx_flg,
params->vport_active_rx_flg,
params->update_vport_active_tx_flg,
params->update_vport_active_rx_flg);
}
return 0;
}
static void
qlnx_reuse_rx_data(struct qlnx_rx_queue *rxq)
{
struct eth_rx_bd *rx_bd_cons =
ecore_chain_consume(&rxq->rx_bd_ring);
struct eth_rx_bd *rx_bd_prod =
ecore_chain_produce(&rxq->rx_bd_ring);
struct sw_rx_data *sw_rx_data_cons =
&rxq->sw_rx_ring[rxq->sw_rx_cons];
struct sw_rx_data *sw_rx_data_prod =
&rxq->sw_rx_ring[rxq->sw_rx_prod];
sw_rx_data_prod->data = sw_rx_data_cons->data;
memcpy(rx_bd_prod, rx_bd_cons, sizeof(struct eth_rx_bd));
rxq->sw_rx_cons = (rxq->sw_rx_cons + 1) & (RX_RING_SIZE - 1);
rxq->sw_rx_prod = (rxq->sw_rx_prod + 1) & (RX_RING_SIZE - 1);
return;
}
static void
qlnx_update_rx_prod(struct ecore_hwfn *p_hwfn, struct qlnx_rx_queue *rxq)
{
uint16_t bd_prod;
uint16_t cqe_prod;
union {
struct eth_rx_prod_data rx_prod_data;
uint32_t data32;
} rx_prods;
bd_prod = ecore_chain_get_prod_idx(&rxq->rx_bd_ring);
cqe_prod = ecore_chain_get_prod_idx(&rxq->rx_comp_ring);
/* Update producers */
rx_prods.rx_prod_data.bd_prod = htole16(bd_prod);
rx_prods.rx_prod_data.cqe_prod = htole16(cqe_prod);
/* Make sure that the BD and SGE data is updated before updating the
* producers since FW might read the BD/SGE right after the producer
* is updated.
*/
wmb();
internal_ram_wr(p_hwfn, rxq->hw_rxq_prod_addr,
sizeof(rx_prods), &rx_prods.data32);
/* mmiowb is needed to synchronize doorbell writes from more than one
* processor. It guarantees that the write arrives to the device before
* the napi lock is released and another qlnx_poll is called (possibly
* on another CPU). Without this barrier, the next doorbell can bypass
* this doorbell. This is applicable to IA64/Altix systems.
*/
wmb();
return;
}
static uint32_t qlnx_hash_key[] = {
((0x6d << 24)|(0x5a << 16)|(0x56 << 8)|0xda),
((0x25 << 24)|(0x5b << 16)|(0x0e << 8)|0xc2),
((0x41 << 24)|(0x67 << 16)|(0x25 << 8)|0x3d),
((0x43 << 24)|(0xa3 << 16)|(0x8f << 8)|0xb0),
((0xd0 << 24)|(0xca << 16)|(0x2b << 8)|0xcb),
((0xae << 24)|(0x7b << 16)|(0x30 << 8)|0xb4),
((0x77 << 24)|(0xcb << 16)|(0x2d << 8)|0xa3),
((0x80 << 24)|(0x30 << 16)|(0xf2 << 8)|0x0c),
((0x6a << 24)|(0x42 << 16)|(0xb7 << 8)|0x3b),
((0xbe << 24)|(0xac << 16)|(0x01 << 8)|0xfa)};
static int
qlnx_start_queues(qlnx_host_t *ha)
{
int rc, tc, i, vport_id = 0,
drop_ttl0_flg = 1, vlan_removal_en = 1,
tx_switching = 0, hw_lro_enable = 0;
struct ecore_dev *cdev = &ha->cdev;
struct ecore_rss_params *rss_params = &ha->rss_params;
struct qlnx_update_vport_params vport_update_params;
struct ifnet *ifp;
struct ecore_hwfn *p_hwfn;
struct ecore_sge_tpa_params tpa_params;
struct ecore_queue_start_common_params qparams;
struct qlnx_fastpath *fp;
ifp = ha->ifp;
QL_DPRINT1(ha, "Num RSS = %d\n", ha->num_rss);
if (!ha->num_rss) {
QL_DPRINT1(ha, "Cannot update V-VPORT as active as there"
" are no Rx queues\n");
return -EINVAL;
}
#ifndef QLNX_SOFT_LRO
hw_lro_enable = ifp->if_capenable & IFCAP_LRO;
#endif /* #ifndef QLNX_SOFT_LRO */
rc = qlnx_start_vport(cdev, vport_id, ifp->if_mtu, drop_ttl0_flg,
vlan_removal_en, tx_switching, hw_lro_enable);
if (rc) {
QL_DPRINT1(ha, "Start V-PORT failed %d\n", rc);
return rc;
}
QL_DPRINT2(ha, "Start vport ramrod passed, "
"vport_id = %d, MTU = %d, vlan_removal_en = %d\n",
vport_id, (int)(ifp->if_mtu + 0xe), vlan_removal_en);
for_each_rss(i) {
struct ecore_rxq_start_ret_params rx_ret_params;
struct ecore_txq_start_ret_params tx_ret_params;
fp = &ha->fp_array[i];
p_hwfn = &cdev->hwfns[(fp->rss_id % cdev->num_hwfns)];
bzero(&qparams, sizeof(struct ecore_queue_start_common_params));
bzero(&rx_ret_params,
sizeof (struct ecore_rxq_start_ret_params));
qparams.queue_id = i ;
qparams.vport_id = vport_id;
qparams.stats_id = vport_id;
qparams.p_sb = fp->sb_info;
qparams.sb_idx = RX_PI;
rc = ecore_eth_rx_queue_start(p_hwfn,
p_hwfn->hw_info.opaque_fid,
&qparams,
fp->rxq->rx_buf_size, /* bd_max_bytes */
/* bd_chain_phys_addr */
fp->rxq->rx_bd_ring.p_phys_addr,
/* cqe_pbl_addr */
ecore_chain_get_pbl_phys(&fp->rxq->rx_comp_ring),
/* cqe_pbl_size */
ecore_chain_get_page_cnt(&fp->rxq->rx_comp_ring),
&rx_ret_params);
if (rc) {
QL_DPRINT1(ha, "Start RXQ #%d failed %d\n", i, rc);
return rc;
}
fp->rxq->hw_rxq_prod_addr = rx_ret_params.p_prod;
fp->rxq->handle = rx_ret_params.p_handle;
fp->rxq->hw_cons_ptr =
&fp->sb_info->sb_virt->pi_array[RX_PI];
qlnx_update_rx_prod(p_hwfn, fp->rxq);
for (tc = 0; tc < ha->num_tc; tc++) {
struct qlnx_tx_queue *txq = fp->txq[tc];
bzero(&qparams,
sizeof(struct ecore_queue_start_common_params));
bzero(&tx_ret_params,
sizeof (struct ecore_txq_start_ret_params));
qparams.queue_id = txq->index / cdev->num_hwfns ;
qparams.vport_id = vport_id;
qparams.stats_id = vport_id;
qparams.p_sb = fp->sb_info;
qparams.sb_idx = TX_PI(tc);
rc = ecore_eth_tx_queue_start(p_hwfn,
p_hwfn->hw_info.opaque_fid,
&qparams, tc,
/* bd_chain_phys_addr */
ecore_chain_get_pbl_phys(&txq->tx_pbl),
ecore_chain_get_page_cnt(&txq->tx_pbl),
&tx_ret_params);
if (rc) {
QL_DPRINT1(ha, "Start TXQ #%d failed %d\n",
txq->index, rc);
return rc;
}
txq->doorbell_addr = tx_ret_params.p_doorbell;
txq->handle = tx_ret_params.p_handle;
txq->hw_cons_ptr =
&fp->sb_info->sb_virt->pi_array[TX_PI(tc)];
SET_FIELD(txq->tx_db.data.params,
ETH_DB_DATA_DEST, DB_DEST_XCM);
SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD,
DB_AGG_CMD_SET);
SET_FIELD(txq->tx_db.data.params,
ETH_DB_DATA_AGG_VAL_SEL,
DQ_XCM_ETH_TX_BD_PROD_CMD);
txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD;
}
}
/* Fill struct with RSS params */
if (ha->num_rss > 1) {
rss_params->update_rss_config = 1;
rss_params->rss_enable = 1;
rss_params->update_rss_capabilities = 1;
rss_params->update_rss_ind_table = 1;
rss_params->update_rss_key = 1;
rss_params->rss_caps = ECORE_RSS_IPV4 | ECORE_RSS_IPV6 |
ECORE_RSS_IPV4_TCP | ECORE_RSS_IPV6_TCP;
rss_params->rss_table_size_log = 7; /* 2^7 = 128 */
for (i = 0; i < ECORE_RSS_IND_TABLE_SIZE; i++) {
fp = &ha->fp_array[(i % ha->num_rss)];
rss_params->rss_ind_table[i] = fp->rxq->handle;
}
for (i = 0; i < ECORE_RSS_KEY_SIZE; i++)
rss_params->rss_key[i] = (__le32)qlnx_hash_key[i];
} else {
memset(rss_params, 0, sizeof(*rss_params));
}
/* Prepare and send the vport enable */
memset(&vport_update_params, 0, sizeof(vport_update_params));
vport_update_params.vport_id = vport_id;
vport_update_params.update_vport_active_tx_flg = 1;
vport_update_params.vport_active_tx_flg = 1;
vport_update_params.update_vport_active_rx_flg = 1;
vport_update_params.vport_active_rx_flg = 1;
vport_update_params.rss_params = rss_params;
vport_update_params.update_inner_vlan_removal_flg = 1;
vport_update_params.inner_vlan_removal_flg = 1;
if (hw_lro_enable) {
memset(&tpa_params, 0, sizeof (struct ecore_sge_tpa_params));
tpa_params.max_buffers_per_cqe = QLNX_TPA_MAX_AGG_BUFFERS;
tpa_params.update_tpa_en_flg = 1;
tpa_params.tpa_ipv4_en_flg = 1;
tpa_params.tpa_ipv6_en_flg = 1;
tpa_params.update_tpa_param_flg = 1;
tpa_params.tpa_pkt_split_flg = 0;
tpa_params.tpa_hdr_data_split_flg = 0;
tpa_params.tpa_gro_consistent_flg = 0;
tpa_params.tpa_max_aggs_num = ETH_TPA_MAX_AGGS_NUM;
tpa_params.tpa_max_size = (uint16_t)(-1);
tpa_params.tpa_min_size_to_start = ifp->if_mtu/2;
tpa_params.tpa_min_size_to_cont = ifp->if_mtu/2;
vport_update_params.sge_tpa_params = &tpa_params;
}
rc = qlnx_update_vport(cdev, &vport_update_params);
if (rc) {
QL_DPRINT1(ha, "Update V-PORT failed %d\n", rc);
return rc;
}
return 0;
}
static int
qlnx_drain_txq(qlnx_host_t *ha, struct qlnx_fastpath *fp,
struct qlnx_tx_queue *txq)
{
uint16_t hw_bd_cons;
uint16_t ecore_cons_idx;
QL_DPRINT2(ha, "enter\n");
hw_bd_cons = le16toh(*txq->hw_cons_ptr);
while (hw_bd_cons !=
(ecore_cons_idx = ecore_chain_get_cons_idx(&txq->tx_pbl))) {
mtx_lock(&fp->tx_mtx);
(void)qlnx_tx_int(ha, fp, txq);
mtx_unlock(&fp->tx_mtx);
qlnx_mdelay(__func__, 2);
hw_bd_cons = le16toh(*txq->hw_cons_ptr);
}
QL_DPRINT2(ha, "[%d, %d]: done\n", fp->rss_id, txq->index);
return 0;
}
static int
qlnx_stop_queues(qlnx_host_t *ha)
{
struct qlnx_update_vport_params vport_update_params;
struct ecore_dev *cdev;
struct qlnx_fastpath *fp;
int rc, tc, i;
cdev = &ha->cdev;
/* Disable the vport */
memset(&vport_update_params, 0, sizeof(vport_update_params));
vport_update_params.vport_id = 0;
vport_update_params.update_vport_active_tx_flg = 1;
vport_update_params.vport_active_tx_flg = 0;
vport_update_params.update_vport_active_rx_flg = 1;
vport_update_params.vport_active_rx_flg = 0;
vport_update_params.rss_params = &ha->rss_params;
vport_update_params.rss_params->update_rss_config = 0;
vport_update_params.rss_params->rss_enable = 0;
vport_update_params.update_inner_vlan_removal_flg = 0;
vport_update_params.inner_vlan_removal_flg = 0;
QL_DPRINT1(ha, "Update vport ID= %d\n", vport_update_params.vport_id);
rc = qlnx_update_vport(cdev, &vport_update_params);
if (rc) {
QL_DPRINT1(ha, "Failed to update vport\n");
return rc;
}
/* Flush Tx queues. If needed, request drain from MCP */
for_each_rss(i) {
fp = &ha->fp_array[i];
for (tc = 0; tc < ha->num_tc; tc++) {
struct qlnx_tx_queue *txq = fp->txq[tc];
rc = qlnx_drain_txq(ha, fp, txq);
if (rc)
return rc;
}
}
/* Stop all Queues in reverse order*/
for (i = ha->num_rss - 1; i >= 0; i--) {
struct ecore_hwfn *p_hwfn = &cdev->hwfns[(i % cdev->num_hwfns)];
fp = &ha->fp_array[i];
/* Stop the Tx Queue(s)*/
for (tc = 0; tc < ha->num_tc; tc++) {
int tx_queue_id;
tx_queue_id = tc * ha->num_rss + i;
rc = ecore_eth_tx_queue_stop(p_hwfn,
fp->txq[tc]->handle);
if (rc) {
QL_DPRINT1(ha, "Failed to stop TXQ #%d\n",
tx_queue_id);
return rc;
}
}
/* Stop the Rx Queue*/
rc = ecore_eth_rx_queue_stop(p_hwfn, fp->rxq->handle, false,
false);
if (rc) {
QL_DPRINT1(ha, "Failed to stop RXQ #%d\n", i);
return rc;
}
}
/* Stop the vport */
for_each_hwfn(cdev, i) {
struct ecore_hwfn *p_hwfn = &cdev->hwfns[i];
rc = ecore_sp_vport_stop(p_hwfn, p_hwfn->hw_info.opaque_fid, 0);
if (rc) {
QL_DPRINT1(ha, "Failed to stop VPORT\n");
return rc;
}
}
return rc;
}
static int
qlnx_set_ucast_rx_mac(qlnx_host_t *ha,
enum ecore_filter_opcode opcode,
unsigned char mac[ETH_ALEN])
{
struct ecore_filter_ucast ucast;
struct ecore_dev *cdev;
int rc;
cdev = &ha->cdev;
bzero(&ucast, sizeof(struct ecore_filter_ucast));
ucast.opcode = opcode;
ucast.type = ECORE_FILTER_MAC;
ucast.is_rx_filter = 1;
ucast.vport_to_add_to = 0;
memcpy(&ucast.mac[0], mac, ETH_ALEN);
rc = ecore_filter_ucast_cmd(cdev, &ucast, ECORE_SPQ_MODE_CB, NULL);
return (rc);
}
static int
qlnx_remove_all_ucast_mac(qlnx_host_t *ha)
{
struct ecore_filter_ucast ucast;
struct ecore_dev *cdev;
int rc;
bzero(&ucast, sizeof(struct ecore_filter_ucast));
ucast.opcode = ECORE_FILTER_REPLACE;
ucast.type = ECORE_FILTER_MAC;
ucast.is_rx_filter = 1;
cdev = &ha->cdev;
rc = ecore_filter_ucast_cmd(cdev, &ucast, ECORE_SPQ_MODE_CB, NULL);
return (rc);
}
static int
qlnx_remove_all_mcast_mac(qlnx_host_t *ha)
{
struct ecore_filter_mcast *mcast;
struct ecore_dev *cdev;
int rc, i;
cdev = &ha->cdev;
mcast = &ha->ecore_mcast;
bzero(mcast, sizeof(struct ecore_filter_mcast));
mcast->opcode = ECORE_FILTER_REMOVE;
for (i = 0; i < QLNX_MAX_NUM_MULTICAST_ADDRS; i++) {
if (ha->mcast[i].addr[0] || ha->mcast[i].addr[1] ||
ha->mcast[i].addr[2] || ha->mcast[i].addr[3] ||
ha->mcast[i].addr[4] || ha->mcast[i].addr[5]) {
memcpy(&mcast->mac[i][0], &ha->mcast[i].addr[0], ETH_ALEN);
mcast->num_mc_addrs++;
}
}
mcast = &ha->ecore_mcast;
rc = ecore_filter_mcast_cmd(cdev, mcast, ECORE_SPQ_MODE_CB, NULL);
bzero(ha->mcast, (sizeof(qlnx_mcast_t) * QLNX_MAX_NUM_MULTICAST_ADDRS));
ha->nmcast = 0;
return (rc);
}
static int
qlnx_clean_filters(qlnx_host_t *ha)
{
int rc = 0;
/* Remove all unicast macs */
rc = qlnx_remove_all_ucast_mac(ha);
if (rc)
return rc;
/* Remove all multicast macs */
rc = qlnx_remove_all_mcast_mac(ha);
if (rc)
return rc;
rc = qlnx_set_ucast_rx_mac(ha, ECORE_FILTER_FLUSH, ha->primary_mac);
return (rc);
}
static int
qlnx_set_rx_accept_filter(qlnx_host_t *ha, uint8_t filter)
{
struct ecore_filter_accept_flags accept;
int rc = 0;
struct ecore_dev *cdev;
cdev = &ha->cdev;
bzero(&accept, sizeof(struct ecore_filter_accept_flags));
accept.update_rx_mode_config = 1;
accept.rx_accept_filter = filter;
accept.update_tx_mode_config = 1;
accept.tx_accept_filter = ECORE_ACCEPT_UCAST_MATCHED |
ECORE_ACCEPT_MCAST_MATCHED | ECORE_ACCEPT_BCAST;
rc = ecore_filter_accept_cmd(cdev, 0, accept, false, false,
ECORE_SPQ_MODE_CB, NULL);
return (rc);
}
static int
qlnx_set_rx_mode(qlnx_host_t *ha)
{
int rc = 0;
uint8_t filter;
rc = qlnx_set_ucast_rx_mac(ha, ECORE_FILTER_REPLACE, ha->primary_mac);
if (rc)
return rc;
rc = qlnx_remove_all_mcast_mac(ha);
if (rc)
return rc;
filter = ECORE_ACCEPT_UCAST_MATCHED |
ECORE_ACCEPT_MCAST_MATCHED |
ECORE_ACCEPT_BCAST;
if (qlnx_vf_device(ha) == 0) {
filter |= ECORE_ACCEPT_UCAST_UNMATCHED;
filter |= ECORE_ACCEPT_MCAST_UNMATCHED;
}
ha->filter = filter;
rc = qlnx_set_rx_accept_filter(ha, filter);
return (rc);
}
static int
qlnx_set_link(qlnx_host_t *ha, bool link_up)
{
int i, rc = 0;
struct ecore_dev *cdev;
struct ecore_hwfn *hwfn;
struct ecore_ptt *ptt;
if (qlnx_vf_device(ha) == 0)
return (0);
cdev = &ha->cdev;
for_each_hwfn(cdev, i) {
hwfn = &cdev->hwfns[i];
ptt = ecore_ptt_acquire(hwfn);
if (!ptt)
return -EBUSY;
rc = ecore_mcp_set_link(hwfn, ptt, link_up);
ecore_ptt_release(hwfn, ptt);
if (rc)
return rc;
}
return (rc);
}
#if __FreeBSD_version >= 1100000
static uint64_t
qlnx_get_counter(if_t ifp, ift_counter cnt)
{
qlnx_host_t *ha;
uint64_t count;
ha = (qlnx_host_t *)if_getsoftc(ifp);
switch (cnt) {
case IFCOUNTER_IPACKETS:
count = ha->hw_stats.common.rx_ucast_pkts +
ha->hw_stats.common.rx_mcast_pkts +
ha->hw_stats.common.rx_bcast_pkts;
break;
case IFCOUNTER_IERRORS:
count = ha->hw_stats.common.rx_crc_errors +
ha->hw_stats.common.rx_align_errors +
ha->hw_stats.common.rx_oversize_packets +
ha->hw_stats.common.rx_undersize_packets;
break;
case IFCOUNTER_OPACKETS:
count = ha->hw_stats.common.tx_ucast_pkts +
ha->hw_stats.common.tx_mcast_pkts +
ha->hw_stats.common.tx_bcast_pkts;
break;
case IFCOUNTER_OERRORS:
count = ha->hw_stats.common.tx_err_drop_pkts;
break;
case IFCOUNTER_COLLISIONS:
return (0);
case IFCOUNTER_IBYTES:
count = ha->hw_stats.common.rx_ucast_bytes +
ha->hw_stats.common.rx_mcast_bytes +
ha->hw_stats.common.rx_bcast_bytes;
break;
case IFCOUNTER_OBYTES:
count = ha->hw_stats.common.tx_ucast_bytes +
ha->hw_stats.common.tx_mcast_bytes +
ha->hw_stats.common.tx_bcast_bytes;
break;
case IFCOUNTER_IMCASTS:
count = ha->hw_stats.common.rx_mcast_bytes;
break;
case IFCOUNTER_OMCASTS:
count = ha->hw_stats.common.tx_mcast_bytes;
break;
case IFCOUNTER_IQDROPS:
case IFCOUNTER_OQDROPS:
case IFCOUNTER_NOPROTO:
default:
return (if_get_counter_default(ifp, cnt));
}
return (count);
}
#endif
static void
qlnx_timer(void *arg)
{
qlnx_host_t *ha;
ha = (qlnx_host_t *)arg;
if (ha->error_recovery) {
ha->error_recovery = 0;
taskqueue_enqueue(ha->err_taskqueue, &ha->err_task);
return;
}
ecore_get_vport_stats(&ha->cdev, &ha->hw_stats);
if (ha->storm_stats_gather)
qlnx_sample_storm_stats(ha);
callout_reset(&ha->qlnx_callout, hz, qlnx_timer, ha);
return;
}
static int
qlnx_load(qlnx_host_t *ha)
{
int i;
int rc = 0;
struct ecore_dev *cdev;
device_t dev;
cdev = &ha->cdev;
dev = ha->pci_dev;
QL_DPRINT2(ha, "enter\n");
rc = qlnx_alloc_mem_arrays(ha);
if (rc)
goto qlnx_load_exit0;
qlnx_init_fp(ha);
rc = qlnx_alloc_mem_load(ha);
if (rc)
goto qlnx_load_exit1;
QL_DPRINT2(ha, "Allocated %d RSS queues on %d TC/s\n",
ha->num_rss, ha->num_tc);
for (i = 0; i < ha->num_rss; i++) {
if ((rc = bus_setup_intr(dev, ha->irq_vec[i].irq,
(INTR_TYPE_NET | INTR_MPSAFE),
NULL, qlnx_fp_isr, &ha->irq_vec[i],
&ha->irq_vec[i].handle))) {
QL_DPRINT1(ha, "could not setup interrupt\n");
goto qlnx_load_exit2;
}
QL_DPRINT2(ha, "rss_id = %d irq_rid %d \
irq %p handle %p\n", i,
ha->irq_vec[i].irq_rid,
ha->irq_vec[i].irq, ha->irq_vec[i].handle);
bus_bind_intr(dev, ha->irq_vec[i].irq, (i % mp_ncpus));
}
rc = qlnx_start_queues(ha);
if (rc)
goto qlnx_load_exit2;
QL_DPRINT2(ha, "Start VPORT, RXQ and TXQ succeeded\n");
/* Add primary mac and set Rx filters */
rc = qlnx_set_rx_mode(ha);
if (rc)
goto qlnx_load_exit2;
/* Ask for link-up using current configuration */
qlnx_set_link(ha, true);
if (qlnx_vf_device(ha) == 0)
qlnx_link_update(&ha->cdev.hwfns[0]);
ha->state = QLNX_STATE_OPEN;
bzero(&ha->hw_stats, sizeof(struct ecore_eth_stats));
if (ha->flags.callout_init)
callout_reset(&ha->qlnx_callout, hz, qlnx_timer, ha);
goto qlnx_load_exit0;
qlnx_load_exit2:
qlnx_free_mem_load(ha);
qlnx_load_exit1:
ha->num_rss = 0;
qlnx_load_exit0:
QL_DPRINT2(ha, "exit [%d]\n", rc);
return rc;
}
static void
qlnx_drain_soft_lro(qlnx_host_t *ha)
{
#ifdef QLNX_SOFT_LRO
struct ifnet *ifp;
int i;
ifp = ha->ifp;
if (ifp->if_capenable & IFCAP_LRO) {
for (i = 0; i < ha->num_rss; i++) {
struct qlnx_fastpath *fp = &ha->fp_array[i];
struct lro_ctrl *lro;
lro = &fp->rxq->lro;
#if (__FreeBSD_version >= 1100101) || (defined QLNX_QSORT_LRO)
tcp_lro_flush_all(lro);
#else
struct lro_entry *queued;
while ((!SLIST_EMPTY(&lro->lro_active))){
queued = SLIST_FIRST(&lro->lro_active);
SLIST_REMOVE_HEAD(&lro->lro_active, next);
tcp_lro_flush(lro, queued);
}
#endif /* #if (__FreeBSD_version >= 1100101) || (defined QLNX_QSORT_LRO) */
}
}
#endif /* #ifdef QLNX_SOFT_LRO */
return;
}
static void
qlnx_unload(qlnx_host_t *ha)
{
struct ecore_dev *cdev;
device_t dev;
int i;
cdev = &ha->cdev;
dev = ha->pci_dev;
QL_DPRINT2(ha, "enter\n");
QL_DPRINT1(ha, " QLNX STATE = %d\n",ha->state);
if (ha->state == QLNX_STATE_OPEN) {
qlnx_set_link(ha, false);
qlnx_clean_filters(ha);
qlnx_stop_queues(ha);
ecore_hw_stop_fastpath(cdev);
for (i = 0; i < ha->num_rss; i++) {
if (ha->irq_vec[i].handle) {
(void)bus_teardown_intr(dev,
ha->irq_vec[i].irq,
ha->irq_vec[i].handle);
ha->irq_vec[i].handle = NULL;
}
}
qlnx_drain_fp_taskqueues(ha);
qlnx_drain_soft_lro(ha);
qlnx_free_mem_load(ha);
}
if (ha->flags.callout_init)
callout_drain(&ha->qlnx_callout);
qlnx_mdelay(__func__, 1000);
ha->state = QLNX_STATE_CLOSED;
QL_DPRINT2(ha, "exit\n");
return;
}
static int
qlnx_grc_dumpsize(qlnx_host_t *ha, uint32_t *num_dwords, int hwfn_index)
{
int rval = -1;
struct ecore_hwfn *p_hwfn;
struct ecore_ptt *p_ptt;
ecore_dbg_set_app_ver(ecore_dbg_get_fw_func_ver());
p_hwfn = &ha->cdev.hwfns[hwfn_index];
p_ptt = ecore_ptt_acquire(p_hwfn);
if (!p_ptt) {
QL_DPRINT1(ha, "ecore_ptt_acquire failed\n");
return (rval);
}
rval = ecore_dbg_grc_get_dump_buf_size(p_hwfn, p_ptt, num_dwords);
if (rval == DBG_STATUS_OK)
rval = 0;
else {
QL_DPRINT1(ha, "ecore_dbg_grc_get_dump_buf_size failed"
"[0x%x]\n", rval);
}
ecore_ptt_release(p_hwfn, p_ptt);
return (rval);
}
static int
qlnx_idle_chk_size(qlnx_host_t *ha, uint32_t *num_dwords, int hwfn_index)
{
int rval = -1;
struct ecore_hwfn *p_hwfn;
struct ecore_ptt *p_ptt;
ecore_dbg_set_app_ver(ecore_dbg_get_fw_func_ver());
p_hwfn = &ha->cdev.hwfns[hwfn_index];
p_ptt = ecore_ptt_acquire(p_hwfn);
if (!p_ptt) {
QL_DPRINT1(ha, "ecore_ptt_acquire failed\n");
return (rval);
}
rval = ecore_dbg_idle_chk_get_dump_buf_size(p_hwfn, p_ptt, num_dwords);
if (rval == DBG_STATUS_OK)
rval = 0;
else {
QL_DPRINT1(ha, "ecore_dbg_idle_chk_get_dump_buf_size failed"
" [0x%x]\n", rval);
}
ecore_ptt_release(p_hwfn, p_ptt);
return (rval);
}
static void
qlnx_sample_storm_stats(qlnx_host_t *ha)
{
int i, index;
struct ecore_dev *cdev;
qlnx_storm_stats_t *s_stats;
uint32_t reg;
struct ecore_ptt *p_ptt;
struct ecore_hwfn *hwfn;
if (ha->storm_stats_index >= QLNX_STORM_STATS_SAMPLES_PER_HWFN) {
ha->storm_stats_gather = 0;
return;
}
cdev = &ha->cdev;
for_each_hwfn(cdev, i) {
hwfn = &cdev->hwfns[i];
p_ptt = ecore_ptt_acquire(hwfn);
if (!p_ptt)
return;
index = ha->storm_stats_index +
(i * QLNX_STORM_STATS_SAMPLES_PER_HWFN);
s_stats = &ha->storm_stats[index];
/* XSTORM */
reg = XSEM_REG_FAST_MEMORY +
SEM_FAST_REG_STORM_ACTIVE_CYCLES_BB_K2;
s_stats->xstorm_active_cycles = ecore_rd(hwfn, p_ptt, reg);
reg = XSEM_REG_FAST_MEMORY +
SEM_FAST_REG_STORM_STALL_CYCLES_BB_K2;
s_stats->xstorm_stall_cycles = ecore_rd(hwfn, p_ptt, reg);
reg = XSEM_REG_FAST_MEMORY +
SEM_FAST_REG_IDLE_SLEEPING_CYCLES_BB_K2;
s_stats->xstorm_sleeping_cycles = ecore_rd(hwfn, p_ptt, reg);
reg = XSEM_REG_FAST_MEMORY +
SEM_FAST_REG_IDLE_INACTIVE_CYCLES_BB_K2;
s_stats->xstorm_inactive_cycles = ecore_rd(hwfn, p_ptt, reg);
/* YSTORM */
reg = YSEM_REG_FAST_MEMORY +
SEM_FAST_REG_STORM_ACTIVE_CYCLES_BB_K2;
s_stats->ystorm_active_cycles = ecore_rd(hwfn, p_ptt, reg);
reg = YSEM_REG_FAST_MEMORY +
SEM_FAST_REG_STORM_STALL_CYCLES_BB_K2;
s_stats->ystorm_stall_cycles = ecore_rd(hwfn, p_ptt, reg);
reg = YSEM_REG_FAST_MEMORY +
SEM_FAST_REG_IDLE_SLEEPING_CYCLES_BB_K2;
s_stats->ystorm_sleeping_cycles = ecore_rd(hwfn, p_ptt, reg);
reg = YSEM_REG_FAST_MEMORY +
SEM_FAST_REG_IDLE_INACTIVE_CYCLES_BB_K2;
s_stats->ystorm_inactive_cycles = ecore_rd(hwfn, p_ptt, reg);
/* PSTORM */
reg = PSEM_REG_FAST_MEMORY +
SEM_FAST_REG_STORM_ACTIVE_CYCLES_BB_K2;
s_stats->pstorm_active_cycles = ecore_rd(hwfn, p_ptt, reg);
reg = PSEM_REG_FAST_MEMORY +
SEM_FAST_REG_STORM_STALL_CYCLES_BB_K2;
s_stats->pstorm_stall_cycles = ecore_rd(hwfn, p_ptt, reg);
reg = PSEM_REG_FAST_MEMORY +
SEM_FAST_REG_IDLE_SLEEPING_CYCLES_BB_K2;
s_stats->pstorm_sleeping_cycles = ecore_rd(hwfn, p_ptt, reg);
reg = PSEM_REG_FAST_MEMORY +
SEM_FAST_REG_IDLE_INACTIVE_CYCLES_BB_K2;
s_stats->pstorm_inactive_cycles = ecore_rd(hwfn, p_ptt, reg);
/* TSTORM */
reg = TSEM_REG_FAST_MEMORY +
SEM_FAST_REG_STORM_ACTIVE_CYCLES_BB_K2;
s_stats->tstorm_active_cycles = ecore_rd(hwfn, p_ptt, reg);
reg = TSEM_REG_FAST_MEMORY +
SEM_FAST_REG_STORM_STALL_CYCLES_BB_K2;
s_stats->tstorm_stall_cycles = ecore_rd(hwfn, p_ptt, reg);
reg = TSEM_REG_FAST_MEMORY +
SEM_FAST_REG_IDLE_SLEEPING_CYCLES_BB_K2;
s_stats->tstorm_sleeping_cycles = ecore_rd(hwfn, p_ptt, reg);
reg = TSEM_REG_FAST_MEMORY +
SEM_FAST_REG_IDLE_INACTIVE_CYCLES_BB_K2;
s_stats->tstorm_inactive_cycles = ecore_rd(hwfn, p_ptt, reg);
/* MSTORM */
reg = MSEM_REG_FAST_MEMORY +
SEM_FAST_REG_STORM_ACTIVE_CYCLES_BB_K2;
s_stats->mstorm_active_cycles = ecore_rd(hwfn, p_ptt, reg);
reg = MSEM_REG_FAST_MEMORY +
SEM_FAST_REG_STORM_STALL_CYCLES_BB_K2;
s_stats->mstorm_stall_cycles = ecore_rd(hwfn, p_ptt, reg);
reg = MSEM_REG_FAST_MEMORY +
SEM_FAST_REG_IDLE_SLEEPING_CYCLES_BB_K2;
s_stats->mstorm_sleeping_cycles = ecore_rd(hwfn, p_ptt, reg);
reg = MSEM_REG_FAST_MEMORY +
SEM_FAST_REG_IDLE_INACTIVE_CYCLES_BB_K2;
s_stats->mstorm_inactive_cycles = ecore_rd(hwfn, p_ptt, reg);
/* USTORM */
reg = USEM_REG_FAST_MEMORY +
SEM_FAST_REG_STORM_ACTIVE_CYCLES_BB_K2;
s_stats->ustorm_active_cycles = ecore_rd(hwfn, p_ptt, reg);
reg = USEM_REG_FAST_MEMORY +
SEM_FAST_REG_STORM_STALL_CYCLES_BB_K2;
s_stats->ustorm_stall_cycles = ecore_rd(hwfn, p_ptt, reg);
reg = USEM_REG_FAST_MEMORY +
SEM_FAST_REG_IDLE_SLEEPING_CYCLES_BB_K2;
s_stats->ustorm_sleeping_cycles = ecore_rd(hwfn, p_ptt, reg);
reg = USEM_REG_FAST_MEMORY +
SEM_FAST_REG_IDLE_INACTIVE_CYCLES_BB_K2;
s_stats->ustorm_inactive_cycles = ecore_rd(hwfn, p_ptt, reg);
ecore_ptt_release(hwfn, p_ptt);
}
ha->storm_stats_index++;
return;
}
/*
* Name: qlnx_dump_buf8
* Function: dumps a buffer as bytes
*/
static void
qlnx_dump_buf8(qlnx_host_t *ha, const char *msg, void *dbuf, uint32_t len)
{
device_t dev;
uint32_t i = 0;
uint8_t *buf;
dev = ha->pci_dev;
buf = dbuf;
device_printf(dev, "%s: %s 0x%x dump start\n", __func__, msg, len);
while (len >= 16) {
device_printf(dev,"0x%08x:"
" %02x %02x %02x %02x %02x %02x %02x %02x"
" %02x %02x %02x %02x %02x %02x %02x %02x\n", i,
buf[0], buf[1], buf[2], buf[3],
buf[4], buf[5], buf[6], buf[7],
buf[8], buf[9], buf[10], buf[11],
buf[12], buf[13], buf[14], buf[15]);
i += 16;
len -= 16;
buf += 16;
}
switch (len) {
case 1:
device_printf(dev,"0x%08x: %02x\n", i, buf[0]);
break;
case 2:
device_printf(dev,"0x%08x: %02x %02x\n", i, buf[0], buf[1]);
break;
case 3:
device_printf(dev,"0x%08x: %02x %02x %02x\n",
i, buf[0], buf[1], buf[2]);
break;
case 4:
device_printf(dev,"0x%08x: %02x %02x %02x %02x\n", i,
buf[0], buf[1], buf[2], buf[3]);
break;
case 5:
device_printf(dev,"0x%08x:"
" %02x %02x %02x %02x %02x\n", i,
buf[0], buf[1], buf[2], buf[3], buf[4]);
break;
case 6:
device_printf(dev,"0x%08x:"
" %02x %02x %02x %02x %02x %02x\n", i,
buf[0], buf[1], buf[2], buf[3], buf[4], buf[5]);
break;
case 7:
device_printf(dev,"0x%08x:"
" %02x %02x %02x %02x %02x %02x %02x\n", i,
buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], buf[6]);
break;
case 8:
device_printf(dev,"0x%08x:"
" %02x %02x %02x %02x %02x %02x %02x %02x\n", i,
buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], buf[6],
buf[7]);
break;
case 9:
device_printf(dev,"0x%08x:"
" %02x %02x %02x %02x %02x %02x %02x %02x"
" %02x\n", i,
buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], buf[6],
buf[7], buf[8]);
break;
case 10:
device_printf(dev,"0x%08x:"
" %02x %02x %02x %02x %02x %02x %02x %02x"
" %02x %02x\n", i,
buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], buf[6],
buf[7], buf[8], buf[9]);
break;
case 11:
device_printf(dev,"0x%08x:"
" %02x %02x %02x %02x %02x %02x %02x %02x"
" %02x %02x %02x\n", i,
buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], buf[6],
buf[7], buf[8], buf[9], buf[10]);
break;
case 12:
device_printf(dev,"0x%08x:"
" %02x %02x %02x %02x %02x %02x %02x %02x"
" %02x %02x %02x %02x\n", i,
buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], buf[6],
buf[7], buf[8], buf[9], buf[10], buf[11]);
break;
case 13:
device_printf(dev,"0x%08x:"
" %02x %02x %02x %02x %02x %02x %02x %02x"
" %02x %02x %02x %02x %02x\n", i,
buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], buf[6],
buf[7], buf[8], buf[9], buf[10], buf[11], buf[12]);
break;
case 14:
device_printf(dev,"0x%08x:"
" %02x %02x %02x %02x %02x %02x %02x %02x"
" %02x %02x %02x %02x %02x %02x\n", i,
buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], buf[6],
buf[7], buf[8], buf[9], buf[10], buf[11], buf[12],
buf[13]);
break;
case 15:
device_printf(dev,"0x%08x:"
" %02x %02x %02x %02x %02x %02x %02x %02x"
" %02x %02x %02x %02x %02x %02x %02x\n", i,
buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], buf[6],
buf[7], buf[8], buf[9], buf[10], buf[11], buf[12],
buf[13], buf[14]);
break;
default:
break;
}
device_printf(dev, "%s: %s dump end\n", __func__, msg);
return;
}
#ifdef CONFIG_ECORE_SRIOV
static void
__qlnx_osal_iov_vf_cleanup(struct ecore_hwfn *p_hwfn, uint8_t rel_vf_id)
{
struct ecore_public_vf_info *vf_info;
vf_info = ecore_iov_get_public_vf_info(p_hwfn, rel_vf_id, false);
if (!vf_info)
return;
/* Clear the VF mac */
memset(vf_info->forced_mac, 0, ETH_ALEN);
vf_info->forced_vlan = 0;
return;
}
void
qlnx_osal_iov_vf_cleanup(void *p_hwfn, uint8_t relative_vf_id)
{
__qlnx_osal_iov_vf_cleanup(p_hwfn, relative_vf_id);
return;
}
static int
__qlnx_iov_chk_ucast(struct ecore_hwfn *p_hwfn, int vfid,
struct ecore_filter_ucast *params)
{
struct ecore_public_vf_info *vf;
if (!ecore_iov_vf_has_vport_instance(p_hwfn, vfid)) {
QL_DPRINT1(((qlnx_host_t *)p_hwfn->p_dev),
"VF[%d] vport not initialized\n", vfid);
return ECORE_INVAL;
}
vf = ecore_iov_get_public_vf_info(p_hwfn, vfid, true);
if (!vf)
return -EINVAL;
/* No real decision to make; Store the configured MAC */
if (params->type == ECORE_FILTER_MAC ||
params->type == ECORE_FILTER_MAC_VLAN)
memcpy(params->mac, vf->forced_mac, ETH_ALEN);
return 0;
}
int
qlnx_iov_chk_ucast(void *p_hwfn, int vfid, void *params)
{
return (__qlnx_iov_chk_ucast(p_hwfn, vfid, params));
}
static int
__qlnx_iov_update_vport(struct ecore_hwfn *hwfn, uint8_t vfid,
struct ecore_sp_vport_update_params *params, uint16_t * tlvs)
{
uint8_t mask;
struct ecore_filter_accept_flags *flags;
if (!ecore_iov_vf_has_vport_instance(hwfn, vfid)) {
QL_DPRINT1(((qlnx_host_t *)hwfn->p_dev),
"VF[%d] vport not initialized\n", vfid);
return ECORE_INVAL;
}
/* Untrusted VFs can't even be trusted to know that fact.
* Simply indicate everything is configured fine, and trace
* configuration 'behind their back'.
*/
mask = ECORE_ACCEPT_UCAST_UNMATCHED | ECORE_ACCEPT_MCAST_UNMATCHED;
flags = &params->accept_flags;
if (!(*tlvs & BIT(ECORE_IOV_VP_UPDATE_ACCEPT_PARAM)))
return 0;
return 0;
}
int
qlnx_iov_update_vport(void *hwfn, uint8_t vfid, void *params, uint16_t *tlvs)
{
return(__qlnx_iov_update_vport(hwfn, vfid, params, tlvs));
}
static int
qlnx_find_hwfn_index(struct ecore_hwfn *p_hwfn)
{
int i;
struct ecore_dev *cdev;
cdev = p_hwfn->p_dev;
for (i = 0; i < cdev->num_hwfns; i++) {
if (&cdev->hwfns[i] == p_hwfn)
break;
}
if (i >= cdev->num_hwfns)
return (-1);
return (i);
}
static int
__qlnx_pf_vf_msg(struct ecore_hwfn *p_hwfn, uint16_t rel_vf_id)
{
qlnx_host_t *ha = (qlnx_host_t *)p_hwfn->p_dev;
int i;
QL_DPRINT2(ha, "ha = %p cdev = %p p_hwfn = %p rel_vf_id = %d\n",
ha, p_hwfn->p_dev, p_hwfn, rel_vf_id);
if ((i = qlnx_find_hwfn_index(p_hwfn)) == -1)
return (-1);
if (ha->sriov_task[i].pf_taskqueue != NULL) {
atomic_testandset_32(&ha->sriov_task[i].flags,
QLNX_SRIOV_TASK_FLAGS_VF_PF_MSG);
taskqueue_enqueue(ha->sriov_task[i].pf_taskqueue,
&ha->sriov_task[i].pf_task);
}
return (ECORE_SUCCESS);
}
int
qlnx_pf_vf_msg(void *p_hwfn, uint16_t relative_vf_id)
{
return (__qlnx_pf_vf_msg(p_hwfn, relative_vf_id));
}
static void
__qlnx_vf_flr_update(struct ecore_hwfn *p_hwfn)
{
qlnx_host_t *ha = (qlnx_host_t *)p_hwfn->p_dev;
int i;
if (!ha->sriov_initialized)
return;
QL_DPRINT2(ha, "ha = %p cdev = %p p_hwfn = %p \n",
ha, p_hwfn->p_dev, p_hwfn);
if ((i = qlnx_find_hwfn_index(p_hwfn)) == -1)
return;
if (ha->sriov_task[i].pf_taskqueue != NULL) {
atomic_testandset_32(&ha->sriov_task[i].flags,
QLNX_SRIOV_TASK_FLAGS_VF_FLR_UPDATE);
taskqueue_enqueue(ha->sriov_task[i].pf_taskqueue,
&ha->sriov_task[i].pf_task);
}
return;
}
void
qlnx_vf_flr_update(void *p_hwfn)
{
__qlnx_vf_flr_update(p_hwfn);
return;
}
#ifndef QLNX_VF
static void
qlnx_vf_bulleting_update(struct ecore_hwfn *p_hwfn)
{
qlnx_host_t *ha = (qlnx_host_t *)p_hwfn->p_dev;
int i;
QL_DPRINT2(ha, "ha = %p cdev = %p p_hwfn = %p \n",
ha, p_hwfn->p_dev, p_hwfn);
if ((i = qlnx_find_hwfn_index(p_hwfn)) == -1)
return;
QL_DPRINT2(ha, "ha = %p cdev = %p p_hwfn = %p i = %d\n",
ha, p_hwfn->p_dev, p_hwfn, i);
if (ha->sriov_task[i].pf_taskqueue != NULL) {
atomic_testandset_32(&ha->sriov_task[i].flags,
QLNX_SRIOV_TASK_FLAGS_BULLETIN_UPDATE);
taskqueue_enqueue(ha->sriov_task[i].pf_taskqueue,
&ha->sriov_task[i].pf_task);
}
}
static void
qlnx_initialize_sriov(qlnx_host_t *ha)
{
device_t dev;
nvlist_t *pf_schema, *vf_schema;
int iov_error;
dev = ha->pci_dev;
pf_schema = pci_iov_schema_alloc_node();
vf_schema = pci_iov_schema_alloc_node();
pci_iov_schema_add_unicast_mac(vf_schema, "mac-addr", 0, NULL);
pci_iov_schema_add_bool(vf_schema, "allow-set-mac",
IOV_SCHEMA_HASDEFAULT, FALSE);
pci_iov_schema_add_bool(vf_schema, "allow-promisc",
IOV_SCHEMA_HASDEFAULT, FALSE);
pci_iov_schema_add_uint16(vf_schema, "num-queues",
IOV_SCHEMA_HASDEFAULT, 1);
iov_error = pci_iov_attach(dev, pf_schema, vf_schema);
if (iov_error != 0) {
ha->sriov_initialized = 0;
} else {
device_printf(dev, "SRIOV initialized\n");
ha->sriov_initialized = 1;
}
return;
}
static void
qlnx_sriov_disable(qlnx_host_t *ha)
{
struct ecore_dev *cdev;
int i, j;
cdev = &ha->cdev;
ecore_iov_set_vfs_to_disable(cdev, true);
for_each_hwfn(cdev, i) {
struct ecore_hwfn *hwfn = &cdev->hwfns[i];
struct ecore_ptt *ptt = ecore_ptt_acquire(hwfn);
if (!ptt) {
QL_DPRINT1(ha, "Failed to acquire ptt\n");
return;
}
/* Clean WFQ db and configure equal weight for all vports */
ecore_clean_wfq_db(hwfn, ptt);
ecore_for_each_vf(hwfn, j) {
int k = 0;
if (!ecore_iov_is_valid_vfid(hwfn, j, true, false))
continue;
if (ecore_iov_is_vf_started(hwfn, j)) {
/* Wait until VF is disabled before releasing */
for (k = 0; k < 100; k++) {
if (!ecore_iov_is_vf_stopped(hwfn, j)) {
qlnx_mdelay(__func__, 10);
} else
break;
}
}
if (k < 100)
ecore_iov_release_hw_for_vf(&cdev->hwfns[i],
ptt, j);
else {
QL_DPRINT1(ha,
"Timeout waiting for VF's FLR to end\n");
}
}
ecore_ptt_release(hwfn, ptt);
}
ecore_iov_set_vfs_to_disable(cdev, false);
return;
}
static void
qlnx_sriov_enable_qid_config(struct ecore_hwfn *hwfn, u16 vfid,
struct ecore_iov_vf_init_params *params)
{
u16 base, i;
/* Since we have an equal resource distribution per-VF, and we assume
* PF has acquired the ECORE_PF_L2_QUE first queues, we start setting
* sequentially from there.
*/
base = FEAT_NUM(hwfn, ECORE_PF_L2_QUE) + vfid * params->num_queues;
params->rel_vf_id = vfid;
for (i = 0; i < params->num_queues; i++) {
params->req_rx_queue[i] = base + i;
params->req_tx_queue[i] = base + i;
}
/* PF uses indices 0 for itself; Set vport/RSS afterwards */
params->vport_id = vfid + 1;
params->rss_eng_id = vfid + 1;
return;
}
static int
qlnx_iov_init(device_t dev, uint16_t num_vfs, const nvlist_t *nvlist_params)
{
qlnx_host_t *ha;
struct ecore_dev *cdev;
struct ecore_iov_vf_init_params params;
int ret, j, i;
uint32_t max_vfs;
if ((ha = device_get_softc(dev)) == NULL) {
device_printf(dev, "%s: cannot get softc\n", __func__);
return (-1);
}
if (qlnx_create_pf_taskqueues(ha) != 0)
goto qlnx_iov_init_err0;
cdev = &ha->cdev;
max_vfs = RESC_NUM(&cdev->hwfns[0], ECORE_VPORT);
QL_DPRINT2(ha," dev = %p enter num_vfs = %d max_vfs = %d\n",
dev, num_vfs, max_vfs);
if (num_vfs >= max_vfs) {
QL_DPRINT1(ha, "Can start at most %d VFs\n",
(RESC_NUM(&cdev->hwfns[0], ECORE_VPORT) - 1));
goto qlnx_iov_init_err0;
}
ha->vf_attr = malloc(((sizeof (qlnx_vf_attr_t) * num_vfs)), M_QLNXBUF,
M_NOWAIT);
if (ha->vf_attr == NULL)
goto qlnx_iov_init_err0;
memset(&params, 0, sizeof(params));
/* Initialize HW for VF access */
for_each_hwfn(cdev, j) {
struct ecore_hwfn *hwfn = &cdev->hwfns[j];
struct ecore_ptt *ptt = ecore_ptt_acquire(hwfn);
/* Make sure not to use more than 16 queues per VF */
params.num_queues = min_t(int,
(FEAT_NUM(hwfn, ECORE_VF_L2_QUE) / num_vfs),
16);
if (!ptt) {
QL_DPRINT1(ha, "Failed to acquire ptt\n");
goto qlnx_iov_init_err1;
}
for (i = 0; i < num_vfs; i++) {
if (!ecore_iov_is_valid_vfid(hwfn, i, false, true))
continue;
qlnx_sriov_enable_qid_config(hwfn, i, &params);
ret = ecore_iov_init_hw_for_vf(hwfn, ptt, &params);
if (ret) {
QL_DPRINT1(ha, "Failed to enable VF[%d]\n", i);
ecore_ptt_release(hwfn, ptt);
goto qlnx_iov_init_err1;
}
}
ecore_ptt_release(hwfn, ptt);
}
ha->num_vfs = num_vfs;
qlnx_inform_vf_link_state(&cdev->hwfns[0], ha);
QL_DPRINT2(ha," dev = %p exit num_vfs = %d\n", dev, num_vfs);
return (0);
qlnx_iov_init_err1:
qlnx_sriov_disable(ha);
qlnx_iov_init_err0:
qlnx_destroy_pf_taskqueues(ha);
ha->num_vfs = 0;
return (-1);
}
static void
qlnx_iov_uninit(device_t dev)
{
qlnx_host_t *ha;
if ((ha = device_get_softc(dev)) == NULL) {
device_printf(dev, "%s: cannot get softc\n", __func__);
return;
}
QL_DPRINT2(ha," dev = %p enter\n", dev);
qlnx_sriov_disable(ha);
qlnx_destroy_pf_taskqueues(ha);
free(ha->vf_attr, M_QLNXBUF);
ha->vf_attr = NULL;
ha->num_vfs = 0;
QL_DPRINT2(ha," dev = %p exit\n", dev);
return;
}
static int
qlnx_iov_add_vf(device_t dev, uint16_t vfnum, const nvlist_t *params)
{
qlnx_host_t *ha;
qlnx_vf_attr_t *vf_attr;
unsigned const char *mac;
size_t size;
struct ecore_hwfn *p_hwfn;
if ((ha = device_get_softc(dev)) == NULL) {
device_printf(dev, "%s: cannot get softc\n", __func__);
return (-1);
}
QL_DPRINT2(ha," dev = %p enter vfnum = %d\n", dev, vfnum);
if (vfnum > (ha->num_vfs - 1)) {
QL_DPRINT1(ha, " VF[%d] is greater than max allowed [%d]\n",
vfnum, (ha->num_vfs - 1));
}
vf_attr = &ha->vf_attr[vfnum];
if (nvlist_exists_binary(params, "mac-addr")) {
mac = nvlist_get_binary(params, "mac-addr", &size);
bcopy(mac, vf_attr->mac_addr, ETHER_ADDR_LEN);
device_printf(dev,
"%s: mac_addr = %02x:%02x:%02x:%02x:%02x:%02x\n",
__func__, vf_attr->mac_addr[0],
vf_attr->mac_addr[1], vf_attr->mac_addr[2],
vf_attr->mac_addr[3], vf_attr->mac_addr[4],
vf_attr->mac_addr[5]);
p_hwfn = &ha->cdev.hwfns[0];
ecore_iov_bulletin_set_mac(p_hwfn, vf_attr->mac_addr,
vfnum);
}
QL_DPRINT2(ha," dev = %p exit vfnum = %d\n", dev, vfnum);
return (0);
}
static void
qlnx_handle_vf_msg(qlnx_host_t *ha, struct ecore_hwfn *p_hwfn)
{
uint64_t events[ECORE_VF_ARRAY_LENGTH];
struct ecore_ptt *ptt;
int i;
ptt = ecore_ptt_acquire(p_hwfn);
if (!ptt) {
QL_DPRINT1(ha, "Can't acquire PTT; re-scheduling\n");
__qlnx_pf_vf_msg(p_hwfn, 0);
return;
}
ecore_iov_pf_get_pending_events(p_hwfn, events);
QL_DPRINT2(ha, "Event mask of VF events:"
"0x%" PRIu64 "0x%" PRIu64 " 0x%" PRIu64 "\n",
events[0], events[1], events[2]);
ecore_for_each_vf(p_hwfn, i) {
/* Skip VFs with no pending messages */
if (!(events[i / 64] & (1ULL << (i % 64))))
continue;
QL_DPRINT2(ha,
"Handling VF message from VF 0x%02x [Abs 0x%02x]\n",
i, p_hwfn->p_dev->p_iov_info->first_vf_in_pf + i);
/* Copy VF's message to PF's request buffer for that VF */
if (ecore_iov_copy_vf_msg(p_hwfn, ptt, i))
continue;
ecore_iov_process_mbx_req(p_hwfn, ptt, i);
}
ecore_ptt_release(p_hwfn, ptt);
return;
}
static void
qlnx_handle_vf_flr_update(qlnx_host_t *ha, struct ecore_hwfn *p_hwfn)
{
struct ecore_ptt *ptt;
int ret;
ptt = ecore_ptt_acquire(p_hwfn);
if (!ptt) {
QL_DPRINT1(ha, "Can't acquire PTT; re-scheduling\n");
__qlnx_vf_flr_update(p_hwfn);
return;
}
ret = ecore_iov_vf_flr_cleanup(p_hwfn, ptt);
if (ret) {
QL_DPRINT1(ha, "ecore_iov_vf_flr_cleanup failed; re-scheduling\n");
}
ecore_ptt_release(p_hwfn, ptt);
return;
}
static void
qlnx_handle_bulletin_update(qlnx_host_t *ha, struct ecore_hwfn *p_hwfn)
{
struct ecore_ptt *ptt;
int i;
ptt = ecore_ptt_acquire(p_hwfn);
if (!ptt) {
QL_DPRINT1(ha, "Can't acquire PTT; re-scheduling\n");
qlnx_vf_bulleting_update(p_hwfn);
return;
}
ecore_for_each_vf(p_hwfn, i) {
QL_DPRINT1(ha, "ecore_iov_post_vf_bulletin[%p, %d]\n",
p_hwfn, i);
ecore_iov_post_vf_bulletin(p_hwfn, i, ptt);
}
ecore_ptt_release(p_hwfn, ptt);
return;
}
static void
qlnx_pf_taskqueue(void *context, int pending)
{
struct ecore_hwfn *p_hwfn;
qlnx_host_t *ha;
int i;
p_hwfn = context;
if (p_hwfn == NULL)
return;
ha = (qlnx_host_t *)(p_hwfn->p_dev);
if ((i = qlnx_find_hwfn_index(p_hwfn)) == -1)
return;
if (atomic_testandclear_32(&ha->sriov_task[i].flags,
QLNX_SRIOV_TASK_FLAGS_VF_PF_MSG))
qlnx_handle_vf_msg(ha, p_hwfn);
if (atomic_testandclear_32(&ha->sriov_task[i].flags,
QLNX_SRIOV_TASK_FLAGS_VF_FLR_UPDATE))
qlnx_handle_vf_flr_update(ha, p_hwfn);
if (atomic_testandclear_32(&ha->sriov_task[i].flags,
QLNX_SRIOV_TASK_FLAGS_BULLETIN_UPDATE))
qlnx_handle_bulletin_update(ha, p_hwfn);
return;
}
static int
qlnx_create_pf_taskqueues(qlnx_host_t *ha)
{
int i;
uint8_t tq_name[32];
for (i = 0; i < ha->cdev.num_hwfns; i++) {
struct ecore_hwfn *p_hwfn = &ha->cdev.hwfns[i];
bzero(tq_name, sizeof (tq_name));
snprintf(tq_name, sizeof (tq_name), "ql_pf_tq_%d", i);
TASK_INIT(&ha->sriov_task[i].pf_task, 0, qlnx_pf_taskqueue, p_hwfn);
ha->sriov_task[i].pf_taskqueue = taskqueue_create(tq_name, M_NOWAIT,
taskqueue_thread_enqueue,
&ha->sriov_task[i].pf_taskqueue);
if (ha->sriov_task[i].pf_taskqueue == NULL)
return (-1);
taskqueue_start_threads(&ha->sriov_task[i].pf_taskqueue, 1,
PI_NET, "%s", tq_name);
QL_DPRINT1(ha, "%p\n", ha->sriov_task[i].pf_taskqueue);
}
return (0);
}
static void
qlnx_destroy_pf_taskqueues(qlnx_host_t *ha)
{
int i;
for (i = 0; i < ha->cdev.num_hwfns; i++) {
if (ha->sriov_task[i].pf_taskqueue != NULL) {
taskqueue_drain(ha->sriov_task[i].pf_taskqueue,
&ha->sriov_task[i].pf_task);
taskqueue_free(ha->sriov_task[i].pf_taskqueue);
ha->sriov_task[i].pf_taskqueue = NULL;
}
}
return;
}
static void
qlnx_inform_vf_link_state(struct ecore_hwfn *p_hwfn, qlnx_host_t *ha)
{
struct ecore_mcp_link_capabilities caps;
struct ecore_mcp_link_params params;
struct ecore_mcp_link_state link;
int i;
if (!p_hwfn->pf_iov_info)
return;
memset(&params, 0, sizeof(struct ecore_mcp_link_params));
memset(&link, 0, sizeof(struct ecore_mcp_link_state));
memset(&caps, 0, sizeof(struct ecore_mcp_link_capabilities));
memcpy(&caps, ecore_mcp_get_link_capabilities(p_hwfn), sizeof(caps));
memcpy(&link, ecore_mcp_get_link_state(p_hwfn), sizeof(link));
memcpy(&params, ecore_mcp_get_link_params(p_hwfn), sizeof(params));
QL_DPRINT2(ha, "called\n");
/* Update bulletin of all future possible VFs with link configuration */
for (i = 0; i < p_hwfn->p_dev->p_iov_info->total_vfs; i++) {
/* Modify link according to the VF's configured link state */
link.link_up = false;
if (ha->link_up) {
link.link_up = true;
/* Set speed according to maximum supported by HW.
* that is 40G for regular devices and 100G for CMT
* mode devices.
*/
link.speed = (p_hwfn->p_dev->num_hwfns > 1) ?
100000 : link.speed;
}
QL_DPRINT2(ha, "link [%d] = %d\n", i, link.link_up);
ecore_iov_set_link(p_hwfn, i, &params, &link, &caps);
}
qlnx_vf_bulleting_update(p_hwfn);
return;
}
#endif /* #ifndef QLNX_VF */
#endif /* #ifdef CONFIG_ECORE_SRIOV */